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Abstract
Dynamic cognitive psychometrics measures mental capacities based on the way behavior unfolds over time. It does so
using models of psychological processes whose validity is grounded in research from experimental psychology and the
neurosciences. However, these models can sometimes have undesirable measurement properties. We propose a “hybrid”
modeling approach that achieves good measurement by blending process-based and descriptive components. We demonstrate
the utility of this approach in the stop-signal paradigm, inwhich participantsmake a series of speeded choices, but occasionally
are required to withhold their response when a “stop signal” occurs. The stop-signal paradigm is widely used to measure
response inhibition based on a modeling framework that assumes a race between processes triggered by the choice and the
stop stimuli. However, the key index of inhibition, the latency of the stop process (i.e., stop-signal reaction time), is not
directly observable, and is poorly estimated when the choice and the stop runners are both modeled by psychologically
realistic evidence-accumulation processes. We show that using a descriptive account of the stop process, while retaining a
realistic account of the choice process, simultaneously enables good measurement of both stop-signal reaction time and the
psychological factors that determine choice behavior. We show that this approach, when combined with hierarchical Bayesian
estimation, is effective even in a complex choice task that requires participants to perform only a relatively modest number
of test trials.

Keywords Cognitive psychometrics · Choice behavior · Response inhibition · Stop-signal paradigm · Reaction times

Cognitive psychometrics (Batchelder, 1998, 2009; Kellen,
Winiger, Dunn, & Singmann, 2021; Vandekerckhove, 2014)
measures mental capacities in a way that is informed by
information-processing models from experimental psychol-
ogy and the neurosciences. Importantly, if these models are
to support valid inferences about psychological and neu-
ral processes, their parameters must have sufficiently good
measurement properties, i.e., it should be possible to obtain
accurate and precise parameter estimates from data in real-
istic research settings. Originally developed for categorical
data using multinomial processing tree models (Riefer &

B Dora Matzke
d.matzke@uva.nl

1 Department of Psychology, University of Amsterdam,
Postbus 15916, 1001 NK Amsterdam, Netherlands

2 Department of Psychology, University of Newcastle,
Newcastle, Australia

Batchelder, 1988), cognitive psychometrics has increasingly
taken on a dynamic aspect, taking into account how long it
takes for cognitive processes to produce behavior. This has
been the case both in reinforcement learningmodels account-
ing for dependencies between sequences of discrete choices
(O’Doherty, Cockburn, & Pauli, 2016) and in evidence-
accumulation models for the response time (RT) associated
with each choice (Donkin & Brown, 2018), and more
recently in these two frameworks combined (Miletić et al.,
2021; Pedersen, Frank, & Biele, 2017). Dynamic cognitive
psychometrics has underpinned advances in areas ranging
from theory-driven computational psychiatry (Huys, Maia,
& Frank, 2016; Weigard, Heathcote, Matzke, & Huang-
Pollock, 2019) to aging research (Garton, Reynolds, Hinder,
& Heathcote, 2019; Ratcliff, Thapar, & McKoon, 2001).
However, as dynamic cognitive psychometrics is increas-
ingly applied to the complex tasks that are of interest in
applied domains, maintaining good measurement properties
becomes increasingly challenging.
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We develop a new approach to address these challenges
in a paradigm that is widely used to measure executive (i.e.,
non-habitual) control with respect to response inhibition, the
stop-signal paradigm. In this paradigm, participants make
a series of choice responses and at unpredictable intervals
are required to withhold their response when a stop sig-
nal appears some time after the choice stimulus. As well
as being of interest in its own right—with many applica-
tions across clinical, cognitive, and life-span psychology and
the neurosciences (e.g., Aron & Poldrack, 2006; Badcock,
Michie, Johnson, & Combrinck, 2002; Bissett & Logan,
2011; Fillmore, Rush, & Hays, 2002; Forstmann et al.,
2012; Hughes, Fulham, Johnston, & Michie, 2012; Matzke,
Hughes, Badcock, Michie, & Heathcote, 2017; Schachar,
Mota, Logan, Tannock, & Klim, 2000; Schachar & Logan,
1990; Verbruggen, Stevens, & Chambers, 2014; Williams,
Ponesse, Schachar, Logan, & Tannock, 1999; Skippen et al.,
2020)—this paradigm highlights a key challenge for cog-
nitive psychometrics in general: strong trade-offs among
parameters due to the need to simultaneously estimate many
latent (i.e., not directly observable) quantities.

In many applications of cognitive modeling in general and
cognitive psychometrics in particular, hierarchical Bayesian
estimation (Gelman et al., 2014; Heathcote et al., 2019)
can help to address this challenge through the extra con-
straint afforded by shrinkage, that is, constraint afforded
by assuming commonalities among participants. However,
this solution can become ineffective due to a problem spe-
cific to dynamic contexts that use RTs and estimate a
lower bound (i.e., “shift”) parameter for the distribution of
RTs. Estimating parameter-dependent lower bounds violates
one of the regularity conditions that assures the optimality
of likelihood-based estimation, that distribution support is
known. In particular, a lower bound that has to be estimated
from data implies that the support of the distribution (i.e.,
range over which the distribution has non-zero likelihood) is
unknown as it varies for different values of the lower-bound
parameter. The lower-bound problem has been extensively
studied in the statistical literature with respect to shifted log-
normal, Weibull, and gamma distributions. In these cases,
a shift estimate at the minimum observation has an infi-
nite likelihood, rendering maximum likelihood estimates of
the model’s other parameters inconsistent (Cheng & Amin,
1983). A similar problem can also cause Bayesian (hierarchi-
cal) estimation of processmodels of the stop-signal paradigm
(e.g., Logan,VanZandt,Verbruggen,&Wagenmakers, 2014)
to be inconsistent (Matzke, Logan, & Heathcote, 2020).

Here we propose, and demonstrate the efficacy of, a solu-
tion to this estimation problem in the stop-signal paradigm.
The solution illustrates a general lesson, that dynamic
cognitive psychometric models with desirable measure-
ment properties can require modeling solutions where some
psychological-process components are replaced by descrip-

tive elements that provide a flexible statistical description of
the data but are not committed to any particular psychological
process.

In the next section, we detail the stop-signal paradigm
and the way in which purely process models requiring esti-
mates of shift parameters fail.We then introduce our “hybrid”
modeling solution that mixes descriptive and process-based
elements.Next,we investigatewhether the hybrid stop-signal
model can provide an accurate characterization of empirical
data from a complex experimental design with factors that
are known to selectively influence only particular subsets of
the process component’s parameters. If the hybrid model is
valid, parameter estimates should reflect the selective influ-
ence of experimental manipulations on the psychological
processes they are supposed to represent. Hence, a param-
eterization subject to these selective influence constraints
should accurately fit the data. We then report the results of
a parameter-recovery study showing that Bayesian methods
require only a modest number of test trials to accurately esti-
mate the model’s parameters in this complex design. We end
by discussing how our proposed methodology can be applied
more broadly to expand the purview of dynamic cognitive
psychometrics.

The stop-signal paradigm

In the stop-signal paradigm (see Fig. 1; for in depth treat-
ments, see Logan, 1994; Matzke, Verbruggen, & Logan,
2018; Verbruggen et al., 2019) participants typically make a
series of well-practiced and easy choices (e.g., press left but-
ton for left-pointing arrow and right button for right-pointing
arrow). On a minority of trials, this primary “go” task is
interrupted by a stop signal requiring participants to with-
hold their response to the choice “go” stimulus. Typically,
participants can successfully withhold their response when
the delay between the onset of the go stimulus and the stop
signal (i.e., stop-signal delay; SSD) is relatively short, and
they fail when the stop signal comes close to the execution
of the choice response.

