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Abstract
Facial expressions are among the earliest behaviors infants use to express emotional states, and are crucial to preverbal social 
interaction. Manual coding of infant facial expressions, however, is laborious and poses limitations to replicability. Recent 
developments in computer vision have advanced automated facial expression analyses in adults, providing reproducible 
results at lower time investment. Baby FaceReader 9 is commercially available software for automated measurement of 
infant facial expressions, but has received little validation. We compared Baby FaceReader 9 output to manual micro-coding 
of positive, negative, or neutral facial expressions in a longitudinal dataset of 58 infants at 4 and 8 months of age during 
naturalistic face-to-face interactions with the mother, father, and an unfamiliar adult. Baby FaceReader 9’s global emotional 
valence formula yielded reasonable classification accuracy (AUC​ = .81) for discriminating manually coded positive from 
negative/neutral facial expressions; however, the discrimination of negative from neutral facial expressions was not reliable 
(AUC​ = .58). Automatically detected a priori action unit (AU) configurations for distinguishing positive from negative facial 
expressions based on existing literature were also not reliable. A parsimonious approach using only automatically detected 
smiling (AU12) yielded good performance for discriminating positive from negative/neutral facial expressions (AUC​ = .86). 
Likewise, automatically detected brow lowering (AU3+AU4) reliably distinguished neutral from negative facial expressions 
(AUC​ = .79). These results provide initial support for the use of selected automatically detected individual facial actions to 
index positive and negative affect in young infants, but shed doubt on the accuracy of complex a priori formulas.

Keywords  Baby FaceReader 9 · Automated facial expression measurement · Manual micro-coding · Between-system 
agreement · Infant · Face-to-face interaction

Facial expressions are crucial to preverbal social interaction 
and among the earliest behaviors that can be used for infer-
ring emotional states in infants (e.g., Bolzani et al., 2002; 
Messinger, 2002; Oster et al., 1992; Oster, 2003, 2005a, b). 

The systematic classification and tracking of facial expres-
sions during infant–caregiver interactions has been invalu-
able for studying a wide range of early socio-cognitive and 
socio-emotional developments, including the emergence and 
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dynamics of visual attention (e.g., Hietanen & Leppänen, 
2003; Lavelli & Fogel, 2005), emotion regulation (e.g., 
MacLean et al., 2014; Mangelsdorf et al., 1995), and prever-
bal communication (e.g., Beebe et al., 2016; Colonnesi et al., 
2012; Hsu & Fogel, 2001; Yale et al., 1999, 2003).

The manual coding of facial expressions is a labor-inten-
sive process, however, and procedural variations along with 
subjective factors may limit the reproducibility of results 
obtained at different infant labs. Recent developments in com-
puter vision have brought about substantial advances in auto-
mated facial expression recognition in adult data, offering the 
potential for a powerful and relatively lower time-investment 
alternative to manual behavioral coding (e.g., Ertugrul et al., 
2019; Niinuma et al., 2019; Yang et al., 2019). The application 
of automated measurement methods to infant facial expression 
data could sustain rich analysis of facial behavior and at the 
same time increase the replicability of studies involving infant 
behavior by allowing researchers to apply objective measures 
to much larger sample sizes than what is typically feasible 
with manual coding techniques. Before the use of such meth-
ods can be reliably introduced in infant research, however, we 
first need to assess whether available automated facial expres-
sion detection systems can produce results that are compa-
rable to those obtained from manual human coding. The 
current work provides a detailed performance evaluation of 
one automated system – Baby FaceReader 9 (Noldus, 2022), 
comparing it to manual coding of affective facial expressions 
in a longitudinal dataset of infants at 4 and 8 months of age 
during naturalistic face-to-face interactions.

Manual coding of affective facial expressions

Manual coding techniques have a long-standing tradition 
in developmental research, and coding systems vary sub-
stantially in terms of the extent to which affective labels 
are used to describe facial behavior (Cohn & Ekman, 2005; 
Cohn et al., 2007; Harrigan, 2013; Stern, 1971). The most 
comprehensive coding system available is the Baby Action 
Coding System (Baby FACS; Oster, 2006), which involves 
the systematic, anatomically based classification of the fre-
quency and duration of activation across discrete facial mus-
cle action units (AUs). Configurations of action units and 
their intensities can then serve for inferring discrete affec-
tive states while taking into account infant–adult differences 
in facial morphology (Oster & Ekman, 1978). Thus, unlike 
other approaches, the inferences made about the affective 
meaning of facial expressions are extrinsic to the coding 
system, which limits the involvement of subjective judgment 
during the coding process and makes results more likely to 
be reproduced (Cohn et al., 2007; Oster et al., 1992).

Baby FACS requires coders to undergo an extensive train-
ing certification and therefore alternative, less involved cod-
ing systems for coding affective facial expressions in more 
holistic terms are frequently employed throughout devel-
opmental research. A common approach is, for instance, 
to track second-by-second changes in the global emotional 
valence of facial expressions (e.g., Aktar et al., 2017; Col-
onnesi et al., 2012; Salvadori et al., 2021, 2022). Infants’ 
facial states are coded into discrete categories: positive facial 
expressions (i.e., smiles), negative facial expressions (i.e., 
frowns, pouting or lip stretching), or neutral (i.e., absence of 
positive and negative facial expressions). Facial expressions 
in each valence category are typically analyzed in terms of 
durations or event frequencies. Common to most if not all 
manual coding techniques is that the reliability of the coding 
is assessed using inter-rater reliability metrics among at least 
two trained independent raters. A specific characteristic of 
such manual coding approaches is that they are based on the 
subjective detection of facial expressions within a specific 
interaction context (e.g., the infants’ general affective state 
during the interaction, contextual information, reaction of 
the social partner), and that the intensity of the affective 
state is typically not coded (but cf. Beebe et al., 2009; 2010; 
Kokkinaki, 2009). Because such approaches are frequently 
used across developmental science domains (e.g., Feldman, 
2007; Leclére et al., 2014), and the proportion of time or 
temporal change of the facial expression’s valence tend to 
be the primary outcome variables researchers are after, we 
chose to focus our analysis on a dataset that is comparable in 
those respects to other observational infant research.

Automated measurement tools for infant 
facial expressions

Applying adult models to infant data is problematic because 
infant facial features differ substantially from those of adult’s 
(Ertugrul et al., 2023; Oster, 2005a, b, 2006; Oster & Ekman, 
1978) and publicly available benchmark datasets for training 
automated facial expression analysis algorithms are limited 
(but cf. Messinger, 2014; Nanni et  al., 2010; Webb et  al., 
2018). Several open-source tools have shown promising results 
in comparison to manual coding (e.g., Ertugrul et al., 2023; 
Hammal et al., 2017; Messinger et al., 2009; 2012; Zamzmi 
et al., 2017). A main hurdle for popularizing such approaches 
in developmental research, however, is that the use of such tools 
requires a variety of technical skills. Baby FaceReader 9 (Noldus, 
2022) is a commercially available solution that is marketed for 
automated measurement of infant facial expressions, and offers 
a graphical user interface, which makes it suitable for research 
teams with little computer vision or programming expertise.
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Previous validation work using Baby FaceReader

Previous validation work on Baby FaceReader’s perfor-
mance is limited. Baby FaceReader 8 (Noldus, 2016) has 
been applied in two small-scale studies from conference 
posters to: 1) detect manually annotated facial action units 
associated with food preferences from 74 static images 
(age not publicly available; Maroulis et al., 2017), and 2) 
evaluate which automatically detected action units associ-
ate with manual codings of global emotional valence from 
image data of 0- to 12-month-old infants (Maroulis, 2018). 
Preliminary results from Maroulis and colleagues (2017) 
showed classification accuracy scores ranging between 
.24 and .80 against manually annotated action units. Baby 
FaceReader 9 (Noldus, 2022) is based on a deep convolu-
tional neural network (CNN) classification approach that 
aims to improve the speed and accuracy of the face detec-
tion and modeling stages of Baby FaceReader 8, and no 
previous work has evaluated its performance compared to 
manually coded infant data. Since developmental research 
on young infants typically focuses on analyzing real-time 
facial expressions from naturalistic social interactions, 
we build on previous work by evaluating the results from 
Baby FaceReader 9 with respect to manually coded facial 
expression valence in a pre-existing longitudinal dataset 
of infant videos collected during home-based face-to-face 
interactions at 4 and 8 months of age. In the following, we 
briefly describe Baby FaceReader 9’s model architecture 
of and output.

Automated measurement of facial expressions 
in Baby FaceReader 9

Baby FaceReader v.9.0.17 (Noldus, 2022) was developed 
for frame-rate automated measurement of affective facial 
expressions in infants between 6 and 24 months of age 
based on the Baby FACS manual coding system (Oster, 
2006). Baby FaceReader 9 uses a deep learning-based 
approach (Zafeiriou et al., 2015) to localize a face in an 
image, and a deep convolutional neural network (CNN; 
Gudi et al., 2015) to detect action unit occurrence and esti-
mate action unit intensity (Noldus, 2021; Noldus, personal 
communication, March 8, 2023). The CNN was trained on 
a compilation of publicly available and self-collected data-
sets, featuring spontaneous facial expressions of infants 
aged 6–24 months from multiple ethnic backgrounds and 
a roughly even sex distribution (Noldus, 2021; Noldus, 
personal communication, March 8, 2023). The resulting 
output is the continuous intensities of individual action 
units as defined in Oster’s Baby FACS (Noldus, 2021). The 
global emotional valence of the facial expression is com-
puted based on specific action unit configurations reported 
in Maroulis (2018) (Noldus, 2021).

