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Abstract
We present a deep learning method for accurately localizing the center of a single corneal reflection (CR) in an eye image.
Unlike previous approaches, we use a convolutional neural network (CNN) that was trained solely using synthetic data.
Using only synthetic data has the benefit of completely sidestepping the time-consuming process of manual annotation that
is required for supervised training on real eye images. To systematically evaluate the accuracy of our method, we first tested
it on images with synthetic CRs placed on different backgrounds and embedded in varying levels of noise. Second, we tested
the method on two datasets consisting of high-quality videos captured from real eyes. Our method outperformed state-of-
the-art algorithmic methods on real eye images with a 3–41.5% reduction in terms of spatial precision across data sets, and
performed on par with state-of-the-art on synthetic images in terms of spatial accuracy. We conclude that our method provides
a precise method for CR center localization and provides a solution to the data availability problem, which is one of the
important common roadblocks in the development of deep learning models for gaze estimation. Due to the superior CR center
localization and ease of application, our method has the potential to improve the accuracy and precision of CR-based eye
trackers.

Keywords Eye tracking · Gaze estimation · Neural networks · Simulations · Corneal reflection · P-CR

Introduction

An important part of the image processing pipeline in many
video-based eye trackers is to localize the center of certain
features in the eye image, typically the pupil (Fuhl et al.,
2017; Li et al., 2005) and one or multiple corneal reflections
(CRs) (Peréz et al., 2003; Nyström et al., 2022). Accurate
localization of these features is a prerequisite for an accurate
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gaze signal produced by the eye tracker. In this paper, we
focus on localizing the center of a single CR, which together
with the pupil (P) center constitute the input for the dominant
principle for video-based eye tracking over the past decades
(Merchant et al., 1974). This principle is known as P-CR eye
tracking, and is used in high-end commercial systems like
the EyeLink from SR Research (Ontario, Canada), where
the head is typically constrained relative to the eye camera
with a chin and forehead rest.

Conventionally, researchers have relied on using algorith-
mic methods that require a series of hard-coded steps to yield
a feature center estimate from the input image. Recent work
has however shown that these traditional methods are limited
in how accurately a pupil or CR can be localized in an eye
image, in particular in the presence of image noise (Nyström
et al., 2022). To overcome these challenges, we introduce a
deep learning method that—trained on a set of synthetic eye
images—is able to accurately locate CR centers in real-world
eye images. Fromadeep learningperspective, using synthetic
data tackles the longstanding problem of finding or creat-
ing large, annotated databases that deep learning models are
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traditionally trained on. Our approach not only outperforms
the traditional algorithmic methods used by many commer-
cial eye trackers, but also introduces a new paradigm for
researchers interested in training deep learning models for
gaze estimation. Our approach is not only simple to train but
also offers the flexibility to change the synthetic images used
for training to suit the specific needs of the user. Addition-
ally, our approach eliminates the need for large datasets and
the time-consuming act of hand labeling images, which are
often impractical for smaller research labs due to time and
financial constraints.

There are several algorithmic methods to detecting CRs
in eye images and localizing their center, such as threshold-
ing followed by center-of-mass calculations or ellipse fitting
(Nyström et al., 2022; Shortis et al., 1994). Many commer-
cial eye trackers use these approaches, however they tend
to suffer from inaccuracies and poor resolution, such as mis-
estimating the amplitude of small eyemovements (Holmqvist
& Blignaut, 2020). Based on their results, Holmqvist and
Blignaut (2020) hypothesized that these problems could be
ascribed to mislocalization of the CR center. Recent theo-
retical work has indeed shown that accurate localization of
the center of the CR with thresholding techniques requires
that the CR spans a sufficient number of pixels in the eye
images and that the level of image noise remains low (Nys-
tröm et al., 2022). Besides simple thresholding of the CR
in the eye image, other algorithmic methods for CR center
localization have been proposed. Recently, Wu et al. (2022)
showed that radial symmetry (Parthasarathy, 2012), a parti-
cle tracking method stemming from the field of microscopy,
outperformed simple thresholding in terms of CR localiza-
tion. However, they only tested the radial symmetry method
on eye imageswhere theCRwas located fully inside the pupil
and thus appeared on a uniform dark background. Depending
on the range of gaze directions in the task and the geometry
of the setup, the CR will also often be located on the iris
or on the border between the pupil and the iris. Since this
case was not evaluated by Wu et al. (2022), who only used a
limited range of gaze directions, it remains unclear how the
radial symmetry method would perform on real eye images
recorded during unconstrained viewing.

In this study, we aimed to improve the accuracy and preci-
sion of high-end P-CR eye tracking in controlled laboratory
settings to allow even more robust estimation of small and
slow eye movements. We use a two-stage approach, where a
traditionalmethod is used for rough localization, followed by
aCNN-basedmethod formore accurate localization. Specifi-
cally, to simplify the training procedure, and since traditional
algorithmic methods such as thresholding are already quite
good at CR localization, we first use thresholding followed
by centroid calculation to make an initial estimate of CR
center location, and then use the CNN on image patches cen-
tered around these locations. We compared the performance

of our deep learning method to traditional methods such as
radial symmetry and thresholding. We predicted that a CNN,
when trained effectively, will be able to surpass traditional
methods and achieve improved localization performance (cf.
Helgadottir et al. 2019).

In order to train thismodel effectively,we synthesizedCRs
using 2DGaussian distributionswith different sizes and posi-
tions on a background with varying levels of noise (see the
“Generating synthetic images” section below for a detailed
description).