Inhibitory ability is quantified by the stop-signal reaction
time (SSRT), the time between the appearance of the stop
signal and the successful inhibition of the choice response.
As SSRT is, by definition, a latent quantity (i.e., it can-
not be directly observed because the response is withheld),
its measurement requires a psychometric model. With few
exceptions, this role is fulfilled byLogan andCowan’s (1984)
“horse-race” model: an independent race between a go pro-
cess triggered by the go stimulus and a stop process triggered
by the stop signal. A response is executed if the go racer
wins, and is withheld if the stop racer wins. This simple
model enables non-parametric estimation of summary mea-
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Fig. 1 Schematic representation of the trial types in the stop-signal paradigm. SSD: stop-signal delay. Figure available at https://flic.kr/p/2n1oRSe
under a CC-BY 2.0 license (https://creativecommons.org/licenses/by/2.0/)

sures of SSRTwithminimal but often inaccurate assumptions
about the race times. For instance, the “integration” method
makes the unrealistic assumption that the finishing time of
the stop runner is constant. The most popular version of the
“mean” method treats stopping latency as a random variable
but incorrectly assumes that the function relating SSDand the
probability of stopping, and hence the distribution of RTs on
go trials, is symmetrical (for details, seeMatzke et al., 2018).

Using central tendency measures to summarize RT
distributions—such as go RT and SSRT distributions—
can be misleading (Heathcote, Popiel, & Mewhort 1991;
Matzke & Wagenmakers, 2009). The Bayesian paramet-
ric “BEESTS” approach (Matzke, Dolan, Logan, Brown,
& Wagenmakers, 2013; Matzke et al., 2013) addresses this
problem by estimating the full distribution of go RTs and
SSRTs assuming that these follow an ex-Gaussian distribu-
tion. The ex-Gaussian distribution arises from the convolu-
tion of a Gaussian and an exponential random variable, and
has been frequently used as a descriptive purely statistical
account of RT distributions (Heathcote et al., 1991; Hohle,
1965; Matzke & Wagenmakers, 2009; Ratcliff, 1978). The
μ and σ parameters quantify the mean and standard devia-
tion of theGaussian component, and τ reflects the slow tail of
the distribution. Although it provides an excellent descriptive
model of RT distributions, the psychological interpretation
of the ex-Gaussian parameters is ambiguous, and so is dis-
couraged (Matzke & Wagenmakers, 2009).

BEESTS has been extended to enable the identification
of the relative contribution of inhibition failures and atten-
tion failures to stop-signal performance using a dynamic
multinomial processing tree representation (Matzke, Love,
& Heathcote, 2017). It has also been extended to model
the inhibition of difficult, and hence error-prone, choices,
by characterizing the go process in terms of one runner cor-
responding to each choice option (Matzke, Curley, Gong,
& Heathcote, 2019). The BEESTS approach has excellent

psychometric properties and has been successfully applied
to stop-signal data in various research areas (e.g., Chevalier,
Chatham, & Munakata, 2014; Colzato, Jongkees, Sellaro,
van den Wildenberg, & Hommel, 2014; Jana, Hannah,
Muralidharan, & Aron, 2020; Matzke et al., 2017; Skippen
et al., 2019; Skippen et al., 2020; Weigard et al., 2019).

Stop-signal process models

The computational power of race or “winner-takes-all” archi-
tectures (Maass, 2000; Šíma & Orponen, 2003; Heathcote &
Matzke, 2022)makes themwidelyapplicableacrosspsychology
and the neurosciences. As opposed to descriptive models, the
runners are interpreted as psychological and neural processes
that accumulate noisy evidence and finish when the accrued
amount reaches a threshold (Donkin & Brown, 2018). RT
corresponds to the time for the first runner to finish (decision
time) plus the time required for the sensory encoding of
the stimulus and the production of a motor response after
the winner finishes (non-decision time). Non-decision time
(or its lower bound if it is assumed to be variable) constitutes the
potentially problematic shift parameter that must be estimated
from data due to systematic differences between individuals
and groups. For example, it is well documented that older
participants have longer non-decision times than younger
participants (e.g., Garton et al., 2019; Ratcliff et al., 2001).

A variety of racing evidence-accumulation models have
been proposed, typically assigning one racer to each response
option and differing in assumptions about evidence, such as
whether it varies from moment-to-moment (diffusive noise),
from trial-to-trial, or both, in the degree of correlation of evi-
dence among accumulators, and whether it accrues linearly
or non-linearly. One of the more commonly applied models
for binary choice, the Wiener diffusion model, assumes lin-
ear accumulation of perfectly negatively correlated diffusive
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noise, which is formally equivalent to a single process dif-
fusing between two thresholds (Stone, 1960). Other widely
usedmodels assume independent races, either between linear
single-boundary Wiener diffusion processes (Tillman, Van
Zandt, & Logan, 2020), or linear independent “ballistic” pro-
cesses where noise is purely from trial-to-trial variation in
evidence and in the distance between the threshold and the
starting-point of evidence accumulation (Brown & Heath-
cote, 2008). Various refinements have been proposed, such
as adding trial-to-trial variation to theWiener diffusionmodel
to address its failure to explain differences between the speed
of correct and error RTs (i.e., the popular diffusion decision
model; Ratcliff & Rouder 1998), or assuming non-linear and
partially dependent evidence accumulation due to neurally
inspired leakage and lateral inhibition processes (Usher &
McClelland, 2001), albeit at the cost of making parameter
estimation more difficult (e.g., Boehm et al., 2018; Miletic,
Turner, Forstmann, & van Maanen, 2017).

Logan et al. (2014) proposed that an independent racing-
diffusion architecture could be used to model both the go
runners (one for each response option) and the stop run-
ner. The single-boundary Wiener diffusion process is often
thought of as neurally plausible, and has the further advan-
tage that it produces a Wald distribution (Wald, 1947) of
finishing times, which has an analytic likelihood, facilitat-
ing Bayesian and maximum-likelihood estimation. In simple
and choice RT paradigms, this racing-diffusion model dis-
plays good estimation performance (Castro, Strayer,Matzke,
& Heathcote, 2019; Tillman et al., 2020). Importantly, as
opposed to descriptivemodels, its parameters—non-decision
time (t0), the rate of evidence accumulation (v), and the
decision threshold (B)—are directly informative about the
psychological causes of performance differences. For exam-
ple, Castro et al. (2019) showed that evidence-accumulation
rates provide a measure of the limits on attention capac-
ity in the International Organization for Standardization’s
“Detection Response Time“ task (ISO, 2015) used to assess
how distractions affect driving. Similarly, across a range
of evidence-accumulation models it has been found that
participants can change the decision threshold to control
speed–accuracy trade-offs (e.g., increase the threshold to
improve accuracy at the cost of slowing; e.g., Ratcliff &
Rouder, 1998), and to take account of prior information (e.g.,
lowering the threshold corresponding to a more common
response; e.g., Garton et al., 2019).

However, Matzke et al. (2020) showed, using Bayesian
estimation, that parameter-recovery performance for Logan
et al.’s (2014) application of the racing-diffusionmodel to the
stop-signal paradigm is extremely poor. The estimated vari-
ability of the stop process tends to zero no matter what its

true value is, with associated inconsistencies in the estimates
of all other parameters. In particular, in the full model where
the starting point of evidence accumulation was assumed to
be variable, simulations indicated a severe overestimation
of non-decision time and underestimation of the distance
between starting point and decision threshold. Matzke et al.
also investigated independent racing ballistic evidence pro-
cesses for all runners where the trial-to-trial variability in
the evidence and in the distance from start point to thresh-
old both have lognormal distributions. This lognormal-race
model is arguably the simplest and most mathematically
tractable evidence-accumulation model (Heathcote & Love,
2012;Rouder, Province,Morey,Gomez,&Heathcote, 2015),
but estimation performance, although clearly better than for
the racing-diffusion version, was still poor.

For both models, Matzke et al. (2020) attributed these
problems to the shift parameter of the stop runner required
by the evidence-accumulationmodels. The timing of the stop
runner can only be observed indirectly, through its effect on
the (i) probability of successfully inhibiting a response on
stop trials; and (ii) difference between the distribution of
go RTs on trials without stop signals and the distribution
of RTs when inhibition fails on stop trials “signal-respond”
RT. In paradigms without a stopping component, the irreg-
ularity associated with the shift parameter is typically not
problematic, neither when fitting simple descriptive distribu-
tions, including the shifted Wald (Heathcote, 2004), nor for
the diffusion decision model (Ratcliff & Childers, 2015) and
various parametrizations of independent race models (e.g.,
Castro et al., 2019; Heathcote et al., 2019). The indirect
nature of the information about the stop runner means that
this is not the case in the stop-signal paradigm.