Relating automatically detected action units 
to affective facial expressions

Several facial action units are known to show either selective 
or shared activation during the expression of positive and 
negative affect (Messinger et al., 2012; Oster et al., 1992; 
Oster, 2003, 2005a, b). We expected that the interaction 
effects among these action units would predict manual cod-
ings of positive and negative facial expressions (Table 1). 
Whereas Baby FaceReader 9 outputs continuous variables, 
manually coded data tends to be categorical. Here we 
explore the relations between manually coded facial expres-
sion categories and the activation intensities of automatically 
detected action unit configurations that have been previously 
reported to associate with positive and negative affective 
expressions.

The prototypical expression of positive affect in infancy 
is through smiles, which are indexed by raising of the lip 
corners via the zygomaticus major (AU12) (Ekman et al., 
2002; Messinger et al., 2001). Infant negative affect is pre-
dominantly displayed through frowns and cry-faces (Camras 
et al., 1992; Oster, 2003; Oster et al., 1992; Weinberg & 
Tronick, 1994), both indicated by stretching the lips via the 
risorius (AU20) (Messinger et al., 2012; Yale et al., 2003). 
Pouting may also involve lowered brows (corrugator super-
cilii [AU3] and/or procerus [AU4]) and displayed in com-
bination with raised chin (mentalis [AU17]) during expres-
sions of sadness (Bolzani Dinehart et al., 2005; Oster, 2006; 
Oster & Rosenstein, 1996; Yale et al., 2003).

Eye constriction and mouth opening appear to be 
associated with the intensity of infants’ affective expres-
sions, independently predicting positive as well as nega-
tive facial expressions (Kohut et al., 2012; Fogel et al., 
2006; Izard et al., 1987; Mattson et al., 2013; Messinger 
et al., 2009, 2012). Therefore, we expected that the action 

Table 1   Expected main and interaction effects of action unit configu-
rations predicting manual codings of positive versus negative facial 
expressions

Note. Configurations involving eye constriction [AU6] (referred to as 
“cheek raising” in the FACS manual; Ekman et al., 2002) are Duch-
enne expressions (i.e., Duchenne smiles and Duchenne cry-faces)

Facial expression valence Automatically detected action 
units

Positive facial expressions Main effect of AU12
Smiles with eye constriction AU12 * AU6
Smiles with mouth opening AU12 * AU(25 + 26 + 27)
Negative facial expressions Main effect of AU20
Pouting with brow lowering AU17 * AU(3 + 4)
Lip stretching withbrow lowering AU20 * AU(3 + 4)
Lip stretching with eye constriction AU20 * AU(6 + 7)
Lip stretching with mouth opening AU20 * AU(25 + 26 + 27)
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unit indices of eye constriction and mouth opening would 
predict manual codings of positive and negative facial 
expressions only when in configuration with other action 
units indexing emotional valence (Table 1). The mouth 
opening is displayed through a combination of the actions 
of depressor labii (AU25), masetter (AU26), and the 
pterygoids (AU27) (Messinger et  al., 2012), whereas 
eye constriction in the prototypical cry-face is indicated 
through orbicularis oculi pars orbitalis (AU6) and pars 
palpebralis (AU7) (Izard et al., 1987; Kohut et al., 2012; 
Mattson et al., 2013).

The current study

The goals of the current paper are: 1) to assess the con-
struct validity and feasibility of Baby FaceReader 9’s 
global emotional valence formula by comparing it to 
manually coded infant facial expressions from naturalistic 
social interactions, 2) to explore the associations between 
a priori action unit configurations and manually coded 
facial expression categories, and 3) to explore a parsimo-
nious approach assessing the association between indi-
vidual action units and manually coded facial expression 
categories. To address these goals, we compared Baby 
FaceReader 9 and manually coded data in a pre-existing 
longitudinal dataset in which infants’ facial expressions 
during a face-to-face interaction were manually coded 
either as positive, negative, neutral (i.e., neither positive, 
nor negative), or not visible. Within-subject data were 
gathered with three interaction partners – mother, father, 
and an unfamiliar adult at 4 and 8 months of age. There 
was no overlap between the training data used for Baby 
FaceReader and the longitudinal dataset analyzed in the 
current study.

Methods

Video recordings

Data were obtained from a pre-existing longitudinal study 
(Salvadori et al., 2022), in which the facial expressions of 
58 infants (25 female) were microcoded during home-based 
face-to-face interactions with three interaction partners 
(mother, father, an unfamiliar adult) at 4 and at 8 months. 
From the original sample, 36 of the observations were left 
without video data due to cancellation, three due to techni-
cal error, and 20 due to extreme fussiness. A total of 289 
video observations remained available for the analysis: 51 
infants at 4 months and 53 infants at 8 months. Participant 
descriptives as well as the number and durations of the video 
sample are shown in Table 2.

Longitudinal study design and procedure

At 4 and at 8 months, three 2-min naturalistic face-to-face 
interactions were recorded with each interaction partner: 
mother, father, and a (female) experimenter (Salvadori et al., 
2022). The infant was positioned in an age-appropriate infant 
seat opposite the interaction partner as shown in Fig. 1A and 
B demonstrating the observational setup used for the same 
infant at 4 and at 8 months, respectively. Caregivers were 
instructed to interact with the infant as they would typically 
do in their everyday life. The order of the interaction part-
ners was counterbalanced within infant sex across families. 
The observation was stopped if infants showed extreme 
distress.

Video recording characteristics

The interactions were recorded using a mobile dual-lens 
camera (Samsung GEAR 360°, 2016) mounted between the 
infant and the adult, yielding a high-resolution wide-angle 
split-screen video recording (3840 x 2160 pixels at 30 Hz) 
of both interaction partners simultaneously (Fig. 1A, B). 
The same video recording zoomed in on the infant’s face 
and upper body (1280 x 720 pixels at 30 Hz) was used as 
input to the manual and automated measurement (Fig. 2A, 
B). A conservative estimate of the area of interest (AOI) 
of the infant face was derived from the distances between 
automatically registered 2D landmarks of the eyebrows and 
the mouth. The detailed computation and descriptives can be 
found in Supplementary Materials B (https://​osf.​io/​7afmx). 
The mean face area fraction was .05 (M = 51,366 pixels, SD 
= 10,933) from the total image resolution (Table S3 [https://​
osf.​io/​7afmx]), which satisfies the minimum of .01 full face 
area fraction required by Baby FaceReader 9’s face locali-
zation algorithm. The mean face fraction was .02 higher at 
4 compared to 8 months of age (Table S3 [https://​osf.​io/​
7afmx]), indicating shorter recording distance at 4 months.

Table 2   Sample descriptives of the available video data

Descriptives 4 months 8 months

Participant n 51 53
n male 31 33
n female 20 20
M (SD) age in days 126.42 (7.93) 250.58 (9.67)
n videos 148 141
n mother 49 48
n father 50 46
n unfamiliar adult 49 47
M (SD) video duration in 

seconds
121.24 (5.81) 113.35 (20.98)

https://osf.io/7afmx
https://osf.io/7afmx
https://osf.io/7afmx
https://osf.io/7afmx
https://osf.io/7afmx
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Manual coding of affective facial expressions

Coding scheme

Infants’ affective facial expressions were manually coded 
using The Observer XT 14.0 (Noldus et al., 2000; Zimmer-
man et al., 2009). Following Colonnesi et al. (2012), facial 
expressions were coded into one of four mutually exclusive 
categories: 1) Positive – involving Duchenne and non-Duch-
enne smiles (lip corner raising, AU12) with the mouth closed 
or open (AU25, AU26, AU27), with or without eye constric-
tion indicated by cheek raising (AU6); 2) Negative – involving 
frowns, Duchenne and non-Duchenne pre-cry and cry-faces 
inferred from lowered-lip corners, constriction of the eye 
region, and opening of the mouth; 3) Neutral – when neither 
a positive nor a negative facial expression was displayed, i.e., 
either when no muscle movement was visible or the visible 
muscle movement was not indicative of an affective facial 
expression; 4) Not visible – when the face was occluded or 
out of focus. Note that manual coders had access to contextual 

information (e.g., a view of the interaction partner, sound) and 
were instructed to interpolate the previous facial state when 
brief facial occlusions were encountered.

Inter‑rater reliability

The 289 video observations were coded by graduate students (five 
coders at the 4-month wave; three coders at the 8-month wave) that 
were trained on a subset of the videos by a senior coder until satis-
factory inter-rater reliability (Cohen’s kappa > .70) was attained. 
Another 15% of the videos were randomly selected (counterbal-
anced within interaction partner, infant age, and sex) to be dou-
ble coded by a senior coder (one of the co-authors). Inter-rater 
reliability for all manually coded facial expression categories was 
computed on the 15-Hz time samples of the double-coded data 
using the R-package “irr” (v. 0.84.1; Gamer et al., 2012), yielding 
a weighted kappa coefficient of .83 for the 4-month wave and .92 
for the 8-month wave (Cohen, 1968). Inter-rater agreement on the 
percentage of time for which each facial expression category was 
coded was 93% and 95% at 4 and 8 months, respectively.