We use a deep learning framework known as DeepTrack
(Helgadottir et al., 2019), originally developed for particle
tracking in a microscopy setting. This framework utilizes a
CNN trained on synthetic data to track single particles and
also includes a U-Net model for tracking multiple particles.
Subsequent work using this framework has also incorporated
single-shot self-supervised object detection and geometric
deep learning models (Midtvedt et al., 2022; Pineda et al.,
2022). The DeepTrack 2.1 Python library (Midtvedt et al.,
2021) makes it easy to generate a synthetic dataset and train
a deep learning model in the same pipeline. To the best of
our knowledge, this is the first time the DeepTrack 2.1 library
has been used outside of digital microscopy.

While many gaze estimation studies deploy deep learning
architectures, we focus our literature review specifically on
models whose aim is to locate the CR or that create synthetic
data used to train the model. We could find only three other
deep learning models that have been developed for locating
CRs in eye images. First, Wu et al. (2019) used a three-level
CNN network to locate CRs and match their locations in the
eye image to the physical locations of the light sources used
the generate the CRs. The model included a CNN backbone
with feature pyramid outputs as the base architecture. The
output was passed into two additional networks, one for iden-
tity matching and another for localization. Second, Chugh
et al. (2021) trained a U-Net model on 4000 hand-labeled
real eye images to accurately detect multiple CRs within the
same image. The authors relied on several data augmentation
techniques to develop a total of 40,000 samples for training.
Third, Niu et al. (2022) proposed a lightweight model that
both localizes and matches corneal reflections. This model
employs an attention mechanism to identify both the pupil
center and CRs. They demonstrated improved performance
in CR localization andmatching when compared to Chugh et
al. (2021). It should be noted that by design, the work of Wu
et al. (2019) and Niu et al. (2022) was limited to localizing
CR centers with pixel resolution, making their approaches
unsuitable for our setting where we aim to recover the CR
position at higher accuracy. The approach of Chugh et al.
(2021) is theoretically able to provide sub-pixel level CR
localizations, but in practice achieved an average error of
1.5 pixels, and requires training the model for a specific CR
size.
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To overcome the need for large data sets to enable
effective training of machine learning models for gaze esti-
mation, previous studies have successfully used synthetic
data (Cheng et al., 2021). For instance, Sugano et al. (2014)
proposed a “learning-by-synthesis” approach that trained
random regression forests on a dataset of 3D reconstruc-
tions of eye regions created using a patch-based multi-view
stereo (MVS) algorithm. Wood et al. (2015) also used a
similar approach of generating photo-realistic eye images
to be used for a wide range of head poses, gaze directions
and illuminations to develop a robust gaze estimation algo-
rithm, and in a separate study generated a dataset of 1 million
synthetic eye images (Wood et al., 2016). Shrivastava et al.
(2016) proposed an unsupervised learning paradigm using
generative adversarial networks improving realism of a sim-
ulator’s output by using unlabeled real data. They argue
synthetic data may not achieve the desired performance due
to a gap between synthetic and real eye image distributions.
The method was tested for gaze and hand pose estimation,
showing a significant improvement over using synthetic data
alone.

Our study diverges from these previous approaches as we
demonstrate that models can be trained to achieve high accu-
racy using simple, highly controllable synthetic images that
are substantially different from real eye images, avoiding the
need for sophisticated and time-consuming techniques such
as data augmentation or reconstruction methods.

This paper addresses the following questions regarding
deep learning methods for CR center localization: 1) Can a
CNN trained on synthetic images perform CR center local-
ization in real eye images? and if so, 2) Is our method able to
locate the CR center more accurately than commonly used
algorithmic approaches when applied to synthetic data? and
3) Does our method deliver a CR position signal with higher
precision than the algorithmic approaches when applied to
real eye images? We focus specifically on high-resolution
and high-quality eye images, since accurate CR localization
in high-end eye trackers is key to recording high-precision
data where even the smallest and slowest of eye movements,

e.g., microsaccades and slow pursuit, can be robustly dis-
tinguished from noise (cf. Holmqvist and Blignaut, 2020;
Nyströmet al., 2022;Niehorster et al., 2021).Nevertheless, to
assess the potential generalizability of our method to lower-
resolution eye images, in a second experiment reported in
this paper we also evaluate our approach on spatially down-
sampled eye images.

Methods

Model architecture

In a preliminary test,we implemented the originalDeepTrack
CNN model as described in Helgadottir et al. (2019). This
model consisted of three convolutional layers and two dense
layers, and we employed the same optimizer and hyperpa-
rameter choices as described in the original work. However,
when we evaluated this model on our synthetic images that
simulated a corneal reflection captured in a video-based eye
tracking setup, we were unable to achieve sub-pixel level
accuracy. The minimum validation error we reached was
2.95 pixels. To enhance the accuracy of our predictions, we
developed our own CNN model. Our model included seven
convolutional layers connected to twodense layers. The input
to our model is 180 × 180 pixels grayscale images, and it
outputs the subpixel location of the corneal reflection cen-
ter. Figure 1 provides a visual representation of the complete
architecture of our model.