In the next section, we propose a solution to these estimation
problems that maintains the advantages of a psychologically
meaningful parametric characterization of the go process and
attention failures, while using a descriptive distribution to
simultaneously provide good measurement of the key index
of inhibitory ability, SSRT. In order to validate this “hybrid”
model, we apply it to data from an experiment that com-
bines a stop-signal task and a complex go task design with
manipulations that are expected to selectively influence the
evidence-accumulation rate and threshold parameters of the
go process. We show that a hybrid model parameterized to
instantiate these selective influence assumptions provides a
relatively simple and accurate account of the data. We then
report the results of a parameter-recovery study to demon-
strate that even in this complex design, Bayesian estimation
of the hybrid model performs well with similar numbers of
test trials that are required in standard evidence-accumulation
model applications.
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The hybrid racing-diffusion ex-Gaussian
(RDEX) stop-signal model

Figure 2 shows the hybrid racing-diffusion ex-Gaussian
(RDEX) stop-signalmodel. For go trials, it assumes that each
of the N independent go accumulators is a Wiener diffusion
process starting at zero (illustrated by thin irregular lines)
with evidence-accumulation rate v (v > 0) and threshold b
(b > 0). The finishing time distribution of each accumula-
tor is a Wald distribution (dashed blue and red lines) so that
the probability density function (PDF) of the finishing time
distribution of go accumulator i, i = 1, · · · , N , is given by:

fi (t) = bi (2π t
3)−

1
2 exp

(
− 1

2t
(vi t − bi )

2
)

, (1)

for t > 0. The finishing time distribution of the winner of
the race is given by the distribution of theminima of theWald
distributions for all the runners (solid blue and red lines).

Themodel assumes a parameter-dependent lower bound (i.e.,
non-decision time) for each go accumulator, t0, and a fixed
value of 1 for the variability of the diffusion process that
makes the model identifiable (Donkin, Brown, & Heathcote,
2009).

To account for fast error RTs, the model can be extended
to allow for trial-by-trial variability in start point, where start
point is assumed to be uniformly distributed from 0 − A, so
that the difference between the threshold and A (i.e., thresh-
old gap) is given by B = b − A (B >= 0) (Logan et al.,
2014; Matzke et al., 2020). As errors in the present paradigm
were fast and estimating the trial-to-trial variability parame-
ter of the racing-diffusion model is difficult even in standard
choice tasks (Castro et al., 2019), here we will assume A = 0
and hence B = b. However, our implementation of the
RDEX model (https://osf.io/u3k5f/) in the Dynamic Mod-
els of Choice software (Heathcote et al., 2019) allows for
A to be estimated in case it is useful in other applications.

go trial

t = 0

stop trial

t = 0

SSD

Fig. 2 The left panel shows the evidence-accumulation process on go
trials, with the choice stimulus presented at t = 0. Once the stim-
ulus is encoded, two evidence accumulators (runners) corresponding
to each response option start to race each other from the same ini-
tial level. The runner that crosses its response threshold first wins the
race and triggers the associated response. The jiggly lines show ten
races between the runner that matches (blue) and the one that mis-
matches (red) the choice stimulus. Here the thresholds are assumed
to be the same and correspond to the time axis, but the thresholds of
the two accumulators may differ. The dashed lines show the finish-
ing time distribution of each runner across trials, which are longer for
the red “mismatch” accumulator as it has a lower average accumula-
tion rate. The solid lines show the distribution of observed “winning”
times where the corresponding runner finished first; these are shorter
than the finishing times because faster runners win races. The right

panel shows these distributions on stop trials, where the presentation
of the choice stimulus is followed at t = SSD by a stop signal that
triggers the stop runner. The dashed lines show the finishing time dis-
tributions, with the gray line depicting the ex-Gaussian stop runner. The
solid lines represent the winning times of the go runners, i.e., the dis-
tribution of finishing times where the corresponding go runner was fast
enough to beat the other go runner and the stop runner. These winning
times are faster for stop than for go trials because slower go finishing
times tend to lose the race to the stop runner. The winning times for
the stop runner (i.e., finishing times that were fast enough to beat both
go runners) are not shown because the stop runner does not produce
overt responses, so this distribution is unobserved. SSD: stop-signal
delay. Figure available at https://flic.kr/p/2mXYBbh under a CC-BY
2.0 license (https://creativecommons.org/licenses/by/2.0/)
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This implementation allows for either one1 or two go run-
ners, but it can be easily extended to accommodate more than
two response options on the go task by adding extra runners
(Logan et al., 2014), and also other evidence-accumulation
models, such as the Linear Ballistic Accumulator (Brown &
Heathcote, 2008) or the lognormal-race model (Heathcote &
Love, 2012; Rouder, Province, Morey, Gomez, &Heathcote,
2015).

On stop trials, the RDEX model assumes that the same
evidence-accumulation process assumed for go trials races
independently with a stop runner, but it is not committed to
any specific accumulation process for the stop component. In
particular, the finishing time distribution of the stop runner
is described by an ex-Gaussian distribution (dashed grey line
in Fig. 2), with PDF:

f (t;μ, σ, τ) = 1

τ
exp

(
μ − t

τ
+ σ 2

2τ 2

)
�

(
t − μ

σ
− σ

τ

)
,

(2)

for σ > 0, τ > 0, where � is the standard normal distri-
bution function, defined as

�

(
t − μ

σ
− σ

τ

)
= 1√

2π

∫ t−μ
σ

− σ
τ

−∞
exp

(−y2

2

)
dy. (3)

To ensure that negative and unreasonably small estimates
of the time to complete the stop process are impossible, we
use a truncated ex-Gaussian distribution, after re-normalizing
the PDF in Eq. 2 as follows:

f (t; l < T < u;μ, σ, τ) = f (t;μ, σ, τ)

F(u;μ, σ, τ) − F(l;μ, σ, τ)
,

(4)

where

F(t; μ, σ, τ) = �

(
t − μ

σ

)
− exp

(
σ 2

2τ2
− t − μ

τ

)
�

(
t − μ

σ
− σ

τ

)
.

(5)

The mean and variance of the truncated ex-Gaussian dis-
tribution can be easily obtained through simulation. In our
applications, we assumed an upper bound of u = ∞ and a

1 Go tasks requiring a non-choice response (e.g., stimulus-onset detec-
tion) is typically discouraged due to the likelihood of anticipatory
responses (Matzke et al., 2019; Verbruggen et al., 2019), but a model
with a single go runner can be appropriate when the choice task is so
easy that there are very few errors. In this case, error responses are
discarded and the remaining correct RTs are modeled with a single go
runner (e.g., Matzke et al., 2013).

lower bound of l = .05 s. The latter setting was motivated
by limits on neural transmission times based on Hanes and
Carpenter (1999)’s estimate of the onset latency of visual
cells in the macaque visuomotor system. However, we found
that SSRT estimates were very little effected if we assumed
l = 0.

Although the ex-Gaussian distribution does not directly
correspond to an accumulation process, we do not mean to
imply by using it that the stop runner is not accumulating
evidence about the presence of the stop signal. Rather, it is
used as a flexible approximation to such an accumulation
process with the advantage that it both facilitates parameter
estimation (i.e., makes all parameters in the model identifi-
able) and interpretation (i.e., it enables estimation of a key
quantity of interest, SSRT). Instead of the descriptive ex-
Gaussian distribution, we also considered using the Wald
distributionwith afixed shift parameter tomodel thefinishing
time distribution of the stop runner. Although this approach
can improve estimation performance relative to Logan et
al.’s (2014) application of the racing-diffusion model, it still
requires an impractically large number of trials (see Sup-
plementary Materials in Matzke et al., 2020). A lognormal
finishing time distribution for the stop runner with a fixed
lower bound performs much better, but the additional benefit
in a cognitive-process sense is questionable. In particular, the
utility of using a shifted lognormal distribution is in differ-
entiating the decision and non-decision time components of
RTs, as it can only differentiate rate and threshold effects on
the basis of extra selective influence assumptions. However,
decision and non-decision time cannot be differentiated if
the shift parameter is fixed. To avoid any temptation to make
psychological interpretations of the stop runner’s parameters
beyond providing an estimate of the latency of stopping, we
prefer to use the ex-Gaussian distribution for describing the
stop runner and hence the shape of the SSRT distribution.

