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Abstract
Pupil size change is a widely adopted, sensitive indicator for sensory and cognitive processes. However, the interpretation 
of these changes is complicated by the influence of multiple low-level effects, such as brightness or contrast changes, posing 
challenges to applying pupillometry outside of extremely controlled settings. Building on and extending previous models, 
we here introduce Open Dynamic Pupil Size Modeling (Open-DPSM), an open-source toolkit to model pupil size changes to 
dynamically changing visual inputs using a convolution approach. Open-DPSM incorporates three key steps: (1) Modeling 
pupillary responses to both luminance and contrast changes; (2) Weighing of the distinct contributions of visual events across 
the visual field on pupil size change; and (3) Incorporating gaze-contingent visual event extraction and modeling. These steps 
improve the prediction of pupil size changes beyond the here-evaluated benchmarks. Open-DPSM provides Python functions, 
as well as a graphical user interface (GUI), enabling the extension of its applications to versatile scenarios and adaptations to 
individualized needs. By obtaining a predicted pupil trace using video and eye-tracking data, users can mitigate the effects 
of low-level features by subtracting the predicted trace or assess the efficacy of the low-level feature manipulations a priori 
by comparing estimated traces across conditions.
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Introduction

Pupillary responses are sensitive and versatile indicators of 
physiological changes accompanying or underlying human 
cognition (see Binda & Gamlin, 2017; Mathôt, 2018; Strauch 
et al., 2022a; Wilhelm, 2008 for reviews). When measuring 
pupil size in daily life, a complex pattern of constrictions 
and dilations emerges. What makes this signal so com-
plex? Besides steady-state factors affecting baseline pupil 
size, such as age and overall luminance (Watson & Yellott, 
2012), pupil size also responds to all kinds of sensory and 
cognitive events (Strauch et al., 2022a). This multitude of 
parallel factors affecting pupil size makes it challenging to 
dissociate the different components. For instance, pupillary 
light responses assessed by a neurologist (Wilhelm, 2008) 
might be confounded by attention or arousal modulations. 

Psychologists or cognitive neuroscientists, in turn, are usu-
ally interested in such attentional effects exclusively, and 
thus aim to eliminate possible confounds due to light levels. 
To study one isolated aspect, such as cognitive modulations, 
highly controlled stimulus materials and laboratory settings 
are usually adopted. Here, we introduce “Open dynamic 
pupil size modeling” (Open-DPSM), a convolutional model 
capable of modeling the effects of visual low-level features 
on pupil size changes using dynamic and complex stimuli 
such as videos with unconstrained eye movement, which 
in turn allows estimation of attentional effects. We make 
Open-DPSM fully available with open-source Python scripts 
and an accessible graphical user interface to the community.

Modeling pupil size

As pupil size changes reflect an intertwined combination 
of low-level visual events and higher cognitive events, it is 
necessary to mitigate the influence of unwanted confound-
ers. Brightness changes, eliciting the pupil light response 
(PLR), are the most prominent low-level features. Besides 
stringently controlling luminance, modeling is used to 
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estimate the PLR to complex and dynamic stimuli from 
luminance changes. The subtraction of this modeled trace 
from measured pupil size then yields a more “purified” 
trace of cognitively driven pupil size changes (David-John 
et al., 2018; Fanourakis & Chanel, 2022; Napieralski & 
Rynkiewicz, 2019; Raiturkar et al., 2016; Wong et al., 
2020). Such models can be roughly divided into two cat-
egories: steady-state models to estimate PLR under equilib-
rium state (Moon & Spencer, 1944; Raiturkar et al., 2016; 
Watson & Yellott, 2012) and dynamic models incorporat-
ing the PLR under transient influence of the light (Fan 
& Yao, 2011; Longtin & Milton, 1989; Pamplona et al., 
2009; Usui & Hirata, 1995). As expected, for dynamic and 
constantly changing stimuli, dynamic models are found to 
be more effective for the accurate estimation of pupil size 
change, even though they aren't widely adopted yet (Fan-
ourakis & Chanel, 2022). The adaptation of many of these 
models is challenging, as they incorporate the biomechani-
cal functions of muscles and the feedback loop from the 
brain that are thought to control pupillary responses, which 
require complicated computations or additional experimen-
tal conditions/calibrations to estimate free parameters and 
individual differences (Soleymani et al., 2012; Zandi & 
Khanh, 2021).

Alternatively to such biophysiological models, stud-
ies have adopted convolutional approaches to model pupil 
dynamics to both higher-level cognitive events and lower-
level visual events. As pupil size exhibits a relatively slow 
response to the perceptual and cognitive events that drive it, 
pupil size at any given time reflects the consequence of mul-
tiple, overlapping, distinct perceptual and cognitive events 
(Denison et al., 2020; Wierda et al., 2012). Assuming that a 
linear time-invariant system underlies pupillary changes, two 
consecutive events elicit responses that overlap with each 
other in time, resulting in an overall pupil response reflecting 
the sum of both responses. A gamma-shaped response func-
tion (RF) (Fig. 1A) is usually adopted to approximate each 
of those delayed responses to any events (e.g., changes in 
stimulus material as shown in Fig. 1B, C). More specifically, 
as schematically outlined in Fig. 1, each event is convolved 
with a response function. The “stronger” the event (Fig. 1C), 
the higher the amplitude of the pupillary response (Fig. 1D). 
Visual events, such as brightness changes, would influence 
pupil size not only transiently, but also leads to a sustained 
new size (e.g., a constricted pupil if brightness is increased). 
To model this sustained response, the pupillary response is 
further cumulated (Fig. 1D blue line). A number of studies 
have exploited this convolutional nature to either model the 