Model training

We implemented a two-stage training approach for ourmodel
to achieve sub-pixel level accuracy. In thefirst stage, to ensure
good generalization, we trained the model on a broader
range of CR center locations than the model would typi-
cally encounter during inference. We describe the process of
generating the images in detail in the following section of the
paper.We utilized the Adam optimizer (Kingma&Ba, 2017)

Fig. 1 Overview of our method: A CNN model with seven convolutional layers that increase in filter size from 64 to 512 and two dense layers
returning the Cartesian coordinates of the CR center
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and a mean squared error (MSE) loss function along with a
very small batch size of four. The training was conducted for
a maximum of 700 epochs, with an early stopping function
implemented to prevent overfitting, achieving a validation
error of 0.2338 pixels after 127 epochs. The second stage
of training was performed on a dataset containing a smaller
range of synthetic CR center locations. During this stage, we
fine-tuned the model by freezing the first two convolutional
blocks while all subsequent layers of the model were set to
trainable (i.e., unfrozen), and we initialized the model with
the weights from the first training stage. For selecting the
layers to freeze, we followed an iterative process where we
gradually increased the number of trainable layers. We initi-
ated the process with a fully frozen model and subsequently
unfroze the layer closest to the model head at each itera-
tion. Additionally, we lowered the learning rate of the Adam
optimizer from 1e−4 to 1e−6. The second stage of training
resulted in a sub-pixel accuracy of 0.085 after 187 epochs on
the validation set.

The DeepTrack 2.1 (Midtvedt et al., 2021) package pro-
vides a generator function which we used to efficiently
generate and feed images into the model for training. We
set up the generator such that the model only saw each train-
ing image one time, meaning that every image the model saw
for training was unique. We additionally generated 300 syn-
thetic images for the validation set. The fully trained model
was saved and model evaluations were conducted on an Intel
Xeon W-10885M CPU @ 2.40GHz with a prediction time
of 13 ms per image.

Generating synthetic images

Features of the synthetic images

As in previous work (Nyström et al., 2022), the light distribu-
tion of the CR in an eye image is modeled as a 2D Gaussian
distribution, as is supported by optical modeling (Wu et al.,
2022). CRs in real eye images have at least two further
important features: 1) The CR in an eye image is normally
heavily oversaturated (Wu et al., 2022; Holmqvist et al.,
2011); and 2) depending on the physical geometry of the
setup and the orientation of the eye, the CR is often over-
laid on a non-uniform background, such as the iris or the
edge of the pupil. We therefore extend the approach of Nys-
tröm et al. (2022) by introducing saturation that truncates the
Gaussian distribution and leaves it with an area of maximum
brightness surrounded by shallow tails, and by introducing a
non-uniform background.

More formally, the saturatedCR is generated from aGaus-
sian distribution

G(x, y) = Ae
−

(
(x−xc)2+(y−yc)2

2σ2w

)
(1)

where the following parameters are varied in the simulation:

1. The center of the input light distribution (xc, yc).
2. The amplitude A of the Gaussian distribution. Satura-

tion is achieved when A is set to amplitudes larger than
1 since image values are limited to 1 at the end of the
image generation pipeline (see below). Figure 2 (top-

Fig. 2 Example simulated CRs. Top row: example images used dur-
ing model training and for the validation set. Left column: different
values of Gaussian amplitude A. Right column: different pixel noise
values σ 2

n (image levels). For both columns, random positions (within
[−1.5r , 1.5r ]) and orientations of the dividing line between the dark
and light sections of the background are shown. Bottom row: example
images used for evaluation, showing different background locations E

as well as a CR image without a gray background. The value for the
varied parameter is denoted on the panels. A was set to 10000 for all
panels except the top-left. For illustration purposes, the CR radius (r ) in
these panels is 50 pixels. During both training and evaluation, the pixel
intensity of the lighter section of the background was also varied (not
shown)
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left) shows CRs at three different amplitudes. Notice that
larger amplitudes lead to shallower tails.

3. The radius r of the resulting CR. This is parameterized
such that for a given value, the radius of the satu-
rated portion of the CR is kept constant irrespective of
the amplitude (A) of the underlying Gaussian. This is

achieved by setting σw = r/
√

−2 log 1
A .

Two further aspectswere varied to generate the final synthetic
images. First, to simulate the pupil–iris border, a background
wasgenerated that consisted of two sections of different lumi-
nance, and the line dividing the two sections was randomly
placed near the CR and randomly oriented. The image of the
synthetic CR was added to this background using the fol-
lowing operation: max(CR, background). The top row of
Fig. 2 shows synthetic CRs on various example backgrounds.
Furthermore, noisewas added to the images by adding a value
drawn from a Gaussian distribution X ∼ N (0, σ 2

n ) for each
individual pixel of the image. The parameter σ 2

n was var-
ied (see Fig. 2, top-right). Finally, the intensity values in the
resulting images were limited to the range [0, 255], scaled to
the range [0, 1] and the image was discretized to 256 levels,
corresponding to 8-bit camera images.

Model of image information for CR center localization

Since the aim of the current work is to develop a high-
accuracy CR center localization method, it is important to
develop a model of what accuracy an optimal localization
method could achieve. As shown by Nyström et al. (2022),
CR localization accuracy depends on the number of pixels
spanned by the CR in the image as well as the shape of the
light distribution. Theoretically, the lower the spatial pixel
resolution or bit-depth of the CR image, the lower the maxi-
mum achievable localization accuracy of the CR center. This
follows from the logic that the coarser the digital representa-
tion of the CR, the bigger the change in its position needs to
be before an observable change occurs in the CR image (cf.
Mulligan 1997). Therefore, to provide a benchmark for the
results presented in this paper, we determined the theoreti-
cally optimal center localization performance as a function
of CR size and Gaussian amplitude (i.e., tail width). To do
so, we took a set of CR images generated with the Carte-
sian product of r = {2, 4, 6, ..., 18} and A = {10, 50, 200,
1000, 10000}, i.e., the same parameters as used for the eval-
uation on synthetic images (see the “Evaluation on synthetic
images” below). The center of each CR image was then esti-
mated as the center of mass of all the pixels in the discretized
CR image, using their intensity values (Nyström et al., 2022;
Shortis et al., 1994). Unlike the synthetic images used for
model evaluation, these images had a completely black back-
ground such that only pixel intensity values associated with
the CR would influence the center estimate.