Following Matzke et al.’s (2019) mixture likelihood app-
roach, the RDEX model can be extended to account for
instances when the go or the stop runners were not trig-
gered in response to the go and the stop signals, respectively,
which can be interpreted as attention failures. The resulting
dynamic multinomial processing tree representation of the
RDEXmodel assumes two additional parameters, PGF quan-
tifying the probability that the go runners were not launched
and PT F , generically referred to as “trigger failures” (Logan,
1994), quantifying the probability that the stop runner was
not launched.

On go trials, the joint likelihood of response i at time
T = t is given by:

LGO(θ goi , θ go j , PGF ; t) = PGF + (1 − PGF )

× f (t; θ goi ) × S(t; θ go j ), (6)
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where f (θ goi ) is the PDF of the finishing time distribution
of go accumulator i with parameters θ goi = (vi , bi , t0i ) and
S(θ go j ) is the survival function of the finishing-time distri-
bution of go process j with parameters θ go j = (v j , b j , t0 j ).
PGF is assumed to be independent of SSD and trial type (i.e.,
go, failed or successful stop trials) and to be the same for the
two go runners. On failed stop trials, the joint likelihood of
response i at time T = t is given by:

LSR(θ goi , θ go j , θ stop, PT F , PGF ; SSD, t) =
(1 − PGF )×(

PT F × f (t; θ goi ) × S(t; θ go j )+
(1 − PT F ) × f (t; θ goi ) × S(t; θ go j )

× S(t; θ stop, SSD)
)
, (7)

where S(t; θ stop) is the ex-Gaussian survival function of the
finishing time distribution of the stop runner with parameters
θ stop = (μ, σ, τ ). Lastly, on signal-inhibit trials, the likeli-
hood of a successful inhibition is given by:

LS(θ goi , θ go j , θ stop, PT F , PGF ; SSD, t) =
PGF + (1 − PGF )(1 − PT F ) ×

∫ ∞

.05
f (t; θ stop, SSD)

× S(t; θ goi ) × S(t; θ go j )dt, (8)

where f (t; θ stop) is the ex-Gaussian PDF of the finishing
time distribution of the stop runner. The lower limit of inte-
gration reflects the support of the finishing time distribution
of the stop runner, whichwas set to .05. For details, the reader
is referred to Matzke et al. (2019).

The RDEX model is implemented in the Dynamic Mod-
els of Choice (DMC) package (Heathcote et al., 2019) and is
available at https://osf.io/u3k5f/. DMC provides a step-by-
step introduction to response time modeling using Bayesian
hierarchical methods using well-documented tutorials that
guide users through the process of specifying, fitting, and
assessing various response time models, including RDEX.
As the code for the RDEX model builds on earlier tutorials,
we recommend users, especially those with relatively little
modeling experience, to start with the simpler models avail-
able in DMC, such as BEESTS, and work their way up to the
complex ones, like RDEX.

In the remainder of this paper, we investigate the perfor-
mance of the RDEX stop-signal model in a paradigm where
multiple manipulations were used to selectively influence
evidence-accumulation rates and threshold setting in a diffi-
cult choice task.

Application to a complex choice design

Stop-signal task designs are often simple, using easy go tasks
without manipulations that affect go responding. Although
Matzke et al.’s (2019) extension of BEESTS enables applica-
tions to more complex designs with several within-subjects
manipulations that affect choice RT and accuracy, the num-
ber of parameters which must be estimated quickly becomes
unmanageable. This occurs because the ex-Gaussian param-
eters lack a psychological interpretation, and so there is no
a priori basis for constraining their values across conditions.
In contrast, the number of parameters that needs to be esti-
mated in complex choice designs can be greatly reduced
based on constraints that are either logically entailed by
the psychological characterization of choices as being gov-
erned by evidence-accumulation processes (Donkin, Brown,
& Heathcote, 2011) or are based on assumptions about the
selective influence of manipulations on parameters that have
been empirically supported in similar choice tasks.

In what follows, we will illustrate the advantages of the
RDEX stop-signal model in a complex choice design used in
Garton et al. (2019) by adding to it a stop-signal task. First,
we show that the model with a priori theoretically motivated
constraints provides a good description of empirical data,
supporting the validity of the psychological interpretation
of the evidence-accumulation parameters in the context of
the stop-signal paradigm. We then show, using an extensive
parameter-recovery study, that Bayesian estimation of the
model is able to provide accurate and precise parameter esti-
mates even in this complex design, confirming the RDEX’s
utility as a measurement model.

Experimental design

Garton et al.’s (2019) complex choice design featured a
binary choice task with 16 within-subject conditions, cor-
responding to fully crossing four two-level factors (i.e., a
2× 2× 2× 2 design). The choice was about whether a 20×
20 checkerboard stimulus has more blue squares or more
orange squares, constituting a stimulus factor with levels
“blue” vs. “orange“,with the positions of each square varying
randomly on each screen refresh. The degree to which one
color dominated the image was manipulated over two levels
to make up a difficulty factor (D: 52% = “hard” vs. 54% =
“easy”) that varied unpredictably from trial to trial. The left
panel of Fig. 3 shows an example of a choice stimulus on go
trials.

Participants were cued on which type of stimulus was
more likely on the upcoming trial (70% chance of orange
or 70% chance of blue), constituting a bias factor (B: “Blue“
vs. “Orange“). The way in which the bias information was
presented also varied over two levels, with the same color
favored by the cue across a block of trials, or with the favored
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color varying unpredictably from trial to trial, constituting a
block type factor (BT: “block” vs. “trial”). For details about
the choice task, the reader is refereed to Garton et al. (2019).

Garton et al.’s (2019) complex choice designwas extended
by adding a stopping component. On a randomly selected
25% of trials, the choice stimulus was followed by a stop sig-
nal: a red box appearing around the stimulus array, as shown
in the right panel of Fig. 3. The difference between the onset
of the choice stimulus and the stop signal, SSD, was set using
a staircase algorithm, starting at 0.2 s at the beginning of the
experiment, then changing in steps of 0.05 s: SSD increased
after successfully inhibited stop trials and decreased after
failed inhibitions. See https://youtu.be/kXZk_jCHjkM for a
video of the task.

In order to accommodate the variations in speed and
accuracy between the 16 conditions in this complex design,
BEESTS would potentially have to estimate three ex-
Gaussian parameters for each condition and for each of the
two choice accumulators, for a total of 3 × 16 × 2 = 96 go
parameters. Combined with the three ex-Gaussian parame-
ters for the stop runner, and assuming that the parameters
for go and trigger failures do not vary over conditions, this
requires a total of 101 estimated parameters. In contrast,
using the racing-diffusion evidence-accumulation frame-
work for modeling the choice component of the task, we
only need 17 go parameters (non-decision time, thresholds,
and evidence-accumulation rates), as we explain in detail
below. Combined with the three ex-Gaussian parameters
for the stop runner, and two parameters for go and trig-
ger failures, the RDEX model requires a total of only 22
parameters, less than a quarter the number of parameters
required by the BEESTS model. Perhaps more importantly,
the evidence-accumulation parameters support clear psycho-
logical interpretations of choice behavior.

Model parametrization

Table 1 (column Factors) provides an overview of the
parametrization in terms of the experimental factors thatwere
assumed to influence each model parameter.

Non-decision time

The simplest case is non-decision time, which varies with
factors that affect the time to encode the stimulus or to
make a response. As none of the manipulations are likely
to have these effects, the same non-decision time parameter
was assumed for all conditions.