Fig. 1   A Video recording setup at 4 months: Interaction view. B Video recording setup at 8 months: Interaction view. Note. Example of the raw 
video recording (3840 x 2160 pixels at 30 Hz) from a face-to-face interaction between a 4 and an 8-month-old infant and mother
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Automated measurement of affective facial 
expressions

Baby FaceReader 9 model architecture

Baby FaceReader v.9.0.17 (Noldus, 2022) was developed 
for frame-rate automated measurement of affective facial 
expressions in infants between 6 and 24 months of age based 
on the Baby FACS manual coding system (Oster, 2006). A 
face is located in the image using a deep learning-based face 
finding algorithm (Zafeiriou et al., 2015), which searches 
for areas in the image that have the appearance of a face at 

different scales (Noldus, 2021). A deep convolutional neu-
ral network (CNN; Gudi et al., 2015) compiles a 3D face 
model in a single pass by estimating the location of 468 
facial landmarks (e.g., eye corner, lip corner, etc.) relative 
to learned landmark locations using a 2D grayscale pixel 
matrix of the face normalized for in-plane head rotations, 
scale, and global contrast (Noldus, 2021; Noldus, personal 
communication, March 8, 2023). The CNN was trained on 
a combination of real-world and synthetically generated 
faces to estimate manually labeled and auto-generated facial 
landmark locations in 3D space using a 3DMM face model 
(Bulat & Tzimiropoulos, 2017; Noldus, 2021). Depth (i.e., 

Fig. 2   A Video recording setup at 4 months: Infant view. B Video 
recording setup at 8 months: Infant view. Note. Example of the video 
recording (1280 x 720 pixels at 30  Hz) of a 4 and an 8-month-old 

infant used for the manual and automated facial expression measure-
ment in Baby FaceReader 9
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the distance of the face to the camera) is estimated from the 
camera’s parameters by comparing the scale of the face to 
a reference face scale (Noldus, personal communication, 
March 8, 2023). Facial landmarks are compressed into a 
vector representation using principal component analysis 
(Noldus, 2021). The CNN models underlying Baby Fac-
eReader and FaceReader were simultaneously trained on 
action unit occurrences and Baby FACS intensity level cat-
egories (Ekman et al., 2002; Oster, 2006; Noldus, personal 
communication, March 8, 2023). Action unit occurrences 
and intensities are estimated directly from image pixels for 
each video frame using specific activation patterns of the 
output layer (Gudi et al., 2015; Noldus, 2021).

Baby FaceReader 9 training dataset

The CNNs underlying Baby FaceReader 9 were trained on 
a compilation of publicly available and self-collected data-
sets involving spontaneous facial expressions of infants 
from multiple ethnicities in the age range of 6–24 months 
and roughly even sex distribution (Noldus, 2021; Noldus, 
personal communication, March 8, 2023). The data were 
collected primarily under lab settings with good light-
ing conditions and in the presence of a caregiver (Noldus, 
personal communication, March 8, 2023). Approximately 
15,000 images were used for training; data augmentation 
was used to increase the effective number by an order of 
magnitude (Noldus, personal communication, March 8, 
2023). The training set included largely frontal static images 
and video frames, with some containing pitch and yaw vari-
ations in the range of ± 30° angle with respect to the camera 
(Noldus, personal communication, March 8, 2023). Further 
details regarding the training datasets (e.g., sample size, age, 
sex, ethnic characteristics, observation scenarios) were not 
available.

(inner brow raiser), AU3 and AU4 (brow lowering), AU7 
(lid tightener), AU20 (lip stretching), AU25 (lips parting), 
and AU43 (eyes closed), and 2) positive facial expressions 
take on positive valence values computed as the arithme-
tic mean across the intensity values of AU6 (cheek raiser), 
AU12 (lip corner raiser), and AU25 (lips parting) (Noldus, 
2021). Smooth classification (i.e., a recency-weighted mov-
ing average) was applied to reduce noise in sample-to-sam-
ple action unit intensity estimation.

Missing data

Two sources of missing data are output by Baby FaceReader 
9: 1) failure to detect the face (i.e., “detection failed”), and 2) 
failure to generate a face state model despite having detected a 
face in the image (i.e., “classification failed”) (Noldus, 2021). 
Instances of “detection failed” occur when the face moves out-
side the visible area or in cases of very extreme (self-)occlu-
sions (e.g., hands fully covering the face or the eyes) (Noldus, 
personal communication, March 16, 2023). To reduce the like-
lihood of “detection failed”, the face localization algorithm 
was set to search for a face size ranging from very small (.01 
fraction of the image) to very large (1.0 the image fraction) 
(Noldus, 2021). “Classification failed” is output whenever the 
certainty of the deep neural network model fit falls below the 
minimum model certainty threshold – here, the default thresh-
old of .50 on a scale between 0 (low model fit certainty) to 1 
(high model fit certainty) (Noldus, 2021). Instances of “clas-
sification failed” occur in frames with 1) poor image quality, 2) 
extreme head poses (exceeding ± 30º angle in roll, yaw, pitch), 
3) significant occlusions of the face (exceeding 25% of the 
face) or key facial features (e.g., the eyes, most of the mouth) 
(Noldus, personal communication, March 16, 2023). Figure 3 
presents frames with partial facial occlusions for which the 
automated action unit detection failed. Time samples in which 
Baby FaceReader 9 modeled the facial expression successfully 
but were classified as “not visible” by the manual coder were 
rare (< 0.01% of the total manually coded data; Table 3) and 
were removed from further analyses.

Statistical analyses

To match the output rate of Baby FaceReader 9, the manu-
ally coded datastream was downsampled from 30 to 15 Hz 
(0.067 s). Unless otherwise specified, a 0.067-s epoch is the 
unit of analysis throughout the manuscript. Whereas higher 
temporal resolutions are necessary for applications involving 
real-time measurement or discrimination of muscle motion 
phases (Mavadati et al., 2013; Polikovsky et al., 2013), a 
15-Hz measurement is sufficient for reliable offline detec-
tion of affective facial expressions. Further details regarding 
data synchronization can be found in Supplementary Materi-
als A (https://​osf.​io/​5zp2g).

Automated measurement of positive and negative 
facial expressions

As indicated in the Baby FaceReader 9 user manual (Nol-
dus, 2021), the raw action unit output represents continuous 
action unit intensities from 0 (low) to 1 (high) corresponding 
to the intensity categories described in Baby FACS (Oster, 
2006): “inactive” [.00 – .10], A “trace” [.10 – .22]; B “slight 
” [.22 – .33]; C “pronounced” [.33 – .62]; D “severe” [.62 
– .91]; E “max” [.91 – 1.00] (Noldus, 2021). Additionally, 
the global emotional “valence” output summarizes the esti-
mated affective intensity of the infant’s facial expression on 
a scale from – 1 (negative) to 1 (positive), where: 1) negative 
facial expressions take on negative valence values computed 
as the arithmetic mean across the intensity values of AU1 

https://osf.io/5zp2g
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All statistical analyses were performed in RStudio 
(v2022.07.1, R Core Team, 2022). The study hypoth-
eses and analysis plan were pre-registered at the Open 

Science Framework (OSF) platform: https://​osf.​io/​hrw8k/?​
view_​only=​11181​6181e​a5488​bb373​e8b6f​5f3ab​38. The 
analysis plan includes the anonymized data and the data 

Fig. 3   Partial facial occlusions causing missing data in automated 
action unit detection. Note. Partial facial occlusions encountered in 
the dataset from the same infant at 4 months (left top and bottom 

images) and at 8 months (right top and bottom images). Automated 
action unit detection failed for all frames presented, whereas manu-
ally coded affective facial expressions were available

Table 3   Automatically analyzed and missing data (classification failed) per manually coded facial expression category

Note. Counts refer to time samples (15 Hz, i.e., 0.067 s). The Manual Code column lists the total number of time samples for each manual code 
and as a percentage from the total available data. A total of 430,332 (85%) automatically analyzed time samples after excluding “not visible” 
were used for the main analysis. For each Manual Code category, percentages refer to the available and missing data from the category total

Manual code Automated analysis Overall 4-month wave 8-month wave

Total 508,950 (100%) Automatically analyzed 431,036 (85%) 253,018 (94%) 178,018 (74%)
Classification failed 77,914 (15%) 16,186 (6%) 61,728 (26%)
Total 508,950 (100%) 269,204 (100%) 239,746 (100%)

Positive 145,153 (29%) Automatically analyzed 133,207 (92%) 68,585 (97%) 64,622 (87%)
Classification failed 11,946 (8%) 1989 (3%) 9957 (13%)
Total 145,153 (100%) 70,574 (100%) 74,579 (100%)

Neutral 337,119 (66%) Automatically analyzed 275,449 (72%) 172,409 (93%) 103,040 (68%)
Classification failed 61,670 (18%) 12,999 (7%) 48,671 (32%)
Total 337,119 (100%) 185,408 (100%) 151,711 (100%)

Negative 24,662 (< 5%) Automatically analyzed 21,676 (88%) 11,471 (94%) 10,205 (72%)
Classification failed 2986 (12%) 709 (6%) 2,277 (18%)
Total 24,662 (100%) 12,180 (100%) 12,482 (100%)

Not visible 2,016 (< 1%) Automatically analyzed 704 (35%) 553 (53%) 151 (16%)
Classification failed 1312 (65%) 489 (47%) 823 (84%)
Total 2016 (100%) 1042 (100%) 974 (100%)

Total excluding not visible 
506,934 (> 99%)

Automatically analyzed 430,332 (85%) 252,465 (94%) 177,867 (74%)
Classification failed 76,602 (15%) 15,697 (6%) 60,905 (26%)
Total 506,934 (100%) 268,162 (100%) 238,772 (100%)

https://osf.io/hrw8k/?view_only=111816181ea5488bb373e8b6f5f3ab38
https://osf.io/hrw8k/?view_only=111816181ea5488bb373e8b6f5f3ab38
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pre-processing analysis scripts, which are made available on 
the project’s GitHub repository: https://​github.​com/​MZaha​
rieva/​Baby_​FaceR​eader9_​Valid​ation.