First and second training stages

During the first training stage, the following parameters were
used. Where possible, the parameters were set to ranges sig-
nificantly larger than the set used for evaluation.

1. CR radius r was drawn from a uniform distribution with
range [1, 30] pixels. This was chosen to be wider than
our testing range of [2, 18] (like was used in Nyström et
al. 2022) and also encompasses the range of CR sizes one
may reasonably expect to encounter in real eye images.

2. Location: Horizontal and vertical CR center locations
were drawn fromuniformdistributions. To ensure that the
CR would not be significantly cut off by the edge of the
image, the range of both uniform distributions depended
on the CR size (r ). Specifically, they spanned [r , 180−r ]
pixels, where 180 pixels is the image size.

3. Gaussian amplitudes Awere drawn fromauniformdistri-
butionwith range [2, 20000]. The range of this parameter
was decided bymeans of manual inspection of the output
to provide a range of different tail widths (cf. Fig. 2).

4. The horizontal and vertical coordinates of a point on
the line dividing the two sections of the background
were drawn from a normal distribution centered on the
CR center location and spanning a standard deviation of
−1.5r . A random orientation of this line was then drawn
from a uniform distribution with range [0, 2π ]. The edge
between the two segments was smoothed with a raised
cosine profile spanning four pixels. The pixel intensity
value of the dark section of the background was drawn
from an exponential distribution with its scale parameter
set to ten pixel intensity values, and offset one (so that
full black did not occur). The pixel intensity level of the
lighter section I was drawn from a uniform distribution
with a range of [32, 153] pixel intensity values.

5. The pixel noise σn was drawn from a uniform distribution
with range [0, 30] pixel intensity values.

In the second training stage, all parameters except CR
location were set to the same ranges as were used in the first
stage. Since the CNN will only be used on image patches
where the CR has already been centered, horizontal and ver-
tical CR center locations in this second pass were drawn from
uniform distributions with ranges spanning 1.5 pixels around
the center of the output image, i.e., [89.25, 90.75].

Evaluation

Evaluation on synthetic images

To investigate how accurately the center of the CR can be
located by the various methods, an input light distribution
with horizontal center xc was moved in small steps (δxc =
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0.01) over a one-pixel range (100 steps). The input position
was then compared to the output of three methods: 1) the
traditional thresholding method (Nyström et al., 2022); 2)
the radial symmetry algorithm of Parthasarathy (2012); and
3) the CNN developed in this paper. A fourth method which
simply computes the center of mass of all the pixels in the
input image (called the intensity-based method in Nyström
et al. 2022) was discarded after initial investigation since this
method produced very large errors on our evaluation images
due to the partially grey background.

The evaluation was performed at several CR radii r ,
Gaussian amplitudes A, gray background locations E , pixel
intensity values I of the lighter part of the background and
noise levels σn . Specifically, the testing set consisted of
the Cartesian product of r = {2, 4, 6, ..., 18}, A = {10,
50, 200, 1000, 10000}, σn = {0, 2, 4, ..., 18}, grey back-
ground locations E = {nogray,−1.5,−1,−.5, 0, 0.5, 1,
1.5}, and pixel intensity levels of the lighter background sec-
tion I = {38, 51, 64, 77, 89, 102, 115, 128, 140, 153}, i.e.,
it included all combinations of these parameters. At each
combination of parameters, the horizontal center of the CR
xc was moved through 100 steps of δx = 0.01 pixels as
described above. The dividing line between the two sections
of the background was always vertical and it was positioned
relative to the synthetic CR such that E = 0 meant the bor-
der between the two sections coincided with the CR center,
E = −1 that it was placed 1 CR radius r to the left of the CR
center, and E = 1, 1 CR radius to the right of the CR center
(see bottom row of Fig. 2).

Evaluation on real eye images

How well does our approach perform on real eye images?
To answer this question, we tested our method against the
thresholding and the radial symmetry methods when local-
izing the center of the CR in high resolution, high framerate
videos of real eyes performing a collection of fixation tasks.
Two different datasets were collected.

Dataset one
Participants Eye videos were recorded from three partici-
pants. Two are authors of the current paper and the third is an
experienced participant in fixation tasks. None of the partic-
ipants wore glasses or contact lenses. Videos were recorded
from the left eye. The study was approved by the Ethical
Review Board in Sweden (Dnr: 2019-01081).

Apparatus The visual stimuli were presented on an ASUS
VG248QE screen (531 × 299 mm; 1920 × 1080 pixels; 60-
Hz refresh rate) at a viewing distance of 79 cm.

Videos of the subject’s left eye were acquired using our
FLEX setup (Hooge et al., 2021; Nyström et al., 2022),
a self-built eye tracker. The setup consisted of a Basler
camera (Basler Ace acA2500-60um) fitted with a 50-mm

lens (AZURE-5022ML12M) and a near-IR long-pass filter
(MIDOPTLP715-37.5). Eye videos were recorded at 500Hz
at a resolution of 896 × 600 pixels (exposure time: 1876µs,
Gain: 10 dB), and were streamed into mp4 files with custom
software using libavcodec (ffmpeg) 5.1.2 and the libx264
h.264 encoder (preset: veryfast, crf: 0 (lossless), pixel format:
gray). Videos were acquired and stored at 8-bit luminance
resolution. The EyeLink 890 nm illuminator was used (at
75% power) to deliver illumination to the eye and to gener-
ate a reflection on the cornea that can be tracked in the eye
image. An example eye image is shown in the left panel of
Fig. 3.