Decision threshold

Bias induced by stimulus probability cues is mediated by the
threshold of the accumulator corresponding to themore likely

response being lowered relative to that for the less likely
response. This type of bias is typically assumed to have no
effect on evidence-accumulation rates (White & Poldrack,
2014). Allowing for the possibility that the degree of bias
favoring blue vs. orange stimuli might differ, four thresholds
were estimated, two for the blue and orange accumulators
when the bias favors blue, and two when it favors orange.
Setting bias is more difficult when prior information differs
from trial to trial than maintaining the same setting over a
block of trials (Garton et al., 2019). Hence, thresholds were
assumed to differ between block types, requiring four esti-
mates for the blockwise and four estimates for the trialwise
condition, for a total of eight estimated threshold parameters.

Evidence-accumulation rate

As overall accuracywas clearly above chance, the rate for the
accumulator that matches the stimulus (e.g., the orange accu-
mulator for majority orange stimuli and the blue accumulator
for majority blue stimuli) is necessarily higher than for the
accumulator that mismatches the stimuli (i.e., the orange
accumulator for blue stimuli and vice versa). Evidence-
accumulation rates reflect stimulus characteristics, and so
will vary with difficulty. They can also vary as a function of
attention, and so can differ between conditions that are more
or less attention demanding. Hence, they are likely to dif-
fer between block types (Garton et al., 2019). We made the
simplifying assumption that evidence-accumulation rates for
blue and orange stimuli were the same. As a result, there are
also eight evidence-accumulation rates estimates.

Stop parameters and go and trigger failures

Performance on cognitive tasks can be impaired due to lim-
its in the quality of the data or limits in available cognitive
resources (Norman & Bobrow, 1975). The difficulty manip-
ulation targeted the quality of the data extracted from the go
stimulus. In contrast, the stop stimulus was the same between
the easy and difficult conditions. We therefore expected that
the stop process would be unaffected by the difficulty manip-
ulation, and that the stop parameters would not vary with
stimulus difficulty. Although resource limitations might be
associated with the greater demands of trialwise than block-
wise biasing, stop processing is generally thought to be
largely unaffected by the resource demands of the go task
(Logan et al., 2014). The go and trigger failure parameters
are more likely to be affected by resource demands, but for
simplicity we kept both these parameters, just like the stop-
runner’s parameters, the same across all conditions. As we
show, this did not induce any noticeable misfit.
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Fig. 3 Example of the choice
stimulus on go trials (left) and
the choice stimulus followed by
the stop signal on stop trials
(right). Each cell in the 20 × 20
checkerboard is randomly
colored blue or orange. The
difficulty factor determines the
proportion of cells colored by
the dominant color: 54% in the
easy condition and 52% in the
hard condition

Participants and experimental procedure

The sample consisted of 20 University of Tasmania students
(70% female, 18–28 years, with mean = 21.4 and SD = 3.2).
Participants provided prior written consent to participate and
were informed that the research procedureswere approved by
the UTAS Human Research Ethics Committee (H0015286).
The reader is referred to Garton et al. (2019) for further infor-
mation about the sample2.

Participants performed two two-hour sessions: blocks in
the first half of each session featured only the complex choice
task, with stop signals added for blocks in the second half.
Sessions differed in using either blockwise or trialwise cuing,
with the order counterbalanced over participants. Here we
focus on the stop-signal blocks and do not analyze the go-
only blocks, which from the purposes of the present study
served only to familiarize participants with the choice task to
ensure habitual responding. In each session, the stop-signal
blocks started with two 40-trial practice blocks, followed
by eight 60-trial experimental blocks, each with 15 stop tri-
als. The trial on which the stop signal appeared was pre-set.
Across the two sessions, participants completed 960 trials,
with 240 stop trials in total. The response deadline was set to
2 s. On go trials, the choice stimulus was offset as soon as a
response was made or the 2 s had passed. On stop trials, the
stimulus was displayed until 2 s had passed regardless of the
outcome of the trial. Instructions and feedback on go trials
emphasized fast but accurate responding to the choice stimu-
lus, and discouraged participants from strategically slowing
their responding by waiting for the stop signal to appear. No
feedback was provided on stop trials.

We discarded data from two participants who did not per-
form the task as instructed: one participant slowed across
the experiment and had an extreme response rate on stop tri-
als and one participant started very slow but then sped up,
producing an atypical RT distribution truncated above by the

2 Garton et al. (2019) also recruited 20 older participants; the data of
these participants are not presented in this paper.

2-s response deadline.We removed trialswithRTs faster than
0.2 s (.09%).

Bayesian hierarchical modeling

WeusedBayesian hierarchicalmethods to estimate the poste-
rior distribution of the model parameters. Instead of treating
each participant independently, hierarchical modeling allows
the parameters of individual participants to be informed
by parameters from other participants by modeling their
between-subject variability using population-level distribu-
tions (e.g., Farrell & Ludwig, 2008; Gelman & Hill, 2007;
Lee, 2011; Lee & Wagenmakers, 2013; Matzke et al.,2013;
Rouder, Lu, Speckman, Sun,& Jiang, 2005). The population-
level distribution can be considered as a prior that shrinks
the participant-level estimates to the population mean, typi-
cally resulting in less variable and, on average, more accurate
estimates, especially when the participant-level estimates are
relatively uncertain.

The participant-level go and trigger failure parameters
were projected from the probability scale to the real line with
a probit transformation (e.g., Matzke, Dolan, Batchelder, &
Wagenmakers, 2015; Rouder, Lu, Morey, Sun, & Speck-
man, 2008).Weassumed (truncated) normal population-level
distributions for all parameters, including �−1(PGF ) and
�−1(PT F ), parametrized in terms of their location and
scale, with upper (UB) and lower bounds (LB) as shown
in Table 1. The population-level location parameters were
assigned (truncated) normal hyper priors, with location and
scale parameters set to the values shown in Table 1. The
population-level scale parameters were assigned exponential
prior distributionswith a rate of one. These prior distributions
are based on previous applications of the original BEESTS
model and Logan et al.’s (2014) racing-diffusion stop-signal
model. In particular, priors for the stop parameters are sim-
ilar to the BEESTS priors used by Matzke et al. (2019) for
fitting data from a stop-signal experiment that featured a
visual stop signal and the manipulation of the difficulty of
the go task. Priors for the go parameters were inspired by
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Table 1 Overview of the model
parametrization and the prior
setting

Parameter type Factors Hyper priors
Location Scale LB UB

Go parameters

t0 Non-decision time - .3 5 .1 1

B Decision threshold BT, B, R 1 5 0 ∞
v Evidence-accumulation rate BT, D, M 2 5 0 ∞
Stop parameters

μ Mean of Gaussian component - .5 1 0 4

σ SD of Gaussian component - .1 1 0 4

τ Mean of exponential component - .1 1 0 4

Go and trigger failure parameters

�−1(PGF ) Go failure - -2 2 -∞ ∞
�−1(PT F ) Trigger failure - -2 2 -∞ ∞
Note. LB = lower bound. UB = upper bound. BT = block type (blockwise or trialwise). B = Bias (towards Blue
or Orange for BLUE and ORANGE accumulators, respectively). R = Accumulator (BLUE or ORANGE). D
= Difficulty (easy or hard). M =Accumulator match (true or false, corresponding to the accumulator matching
or mismatching the stimulus). The RT data were fit on the seconds scale, so the prior bounds and location and
scale parameters also refer to the seconds scale

Matzke et al. (2020) who reported posterior distributions for
the racing-diffusion stop-signalmodel fit to data fromMatzke
et al. (2019). We refer the reader to the procedure outlined
in Heathcote et al. (2019) for using posteriors as a basis for
developing priors to be used in the analysis of new stop-signal
data.