Automated‑manual vs. manual‑manual classification 
accuracy

To quantify the accuracy with which Baby FaceReader 9 
classifies manually coded facial expressions, we used the 
receiver operating characteristic (ROC) curve analysis 
implemented in the R-package “pROC” (v. 1.18.0; Robin 
et al., 2011). A high-accuracy measurement system maxi-
mizes the rate of correct classifications (i.e., the true-pos-
itive and true-negative rate) while minimizing incorrect 
classifications (i.e., the false-positive and false-negative 
rate). We treated the manual coding as the ground truth 
relative to which we estimated the probability of the auto-
mated system correctly predicting the presence and 
absence of a given affective facial expression. We reported 
several agreement metrics quantifying the trade-off 
between correct and incorrect classifications for discrimi-
nating between each manually coded facial expression pair 
(Girard et al. (2015): Area Under the ROC curve (AUC), 
positive agreement (PA, which is equivalent to F1 for 
binary classification problems), and negative agreement 
(NA). AUC is a single parameter summarizing the degree 
of discriminability between any two facial expression cat-
egories across all possible combinations of sensitivity and 
specificity (Clarke & Gilks, 2010). AUC is a threshold-
independent metric of classification accuracy that is robust 
to imbalanced data (Jeni et al., 2013). PA quantifies auto-
mated-manual agreement for correct classifications (i.e., 
between-system agreement on the presence of a given 
ground-truth identified affective facial expression) by 
weighing the true positive rate against the misclassifica-
tion rate: 2×tp

2×tp+fp+fn
 (Altman, 1990). NA – the complement 

of PA, quantifies automated-manual agreement for correct 
rejections (i.e., between-system agreement on the absence 
of a given ground-truth identified affective facial expres-
sion) by weighing the true negative rate against the mis-
classification rate: 2×tn

2×tn+fp+fn
 (American Psychiatric Asso-

ciation, 1994). PA and NA are sensitive to imbalanced data 
– with PA consistently underestimating correct classifica-
tion rate (Jeni et al., 2013) – which is relevant for evaluat-
ing the performance of Baby FaceReader 9 for predicting 
the presence of affective facial expressions that are less 
frequently encountered in the current dataset.

We performed a multi-class ROC analysis, in which we 
quantified the degree of discriminability for each manually 
coded facial expression pair. This allowed us to identify 
specific pairs of manually coded facial expressions for 

which the distributions of automatically detected valence 
were separable even when not all three facial expression 
categories were separable. To assess whether the concord-
ance among the manual and automated systems was com-
parable to that observed among two manual coders, we ran 
the same multi-class ROC analysis on a subset of the data 
with another independent manual coder as the predictor of 
manually coded facial expression category.

The effects of infant- and video-specific characteris-
tics – infant age, out-of-plane head rotations, interaction 
partner, and face model fit certainty – on classification 
accuracy were explored in a series of multilevel regression 
models, in which the variability of the video-level AUC 
summary statistic nested within infants was treated as the 
outcome. Video-level AUC scores were derived by fitting 
two binary ROC curves for each video, quantifying the 
classification accuracy at which the automatically detected 
valence distinguished: 1) positive from negative and neu-
tral manually coded facial expressions, and 2) negative 
from neutral manually coded facial expressions. Video-
level AUC scores were further used to assess classifica-
tion performance of Baby FaceReader 9’s global valence 
formula and AU12 at the video-level.

As robustness checks, we repeated the multi-ROC 
analysis using 1) the raw action unit output, replicating 
the results reported using the action unit output derived 
with temporal smoothing (available on GitHub), 2) a 
split dataset comparing classification accuracy for head 
rotation angles within ±20º versus head rotation angles 
of ±20º-30º, largely replicating the results reported 
(Table S11 [https://​osf.​io/​43zqv]; Supplementary Materi-
als C [https://​osf.​io/​7wv3p]).

Action unit activation intensity for positive 
versus negative facial expressions

We explored the relations between manually coded facial 
expression categories and the activation intensities of auto-
matically detected action unit configurations that have been 
reported to be associated with positive and negative facial 
expressions (Table 1). In a Bayesian framework, we fit a mul-
tilevel multinomial logistic regression with a participant-level 
random intercept in the R-package "brms" (v.2.16.1; Bürkner, 
2017, 2018) at the 15-Hz time sample level using a priori 
action unit configurations to predict the probability of a manu-
ally coded facial expression being either positive, negative, 
or neutral as the reference category. Whenever convergence 
issues arose, the fixed effects were evaluated in a model with-
out a random intercept. The probability of the intensity of the 
action unit configurations hypothesized to indicate positive 
versus negative facial expressions (Table 1) being assigned 
to either manually coded category was formulated as follows:

https://github.com/MZaharieva/Baby_FaceReader9_Validation
https://github.com/MZaharieva/Baby_FaceReader9_Validation
https://osf.io/43zqv
https://osf.io/7wv3p
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To evaluate the degree of uncertainty in the estimated 
parameter values in the hypothesized statistical model 
(Claeskens & Hjort, 2008), we performed parameter selec-
tion using Bayesian model averaging in the R-package 
“BAS” (v.1.6.0, Clyde & Clyde, 2015; for an overview, see 
van den Bergh et al., 2021, and Hinne et al., 2020).

In a post hoc analysis, we explored two parsimonious 
models using independent action units to predict positive and 
negative manually coded facial expressions. The intensity 
of smiling (AU12) alone was used to discriminate positive 
from negative or neutral manually coded facial expressions, 
whereas the intensities of lip stretching (AU20), and brow-
lowering (AU3+AU4) were used to independently discrimi-
nate negative from neutral manually coded facial expressions.

Results

Face model fit certainty

The overall face model fit certainty of the automated meas-
urement was acceptable (M = .62, SD = .05). Lower mean 
model fit certainty was observed for the manually coded "not 
visible" category than for other manual coded facial expres-
sion categories (M = .56, SD = .05) (Table S1 [https://​
osf.​io/​s6e5a] and Fig. S2 [https://​osf.​io/​ea6bt]), and to a 
lesser extent – for infants at 4 compared to 8 months of age 
(Table S1 [https://​osf.​io/​s6e5a] and Table S2 [https://​osf.​io/​
h85kb]). No substantial differences were observed across 
interaction partners (Table S1 [https://​osf.​io/​s6e5a] and 
Table S2 [https://​osf.​io/​h85kb]).

Missing data comparison

Baby FaceReader 9 returned no instances of “detection 
failed”. Baby FaceReader 9 returned “classification failed” 
for 15% of the time samples (Table 3). A substantially larger 
percentage of “classification failed” was encountered in 
the automated measurement of the 8-month wave (26%) 
than the 4-month wave (6%), which was consistent across 
manually coded facial expression categories. Manual coders 
coded the face as “not visible” in fewer than 1% of samples 
(Table S4 [https://​osf.​io/​wvyf9]). Baby FaceReader 9 failed 
to estimate action unit intensities (“classification failed”) for 
65% of the time samples that were manually coded as "not 
visible". Time samples for which the automated face “classi-
fication failed” or were marked as “not visible” by the manual 

logit(Manually Coded Facial Expression Category)

= �0 + �AU12 + �AU6 + �AU(25+26+27) + �AU17 + �AU20

+�AU(3+4)+�AU(6+7) + �AU12 × �AU6 + �AU12 × �AU(25+26+27) + �AU17

×�AU(3+4) + �AU20 × �AU(3+4) + �AU20 × �AU(6+7) + �AU20 × �AU(25+26+27)

coders were removed from further analyses. The final dataset 
contained 430,332 time samples (0.067-s epochs) from 289 
videos of 51 infants at 4 months and 53 infants at 8 months.

Manual‑manual classification accuracy

To establish the maximum classification accuracy that might 
be theoretically expected for the automated system, a multi-
ROC model was fitted to the 15% of the videos that had 
been randomly selected to be coded by two independent 
manual raters. The results showed excellent mean AUC and 
PA scores for discriminating between all three facial expres-
sion categories: 1) AUC = .99 and PA = .99 for positive 
from negative, 2) AUC = .94 and PA = .92 for positive from 
neutral, and 3) AUC = .97 and PA = .99 for negative from 
neutral between the manual coders.

Predicting manually coded facial expressions 
from automatically detected global emotional 
valence

Automatically detected valence distributions

Automatically detected valence values were more positive 
for facial expressions that were manually coded as positive 
than those coded as neutral or negative (Fig. S4 [https://​osf.​
io/​nj8qb.]). The automatically detected valence distributions 
of the facial expressions that were manually coded as negative 
and neutral were centered around zero and largely overlapped. 
This pattern was consistent across measurement waves (Fig. S4 
[https://​osf.​io/​nj8qb]) and interaction partners (Fig. S5 [https://​
osf.​io/​s7arp] and Table S5 [https://​osf.​io/​qegdv]).