Procedure The subjects performed the following tasks
where they looked at a fixation point consisting of a blue
disk (1.2◦ diameter), with a red point (0.2◦ diameter)
overlaid:

1. Nine 1-s fixations on a 3×3 grid of fixation points posi-
tioned at h = {−7, 0, 7} deg and v = {−5, 0, 5} deg in
random order.

2. Three 30-s fixations on a dot that was presented at
(x, 0), x ∈ {−3.5, 0, 3.5} deg, while the background
luminance of the screen alternated between full black
and full white (cycle frequency 1

3Hz) to elucidate pupil
size changes.

3. Three 30-s fixations on a dot that was presented at
(x, 0), x ∈ {−3.5, 0, 3.5} deg on a middle gray back-
ground.

4. Five blocks of 15 1.5-s fixations on a 5× 3 grid of fixation
points positioned at h = {−7,−3.5, 0, 3.5, 7} deg and
v = {−5, 0, 5} deg. Fixation locations were randomly
ordered within each block.

Dataset two
An abbreviated protocol was used to collect additional eye
videos from the left eye of 17 participants (age 30–61 years
(mean 45.4 years), five females, 11 males, one non-binary)
who did not wear glasses or contact lenses. The study was
approvedby theEthicalReviewBoard inSweden (Dnr: 2019-
01081). Two are authors of the current paper. One participant
was excluded because an impurity on their cornea caused
an additional corneal reflection that none of the examined
methods could handle.

To further examine the robustness of our method to vari-
ations in the luminance profile of the input eye images, this
second recording was performed with the FLEX setup set to
acquire images at 1000 Hz. The captured eye images were
less bright at this higher sampling rate due to the shorter pos-
sible exposure time. The videos were acquired at a resolution
of 672× 340 pixels (exposure time: 882µs, gain: 12 dB). The
EyeLink 890-nm illuminator was used (at 100% power) to
deliver illumination to the eye.
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Fig. 3 Full eye image (left) and masked cutout as processed by the radial symmetry and CNN methods (right)

This data collectionused the samedisplays as theprevious,
and the reduced protocol consisted of:

1. Nine 1-s fixations on a 3 × 3 grid of fixation points posi-
tioned at h = {−7, 0, 7} deg and v = {−5, 0, 5} deg in
random order.

2. One 30-s fixation on a dot that was presented at (0, 0)
deg on a middle gray background.

3. Two blocks of 15 1.5-s fixations on a 5× 3 grid of fixation
points positioned at h = {−7,−3.5, 0, 3.5, 7} deg and
v = {−5, 0, 5} deg. Fixation locations were randomly
ordered within each block.

Image analysis
Image analysis was performed frame-wise. A first stage was
performed using the steps described in Nyström et al. (2022).
Briefly, an analysis ROI and fixed pupil and CR thresholds
were set manually for each participant’s videos to identify
the pupil and CR in the images, as is commonly performed
(Peréz et al., 2003; San Agustin et al., 2010; Barsingerhorn et
al., 2018; Zimmermann et al., 2016; Ivanchenko et al., 2021;
Hosp et al., 2020). We ran the analyses at different CR and
pupil thresholds and selected the thresholds that maximized
the precision of the signals. These thresholds were used to
binarize the images and after morphological operations to
fill holes, the pupil and CR were selected based on shape
and size criteria. The center of the pupil and CR were then
computed as the center of mass of the binary blobs. The CR
center provided by this method will be referred to as the CR
center localized using the thresholding method.

In a second stage, a 180 × 180 pixel cutout centered on
the center location identified by the thresholding method
was made. A black circular mask with a radius of 48 pix-
els (about three times the horizontal size of the CR blob) was
furthermore applied to the input image (see right panel in
Fig. 3). These masked images were then fed into the radial
symmetry and CNN methods and their indicated CR centers
stored.

To assess whether our method also works on lower reso-
lution eye images as may be delivered by other eye tracking
setups, we reran the image analysis described above with all
input images downsampled by a factor of 2. The process-
ing method and parameters were identical to those for the
full resolution eye videos, except that the radius of the black
circular mask applied to the CNN’s input images was also
halved.

Data analysis
To investigate the data quality of the resulting signals, the
following metrics were calculated.

First, RMS-S2S precision (Holmqvist et al., 2012;
Niehorster et al., 2020a, b) of the CR center signals estimated
using the three methods was computed in camera pixels for
all the collected gaze data using a moving 200-ms window,
after which for each trial the median RMS from all these
windows was taken (Niehorster et al., 2020; Hooge et al.,
2018, 2022). The same calculation was performed for the
pupil center signal.

Then, the accuracy, RMS-S2S and STD precision of the
calibrated gaze signal computed based on the three CR center
signals were estimated. For this, gaze location was deter-
minedusing standardP-CRmethods: after subtracting theCR
center location from the pupil center location, the resulting
P-CR gaze data were calibrated using the gaze data collected
on the 3 × 3 grid of the first task. Calibration was performed
with second-order polynomials in x and y including first-
order interactions (Stampe, 1993; Cerrolaza et al., 2012):

pgaze = a + bx + cy + dx2 + ey2 + f xy, (2)

where pgaze is the gaze position in degrees. The same for-
mula was applied to compute the horizontal and vertical gaze
positions. The accuracy of the gaze signalwas then computed
for each trial as the offset between themedian estimated gaze
location and the fixation point location for the data of task 4
in dataset one and task 3 in dataset two. The accuracy values
for the repeated fixations on the 15 fixation targets were aver-
aged. Similarly to the CR and pupil center signals, RMS-S2S
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and also STD precision of the gaze signal was computed in
moving 200-ms windows for all the collected gaze data, after
which for each trial the median RMS or STD value from all
these windows was taken.