We used the DMC package (Heathcote et al., 2019) to
sample from the joint posterior distribution of the model
parameters. Posterior samples were obtained using the
differential-evolution Markov chain Monte Carlo algorithm
(DE-MCMC; Ter Braak, 2006), which efficiently takes
the correlation structure between parameters3 into account
(Turner, Sederberg, Brown, & Steyvers, 2013). The number
of chains was set to three times the number of participant-
level model parameters (i.e., 66). The chains were thinned
to only keep every 5th sample. Migration was set to occur
on a randomly chosen 5% of iterations during the burn-in
period, and after this period only cross-over steps were per-
formed. To speed up convergence, start values were based
on posterior samples obtained from fitting the data of each
participant separately. We assessed convergence by visually
inspecting the MCMC chains and computing the Gelman-
Rubin convergence statistic (R̂ < 1.1 for all population and
participant-level parameters; Brooks & Gelman, 1998; Gel-
man & Rubin, 1992). After convergence, we obtained an
additional 250 samples per chain; these samples were used
for inference about the model parameters and the descriptive

3 The correlations among parameters reflect the mathematical structure
of the model and are themselves not problematic. However, parameter
correlations make estimation more difficult because older MCMC sam-
plingmethods tend to be inefficient in the presence of strongly correlated
parameters.

accuracy of the RDEX presented below. The data and the
DMC code for fitting the model and for performing the anal-
yses are available in the Supplementary Materials at https://
osf.io/u3k5f/.

The posterior distributions of all group-and participant-
level parameters are shown in the Supplementary Materials.
The posteriors were all unimodal and well constrained.
We used the 95% credible intervals of the participant-level
parameters to ascertain that the evidence-accumulation rate
and threshold parameters were acting in a way consistent
with their psychological interpretations. The credible inter-
vals were computed as the range of values between the 2.5th

and 97.5th percentiles of the posterior distribution of the aver-
age of the relevant parameter over participants. We present
the results in terms of posterior medians with credible inter-
vals in square brackets.

The difference between evidence-accumulation rates for
the accumulators that match and mismatch the stimulus
reflect the difficulty of a choice. We found that these differ-
ences were clearly larger for easy (2.4 [2.32,2.48]) than hard
(1.37 [1.31,1.43]) stimuli (difference = 1.03 [0.93,1.13]).
The same pattern held in both the blockwise bias (differ-
ence = 0.91 [0.78,1.05]) and trialwise bias (difference =
1.15 [1.01,1.3]) conditions. The difference between these
conditions was credible (0.24 [0.04,0.43]), consistent with
allowing evidence-accumulation rates to differ between them
in the model.

If participants modulate their response bias to take advan-
tage of cues indicating which response is more likely on
the upcoming trial, the threshold for accumulators that are
incongruent with the bias cue should be higher than for accu-
mulators that are congruent with the bias cue. This was true
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overall: incongruent = 1.92 [1.88,1.95] vs. congruent = 1.69
[1.61,1.73],with difference = .23 [.21,.24]). The samepattern
held in the blockwise bias (difference = .12 [.10,.15]) and tri-
alwise bias (.33 [.30,.35]) conditions. Again, the difference
between the two was credible (.20 [.16,.24]), consistent with
allowing threshold bias to differ over this factor in the model.
These results, together with the excellent goodness-of-fit of
the model with theoretically motivated constraints reported
below, suggest that estimates of the evidence-accumulation
rate and threshold parameters were consistent with their psy-
chological interpretation assumed by the model.

Assessing goodness-of-fit

We used posterior predictive simulations (Gelman, Meng, &
Stern, 1996) to evaluate thedescriptive accuracyof theRDEX
model. In particular, we compared the observed data to pre-
dictions based on the full joint posterior distribution of the
participant-level parameter estimates. This procedure simul-

taneously accounts for sampling error and the uncertainty of
the parameter estimates. For each participant, we randomly
selected 100 parameter vectors from their joint posterior and
generated 100 stop-signal data sets for the current complex
choice design using these parameter vectors, the observed
SSDs, and the observed number of go and stop trials per cell
of the design. We evaluated three features of the data: (1) go
RT and signal-respond RT distributions; (2) the probability
of responding as a function of SSD (i.e., inhibition function);
and (3) the increase in signal-response RTs as a function of
SSD.

Go and signal-respond RT distributions

Figure 4 shows the results of the posterior predictive sim-
ulations for the cumulative distribution function (CDF) of
go RTs and signal-respond RTs. As the model assumes that
going and stopping are independent, signal-respond RTs
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Fig. 4 Cumulative distribution functions for the observed go RTs and
signal-respond RTs (thick lines; open circles show the 10th , 30th , 50th ,
70th , and 90th percentiles) and for the model fits (thin lines; grey points
show predictions resulting from the 100 posterior predictive samples,
with solid points showing their average). Each panel contains results for

BLUE and ORANGE responses. Panel titles indicate stimulus (blue vs.
orange), bias (blue vs. orange), and trial type (GO vs. SS = stop signal).
The results are collapsed over the difficulty and block type manipula-
tions
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were collapsed across SSDs.4 For brevity, results are col-
lapsed over the difficulty and block type factors. Detailed
results for each cell of the design are provided in the Supple-
mentary Materials.

The observed and predicted CDFs were averaged across
participants. Note that the upper asymptotes of the CDFs
show the probability of a correct and error response; these
add to one for go RTs, and to the response rate for signal-
respond RTs. Within each panel, thick dashed and dotted
lines show CDFs for each observed response (i.e., BLUE vs.
ORANGE). The open circles show the 10th, 30th, 50th, 70th,
and 90th percentiles of the distributions. Thin dashed and
dotted lines show predicted CDFs for each response aver-
aged across the 100 posterior predictive replications, with
the black bullets showing the corresponding five percentiles
of the distributions. The surrounding clusters of grey dots
reflect the uncertainty in the predicted percentiles, showing
predictions for each of the 100 posterior predictive samples.

The model generally displays excellent fit and aligns very
well with the observed data, especially given the complex
design and the relatively parsimonious model parameteriza-
tion. The only evident misfit is in the CDF of go RTs (top
row, third column), where themodel slightly under-estimates
accuracy for blue stimuli in the Orange bias condition.

Inhibition and signal-respond RT functions

The left panel of Fig. 5 shows the results of the posterior
predictive simulations for the inhibition function averaged
across participants. The right panel of Fig. 5 shows the
results of the posterior predictive simulations for median
signal-respond RT as a function of SSD, averaged across
participants. Note that SSDs are unevenly spaced so that an
approximately equal number of data points contributes to
each SSD category.

Stop-signal race models predict increasing inhibition and
signal-respond RT functions. As expected, the predicted
probability of responding increases as SSD increases; stop-
ping becomes more difficult as the interval between the onset
of the go and the stop signal increases. The model fits well,
with the observed probability of responding falling well
within the model’s 95% credible intervals. Although median
signal-respond RT is slightly over-predicted (≈ 10ms) by the
model at the first SSD, overall the model accurately captures
the strong increase with SSD.

These results demonstrate that the RDEX model with a
priori theoretically motivated constraints provides a good
description of the observed data, even in a complex design,

4 Note also that early and late SSDs produced by the staircase algorithm
typically result in scarce data, which makes collapsing the distributions
across SSDs the only practically viable option for assessing descriptive
accuracy.

supporting the validity of the evidence-accumulation param-
eters in the context of the stop-signal paradigm. Had these
constraints been inaccurate (i.e., the constrained parameters
should have been free to vary, or vice versa), wewould expect
this to diminish themodel’s ability to account for the data and
result in model misfit. We now turn to a parameter-recovery
study showing that the model provides accurate and precise
parameter estimates in our design.

Parameter-recovery performance

The DMC code used for the parameter-recovery study
(Heathcote, Brown, & Wagenmakers, 2015) is available at
https://osf.io/u3k5f/. For each of the 18 participants in our
study, we generated 200 data sets from the RDEX model
using the complex design described above. To ensure that
the “true” data-generating values were in a realistic range,
we used the posterior means obtained from fitting the model
to the data of each participant individually.5 The resulting
posterior means were used to generate 200 replicate data
sets for each participant. Identical to the empirical data, each
replicate data set consisted of 960 trials of which 25% were
stop trials, and we used the same staircase algorithm with a
starting SSD of 0.2 s and step size of 0.05 s.