Fig. 1  Convolution of response function and visual events.  A Pupil 
response function (RF) for convolution, based on Hoeks and Levelt 
(1993). B Examples of several movie frames. C Exemplary data of 
luminance changes over time, which can be either positive (change 
to brighter) or negative (change to darker). Changes are extracted as 
difference of luminance between two consecutive images in B and 

then aggregated to time-series data. D Results of response function 
in A convoluted with the time-series luminance changes in C, result-
ing in transient (temporary) changes (black line) and accumulated 
(sustained) changes (blue line). Note that positive values in C indicate 
positive luminance change (brighter), the predicted pupil size in D 
therefore changes to the opposite direction of A
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effects of cognitive events on pupil responses or to retrieve 
the timing and strength of cognitive events using deconvolu-
tion techniques (de Gee et al., 2014; Denison et al., 2020; 
Hoeks & Levelt, 1993; Kang & Wheatley, 2015; Knapen 
et al., 2016; Wierda et al., 2012). On the other hand, Korn 
and Bach (2016) also used the convolutional approach to 
model luminance changes. To this end, two response func-
tions were fitted to (a) model sustained changes to lumi-
nance in general and (b) model temporary 'overshoots' to 
increases in luminance. These overshoots consist of short-
lasting pupil constrictions after luminance increments that 
are more strongly than expected if only taking into account 
sustained luminance changes. It is well possible that such 
constrictions could potentially be the result of a low-level 
feature other than a sustained luminance change. The effect 
of luminance can be modeled out as a nuisance covariate to 
allow for the study of cognition-induced pupil size changes 
(for existing software, see Psycho Physiological Modelling 
(PsPM); Korn et al., 2017). Other than luminance changes, 
convolution should, in principle, also allow modeling the 
effects of other low-level feature changes, such as contrast, 
color, or spatial frequency (see Strauch et al., 2022a for a 
review).

Current model

Although Korn and Bach (2016) successfully captured the 
characteristics of pupillary responses to simple and tempo-
rally separated luminance changes, it is unknown whether 
this approach can predict pupil size changes when observ-
ers watch more dynamic, complex, and temporally overlap-
ping visual changes, such as in a movie. Building on exist-
ing modeling and theoretical advancements, Open-DPSM 
directly applies the convolution approach to the extracted 
visual events of movies over time. We will additionally 
demonstrate that Open-DPSM succeeds in predicting pupil 
size to highly dynamic visual input flexibly without fixation 
restrictions by incorporating: (i) transient response to con-
trast changes; (ii) weighted contribution of different visual 
field regions and (iii) gaze-contingent visual events extrac-
tion. Why and how well these features improve the modeling 
results will be incrementally extended on throughout this 
manuscript.

Visual event extraction

To model pupil size dynamics, visual events (i.e., luminance 
changes) are extracted from the stimulus material first (here: 
movie frames). For each movie frame, a three-color channel 
(red, green, blue; RGB) image (Fig. 1B) is loaded in an 8-bit 

matrix. Then, luminance changes are computed as described 
in the following.

Convert RGB to CIELAB

To better match how the human visual system “perceives” 
computer images, each RGB image frame is converted to 
CIELAB space (International Commission on Illumination, 
2004) with the function “cvtColor” in the python package 
OpenCV. The first channel L* of the CIELAB space is used 
as the input value to calculate luminance on the screen.

Gamma correction to convert L* to physical 
luminance

The L* extracted from the image represents the relative 
luminance on the scale of black (0 as minimum value) to 
white (255 as maximum value). Note that these values do 
not represent the absolute amount of physical light emitted 
by the monitor, as the monitor scales the input nonlinearly 
to luminance using a gamma function. Typically, OLED 
screens apply a gamma value of 2.2, which prevents lumi-
nance saturation and thus enhances the aesthetical appear-
ance of the images (Cooper et al., 2013). The higher this 
gamma value, the stronger the nonlinearity and darkening of 
lower input values. Physical luminance in candela per square 
meters (cd/m2) is hence computed by applying a gamma cor-
rection to L* input. This physical luminance in cd/m2 will 
be used to model pupil size change (which will be referred 
to as luminance henceforth) because a roughly linear rela-
tionship between the physical luminance change in candela 
per square meters (cd/m2) and the amplitude of pupillary 
response to luminance change was found within the current 
limited range of luminance changes in movies (see Supple-
mentary Fig. 1). Note, however, that more extreme lumi-
nance ranges result in non-linear links due to flooring/ceiling 
effects (see Watson & Yellott, 2012).

Luminance change

The change in overall luminance per frame is calculated 
by taking the mean difference in luminance across all 
pixel values between two frames. More specifically, for 
our movies with a 25-Hz frame rate, we calculate the dif-
ference in every two movie frames (i.e., two frames sepa-
rated by 80 ms) to mimic the sampling rate of the human 
visual system (Intraub, 1981; Potter, 1975; Potter et al., 
2002). The changes in luminance at the first two frames 
(or at times 0 s and 0.04 s) were calculated by subtracting 
the luminance of a homogenously black image from these 
initial frames.
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Dataset

Participants & stimulus material

To train and test our models, eye-tracking data were col-
lected from n = 15 participants (MAge = 24.43; SDAge = 
2.43 years; seven males) who watched twenty movie clips 
of 60 s each in random order. Movie clips were selected 
from a larger set published earlier (Gestefeld et al., 2020). 
The subset of movies, including 18 cartoon/animated movies 
and two movies with real actors, were selected because these 
contained relatively many luminance changes.

Apparatus

A large OLED65B8PLA LG 65” TV (145 by 80 cm (88.1° by 
56.1° visual angle) displayed the movies at a resolution of 1920 
by 1080 pixels and a refresh rate of 100 Hz. The maximum 
100% brightness of the TV was 212 cd/m2 and the gamma 
value is 2.2. Participants sat 75 cm away from the screen while 
they kept their head fixed in a chin- and forehead rest. The 
built-in speaker of the TV played the audio of the movie at an 
average loudness of around 50 dB (range 40–70 dB).

Eye movement and pupil size data of both eyes were 
recorded with a tower-mounted EyeLink 1000 (SR Research) 
at 500 Hz. The eye tracker was set to circular fitting of the 
pupil and its diameter served as the pupil size measure. 
The TV connected to a separate desktop computer with 
an installed Python-based PsychoPy package that allowed 
controlled movie presentations and EyeLink communication 
(version 2022.2.4, Peirce et al., 2019).