Automated‑manual classification accuracy using 
Baby FaceReader 9’s global emotional valence 
formula

A multi-class ROC analysis was performed on the 430,332 
time samples using the automatically detected global emotional 
valence formula to discriminate between the three ordered man-
ually coded facial expression categories: negative, neutral, and 
positive. Table 4 summarizes the PA and NA scores observed 
at the automatically detected valence value that yielded the 
greatest discriminability between positive, neutral, and nega-
tive manually coded facial expressions in the current dataset.

AUCs for the automatically detected valence indicated 
79% chance of correctly distinguishing positive from nega-
tive manually coded facial expressions, and 82% chance of 
distinguishing between positive from neutral manually coded 
facial expressions (Fig. 4). Correct classifications (PA) of 
positive from negative manually coded facial expressions 
were consistently above .80, whereas correct rejections (NA) 
were below chance level (Table 4). Correct classifications 

https://osf.io/s6e5a
https://osf.io/s6e5a
https://osf.io/ea6bt
https://osf.io/s6e5a
https://osf.io/h85kb
https://osf.io/h85kb
https://osf.io/s6e5a
https://osf.io/h85kb
https://osf.io/wvyf9
https://osf.io/nj8qb
https://osf.io/nj8qb
https://osf.io/nj8qb
https://osf.io/s7arp
https://osf.io/s7arp
https://osf.io/qegdv
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of positive from neutral manually coded facial expressions 
were moderate (PA = .68), whereas correct rejections were 
low (NA = .84). Importantly, the discrimination of negative 

from neutral manually coded facial expressions was at 
chance level (AUC = .49; PA = .69; NA = .14). Similar 
results were obtained when individual ROC curves were fit 

Table 4   Classification performance metrics of BabyFace Reader 9’s global emotional valence formula to discriminate between manually coded 
affective facial expressions

Note. Threshold values are computed using Youden’s J statistic (Youden, 1950), which uses the distance to the ROC identity (diagonal) line to 
select a cut-off value that maximizes the specificity and sensitivity of automatically detected valence to discriminate each pair of manually coded 
facial expressions. Statistics are reported at the time-sample (15 Hz) level with the exception of contrasts marked with an asterisk *, which were 
computed at the video level

Threshold Sensitivity i, Specificity j AUC​ PA (F1) NA

Overall
Positive vs. Negative .03 .74, .71 .79 .83 .43
Positive vs. Neutral .07 .68, .84 .82 .68 .84
Negative vs. Neutral – .04 .54, .52 .49 .69 .14
Positive vs. Negative/Neutral* .07 .83, .68 .81 .84 .67
Negative vs. Neutral* – .04 .54, .52 .58 .69 .14
4 Months
Positive vs. Negative .01 .75, .71 .80 .83 .45
Positive vs. Neutral .07 .65, .85 .81 .64 .85
Negative vs. Neutral – .02 .45, .64 .50 .61 .13
8 Months
Positive vs. Negative .03 .78, .66 .78 .85 .43
Positive vs. Neutral .07 .71, 83 .82 .72 .83
Negative vs. Neutral -.05 .65, .41 .49 .76 .17

Fig. 4   ROC functions describing the sensitivity and specificity at 
which Baby FaceReader 9’s global emotional valence formula dis-
criminates between manually coded facial expressions. Note. The 
ROC functions describing the trade-off between sensitivity and speci-

ficity per manually coded facial expression category is plotted against 
chance-level classifier accuracy (gray line). The area under the curve 
(AUC) coefficient is displayed next to each ROC function
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to at the video level, thereby accounting for individual dif-
ferences between infants and infant ages (Table 4; Supple-
mentary Materials C [https://​osf.​io/​7wv3p]).

Effects of infant‑specific and video‑specific 
characteristics on classification accuracy

Infant age, interaction partner, horizontal and vertical out-
of-plane head rotations, face model fit certainty, and the 
interactions among them were used to predict video-level 
classification accuracy (AUC scores); the detailed results 
are reported in Supplementary Materials A (https://​osf.​io/​
5zp2g). Higher face model fit certainty predicted higher 
classification accuracy in the model comparing positive 
versus other facial expressions (Table S7.A [https://​osf.​io/​
d52kb]). Horizontal (yaw) and vertical (pitch) head rota-
tion angles were consistently higher for infants at 8 com-
pared to 4 months of age (Table S6 [https://​osf.​io/​vwr9d]; 
Fig. S6  [https://​osf.​io/​9s5yg]; Supplementary Materials 
C [https://​osf.​io/​7wv3p]). Consistent with previous auto-
mated action unit detection work in adults (Girard et al., 
2015; Valstar et al., 2017), after accounting for infant age and 
face model certainty, the eccentricity of yaw and pitch head 
rotations within ± 30º showed small, negative correlations 
with mean video-level AUC scores (Table S9.A [https://​osf.​
io/​nc4ep] and Table S10.A [https://​osf.​io/​cqfht]). The AUC 
scores for Baby FaceReader 9’s global emotional valence 
formula, smiling (AU12), brow lowering (AU3+AU4), and 
lip stretching (AU20) obtained for head rotations between 
± 20 and 30º remained within 5% deviation of the AUCs 
obtained for head rotations within ± 20º (Table S11 [https://​
osf.​io/​43zqv]). Detailed results are reported in Supplemen-
tary Materials C [https://​osf.​io/​7wv3p].

Taken together, Baby FaceReader 9’s global emotional 
valence formula showed moderate to high classification 
accuracy and misclassification rate when distinguishing 
positive from the combined set of negative or neutral manu-
ally coded facial expressions. However, the discrimination of 
negative from neutral facial expressions was at chance-level.

Predicting manually coded facial 
expressions from a priori automatically 
detected action unit configurations

Automatically detected action units distributions

The occurrence and intensity base rates of the automati-
cally detected action units hypothesized to index posi-
tive and negative facial expressions are summarized in 
Table S12.A [https://​osf.​io/​bwxzt] and Table S12.B [https://​
osf.​io/​by8uh], respectively. Automatically detected lip cor-
ner raiser (AU12), cheek raiser (AU6), and lips parting 

(AU25) was detected in over half of the video samples and 
showed “pronounced”-level mean activation intensity during 
positive manually coded facial expressions. Automatically 
detected brow lowering (AU3+AU4), lip stretching (AU20), 
and pouting (AU17) was detected in one-third of the video 
samples (or less) and showed “trace”-level mean activation 
intensity for negative manually coded facial expressions. As 
a consequence, assessing the classification performance of 
the a priori action unit model for distinguishing between 
negative and positive manually coded facial expressions was 
less reliable. Positive manual codes were characterized by 
higher mean intensity levels in the lip corner raiser (AU12), 
cheek raiser (AU6), and lips parting (AU25) than negative or 
neutral manual codes (Fig. 5). Brow lowering (AU3+AU4), 
lip stretching (AU20), cheek raiser (AU6), and lips parting 
(AU25) showed higher mean intensity levels for negative 
as opposed to neutral manual codes (Fig. 5). Lid tightener 
(AU7) showed low activation intensity across manually 
coded facial expression categories (Table S12.B [https://​osf.​
io/​by8uh]) and a relatively low correlation with cheek raiser 
(AU6) intensity (r = .23, p < .001). Hence, only the main 
effect of the cheek raiser (AU6) was used to indicate eye 
constriction in the subsequent logistic regression analysis.

Discriminating positive, negative, and neutral facial 
expressions from a priori action unit configurations

Next, we assessed whether manually coded facial expres-
sions could be predicted from automatically detected action 
unit combinations hypothesized to index the positive and 
negative facial expression configurations reported in Table 1. 
Because manually coded negative facial expressions were 
sparse in our data (< 5% of the manually coded data; 
Table S4 [https://​osf.​io/​wvyf9.]), we fit a series of binary 
logistic regression models in a Bayesian framework using 
the a priori automatically detected action unit combinations 
to discriminate: 1) manually coded positive from negative 
and neutral facial expressions pooled into a single category 
(430,332 time samples from 289 videos), 2) manually coded 
neutral from negative facial expressions (297,125 time sam-
ples from 289 videos). To dampen the sample imbalance, 
the inverse label distributions of the outcome were assigned 
as weights in both regression models. We used Bayesian 
model averaging to re-estimate the logistic regression mod-
els as a robustness check and selected those parameters that 
systematically explained variance across the full model 
space (Hinne et al., 2020). The sum activation of lips part-
ing (AU25), jaw dropping (AU26), and mouth stretching 
(AU27) was used as a coarse measure of mouth opening.