The RDEX model was then fit to each of the 18 × 200
data sets to assess how well the true and estimated parameter
values correspond.We used the same procedures as before to
infer the posterior distribution of the model parameters, with
the exception that instead of hierarchical estimation, we fit
each data set separately. The start values for each chain were
sampled from the prior distributions. As before, we assumed
weakly informed (truncated) normal prior distributions for
each parameter, with the location and scale parameters, and
lower and upper bounds shown in Table 1.

We summarized recovery performance by computing the
correlation between the true and estimated parameter values
and the coverage of the posterior distributions across the 200
replications (i.e., the proportion of times the true value falls
within the estimated 95% credible intervals). Figure 6 shows
scatterplots between the true and the estimated parameter
values, with the dashed diagonal showing the identity line.
For non-decision time t0 and the stop and the go and trig-
ger failure parameters, each panel shows results for 18 true
values, derived from the data of the 18 participants. For B
and v, we combined the eight threshold and eight evidence-

5 To ensure that the recovery results generalize to other parameters
settings and not only to those obtained from real data (Matzke et al.,
2020), we explored various other true values obtained from perturbing
the estimated posterior means. The results were qualitatively similar to
the ones presented here.
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Fig. 5 Observed vs. predicted
inhibition function (left panel)
and median signal-respond RTs
(right panel). Observed data are
shown with open circles joined
by lines. Model fits are shown
with solid points, with the 95%
credible intervals obtained based
on predictions resulting from the
100 posterior predictive
samples. SSD = stop-signal
delay; p(Respond) = probability
of responding on stop trials;
SRRT = signal-respond RT

0.
3

0.
4

0.
5

0.
6

0.
7

Inhibition function

SSD (s)

p(
R

es
po

nd
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
40

0.
50

0.
60

0.
70

Signal−respond RT

SSD (s)

M
ed

ia
n 

SR
R

T 
(s

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

accumulation rate parameters in single panels, each showing
results for 8×18 true values.

In each panel, the points indicate the average of the pos-
terior means across the 200 replications. The corresponding
error bars show the 95% credible interval of the distribution
of the posterior mean. Generally, the model recovered the
true values very well, with relatively little bias as evidenced
by the points falling along the identity line. The trigger failure
PT F parameter is slightly underestimated for high values, but
the true values fall well within the 95% credible interval of
the posterior mean. The coverage values averaged across the
18 parameter sets and the correlation between the true val-
ues and the average of the 200 posterior means are shown in
the bottom right corners. The correlations between true and
estimated values are high, ranging between 0.85 and 1.00.
Similarly, the coverage of the posteriors was close to the
nominal 95%, ranging between 0.85 and 0.98. These results
show that theRDEXapproach iswell equipped to retrieve the
true data-generating parameters, even in the present complex
design with relatively sparse data per cell.

Caveats and solutions

Figure 6 shows that the recovery performance of the RDEX
model was, in general, excellent. However, as illustrated in
the Supplementary Materials, in certain parameter regions,
the sampling distribution of the posterior mean of the go
parameters showed some irregularities. In particular, for each
true parameter setting, we plotted the distribution of the pos-
terior means across the 200 replications. In the majority of
parameter settings, the distribution of the estimated poste-
rior means was unimodal and centered around the true value,
indicating good recovery. This is illustrated in the top panel
of Fig. 7, showing the sampling distribution of the posterior
mean for B, v, and t0 for a representative data-generating
parameter set. This particular setting was chosen because it
featured parameters that were average relative to the range
of data-generating values we explored. However, as shown
in the bottom panel of Fig. 7, for two parameter settings, the

sampling distributions of B, v, and t0 were bimodal, with one
peak at the true values, and the estimated posterior means for
t0 stacking up against the lower bound of the prior (i.e., .1).6

For another setting, there was bimodality in v and B, and for
one setting only in v, again with one mode being around the
true value.7 This undesirable behavior was not accompanied
by convergence problems. These occasional irregularities
only appeared in the go parameters; the sampling distribu-
tions of the stop, and go and trigger failure parameters were
unimodal and well behaved in all parameter settings. These
problemswere not resolved by using non-standard settings of
the DE-MCMC sampler’s tuning parameters (e.g., enabling
it to better explore multi-modal parameter distributions, as
suggested by Ter Braak, 2006).

We also examined this behavior in the empirical data. In
particular, we fit the data of each participant nine times, using
different start values and both individual as well as hierar-
chical estimation, to evaluate the consistency of the results
across different sampling runs. As shown in the Supple-
mentary Materials, the posterior distributions resulting from
individual fitting showed consistent results, with the nine
sets of posteriors being virtually indistinguishable from one
another. For four participants, however, all nine sampling
runs resulted in bimodal t0, B and v posterior distribu-
tions, similar to the sampling distributions observed in the
parameter-recovery study. The top panel of Fig. 8 shows the
posterior distributions of one of the problematic participants
resulting from individual estimation. Note that as opposed
to the simulations, here we see the bimodality directly in the
posterior distributions, likely reflecting the decreased reso-

6 We obtained similar results with lower and higher bounds.
7 The problem with only v most likely results from low error rates or
the quality of information captured in error responses in that particu-
lar parameter region as it only appeared for the v parameter associated
with the runner that mismatched the stimulus. In the other cases, we sus-
pect that the problems arose as a result of irregularities associated with
likelihood-based estimation in the presence of parameter-dependent
lower bounds (i.e., t0). Although, as we explained earlier, irregular-
ity is typically not problematic in tasks with observed responses (such
as the go task), it can sometimes lead to inconsistent estimates.
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Fig. 6 Parameter-recovery results. Results for the go and trigger failure parameters PGF and PT F are presented on the probability scale. See text
for details

lution of the posteriors resulting from noise in the real data.
The fact that the bimodality is present in the posterior is,
of course, desirable because even a single sampling run can
alert researchers to potential spurious estimates.

Even more desirable is the result that hierarchical esti-
mation, where constraints are provided by the group level,
circumvents this issue altogether. As shown in the Supple-
mentary Materials, the posterior distributions resulting from
hierarchical fitting not only showed consistent results across
the nine sampling runs, but it also resulted in well-behaved
unimodal posteriors for all participants. The bottom panel
of Fig. 8 shows the posterior distributions of the same par-
ticipant resulting from hierarchical as opposed to individual

estimation. The nine posterior distributions are all unimodal.
In the case of t0, thismode is away from the lower prior bound
and is clearly more plausible. These results indicate that even
in problematic parameter regions, hierarchical estimation
of the RDEX model results in consistent and well-behaved
parameter estimates.

Discussion

Cognitive psychometrics seeks to characterize behavior in
terms of parameters that correspond to latent psychologi-
cal constructs. For example, decision thresholds correspond
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Fig. 7 Distribution of the posterior mean across 200 replicated data sets
for the threshold B, evidence-accumulation rate v, and non-decision
time t0 parameters. The vertical dashed lines show the true values.
Block type (BT) = trialwise, bias (B) = blue, accumulator (R) = BLUE,
difficulty (D) = easy, and accumulator match (M) = true, correspond-
ing to the accumulator matching the stimulus. The top row shows a
parameter setting resulting in excellent parameter recovery, where the
distribution of posterior means is unimodal and centered around the

true data-generating value for all parameters. The bottom row shows a
parameter setting with poor recovery, with bimodality in the distribu-
tion of the posterior means of the go parameters. For both parameter
settings, the figure shows three out of the 22 parameters, one for each
parameter type (i.e., evidence-accumulation rate, threshold, and non-
decision time). The full parameter set for all 18 parameter settings are
presented in the Supplementary Materials

to response caution. Those processes have well-defined and
psychological interpretations that follow from the processes
described by themodel. For example,more cautious respond-
ing arises from requiring more evidence before triggering a
response by setting a higher average threshold over accu-
mulators. When successful, the benefits of this approach are
twofold (Heathcote, 2019).