During the experiment, the only source of light apart from 
the stimulus-displaying TV was the EyeLink communication 
monitor, resulting in less than 1 Lux (lx) at eye position.

Procedure

The participants watched the movies without further task 
instructions other than keeping their heads still. An eye-
tracker calibration (five-point calibration and validation) was 
performed before the start of the first trial and every five 
trials (i.e., movie clips) during the experiment. Participants 
started trials/movies self-paced. If a participant moved her/
his head, a recalibration was performed, and participants 
watched the movie again.

Modeling pupil size

Benchmark models

Before describing the more advanced steps in building 
Open-DPSM, we introduce two benchmark models for 

pupil size predictions, adjusted for continuous video input 
and modeling: (1) a prior-less polynomial model, and (2) an 
adaptation of the model by Korn and Bach (2016). To opti-
mize the model, the root mean squared error (RMSE) was 
minimized by fitting parameters using ordinary least square 
minimization with a Nelder–Mead simplex search algorithm 
(“minimize” function in Python’s scipy package1). We used 
explained variance (R2) between actual and fitted pupil size 
change to evaluate model performance.

Polynomial model

The polynomial model served as a test on whether a model 
with the same number of free parameters as the later intro-
duced models can account for the changes in pupil size 
across time. We fitted a quintic (five-degree) polynomial, 
corresponding to the number of parameters in the later 
described ‘Contrast response model’, to all the pupil data 
traces of all the movies for each participant with one set of 
best-fitting parameters.

Unsurprisingly, the performance of the polynomial model 
was poor (R2 < 0.001).

Extending Korn and Bach (2016)

Korn and Bach (2016) suggested that pupil size changes in 
response to luminance changes can best be explained by two 
distinct linear-time-invariant (LTI) systems, each employ-
ing a unique RF. The RF in the LTI1 modeled the sustained 
pupillary dilation and constriction to luminance change 
(Fig. 2B) and the RF in the LTI2 captured the extra ‘over-
shoot’ in constriction responding to luminance increases 
(i.e., the residual difference between the red lines in Fig. 2A, 
B) that was not captured by LTI1. Korn and Bach (2016) 
tested the model using static and discrete stimuli with alter-
nating luminance levels every 5 s. The two RFs were first 
fitted to event-related pupil response and then pupil predic-
tion was evaluated with time-series luminance events. To 
predict pupil size with continuous and overlapping visual 
events, the model by Korn and Bach (2016) was extended 
to apply to movie-watching data.

Modeling methods and results Event-related pupil response 
extraction. To extract event-related pupil responses, events 
of luminance changes in the movies had to be detected first. 
As we intended to mimic the predefined and rather large 

1 To avoid local minima in fitting, we also tested the “basinhopping” 
function from the same package with 20 iterations. Model perfor-
mance was similar, but the fitting time increased significantly. Hence, 
all the reported results used “minimizing” with a fixed starting point. 
Both options are provided in the toolbox.
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discrete luminance changes in Korn and Bach (2016), the 
luminance changes with varying intensities throughout the 
movie were determined post hoc with a threshold (all the 
luminance changes below ±3 cd/m2 were removed; final 
luminance change magnitudes ranging from – 45.8 to 46.3 
cd/m2). Similar to Korn & Bach’s stimulus design, events 
in too short succession (below 1 s) were removed, which 
reduced crosstalk between consecutive events. Event-related 
pupil responses were extracted by segmenting the pupil 
time-series data into 3-s segments using each event as the 
onset. Each event-related pupil responses were baseline cor-
rected by subtracting the average pupil size of the first 250 
ms after event onset, as the pupil takes approximately 250 
ms to start responding to a luminance change. Event-related 
pupil responses were further divided by the overall stand-
ard deviation across all event-related pupil responses of all 

participants to be further z-standardized. After extracting all 
luminance-related pupil responses, the grand mean of dila-
tion (Fig. 2A blue trace) and constriction (Fig. 2A red trace), 
and the difference between them were calculated.

Modeling the pupillary responses with two LTI systems. 
Following Korn and Bach (2016), the two RFs were then fit-
ted to the grand mean of dilation and the difference between 
the dilation and constriction respectively, using the gamma 
probability density function. This function has three free 
parameters (see formula (1), c standing for the peak ampli-
tude, and k and Θ for the shape and time of peak amplitude 
collectively. Also see Fig. 3A for examples of this function 
across different parameter combinations). The starting point 
of the response function was set to 200 ms past the event.

(1)d(t) = c∕
(

�
k
� (k)

)

t
k−1 exp (−t∕�)

Fig. 2  Adapting Korn and Bach (2016) to model event-related pupil 
responses with RFs and applying them to continuous time series. A 
Grand mean of event-related pupil responses to luminance increases 
(constriction, red) and decreases (dilation, blue); B Fitted cumulative 
event-related pupil responses (see subplot for original derivative) for 
LTI1 dark (blue) and bright (red) events. Note that Korn and Bach 
(2016) only used dilation data to model the LTI so the pupil constric-
tion here (red) was created by inversing the modeled pupil dilation 
pattern. C Predicted difference between dilation and constriction of 

the LTI2 to capture the overshoot in response to luminance increases. 
D Actual (solid) and predicted (dashed) event-related pupil responses 
for constrictions (red) and dilations (blue), with the prediction of con-
striction based on the combination of the two RFs in panel B and C. 
E Exemplary convolution of the two RFs of both LTI systems to con-
tinuous luminance changes (dashed blue and green), in comparison to 
actual pupil data (solid grey). F A weighted combination of the two 
LTI systems (dashed brown) and the comparison to actual pupil data 
(solid grey)
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As the LTI1 reflected the sustained response to luminance 
change, the grand mean of pupil dilation was modeled by 
the cumulative of the first RF (c = 0.04, k = 14.1, Θ = 
0.05; Fig. 3B). The second RF was approximated by another 
gamma probability density function to model the difference 
between constriction and dilation (Fig. 2C; c = 1.23, k = 
4.7, Θ = 0.14). A weight to the LTI2 was fitted to determine 
the relative amplitude (weight = 1.003) of the second RF as 
compared with the first RF. The combination of the two RFs 
explained almost all variance in both the dilation (R2 = 0.97) 
and constriction (R2 = 0.94) patterns of the event-related 
pupil responses (Fig. 2D).