Detailed results are presented in Supplementary Materi-
als D (https://​osf.​io/​rgbqd.). The a priori action unit model 
for discriminating positive from negative facial expres-
sions achieved high correct rejection rate (NA = .88), but 

https://osf.io/7wv3p
https://osf.io/5zp2g
https://osf.io/5zp2g
https://osf.io/d52kb
https://osf.io/d52kb
https://osf.io/vwr9d
https://osf.io/9s5yg
https://osf.io/7wv3p
https://osf.io/nc4ep
https://osf.io/nc4ep
https://osf.io/cqfht
https://osf.io/43zqv
https://osf.io/43zqv
https://osf.io/7wv3p
https://osf.io/bwxzt
https://osf.io/by8uh
https://osf.io/by8uh
https://osf.io/by8uh
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low correct classification rate (PA = .66). Nevertheless, the 
hypothesized automatically detected action units were indi-
vidually predictive of positive manually coded facial expres-
sions rather than negative and neutral combined. Automati-
cally detected smiles (AU12) were strongly associated with 
manually coded positive as opposed to negative or neutral 
facial expressions, as were, to a lesser extent, eye constric-
tion (AU6) and mouth opening (AU25+AU26+AU27). 
The co-occurrence of smiling (AU12) with eye constric-
tion (Duchenne smiling; AU12+AU6) or mouth opening 
(AU25+AU26+AU27) did not contribute strongly to the 
identification of positive manually coded facial expressions. 
The a priori action unit model for discriminating negative 
from neutral facial expressions achieved high correct rejec-
tion rate (NA = .92), but an even lower correct classification 
rate (PA = .38). Automatically detected lip stretching (AU20), 
brow lowering (AU3+AU4), eye constriction (AU6), mouth 
opening (AU25+AU26+AU27), and to a lesser extent – cry 
faces with eye constriction (AU20+AU6) were associated 
with negative rather than neutral manually coded expres-
sions. The action unit configurations involving automatically 
detected pouting (AU17) and lip-stretching (AU20) with 
brow lowering (AU3+AU4) were indicative of neutral rather 
than negative manually coded facial expressions.

Discriminating positive, negative, and neutral 
manually coded facial expressions using automated 
measurement of the intensity of individual action 
units

Next, we adopted a more parsimonious approach using 
individual automatically detected action units rather 
than action unit configurations to detect manually 
coded facial expressions. We used smiling (AU12) to 
detect positive facial expressions (Ekman et al., 2002; 
Messinger et al., 2001), and lip stretching (AU20) and 
brow lowering (AU3+AU4) to detect negative facial 
expressions (Matias & Cohn, 1993; Messinger et al., 
2012; Oster, 2006; Oster & Rosenstein, 1996). Multi-
class ROC analyses were performed on the 430,332 time 
samples using the individual activation intensities of 
AU12, AU3+AU4, and AU20 to discriminate between 
the three manually coded facial expression categories 
– positive, neutral, and negative.

The PA and NA scores observed at the automatically 
detected smile (AU12) intensity that yielded the greatest dis-
criminability of positive from negative or neutral manually 
coded facial expressions are reported in Table 5; the ROC 

Fig. 5   Mean action unit activation intensity per facial expression cat-
egory. Note. Action unit intensity ranges between 0 (low) to 1 (high) 
corresponding to the intensity categories described in Baby FACS 
(Oster, 2006): “inactive” [.00 – .10], A “trace” [.10 – .22]; B “slight 
” [.22 – .33]; C “pronounced” [.33 – .62]; D “severe” [.62 – .91]; E 
“max” [.91 – 1.00] (Noldus, 2021). Positive manual codes were char-

acterized by higher mean intensity levels of lip corner raiser (AU12), 
cheek raiser (AU6), and lips parting (AU25) as opposed to negative 
or neutral manual codes. Brow lowering (AU3+AU4), lip stretching 
(AU20), cheek raiser (AU6), and lips parting (AU25) showed higher 
mean intensity levels for negative as opposed to neutral manual codes
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functions are plotted in Fig. 6. We observed 86% chance of 
correctly discriminating positive from negative/neutral facial 
expressions based on the AUC score (95% CI[.85 – .86]), and 
chance-level discrimination for negative from neutral (95% 

CI[.56 – .57]). The classification accuracy and misclassifica-
tions for discriminating positive from negative or neutral facial 
expressions based on AU12 alone was comparable to that using 
the global valence formula or the a priori smile configurations.

Table 5   Classification performance metrics of automatically detected smiling (AU12) to discriminate between manually coded facial expressions

Note. Threshold values are computed using Youden’s J statistic (Youden, 1950), which uses the distance to the ROC identity (diagonal) line 
to select the cut-off value that maximizes the specificity and sensitivity of automatically detected smiling (AU12) to discriminate each pair of 
manually coded facial expressions. Statistics are reported at the time-sample level (15 Hz) with the exception of *, which were computed at the 
video level

Threshold Sensitivity i, Specificity j AUC​ PA (F1) NA

Overall
  Positive vs. Negative .23 .75, .69 .86 .83 .43
  Positive vs. Neutral .25 .73, .83 .80 .70 .85
  Negative vs. Neutral .26 .84, .29 .57 .89 .17
  Positive vs. Negative/Neutral* .25 .81, .73 .86 .84 .69

4 Months
  Positive vs. Negative .21 .72, .75 .82 .82 .44
  Positive vs. Neutral .23 .70, .83 .85 .66 .85
  Negative vs. Neutral .18 .77, .30 .48 .85 .12

8 Months
  Positive vs. Negative .24 .79, .61 .77 .85 .41
  Positive vs. Neutral .28 .76, .82 .87 .74 .83
  Negative vs. Neutral .31 .84, .35 .39 .88 .23

Fig. 6   ROC functions describing the sensitivity and specificity at 
which the automatically detected smiling (AU12) discriminates 
between manually coded facial expressions Note. The ROC functions 
describing the trade-off between sensitivity and specificity per manu-

ally coded facial expression category is plotted against chance-level 
classifier accuracy (gray line). The area under the curve (AUC) coef-
ficient is displayed next to each ROC function
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The PA and NA scores for discriminating positive, 
neutral, and negative manually coded facial expressions 
using automatically detected brow lowering (AU3+AU4) 
and lip stretching (AU20) are reported in Table  6 and 
Table S16 [https://​osf.​io/​hz3dw], respectively. Moderate 
classification accuracy and correct classification rate were 
observed when discriminating negative from neutral facial 
expressions using automatically detected lip stretching 
(AU20) (AUC = .70; PA = .80); however, correct rejec-
tions were below chance level (Table S16 [https://​osf.​io/​
hz3dw] and Fig. S8 [https://​osf.​io/​dgrbn]). The classifica-
tion accuracy (AUC) and correct classifications (PA) for dis-
criminating negative from either neutral or positive facial 
expressions using automatically detected brow lowering 
(AU3+AU4) were consistently above .80 (Table 6 and 7); 
however, correct rejections (NA) were below chance level.

Discussion

The time commitment involved in manual coding exerts a 
strong downward pressure on sample sizes, as well as the 
level of detail at which behaviors can be coded. To date, 
there have been only a handful of studies investigating infant 
affect using facial expressions in very large samples (e.g., 

Table 6   Classification performance metrics of automatically detected 
brow lowering (AU3+AU4) to discriminate between manually coded 
facial expressions

Note. Threshold values are computed using Youden’s J statistic 
(Youden, 1950), which uses the distance to the ROC identity (diago-
nal) line to select the cut-off value that maximizes the specificity and 
sensitivity of automatically detected brow lowering (AU3+AU4) to 
discriminate each pair of manually coded facial expressions. Statistics 
are reported at the time-sample level (15 Hz) with the exception of *, 
which were computed at the video level

Threshold Sensitivity i, 
Specificity j

AUC​ PA (F1) NA

Overall
  Positive vs. Negative .07 .84, .68 .83 .89 .51
  Positive vs. Neutral .07 .84, .22 .53 .49 .34
  Negative vs. Neutral .08 .80, .67 .81 .87 .32
  Negative vs. Neutral* .08 .80, .64 .79 .87 .40

4 Months
  Positive vs. Negative .08 .89, .74 .87 .92 .61
  Positive vs. Neutral .06 .72, .41 .58 .45 .54
  Negative vs. Neutral .09 .87, .68 .83 .92 .36

8 Months
  Positive vs. Negative .07 .78, .62 .78 .85 .42
  Positive vs. Neutral .06 .64, .43 .46 .50 .52
  Negative vs. Neutral .07 .71, .73 .80 .82 .31

Fig. 7   ROC functions describing the sensitivity and specificity at 
which the automatically detected brow lowering (AU3+AU4) dis-
criminates between manually coded facial expressions. Note. The 
ROC functions describing the trade-off between sensitivity and speci-

ficity per manually coded facial expression category is plotted against 
chance-level classifier accuracy (gray line). The area under the curve 
(AUC) coefficient is displayed next to each ROC function

https://osf.io/hz3dw
https://osf.io/hz3dw
https://osf.io/hz3dw
https://osf.io/dgrbn
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Mitsven et al., 2022; Tronick et al., 2005). Over the past 
decade substantial progress has been made in developing 
automated techniques for measuring infant facial expressions 
(e.g., Hammal et al., 2017; Ertugrul et al., 2023; Messinger 
et al., 2012). Automated measurement via machine learning 
has the potential to be a time-efficient tool for classifying the 
global valence of infants’ facial expressions such as smiles 
and frowns. This could improve the replicability of infant 
studies by allowing researchers to apply objective measures 
to larger sample sizes than what is typically feasible with 
manual coding techniques. The current study assessed the 
validity and feasibility of a commercial system for auto-
mated facial expression measurement – Baby FaceReader 
9 (Noldus, 2022), to discriminate between manually coded 
facial expressions in longitudinal data from infants at 4 and 
8 months of age engaged in naturalistic face-to-face interac-
tions with mother, father, and unfamiliar adult.