First, the range of potential model parameterizations is
simplified, both from a priori constraints related to the psy-
chological interpretation of the parameters and fromprevious
findings in related paradigms that can reasonably be assumed
to engage the same psychological mechanisms. As an exam-
ple of the former type of constraint used in the present
experiment, thresholds in an evidence-accumulation model
are set strategically and cannot varywith factors whose levels
change unpredictably. As such, threshold differences cannot

explain the effects of the manipulation of the difficulty of the
choice stimuli, because difficulty varied unpredictably from
trial to trial. Instead, choice difficulty must be explained by
differences in evidence-accumulation rates as they are deter-
mined, at least in part, by stimulus-related factors. As an
example of the latter type of constraint, we accounted for
response bias with threshold changes consistent with find-
ings such as those of White and Poldrack (2014) and Garton
et al. (2019). The validity of the model (i.e., the assertion
that its parameters measure the psychological processes to
which the model claims they correspond) can be determined
by its ability to successfully fit data when restricted to such
simple parameterizations. In the present case, the validity of
the RDEX model was supported on these grounds.

A second advantage is that estimated parameter values
can be used to further test the model’s validity and to draw
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Fig. 8 Posterior distributions for nine replications (shown with differ-
ent colors) of fitting the RDEX model to empirical data. The top row
shows the posterior distributions resulting from individual estimation,
and the bottom row shows the posterior distributions of the same partic-

ipant resulting from hierarchical estimation. For brevity, only three of
the 22 parameters are presented: B, v, and t0. Block type = blockwise,
bias = blue, accumulator = orange, difficulty = easy, and accumulator
match = true, corresponding to the accumulator matching the stimulus

clear inferences about psychological processes. As an exam-
ple of the former, the RDEX model was validated in the
application reported here because, as expected, threshold
parameters were lower for the accumulator favored by the
bias cues. Similarly, the difference in evidence-accumulation
rates between the accumulator that matches the stimulus and
the one that mismatches the stimulus—which indexes the
degree of discrimination between stimuli—was larger for
easier than harder stimuli. As an example of the latter, Heath-
cote et al. (2022) compared the performance of the younger
participants reported here to the performance of older par-
ticipants performing the same task. Their analysis identified
multiple mechanisms causing the pervasive phenomenon of
age-related slowing (Salthouse, 1996), with older partici-
pants having increased non-decision time, more cautious
responding as indexed by thresholds averaged over accumu-
lators, and slower processing speed as indexed by the average
of matching and mismatching evidence-accumulation rates.
It also enables the relative influence of each mechanism on
different aspects of behavior to be determined (see Strick-
land, Loft, Remington, & Heathcote, 2018), in this case
showing that non-decision time and processing speed played
major roles and caution a more minor role.

However, garnering these benefits requires overcoming
trade-offs that can threaten parameter interpretability. A pri-

mary threat comes from the strong correlations between
parameters that often occur in cognitive models, particularly
in more complex designs. Although the simplified param-
eterizations intrinsically afforded by cognitive models help
in this regard, further constraint is often needed. Two such
sources of constraint are increasingly relied upon in cognitive
psychometrics. The first, hierarchical Bayesian estimation,
leverages the assumption that participants behave in similar
ways to create informative priors that reduce the variance of
individual parameter estimates. The second solution requires
the cognitive psychometric model to account for dynamic
aspects of choice behavior such as RT. Such accounts often
assume a race among processes corresponding to each choice
(Logan & Cowan, 1984), with the runners modeled by
evidence-accumulation processes (Heathcote et al., 2019).
Here we addressed a challenge to the latter solution posed
by the need to estimate parameter-dependent lower bounds
(or “shifts”) required by evidence-accumulation models. We
did so in the context of a particularly difficult case, the stop-
signal paradigm. This case is difficult because responses are
to be withheld when the runner associated with a stop signal
wins the race, and so no RT is observed. Matzke et al. (2020)
showed that, as a result, models in which the stop runner
is an evidence-accumulation process are not mathematically
identified and have poor psychometric properties.
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We addressed the lower-bound problem in the stop-
signal paradigm with a “hybrid” architecture, combining a
descriptive account of the stop runner with an evidence-
accumulation account of the go runners representing the
choice element in the task. The lower-bound problem is
avoided because the descriptive ex-Gaussian stop runner
does not require the estimation of a shift parameter. At
the same time, retaining evidence-accumulation processes
for the go component garners the benefits of a cognitive-
process account, such as a simplified parameterization, tests
of the model’s validity, and the unambiguous psychologi-
cal interpretation of the parameter estimates. Importantly,
the descriptive ex-Gaussian account of the stop runner still
provides an estimate of the distribution of the key index of
inhibitory performance in the stop-signal paradigm, stop-
signal RT.

Although the hybrid architecture avoided the problems
reported by Matzke et al. (2020), we encountered a new
estimation problem in certain parameter regions. In partic-
ular, individual estimation sometimes resulted in bimodal
posterior distributions (in real data) and bimodal sampling
distributions of the posterior mean (in simulations) of the
evidence-accumulation parameters. Fortunately, the extra
constraint provided by hierarchical estimation addressed
this problem. Hence, even in these challenging cases, the
combination of Bayesian estimation with a generally well-
identified cognitive model provides a viable way of bringing
the benefits of dynamic cognitive psychometrics to a com-
plex stop-signal design.

Although our simulations showed that the Bayesian hier-
archical implementation of the RDEX model requires only
a modest number of test trials for accurate estimation, we
acknowledge that parameter recovery is a complex issue. It
does not only depend on the number of trials and participants,
but also on the inferential goals (group vs. individual-level
inference, and group comparison vs. individual differences),
the parameter region, as well as the experimental design
and the corresponding parameterization. We urge readers to
use the parameter-recovery module included in the DMC
package to conduct their own simulations tailored to the
particular situation at hand. Similar considerations are at
play for model-recovery performance. The question whether
the data-generating model can be recovered from among
a set of candidate models is additionally also influenced
by the predictions made by the competing models and the
model selection measure one wishes to use. Luckily, DMC
allows users to conduct their own model-recovery stud-
ies using various model selection measures, including the
DIC (Spiegelhalter, Best, Carlin, & van der Linde, 2002)
and Bayes factors computed via Warp-III bridge sampling
(Gronau, Heathcote, & Matzke, 2020).

The tension between process realism and practically use-
ful measurement properties is not unique to the effects of

an estimated lower-bound on likelihood-based estimation
addressed here. For example, independent race models have
been criticized as lacking neural realism, giving rise to inter-
active racing evidence-accumulation models for both the
stop-signal paradigm (Boucher, Palmeri, Logan, & Schall,
2007; Logan et al., 2015) and choice RT paradigms more
broadly (Usher & McClelland, 2001). For interactive stop-
signalmodels, single-cell recordings are required to constrain
estimation, so their purview in a psychometric sense is
generally limited to non-human primates. Fortunately, the
independent model has been shown to provide an excellent
approximation with respect to behavioral data alone, sup-
porting the validity of many applications (Verbruggen et al.,
2019). With respect to choice RT, the independence assump-
tion has also been criticized as being unable to account for the
behavioral effects of similarity among choices (Teodorescu
& Usher, 2013). Hence, where these effects are present, they
potentially compromise psychometric applications of inde-
pendent race models. However, estimation of the interactive
model based on behavioral choice RT data is problematic
(Miletic et al., 2017). Fortunately, as in the present case,
this problem has proved amenable to a model-based solu-
tion,with an elaborated independent-race architecture having
been shown to accommodate the similarity effects while
maintaining good estimation properties (van Ravenzwaaij,
Brown, Marley, & Heathcote, 2019; Miletić et al., 2021).

In summary, all scientificmodels necessarilymake simpli-
fications and use approximations in order to be useful (Box,
1976). The tension between process realism and practically
useful measurement properties particularly besets cognitive
psychometrics, because of its emphasis on using parame-
ter estimates to quantify latent psychological processes. Our
results show that hybrid cognitive architectures like the one
proposed here provide a useful new direction in enabling the
broader application of cognitive psychometrics, especially in
the domain of dynamic response time data.
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