Results

Optimal CR center localization performance

Figure 4 shows the best obtainable CR center localization
performance based on the information in the synthetic CR
images for the different Gaussian amplitudes (different pan-
els) and CR sizes (lines within each panel). As can be seen,
appreciable errors inCRcenter location occur at all examined
Gaussian amplitudes for the smallest CR size (2), and also
for CR size 4 for higher Gaussian amplitudes (i.e., images
containing narrower tails). Furthermore, error increases as a
function of Gaussian amplitude (narrower tails). To illustrate
how close the different CR center localization methods are
to their optimal performance, the results of this examination
will be used as reference lines when presenting the evalu-
ation on synthetic images in the “Evaluation on synthetic
CRs” section below.

Evaluation on synthetic CRs

First we set out to examine whether our method was able to
locate the CR center more accurately than two commonly
used algorithmic approaches when applied to synthetic data.
Figure 5 shows the error inCRcenter localization achievedby
the threemethods for three differentCRsizes.Negative errors
are leftward, and positive rightward. For illustration pur-
poses, results are shown for Gaussian amplitude A = 10000
and a half-grey background (E = 0, I = 128). As can
be seen, for the smallest CR size, the CNN and threshold-
ing methods perform similarly, while the radial symmetry
method shows a larger bias towards the left of the image,
which is the gray side. AsCR size increases, this bias towards
the grey side of the image for the radial symmetry method
only slightly decreases. For these larger CR sizes, the cen-
ter localization output of the threshold and CNN methods
becomes more smooth, and the CNN by and large shows a
lower error than the threshold method.

Localization performance of the three methods as a func-
tion of CR size for three different pixel noise levels is plotted
in Fig. 6 (top-left panel). As can be seen, error in localiza-
tion is almost independent of CR size for the threshold and
CNNmethods while error decreases as a function of CR size

Fig. 4 Best achievable CR center localization errors for different Gaussian amplitudes A (different panels) and CR radii r (different lines in each
panel)
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Fig. 5 Errors in CR center localization for different CR sizes r for three methods. The panel insets show boxplots of the CR center localization
error for each estimated input position. For all these simulations, A = 10000, E = 0, I = 128

for the radial symmetry method. The thresholding and CNN
methods are not affected by noise in the input image in the
range that we examined and achieve similar CR center local-
ization error. On the other hand, the radial symmetry method
was strongly affected by pixel noise level (errors weremostly
over 0.5 pixels at noise level 8 and ranged from 3–8 pixels at
noise level 18, not shown). As such, further plots show results
at noise level 0 to highlight the best possible performance of
the radial symmetry method.

The effect of the pixel intensity level of the lighter back-
ground section is shown in Fig. 6 (top-right panel). Similar
to the effect of pixel noise level, the localization error of the
threshold and CNN methods, but not the radial symmetry
method, is almost independent of CR size and background
pixel intensity level. Furthermore, performance of the CNN
method is very close to that of the thresholdmethod,with both
achieving errors of around towell below 0.1 pixels across CR
sizes.

The effect of the location of the grey background on local-
ization performance is shown in Fig. 6 (bottom-left panel).
While allmethods performed nearly perfectlywhen the back-
groundwas fully black, only the threshold and CNNmethods
are stable over different locations of the gray background.
The performance of the radial symmetry method is strongly
affected by the position of the gray background, and overall
showsmuch larger errors than when no gray background was
present.

The effect of the width of the tail of the CR is shown in
Fig. 6 (bottom-right panel). Recall that more saturated Gaus-
sians (those with larger amplitude A) have narrower tails (cf.
Fig. 2). As can be seen, the effect of tail width on CR local-
ization performance is minimal for the three methods. Taken
together, importantly, the localization performance of the
CNNis onparwith the best-performing algorithmic approach
toCR localization, achieving average errors of around orwell
below 0.1 pixels in all cases.

Evaluation on real eye images

Dataset one

Next, we set out to test whether our method is able to per-
form CR center localization in real eye images and if so,
whether it delivers a CR position signal with higher pre-
cision than two algorithmic approaches. To test how well
our method works on real eye images, we first performed
CR and pupil center localization on dataset one, which
consisted of 500-Hz videos of eye movements made by
three participants. CR localization was performed by three
methods.

The left panel of Fig. 7 shows an example segment of CR
center locations estimated using the three methods, along
with the estimated pupil center location. A can be seen, the
CR center signal from the CNN method appears smoother
than the signal from the threshold method, while the signal
from the radial symmetry method looks less smooth than the
threshold signal. The pupil center signal by and large looks
similarly noisy as the CR signal from the radial symmetry
method.

To quantify these observations, we calculated the RMS
precision of all four signals for all recorded videos of three
participants. The results of this analysis are shown in Fig. 7
(right panel). While there were differences in overall noise
level betweenparticipants, a clear pattern in results for theCR
center localizationmethods is seen. TheCNNmethod consis-
tently delivers signals with a better precision (lower values)
than the thresholding method, while the radial symmetry
method delivers signals with worse precision (higher val-
ues). Precision of the pupil center signal is consistently much
worse than that of the CNN- or thresholding-based CR center
signals. It is important to note here that all methods processed
each video frame independently, and that improved precision
could thus not be due to any form of temporal information
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Fig. 6 Errors in CR center localization for the three methods as a func-
tion of CR radius for different noise levels (top-left), pixel intensity
levels of the lighter background section (top-right), locations of the gray
background (bottom-left) and Gaussian amplitudes (bottom-right). For
the top-left panel, average error of the radial symmetry method ranged

from 3–8 pixels at noise level 18, not shown. For the top-right and
bottom panels, the noise level was 0. For the bottom panels, the pixel
intensity level of the lighter background section I was 128. For the
bottom-right panel, the background location E was 0

being used from previous or future frames (c.f. Niehorster et
al., 2021, 2020b).