Evaluating pupil prediction with time series data. The 
two RFs were convolved with time-series data of all lumi-
nance changes and luminance increases per movie, respec-
tively (for an example, see Fig. 2E), and were then combined 
to a weighted sum (Fig. 2F), which explained the variance in 
time-series of pupil size above chance, albeit much less so 
(mean of all participants: R2 = 0.197, SD = 0.059) than for 
the event-related responses. Note that the LTI1 contributed 

much more strongly to explaining variance (R2 = 0.191, SD 
= 0.0512) than the LTI2 (R2 = 0.046, SD = 0.022).

Alternative response function Besides the gamma prob-
ability density function used in Korn and Bach (2016), the 
Erlang gamma function was previously proposed to fit event-
related pupil responses well (Hoeks & Levelt, 1993). This 
function can be considered more intuitive because the timing 
of the peak amplitude is determined by a single parameter 
(formula (2)) rather than being the result of a complex inter-
action between two parameters as in the gamma probability 
density function.

The Erlang gamma function relies on two parameters: 
tmax, determining the timing of peak amplitude, and n the 
shape/width of the pupil response function (Fig. 3B). A third 
multiplication parameter is added to this function to control 
the relative amplitude of the peak. After applying the Erlang 

(2)h(t) = t
n
e
−nt∕t

max

Fig. 3  Exemplary pupil response functions. A The illustrations of 
Gamma probability density functions (Korn & Bach, 2016) and B 
Erlang gamma functions (Hoeks & Levelt, 1993) with different com-
binations of values for the free parameter. For both functions, an 
unchanged pupil size period of 200 ms is set and all RFs are normal-

ized to a maximum value of 1 for illustration purposes. Θ and k in 
Gamma probability density function interactively control for timing 
and shape of the RF. tmax exclusively controls for timing of the peak 
in Erlang gamma function, and tmax and n for shape/width
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gamma function to our data, the model performs comparably 
to the gamma probability density function (R2 = 0.197, SD 
= 0.058). As the Erlang gamma function is easier to inter-
pret, we only adopted this function in the following models 
(Results of models using the gamma probability density are 
reported in Supplementary Table 1 as a complement, both 
response functions can be called in Open-DPSM).

Open‑Dynamic Pupil Size Modeling (Open‑DPSM)

We next introduce Open-DPSM, a convolutional model for 
pupil size changes to dynamic visual stimulation. Open-
DPSM incorporates three major features discussed in the 
following sections in more detail: (1) Integration of a tran-
sient contrast-based pupil response in addition to a sus-
tained response to luminance change; (2) Separate weights 
of different image regions in their contribution to pupil size 
changes; (3) Gaze-contingent feature extraction and mod-
eling. For each step, a brief motivation is outlined, steps are 
described and model improvements are reported.

Integration of a contrast response function

The phenomenological “overshoot” responding to increases 
in luminance, which results in “undershoots” by modelled 
sustained luminance responses (Korn & Bach, 2016), can 
be alternatively interpreted as the orienting response of 
pupil (Barbur et al., 1992; Gamlin et al., 1998; Hu et al., 
2019; Kanari & Kaneko, 2021; Naber et al., 2011; Nakano 
et al., 2021; Slooter & van Norren, 1980; Young et al., 1995; 
see Strauch, 2022a for a review). Visual events, including 
changes in luminance, contrast, color, or any other visual 
feature evoke a temporary constriction that scales with the 
salience of the event as shifts of attention (Wang et al., 2014; 
together with a sometimes small faster dilation preceding the 
constriction). Such short-lasting constrictions can overlap 
with sustained responses to luminance changes. As such, 
we took luminance contrast (absolute value of luminance 
change) as a measure of visual change independent of the 
direction of luminance change (see Discussion for the poten-
tial impact of features beyond contrast). We hypothesized 
that both luminance increases and decreases would elicit 
a separate transient pupil component which would scale 
with the degree of luminance contrast change. It is impor-
tant to note that pupil dilations to luminance decreases are 
also likely to contain such a contrast-dependent component 
(Barbur et al., 1992). However, its effect may not always 
be directly visible as the overlapping, sustained dilation 
may conceal this transient constriction, although the latter 
may result in an apparently delayed pupil response. When 
the transient constriction surpasses the sustained dilation, 
a counterintuitive observation of constriction response to 

darkness can also emerge, which is consistent with such 
observations in rapid presentations of flashes with different 
illuminance levels (see Figure 8 in Korn & Bach, 2016, and 
Supplementary Fig. 2). We next extend the model based on 
this idea.

Modeling methods and results This “contrast response 
model” differed from the modified version of Korn and Bach 
(2016) described above in two aspects. First, the second 
transient response function was modeled based on contrast 
and not used to model the “overshoot” in responses to lumi-
nance increases exclusively. Second, the amplitude of this 
response scaled with the degree of contrast change as more 
salient events should evoke stronger pupil constrictions. As 
before, we first calculated event-related pupil responses to 
different magnitudes of sustained luminance changes. We 
binned the entire range of possible magnitudes of lumi-
nance changes into five separate bins using percentiles and 
calculated the average event-related pupil response per bin 
(Fig. 4A; 0–20 much darker; 21–40 slightly darker, 41–60 
very small change or no change; 61–80 slightly brighter, 
81–100 much brighter; see Supplementary Table 2 for the 
average and range of luminance change amount per bin).