Though still well below the near-perfect agreement 
achieved between two manual coders on a small subset 
of the same data1, we found reasonable classification 
accuracy (AUC = .81) for distinguishing manual cod-
ing of positive from negative/neutral facial expressions 
at 4 and 8 months of age using the Baby FaceReader 9’s 
global emotional valence formula. However – in part due 
to the imbalanced samples – distinguishing manual cod-
ing of negative from neutral facial expressions was not 
reliable. Likewise, a set of pre-registered automatically 
detected action unit configurations that are central to 
the display of positive and negative affect (Ekman et al., 
2002; Messinger et al., 2012; Oster et al., 1992, Oster, 
2003, 2005a, b) was predictive of positive and negative 
manually coded facial expressions.

Whereas correct rejection rates were high, correct 
classification rates were only moderate for discriminating 
positive from negative/neutral manually coded facial 
expressions, and low for discriminating negative from 
neutral manually coded facial expressions. A parsimonious 
approach using only automatically detected smiling (AU12) 
reliably discriminated positive from negative or neutral 
facial expressions (AUC = .86). Importantly, automatically 
detected brow lowering (AU3+AU4) reliably distinguished 
negative from neutral facial expressions (AUC = .79). 
These results shed doubt on the implementation of complex 
a priori formulas in Baby FaceReader 9 (Noldus, 2022). 
However, results provide initial support for the automated 
detection of individual action units to recognize positive 
and negative facial expressions during naturalistic face-to-
face interactions. Here we discuss the feasibility of using 
Baby FaceReader 9 to identify positive and negative facial 

expressions in young infants in terms of data availability, 
classification accuracy, and in comparison to alternative 
open-source tools, highlighting opportunities to improve 
automated system performance.

Comparison of data availability

The application of fully automated measurement techniques 
to infant data is only feasible if it does not incur substan-
tially greater data loss than that encountered with manual 
coding techniques. Overall, manual coding yielded fewer 
missing data (< 1% “not visible”) than the automated facial 
expression measurement via Baby FaceReader 9 (15%). 
Comparable or lower missing data rates have been reported 
for other automated action unit detection systems applied 
to face-to-face and still-face interactions in 4-month-olds 
infants (15% and 21%, respectively; Ahn et al., 2023), posi-
tive and negative interactions in 13-month-old infants (7% 
and 18%, respectively; Hammal et al., 2017), and for adult 
data with extreme head pose variations (0-33%; FERA 
2017 Challenge; Valstar et al., 2017). Furthermore, Baby 
FaceReader 9 yielded a greater percentage of missing data 
for infants at 8 months (26%) than at 4 months (6%). Also 
in the successfully tracked data, consistently higher hori-
zontal (yaw) and vertical (pitch) out-of-plane head rotation 
angles were observed for infants at 8 months compared to at 
4 months. Given that manual coding yielded similar percent-
age missing data at both ages, the greater percentage missing 
data from the automated measurement in the older infants 
may reflect 8-month-olds’ increased mobility and tendency 
to make head-movements of greater eccentricity (Larson & 
Taulu, 2017). The automated measurement required a face 
angle within ± 30° pitch and yaw, whereas manual coders 
are able to capture changes in affective facial expressions 
in the presence of head movements as long as (parts of the) 
face are still visible.

A limitation of automated measurement using Baby 
FaceReader 9 is thus that it may yield more data loss than 
manual coding, particularly in data with extreme head pose 
variations. We recommend using a complementary approach 
in which data that cannot be coded automatically are coded 
manually, and, whenever appropriate – adopting data col-
lection methods that minimize head movements. At the 
same time, the face resolution and, consequently – the face 
model fit certainty, were somewhat lower at 8 compared to 
4 months. Whereas the current spatial resolution is likely 
sufficient for manual coding of discrete affective facial 
expressions across the whole face, obtaining video record-
ings at higher spatial resolutions may increase the chance of 
successful automated facial feature localization and track-
ing (i.e., of the facial landmarks specifying the location of 
relevant action units).1  Manual-manual AUC, PA, and NA scores set the expected perfor-

mance ceiling for the 1 current dataset.
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Chance‑level classification of sparse negative facial 
expressions at 4 and 8 months

Because of the positive nature of free-play interactions, nega-
tive facial expressions were sparse in our data, particularly at 
higher intensities (Mattson et al., 2013). Imbalanced samples 
bias statistical models in order to maximize classification per-
formance for correctly predicting the most prevalent outcomes 
– neutral and positive manually coded facial expressions in the 
current dataset (Blagus & Lusa, 2010; Oommen et al., 2011). 
Perhaps as a result, the classification accuracy for discriminating 
negative from neutral facial expressions was hard to evaluate 
and at chance level. Fewer misclassifications can be expected 
in measurement contexts eliciting more frequent intense nega-
tive facial expressions. The assessment of classification accuracy 
thus requires further replication in a dataset where all three facial 
expression categories have more balanced distributions (Saito 
& Rehmsmeier, 2015). Suitable scenarios are for instance those 
invoking more frequent and intense negative affect displays such 
as Face-to-Face/Still-Face interactions (Tronick et al., 1978).

Automated detection of positive facial expressions 
using Baby FaceReader 9’s global emotional valence 
formula

High classification accuracy (AUC), correct classifications 
(PA), and correct rejections (NA) are required for the clas-
sification performance of a predictor to be considered reli-
able. AUC quantifies classification accuracy over all poten-
tial trade-offs between sensitivity (correctly detecting the 
cases, e.g., positive) and specificity (correctly detecting the 
non-cases, e.g., neutral and negative). PA and NA comple-
ment each other to represent the trade-off between sensitivity 
(maximizing correct classifications and correct rejections) 
and precision (minimizing misclassifications, i.e., false posi-
tives and false negatives).

The video-level classification performance for discrimi-
nating manual codings of positive from negative/neutral 
facial expressions using Baby FaceReader 9’s global emo-
tional valence formula was moderate to high (AUC = .81; 
PA = .84; NA = .67). These metrics are comparable to those 
reported for other automated facial expression analysis tools 
used to classify negative facial expressions in response to 
pain (for a review, Zamzmi et al., 2017) and looking behav-
iors (Chouinard et al., 2019; Hashemi et al., 2014). The mod-
erate correct rejection rate may be problematic when apply-
ing an automated facial expression measurement system to 
unlabeled data from similar measurement contexts involving 
lower intensity facial expressions (e.g., face-to-face inter-
actions). We recommend employing mixed approaches in 
which part of the data are both automatically and manually 
coded to establish inter-rater reliability.

Predicting manually coded affective facial 
expressions from automatically detected action unit 
configurations

The intensity of both positive and negative facial expressions 
are characterized by several activation patterns involving 
functionally related facial muscles (Messinger et al., 2012; 
Oster et al., 1992; Oster, 2003, 2005a, b). Our results show 
that manual codings of positive and negative facial expres-
sions were significantly predicted by a set of automatically 
detected action units that are central to the display of posi-
tive and negative affect (Ekman et al., 2002; Messinger et al., 
2001). However, the logistic regressions that generated these 
predictions did not reliably classify the manually coded 
facial expressions.

Specifically, higher activation intensities of individual 
facial actions indexing smiling (AU12), eye constriction 
(AU6), and mouth opening (AU25+AU26+AU27) were asso-
ciated with greater odds of manually coded positive rather 
than neutral or negative facial expressions. With respect to 
interaction effects, play smiling involving mouth opening 
(AU25+AU26+AU27) - but not Duchenne smiling involving 
eye constriction (AU6) - was weakly associated with greater 
odds of a manually coded positive expression. As less than 
5% of the data were manually coded as negative, the action 
units thought to index negative affective expressions showed 
very low activation in our dataset and stable parameters could 
not be estimated for some effects. Automatically detected lip 
stretching (AU20), brow lowering (AU3+AU4), eye constric-
tion (AU6), mouth opening (AU25+AU26+AU27), and to 
a lesser degree – Duchenne cry-faces involving lip stretch-
ing (AU20) with eye constriction (AU6), were predictive of 
manually coded negative rather than neutral facial expres-
sions. Surprisingly, however, brow lowering (AU3+AU4) that 
occurred in combination with pouting (AU17) or lip stretching 
(AU20) was strongly predictive of neutral rather than negative 
manually coded facial expressions.

The individual effects of eye constriction (AU6) and 
mouth opening (AU25+AU26+AU27) in predicting positive 
and negative facial expressions are consistent with previous 
research demonstrating that these action units intensify both 
positive and negative affective displays (Mattson et al., 2013; 
Messinger et al., 2001, 2012; Ertugrul et al., 2023). How-
ever, the weak interaction effects of eye constriction (AU6) 
and mouth opening (AU25+AU26+AU27) in configura-
tion with smiling (AU12) or lip stretching (AU20) suggest 
that the combination of these facial actions rarely exceeded 
their individual contributions. Taken together, these results 
suggest that complex a priori formulae involving multiple 
combinations of facial actions detected by Baby FaceReader 
9 are not optimal tools for distinguishing manually coded 
positive and negative facial expressions.
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High classification accuracy and correct classification 
rate (AUC = .86; PA = .84) but moderate correct rejection 
rate (NA = .69) was achieved using a parsimonious post-
hoc approach based only on automatically detected smil-
ing (AU12) to discriminate positive from negative/neutral 
facial expressions. The classification accuracy and correct 
classification rates for discriminating negative from neutral 
manually coded facial expressions based on automatically 
detected brow lowering (AU3+AU4) alone were also high 
(AUC = .79). The classification performance for discrimi-
nating negative from neutral manually coded facial expres-
sions using automatically detected lip stretching (AU20) 
– a facial action muscle that is central to the infant cry-face 
(Messinger et al., 2012; Yale et al., 2003) – was moderate 
(AUC = .70). These results provide a promising case for the 
application of Baby FaceReader 9’s AU12 and AU3+AU4 
(and perhaps AU20) detectors to discriminate positive from 
negative facial expressions during the face-to-face interac-
tions of young infants.