How does the improved CR center localization of our
method impact the gaze signal? To answer this question, we
performed a similar analysis as above, but on the calibrated
gaze signals. The top panel of Fig. 8 shows an example seg-
ment of gaze data computed from the three signals. As can
be seen, the gaze signals derived from the three different
CR localization methods look much more similar than the
CR center signals in Fig. 7 (left panel). This is likely due to
the fact that derivation of the gaze signal involves subtracting
the estimated CR center location from the much noisier pupil
center location estimate (cf. Niehorster and Nyström 2018).
The noise in the pupil center location estimate likely is the

dominant component of noise in the derived gaze signal, to a
large extent swamping the differences in precision between
the CR center location signals.

The bottom panels of Fig. 8 show the accuracy, RMS-
S2S, and STD precision achieved with the three CR center
localization methods. While there were small differences
between the participants, no systematic differences in accu-
racy between the three methods were observed. Overall, both
the RMS-S2S and the STD precision of the gaze signals
derived from the CR center localization estimates of the
CNN was a little lower than for the gaze signal derived from
the threshold-based CR center, while that for the gaze sig-
nal derived from the radial symmetry method for CR center
localization showed worse precision.
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Fig. 7 Real eye CR and pupil center signals of dataset one. Left: rep-
resentative segment of pupil and CR center signals from S03 in camera
pixels. For the CR center, the signals produced by three different CR
center localization methods is shown. The signals contain two small
saccades and have been vertically offset for clarity. RMS precision for

the shown segments are 0.081 px for the threshold signal, 0.061 px for
CNN, and 0.096 px for radial symmetry and 0.121 px for the pupil sig-
nal. Further, an RMS precision comparison (right panel) between the
three methods and the pupil signal on all data of three participants is
shown. Error bars depict standard error of the mean

Fig. 8 Real eye calibrated gaze signals of dataset one. Top: represen-
tative segment of calibrated P-CR signals from S03 as processed by
three different CR center localization methods. The signals contain two
small saccades and have been vertically offset for clarity. RMS preci-
sion for the shown segments are 0.040◦ for the threshold signal, 0.034◦

for CNN, and 0.046◦ for radial symmetry. Further, an accuracy compar-
ison (bottom left panel), an RMS precision comparison (bottom middle
panel) and an STD precision comparison (bottom right panel) between
the three methods on data of three participants are shown. Error bars
depict standard error of the mean
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Dataset two

To examine how our method performs on real eye images
across a wider range of participants with different eye physi-
ology and for lower resolution eye images, we have collected
a new set of 17 participants (one of which was excluded from
analysis, seeMethods) and analyzed the videos captured both
at full and at half resolution.

Figure 9 shows the calculated RMS precision of the CR
signal processed using three different methods, and the pupil
signal, for all recorded videos of all participants. The same
pattern emerges for the full resolution and the half resolu-
tion videos. As we saw for dataset one, while there were
differences in overall noise level between participants, a
clear pattern of results emerges where the CNN method
delivers signals with a better precision (lower values) than
the thresholding method, and the radial symmetry method
performs worse (higher values) than the CNN method. As
before, the precision of the pupil center signal is worse
than that of the CNN- or thresholding-based CR center
signals.

To examine how the CR center localization methods
impact the resulting calibrated gaze signals, we computed
the RMS-S2S and STD precision, and the accuracy of the
calibrated gaze signals of each participant for both the full
resolution and half resolution video analyses. As for dataset
one, in most cases there were only small differences in
RMS-S2S and STD precision (Fig. 10, top and middle rows)
between the three CR center localization methods for both
video resolutions, with the CNN method showing slightly
better precision (lower values) than the other methods. Only
for the half-resolution analysis was the STD precision of the
gaze signal derived from the threshold method clearly worse
(higher values) than for the signals derived from the CNN

and radial symmetry methods. Accuracy did not vary sys-
tematically between the three methods.

Discussion

In this paper, we have developed a CNN architecture and
training regime for localizing single CRs in eye images. We
have furthermore analyzed the spatial accuracy and preci-
sion obtained with this new method using synthetic and real
eye images. Regarding the research questions posed in the
introduction, the contributions of this paper are: that 1) we
provide a simple method using only synthetic images to train
a CNN to perform CR center localization and demonstrate
that a CNN trained using this method can perform CR center
localization in real eye images; 2) we show that our method
is able to locate the CR center similarly accurately as a com-
monly used algorithmic approach when applied to synthetic
data; and 3) we demonstrate that our method can outperform
algorithmic approaches to CR center localization in terms of
spatial precision when applied to real eye images.