The five sustained luminance responses were then 
modeled with the cumulative RF (Fig. 4B). The contrast 
responses were modeled with a transient RF (Fig. 4C). Simi-
lar to the previous models, optimization was used to find 
the best-fitting parameters (RF for luminance change: n = 
13.7, tmax = 0.28s; RF for contrast change: n = 3.0, tmax = 
0.53s; Relative weight of contrast change as compared with 
luminance change: 0.42; R2 = 0.893, Fig. 4D).

The two RFs were then convolved with luminance and 
contrast changes respectively and combined into a single 
weighted prediction (Fig. 4E). The model performance was 
evaluated the same way with time-series data of all lumi-
nance changes, and the result outperformed the last model 
(R2 = 0.242, SD = 0.069; t(14) = – 12.901, p < 0.001).

Convolving RFs directly with luminance and contrast 
changes The aforementioned models mandated a two-
step procedure: (1) Fit two RFs to the event-related pupil 
responses and (2) convolve the RFs to time series of visual 
events to predict continuous pupil size changes. Although 
the contrast response model described above already outper-
formed the polynomial model and Korn and Bach (2016), 
several constraints remained: Firstly, the detection of events 
required arbitrary luminance thresholds and an arbitrary 
number of bins that segregates the range of luminance lev-
els. Secondly, this method cannot account for covariations 
and interactions between effects of parallel visual events 
(i.e., luminance and contrast). This would also impede later 
model extensions for other types of visual events (see Dis-
cussion; Gamlin et al., 1998; Kimura & Young, 1995; Oster 
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et al., 2022; Portengenet al., 2023a; Young et al., 1993). 
Subsequently, we modeled continuous pupil size data using 
the raw rather than threshold-dependent time-series data of 
luminance and contrast changes and fitted the RFs directly 
to time-series data instead of fitting RFs as a priori on event-
related pupil responses (Fig. 5A, B). This direct convolution 
of visual events with RFs would also allow for more flex-
ibility in other manipulations, such as assigning weights to 
denote relative contributions of visual field regions (see next 
model). We hereby refer to this modeling procedure as “tem-
porally continuous” and the previous step-wise modeling as 
“temporally discrete”.

The two separate response functions were directly con-
volved with each trace of luminance and contrast changes, 
respectively, and parameters were optimized as before. 
Except for direct convolution of time-series data, this 
method was different from the previous fitting procedure 
in two ways: Firstly, since no thresholding or cutoff was 
required, a larger amount of data was available, and hence, 
RFs were fitted per participant and results across participants 
were able to be compared (see Supplementary Fig. 3A, B 
for selected parameters in RFs across all participants). Sec-
ondly, as the parameters of the RFs were determined by fit-
ting the time-series data directly and the fitted result cannot 
be visually examined, we used a repeated cross-validation 

procedure to avoid overfitting and ensure the robustness of 
the model. Twenty trials of each participant were divided 
randomly into training (70%) and testing sets (30%) and this 
procedure was repeated over five iterations. All following 
models would maintain those adaptations and the average 
results of only the testing sets across the five folds would 
be reported.

Model performance again improved significantly (R2 = 
0.261, SD = 0.069; t(14) = 3.432, p = 0.004).

Regionally weighted

The influence of visual events on pupil size changes depends 
on the location of their appearance in the visual field, a phe-
nomenon termed a (pupillary) visual field anisotropy (e.g., 
Ferree et al., 1933; Kardon et al., 1991; Naber & Nakay-
ama, 2013; Portengen et al., 2021). More pronounced pupil 
responses to visual events falling on the fovea compared to 
the periphery and the upper visual field compared to the 
lower visual field have been found in many studies (Strauch 
et al., 2022b). However, the exact relationship between 
the locations of visual events in the visual field and the 
amplitude of pupillary responses is more complicated. For 
instance, Thurman et al. (2021) found a context-dependent 

Fig. 4  Contrast response model. A Event-related pupil responses 
binned to five levels of luminance changes. B Predicted event-related 
pupil responses with the RF (subplot) for sustained responses to lumi-
nance changes. C Predicted event-related pupil responses for tran-

sient responses to contrast changes. D Actual (solid) and predicted 
(dashed) event-related pupil responses combined the two RFs in B 
and C with a weight. E Exemplary combined weighted prediction 
(dashed brown) and actual pupil size change (solid grey)
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anisotropy (i.e. “blue sky effect”), showing an enhanced 
pupillary response to blue light in the upper regions of the 
visual field.

To account for potential anisotropies, we split the visual 
field into 8 x 6 rectangular and equally sized regions (see 
Fig. 6A for visual degrees of each region). The number of 
regions was chosen to balance the trade-off between spatial 
resolution and computational power. Visual events were 
extracted for each region separately. Five free parameters 
were added as regional weights, accounting for relative 
contributions of the top-middle, top-peripheral, bottom-
central, bottom-middle, and bottom-peripheral parts (see 
W1–W6 in Fig. 6A, the top-central weight (W1) was set to 
1). Luminance and contrast changes per region were con-
volved with the RFs and then multiplied by the respective 
regional weights.

Incorporating regional weights significantly improved 
model performance (R2 = 0.302, SD = 0.085; t(14) = -5.425, 
p <0.001), comparing with the contrast response model. 
Weights selected by the model were consistent with expected 
visual field anisotropies: central image regions contributed 
more to the pupil dynamics than peripheral regions and 
so did top regions than bottom regions; see Fig. 6B, C). 

A two-way repeated-measures ANOVA showed significant 
main effects for the presence of vertical (top versus bottom; 
F(1,84) = 5.288, p = 0.024) and eccentric (central/middle/
peripheral; F(2,84) = 73.268, p < 0.001) asymmetries, but 
no interaction (F(2,84) = 0.210, p = 0.811). Post hoc Tur-
key HSD tests showed significant differences in weights 
between peripheral and middle, and between middle and 
central regions (all p < 0.001).