Taken together, the classification of positive and negative 
manually coded expressions using Baby FaceReader 9 was 
superior based on the activation of individual action units 
rather than action unit configurations. To assist researchers 
interested in applying AU12 as an index of a social smile and 
AU3+AU4 and AU20 as an index of negative affect to their 
own data, we provide the automatically detected threshold 
values that yielded the best sensitivity and specificity lev-
els at discriminating positive, neutral, and negative facial 
expressions in the current dataset (Tables 5 and 6, respec-
tively). Further work is required to improve the mapping 
between negative affect and automatically detected action 
unit configurations, particularly for manifestations of pout-
ing (AU17) and lip stretching (AU20) in combination with 
brow lowering (AU3+AU4).

Previous work on automatic action unit detection

Previous work using open-source tools evaluated the concur-
rent validity of automatically detected action unit occurrences 
using manual Baby FACS-certified coding of action unit 
occurrence as ground truth (Ertugrul et al., 2023; Hammal 
et al., 2017). By contrast, we evaluated the construct validity 
of Baby FaceReader 9’s automatically detected action unit 
intensities using manual coding of global affective facial 
expression categories (positive, neutral, and negative) as 
ground truth. The differences in analytic approaches and 
ground truths preclude us from making a direct between-sys-
tem comparison of Baby FaceReader 9 (Noldus, 2022), Infant 
AFAR (Ertugrul et al., 2023), and Hammal et al. (2017). For 
reference, we provide Table S17 (https://​osf.​io/​pbj69) summa-
rizing key performance metrics obtained in current and previ-
ous research on Baby FaceReader 9 (Noldus, 2022), Infant 
AFAR (Ertugrul et al., 2023), and Hammal et al. (2017). 

In future work, the continuous re-evaluation of concurrent 
and construct validity can be integrated into the lifecycle of 
automated action unit detection systems to allow for direct 
between-system performance comparisons, preferably using 
the same dataset(s) and analytic strategy across diverse meas-
urement contexts (e.g., as done in the FERA 2017 challenge; 
Valstar et al., 2017).

Cross‑database generalizability

The deep convolutional neural network (CNN) model under-
lying Baby FaceReader 9 was trained for spontaneous action 
unit occurrence detection and intensity estimation on a com-
pilation of real and augmented, predominantly frontal image 
data collected from infants between 6 and 24 months under 
relatively controlled, well-illuminated experimental condi-
tions (Gudi et al., 2015; Noldus, 2021; Noldus, personal 
communication, March 8, 2023). The current study presents 
a case of cross-database model generalizability to an unseen 
dataset including wide-lens recordings of spontaneous facial 
expressions from younger infants (4 and 8 months), sparse 
negative affect displays, considerable head movement, and 
untrained recording conditions from home visits with vari-
able illumination settings and recording angles. Importantly, 
we applied the model to a more general classification prob-
lem than the one it was originally trained for: predicting 
the semantic significance (e.g., positive, negative, neutral) 
of infant facial expressions. Cross-database model perfor-
mance is expected to be poorer than model performance on 
unseen parts of the training dataset or datasets that more 
closely resemble the training dataset (Ertugrul et al., 2023). 
The robustness of automated action unit detection systems 
such as Baby FaceReader 9 could be improved if training 
datasets included greater variability in infant-specific char-
acteristics (e.g., ages, ethnic backgrounds, facial anatomy), 
video-specific characteristics (e.g., lens angles, recording 
angles, recording sensors, resolution, illumination), and 
measurement contexts.

Recommendations for future automated 
facial expression measurement applications 
in young infant samples

Improving automated and manual facial expression 
measurement techniques

Facial muscle movement may be harder to detect (automat-
ically) in younger infants who have higher levels of sub-
cutaneous fat and less pronounced facial features (Oster, 
2006). Baby FaceReader 9 was trained on static image data 
of infants between 6 and 24 months of age (Noldus, 2022), 

https://osf.io/pbj69
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potentially making the model less readily generalizable 
to the appearance of action unit activation produced by 
younger infants. A straightforward solution for improv-
ing the classification accuracy is to train the Baby model 
of FaceReader 9 on a wider range of benchmark datasets 
from younger and more diverse infants and measurement 
contexts. Publicly available datasets are scarce (but cf. 
Messinger, 2014; Nanni et al., 2010; Webb et al., 2018) 
and it is important that the infant research community 
creates appropriate platforms for making such datasets 
publicly accessible (e.g., Databrary, Simon et al., 2015). 
Furthermore, extending Baby FaceReader with calibration 
features may offer more precision in automated action unit 
detection and tracking by accounting for individual dif-
ferences in facial anatomy (but would involve collecting 
data during which the infant is not expressing any affect).

Here we considered manual coders, whose task was 
to categorize facial expressions as either positive, nega-
tive, or neutral – as the ground truth relative to which we 
assessed the automated system’s performance. However, 
it is not uncommon for infants in the first year of life to 
express components of positive as well as negative affect 
simultaneously (e.g., Adamson & Frick, 2003; Messinger 
et al., 1997; Weinberg & Tronick, 1996), and such expres-
sions of mixed affect are of scientific interest. Thus, a 
more complete between-system performance comparison 
would be to build upon Baby FaceReader 9’s construct 
validity for classifying manually coded affective facial 
expressions (e.g., positive and negative) with manually 
coded Baby FACS data (Oster, 2006), in a similar fashion 
to that of Ertugrul et al. (2023), Maroulis et al. (2017), 
and Maroulis, 2018). The benefit of this approach is that 
the FACS coding system makes no reference to affective 
states (Cohn et al., 2007) such that concurrent validity can 
be estimated based on the between-system concordance of 
facial actions alone.

Although human observers – trained or untrained – are 
generally good at subjectively judging affective facial 
expressions in adults (Baker et al., 2010), infants do not 
necessarily express affective states in the same fashion as 
adults do (Camras et al., 2003; Kohut et al., 2012; Oster, 
2006). Valid automated measurement of infant affective 
facial expressions, however, relies on understanding and 
formalizing the mapping between facial actions and their 
emotional significance. For instance, recognizing negative 
affect displays is particularly challenging because infants 
do not use a consistent set of action units when express-
ing lower intensity negative affect (Camras et al., 2003; 
Messinger et al., 2012). Systematic coding systems that 
explicitly operationalize possible variations in the mor-
phology of affective facial behavior in early life – such 
as valid measurement of pouting mouth movements 
(AU17) involved in sad expressions – are thus essential 

for informing automated action unit detection algorithms 
and require continuous research.

Collecting video data for automated facial 
expression analyses

The video data analyzed here were collected using a split-
screen format with the intention that they be coded manu-
ally. This makes the current results broadly applicable to 
observational infant research using similar protocols. Nev-
ertheless, improvements in classification accuracy and data 
availability of the automated measurement can be expected 
by taking additional steps to optimize video quality. Auto-
mated facial expression analyses can be sensitive to video 
image quality beyond spatial and temporal resolution (Ber-
inger et al., 2019). Image brightness, sharpness, horizontal 
and vertical position of the light source with respect to the 
infant’s face, for example, have been previously related to 
the sensitivity of automated detection of gaze direction from 
image data (Chouinard et al., 2019). In the current data-
set, Baby FaceReader 9’s face model fit certainty estimate 
– which reflects various video quality parameters – related 
to the classification accuracy. These results highlight the 
importance of assessing video recording conditions that may 
affect data availability and the accuracy of the automated 
measurement. We recommend that researchers pilot video 
recording devices and setups to increase automatic classifi-
cation accuracy and reduce missing data.

Conclusion

The study of real-time changes of infants’ affective facial 
expressions has been central to developmental science, 
enabling us to better understand a wide array of phenomena 
such as the development of emotion regulation (e.g., 
MacLean et al., 2014; Mangelsdorf et al., 1995) and preverbal 
communication (e.g., Beebe et al., 2016; Colonnesi et al., 
2012; Hsu & Fogel, 2001; Yale et al., 2003). Moving toward 
automated behavioral measurement is important because 
it may permit detailed online and offline analysis of infant 
affect and communication with large sample sizes that are 
hard to obtain using standard manual coding techniques. The 
current study assessed the validity and feasibility of a turn-key 
instantiation for automated facial expression measurement - 
Baby FaceReader 9 (Noldus, 2022), to discriminate between 
manually coded facial expressions using longitudinal data 
from infants at 4 and 8 months of age engaged in naturalistic 
face-to-face interactions with mother, father, and unfamiliar 
adult. Our results shed doubt on complex a priori formulas, 
including Baby FaceReader 9’s global emotional valence 
formula, but provide initial support for the automated 
detection of individual action units to recognize positive and 
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negative affect during naturalistic face-to-face interactions 
of infants as young as 4 months of age. Future work can 
profitably move toward improving automated measurement 
techniques to minimize data loss while identifying a priori 
action units and configurations that are central for the display 
of positive and negative affect.
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