Specifically, the paper has shown that our CNN-based
method consistently outperforms the popular thresholding
method for CR center localization as well as the radial sym-
metry method that was recently adopted byWu et al. (2022).
As Nyström et al. (2022) have recently shown, binarizing an
eye image using a thresholding operation reduces theCRcen-
ter localization accuracy compared to methods that use the
full range of pixel intensity values in the image of the CR (cf.
also Helgadottir et al., 2019, who show this in the context of
microscopy). The radial symmetry method (Parthasarathy,
2012) uses the full range of intensity values and has been
shown to outperform thresholding for localization of the
center of image features (Wu et al., 2022; Helgadottir et

Fig. 9 RMS-S2S precision of the raw signals for dataset two. An RMS
precision comparison between the CR center signals derived from the
three methods and the pupil center signal is shown for all participants

(colored symbols) along with the mean across participants (black cir-
cles) for analyses run both at full video resolution (left panel) and at half
resolution (right panel). Error bars depict standard error of the mean
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Fig. 10 Data quality of calibrated gaze signals of dataset two. RMS-
S2S precision (top panels), STDprecision (middle panels) and accuracy
(bottom panels) comparisons of the calibrated gaze signals derived from
the three CR center localization methods is shown for all participants

(colored symbols) along with the mean across participants (black cir-
cles) for analyses run both at full video resolution (left panels) and at
half resolution (right panels). Error bars depict standard error of the
mean

123



Behavior Research Methods

al., 2019; Midtvedt et al., 2022). However, these results
were obtained with features on a uniform background. Our
simulations show that the radial symmetry method is con-
sistently considerably worse when used on images with a
background consisting of two regions with different lumi-
nance. It is therefore not suitable for use in more general
eye-tracking scenarios, where the CR is often overlaid on a
non-uniform background, such as the iris or the edge of the
pupil.

In contrast, our CNN was trained on highly simplified
images that contained such backgrounds, and shows perfor-
mance that is robust to their presence in both synthetic and
real eye images. This demonstrates that the CNN approach, if
appropriately trained, is able to use the pixel intensity infor-
mation contained in the image of the CR to localize its center
while effectively ignoring the background. Our CNNmethod
consistently outperformed the other methods across evalua-
tions performed on two different datasets and also when fed
eye images that were downsampled to half resolution, show-
ing that the method is applicable to many participants with
differing eye physiology and generalizes to lower-resolution
eye images.

This paper has demonstrated that simple simulations can
be used to effectively train deep learning models that work
on real eye images, raising questions about the need for
heavy data augmentation techniques and time-consuming
data collection as well as hand labeling efforts or recon-
struction methods. However, it is worth emphasizing that we
have so far employed this approach only on high-quality eye
images (see Fig. 3) encountered in high-end laboratory-based
eye-tracking scenarios where researchers are interested in
microsaccades and other fixational eyemovements, aswell as
other aspects of eyemovements that require high data quality,
such as slow pursuit. While our approach shows promise for
these research scenarios, other scenarios in which eye track-
ers are frequently applied such as virtual reality or wearable
eye-tracker settings face eye images of significantly worse
quality. Our approach should thus be tested on more chal-
lenging targets (e.g., localizing the center of the pupil or iris),
more complex situations (e.g., involving multiple CRs and
spurious reflections) and images of lower quality to further
test the hypothesis that effective gaze estimation methods in
a broader context can be trained using simple simulations
alone.

Our results show that while our method offered signif-
icantly reduced RMS precision in the CR center signal
(28.0–34.9% lower than thresholding for dataset one, and
on average 13.0% and 41.5% lower for the full- and half-
resolution analyses of dataset two, respectively), this trans-
lated to an improvement in RMS precision of the gaze signal
that ranged only between 7.2-8.6% for dataset one, and on
average 2.9% for the full-resolution and 13.0% for the half-
resolution analysis of dataset two. Indeed, for a gaze signal

that is derived using the P-CR principle, CR center local-
ization performance is only half the story. P-CR eye trackers
typically use the vector between the pupil and CR centers and
as such noise in the pupil signal also plays an important role
in determining the precision of the gaze signal. As shown in
our results, for dataset one the noise in the pupil signal was
between 55-66%higher than in the CR center signal based on
thresholding (average 127% at full and 32.1% at half resolu-
tion for dataset two). This ratio only worsens to between 126
and 151% when considering the CR center signal produced
by our CNN method for dataset one (average 165% at full-
and 130% at half-resolution for dataset two). As such, further
improvements in CR center localization precision will be of
little practical use for P-CR eye trackers until the precision
of pupil center localization is also improved.

In summary, our results indicate that our method for train-
ing deep learning models for eye-tracking applications using
only simple synthetic images shows great promise. However,
much of the road ahead to a fully deep-learning-based eye-
trackingmethod trained using only synthetic images remains
unexplored. As the next endeavor, we plan to extend our
approach to localization of the pupil center. If successful,
this will not only provide a much-needed improvement in
precision of the pupil signal that will translate into increased
quality of the P-CRgaze signal, butwill also provide a further
and more ambitious test of the hypothesis that effective gaze
estimation methods can be trained using simple simulations
alone. Why does localizing the pupil center provide a more
ambitious test?While a CR has approximately the same size,
shape, and pixel intensity profile in all eye images for a given
eye-tracking setup and is thus easy to design a representative
simulation for, this is not the case for the pupil. The lumi-
nance of the pupil in the eye image can vary significantly, and
its apparent shape can change radically as it changes size, is
imaged from different angles when the eye rotates, and one
or multiple CRs overlap it.

We further plan to develop our framework to handle more
challenging tasks such as detecting multiple CRs and match-
ing their positions in the eye image to the corresponding
physical configuration of light sources, similar to the work
in Chugh et al. (2021) and Niu et al. (2022). This would
enable using our method to be used in eye tracking scenarios
outside of laboratory settings.

Open practices statement

The experiments were not preregistered. We have made our
simulation andmodel training code, the trainedmodel and the
code for evaluating the model on synthetic and real images
available at the following link: https://github.com/dcnieho/
Byrneetal_CR_CNN.
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