Gaze contingency

Unrestricted eye movements would inherently result in a 
mismatch of the relative positions of the video image and 
the retina at each time point. For example, when the par-
ticipant looks towards the top left (see Fig. 6D), the center 
of the video image no longer falls on the center of the ret-
ina. Furthermore, as most screens cannot completely cover 
the whole visual field of the participant, fixations adjacent 
to the screen's edges lead to more parafoveal stimulation 
by the background surrounding the monitor (see black 
bars surrounding movie images in Fig. 6D). We therefore 
incorporated gaze position in visual event extraction with 
a gaze-contingent (retinal) coordinate system representing 

Fig. 5  Temporally continuous modeling method. A Two exemplary 
RFs to model luminance and contrast change each with two free 
parameters convolved with B the luminance (purple) and contrast 

changes (green) over time. Note that the convolutional result for lumi-
nance changes was cumulated, as in Fig. 1D (blue line). C Prediction 
(dashed brown) and actual pupil data (solid grey)
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the actual image falling upon the retina. To create this gaze-
contingent coordinate system, a black rectangle 1.5 times 
larger than the size of the screen and with the same aspect 
ratio was created, representing the background surrounding 
the screen. The relative size of the background to the screen 
was chosen to ensure that the image of the screen stayed 
inside the borders of the background most of the time for 
relative peripheral fixations. Each image was then relocated 
in the gaze-contingent coordinate system by aligning the 
gaze position at the time of the frame to the center of the 
new coordinate system.

This resulted in a non-significant, but descriptive 
improvement (R2 = 0.327, SD = 0.087; t(14) = 1.92, p 
= 0.08), comparing with the regionally weighted model. 
Again, the selected regional weights supported the pres-
ence of anisotropies (foveal (central) > parafoveal (middle) 
> peripheral; top > bottom; see Supplementary Fig. 4C, D).

Model evaluation and comparison

To evaluate model performance, we calculated R2 for each 
step in model development (see a summary of R2 for all steps 
in Fig. 7; see Supplementary Table 1 also for correlation 
coefficients and RMSE). Gaze-contingency model incorpo-
rating all described steps outperformed all other models. 
To further compare models, the Bayesian information cri-
terion (BIC) provides insights by considering parsimony 
(i.e., explained variance relative to model complexity set by 
the number of free parameters). Note that BIC could only 
be meaningfully calculated for the later three models, as 
the split of training and testing data (i.e., cross-validation) 
resulted in a different sample size relative to the discrete 
event-related fitting approach. The decreasing BIC values 
over the last three models (see Supplementary Table 1) sug-
gested meaningfully improved model performance despite 

Fig. 6  Regional weights of visual events across the visual field. A 
Regional weights and visual angles on the 48 regions. B Weights as 
fitted in the model, consistent with expected vertical and eccentric 
anisotropies. Each point represents a participant. C Illustration of the 

mapped regional weights averaged across participants. Darker means 
stronger weights. D Same illustration as in A but for the regional 
weights and visual angles of the gaze-contingent coordinate system. 
The red point represents the gaze position at this certain frame
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higher complexity. In summary, we develop Open-DPSM 
with a “temporally continuous modeling” for better predic-
tion of pupil size change to our dynamic and complex stimuli 
and we improve model predictions by incorporating (i) a 
scaled contrast response function instead of an undershoot-
correction function, (ii) regional weights, and (iii) gaze-
contingent coordinate system.

To replicate our findings, we further evaluated model per-
formance on a different dataset (Gestefeld et al., 2020). Here, 
the movies used in our experiment were tested together with 
many other clips of similar length with a different group of 
participants and a different lab with a smaller monitor. The 
pattern of results fell in line with the findings reported above 
(see Supplementary Material “Replication of findings with 
different data (Gestefeld et al., 2020)” for details).

Python package (Open‑DPSM.py)

Open-DPSM can be downloaded via https:// github. com/ 
caiyu qing/ Open- DPSM. It has been tested on Microsoft 
Windows 2012 R2 with Spyder (version 5), Jupiter note-
book (6.4.5)/JupiterLab (3.2.1) and PyCharm (2013.1.4) 
installed that used Python version 3.9.7. The main 

Open-DPSM script (main.py) contains two classes of func-
tions to perform visual event extraction (event_extraction.
py) and pupil prediction (pupil_prediction.py) as well as 
one class for interactive plotting of results (interactive_
plot.py). Another script (settings.py) allows to set default 
parameters (e.g., number of image regions, size of the 
gaze-contingent coordinate system, gamma value of the 
monitor, etc.), which can be adjusted by experienced users. 
For users who prefer a graphical user interface (GUI), the 
script main_app.py activates the Open-DPSM GUI, which 
can conduct all modeling steps in a user-friendly manner 
(Fig. 8).

classes.event_extraction

This class of functions serves to extract the timing and 
strength of visual events (luminance and contrast changes) 
of an input video file. This trace is needed later for convolu-
tion to make a pupil prediction. The function event_extrac-
tion() extracts visual events (e.g., luminance changes) frame 
by frame from video files (.mp4, .avi, .mkv, .wmv, .mov, 
.flv, .webm) per image region. When eye tracking data file 
is provided (.csv) with timestamps and gaze coordinates, 
gaze-contingent visual events are extracted. Gaze data is 
automatically downsampled to the video sampling rate. If 
no eye-tracking data file is provided, screen-based visual 
events are extracted instead. The function outputs video 
information (resolution, frame rate, etc.), timestamps, and 
event traces per image region, which will be saved in a pickle 
file named “[movieName]_[subjectName]_VF_LAB_6X8.
pickle” in a “Visual events” folder.

classes.pupil_prediction

This class of functions serves to model pupil size from the 
extracted visual events by fitting two response functions, 
convolved with the extracted visual events from event_
extraction(). Without eye-tracking data, a predicted pupil 
trace is generated based on the average pupil response func-
tions calculated from the data described in this manuscript 
(see “Integration of a contrast response function”). When 
eye-tracking data is available, model optimization will be 
performed and best-fitting parameters for response func-
tions and regional weights will be found and saved in a “csv 
results” folder as a .csv file named “[movieName]_[subject-
Name]_parameters.csv” once finished. The results of model 
performance will also be saved in the same file (correlation 
and RMSE). The file contains two columns, with the names 
of the parameters and their values, respectively. Actual and 
predicted pupil size based on both, as well as combined, 
visual event traces are saved in another .csv file in the same 

Fig. 7  Explained variance per model. Boxplots show incremental 
improvements per modeling step. Single points, connected by dashed 
lines across models, illustrate model performance per participant. 
Shaded distributions on the right show smoothed density functions 
(histograms) of explained variance per model with corresponding 
colors (*** p < 0.001; • p = 0.08)

https://github.com/caiyuqing/Open-DPSM
https://github.com/caiyuqing/Open-DPSM


 Behavior Research Methods

1 3

folder named “[movieName]_[subjectName]_modelPredic-
tion.csv”, which will contain actual pupil size and predicted 
pupil size as columns. Predicted pupil size (z-standardized) 
will be provided with three columns, one for the combined 
prediction with both luminance and contrast change, one for 
prediction with luminance change only, and one for predic-
tion with contrast change only.

classes.interacitve_plot

This class of functions can be used to interactively plot 
results of event_extraction() and pupil_prediction(). inter-
active_plot() produces three subplots as in Fig. 8B, one 
each for gaze position, visual events extracted via event_
extraction(), and the trace of predicted and actual pupil size 
changes. Subplots can be saved as individual files using the 
interface. Specific frames can be selected using a slider.

Discussion

Pupil size changes are the integrated outcome of several 
underlying factors, encompassing effects of changes in 
a range of low-level sensory features, but also higher-
order cognition. To isolate the cognitive effects from the 
sensory effects, many studies have opted for quantifying 
the expected influence of the pupil light response (PLR), 
a primary contributor to pupil size change. Thus far, only 
a few studies have adopted dynamic models of PLR to 
estimate pupil size change in presenting complex dynamic 
stimuli (Fanourakis & Chanel, 2022; Napieralski & Rynk-
iewicz, 2019). However, those studies did not consider 
other low-level features, beyond luminance, and disre-
garded visual field anisotropies or coarsely controlled for 
these by exclusively focusing on visual events falling on 
foveal regions.

Fig. 8  Screenshots of the Open-DPSM GUI. A Screenshot of the 
GUI page of Visual event extraction & pupil prediction. B Screen-
shot of the interactive plotting GUI. To start the GUI, run main_app.
py. Video (and optional eye-tracking data) are loaded on the wel-
come page (not depicted), and relevant context information should be 
entered by the users in the GUI shown in panel A. The main func-
tions, events_extraction() and pupil_prediction() can be called via 

the buttons shown in panel A. Model performance is outputted on the 
left side of the screen. A click on “interactive plot” opens the screen 
shown in panel B with the data traces of gaze positions, extracted 
visual events, and both predicted and observed pupil size over time. 
Dragging the slider, shown at the bottom of panel B, allows users to 
jump to a specific time point and video frame
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We here introduce Open-DPSM, an open-source toolkit 
that enables not only the prediction of pupil size with 
dynamically changing stimulus materials but also the extrac-
tion of visual events from videos. What are Open-DPSM’s 
key features? (i) Open-DPSM uses a parsimonious convolu-
tional method with simple gamma functions to model pupil 
responses; (ii) Open-DPSM models pupillary dynamics 
more accurately by incorporating a separate transient for 
orienting responses that scale with contrast changes; (iii) 
Open-DPSM builds on a realistic representation of visual 
input to pupil size changes by weighing the relative contri-
bution of visual events across the visual field contingent to 
gaze positions – and incorporates the cortical magnification 
factor of foveal input. (iv) Open-DPSM is a publicly avail-
able tool that provides accessible and open-source Python 
functions for modeling pupil size while offering high flex-
ibility for future adaptations.

Theoretical implications

The contrast response model demonstrates that pupil 
responses to changes in luminance reflect more than just a 
simple change to light. Korn and Bach (2016) highlighted 
the importance of modeling pupil size changes with a dual-
component model, and we here demonstrate that a pupil 
response is a combination of the responses to light (dilations 
to dark events, constrictions to bright events) and contrast 
(constrictions that scale with contrast). This second compo-
nent is therefore beyond a phenomenological ‘overshoot’ of 
a pupil light response, but part of an orienting response to 
salient (high contrast) events (Barbur et al., 1992; Gamlin 
et al., 1998; Hu et al., 2019; Kanari & Kaneko, 2021; Naber 
et al., 2011; Nakano et al., 2021; Slooter & van Norren, 
1980; Young et al., 1995; for a review, see Strauch et al., 
2022a), which is likely modulated by attention (Koevoet 
et al., 2023; Naber et al., 2013; Strauch et al., 2022b).

Future work and model extensions

Open-DPSM is designed for seamless integrations of addi-
tional event streams to achieve higher modeling perfor-
mance. Whilst the current model only took contrast into 
account, further low-level visual features, such as changes 
in color (Barbur et al., 1992), spatial frequency (Barbur & 
Thomson, 1987; Young et al., 1995), and orientation (Hu 
et al., 2019) can be incorporated easily. This opens up new 
avenues for studying low-level visual features with dynamic 
stimuli – allowing for the decomposition of contributing 
factors. Further improvements and insights are plausible 
here, as such features are characterized by distinct response 
properties (Young et al., 1993; Young & Kennish, 1993). 
Furthermore, different transformations of low-level features, 
such as Michelson Contrast (Michelson, 1927), may result in 

an improved model of pupillary changes (Sandoval Salinas 
et al., 2020; Wang et al., 2014). As illustrated in previous 
work (e.g. de Gee et al., 2014; Denison et al., 2020; Korn & 
Bach, 2016; Lempert et al., 2015; Willems et al., 2015), the 
same convolutional approach can also be used to model cog-
nitive events. Open-DPSM should, in principle, be applied 
to model cognitive events given an appropriate event trace, 
but further evaluation is required.

Our data support the finding that pupil responses to lumi-
nance changes are stronger in the central and top than in the 
peripheral and bottom parts of the visual field (Istiqomah 
et al., 2022; Strauch et al., 2022b). It is worth mentioning 
that the current rectangular grid, which evenly divides the 
visual fields into subregions is a first, but coarse, represen-
tation of the visual field. Future versions of Open DPSM 
should, however, model the visual field as an elliptical (or 
distorted elliptical) shape (Anderson et al., 2014; Baldwin 
et al., 2012; Engel, 1977) and take into account the corti-
cal magnification factor. Moreover, the current model also 
simplified anisotropies by applying the same set of regional 
weights to both luminance and contrast responses. Different 
asymmetries across the visual field have been described for a 
range of visual features (Thurman et al., 2021). Such models 
could also be used to study relative regional contributions of 
low-level features to the pupil light response, but also atten-
tion and vision more broadly.

In addition, many factors that contribute to (estimated) 
pupil size changes have not yet fully been explored. For 
instance, distortions of estimated pupil size resulting from 
changing angles between camera and eye as the eyes move 
should be accounted for using foreshortening error correc-
tions (Gagl et al., 2011; Hayes & Petrov, 2016; see Korn 
et al., 2017 for an implementation). Other factors such as 
pupil size change before and during saccades (Koevoet 
et al., 2023; Wang et al., 2015), pupil responses to different 
durations or temporal frequencies of changes in visual fea-
tures, pupil responses to depth (pupil near response; Pielage 
et al., 2022), and pupil responses to changes in other sen-
sory domains (e.g., body movements and audition; Van der 
Stoep et al., 2021) are also expected to influence pupil size 
changes, which will need to be incorporated in future ver-
sions of the current model to explain even more variance in 
pupil dynamics.

Use cases of Open‑DPSM

Pupillometry has widespread applications in research and 
practice (see Binda & Gamlin, 2017; Einhäuser, 2017; 
Mathôt, 2018; Strauch et al., 2022a for reviews). How can 
Open-DPSM help researchers and practitioners alike? In 
neurology/ophthalmology, pupil light responses serve 
as an objective indicator for the dysfunction of vision. 
Open-DPSM is especially promising for the diagnosis of 
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spatial-attentional disorders such as visual field defects and 
hemispatial neglect (Lasaponara et al., 2021; Naber et al., 
2018; Portengen et al., 2023b; Ten Brink et al., 2023), as it 
can map the responsivity of the pupil across space, which 
is, in turn, indicative of visuoattentional deficits. This would 
be particularly beneficial for perimetric testing of special 
populations such as children and brain-injured patients, as 
testing could be done highly automatized and with engag-
ing/naturalistic stimuli, and substantial data can be collected 
within a short period (Gestefeld et al., 2020, 2021). The 
application may also extend to the measurement of the sensi-
tivity of other low-level features, such as contrast sensitivity 
(Hernández et al., 1996; Slooter, 1981; Slooter & van Nor-
ren, 1980). In psychology/affective and cognitive neurosci-
ence (but also beyond), pupil dilation is used to study cog-
nitive processes and respective neural underpinnings, such 
as the effects of mental effort (McLaughlin & Van Engen, 
2020; Van Der Meer et al., 2010; Zekveld & Kramer, 2014), 
emotional processing or regulation (Bradley et al., 2008; 
Henderson et al., 2014; Kinner et al., 2017; Koevoet et al., 
2023; Võ et al., 2008; Wetzel et al., 2020; Zimmermann & 
Bach, 2020) and attention (Binda et al., 2014; Denison et al., 
2020; Naber et al., 2013). Thus far, stimuli highly controlled 
for low-level features are usually adopted to prevent con-
founding effects of those features. Open-DPSM can provide 
an estimate of expected pupil size changes to stimulus mate-
rial. Previous studies have shown that despite maintaining 
constant global luminance, variations in local regions of 
the stimuli can still exert an influence on pupil size, such 
as luminance differences in the face areas (Laeng et al., 
2018) or relative size of bright versus dark regions in the 
eye (Derksen et al., 2018). Open-DPSM can generate predic-
tions of how pupil size would change with given stimuli and 
thereby enable researchers to estimate the variance that can 
be attributed to the stimuli themselves. This would facilitate 
the examination of potential confounds of low-level design 
issues in pupillometric studies. Furthermore, Open-DPSM 
accommodates complex and dynamically changing stimuli 
as input material to leverage the high sensitivity of pupil-
lometry to cognitive processes – in the lab settings or in real 
world applications. Previous studies using dynamic stimuli, 
such as movie-watching (Raiturkar et al., 2016; Soleymani 
et al., 2012), video-gaming (Fanourakis & Chanel, 2022; 
Mitre-Hernandez et al., 2021), or driving (Kerautret et al., 
2021; Pedrotti et al., 2014; Vintila et al., 2017), adopted dif-
ferent methods to compensate for the effects of luminance. It 
has been found that modeling the PLR is more advantageous 
in the sense that it quantifies the effectiveness of separating 
effects reflected in the pupil (Fanourakis & Chanel, 2022; 
Wong et al., 2020). In addition, Open-DPSM provides esti-
mations of temporal properties for pupil responses, such as 
latency and timing of peak amplitude (Denison et al., 2020), 

which are especially important for the investigation of cogni-
tive events.

Conclusion

We introduce Open-DPSM, an openly available toolkit that 
offers a robust and flexible approach to model pupil size 
changes to dynamic visual stimuli. Its incorporation of mul-
tiple visual events, regional weights, and gaze-contingent 
visual event extraction provides new insights into the effects 
of visual input on pupil size and visual processing and can 
pave the way for assessing and using attentionally modulated 
pupil size changes outside highly constrained lab settings. 
The availability of Open-DPSM as an open-source package 
enhances its accessibility and potential for further advance-
ments in many fields of research.
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