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Abstract
Uncovering cognitive representations is an elusive goal that is increasingly pursued using the reverse correlation method, 
wherein human subjects make judgments about ambiguous stimuli. Employing reverse correlation often entails collecting 
thousands of stimulus-response pairs, which severely limits the breadth of studies that are feasible using the method. Current 
techniques to improve efficiency bias the outcome. Here we show that this methodological barrier can be diminished using 
compressive sensing, an advanced signal processing technique designed to improve sampling efficiency. Simulations are 
performed to demonstrate that compressive sensing can improve the accuracy of reconstructed cognitive representations and 
dramatically reduce the required number of stimulus-response pairs. Additionally, compressive sensing is used on human 
subject data from a previous reverse correlation study, demonstrating a dramatic improvement in reconstruction quality. This 
work concludes by outlining the potential of compressive sensing to improve representation reconstruction throughout the 
fields of psychology, neuroscience, and beyond.
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Human perceptual experience is mediated by internal repre-
sentations of the world around us. Representations bridge the 
gap between the raw information available from the senses 
and the abstract and often categorical nature of our percep-
tual experience by acting as reference patterns for everything 
from low-level spatial and temporal features (e.g., edges and 
shapes in the retina image; Hendrickson & Goldstone, 2009) 
to high-level characteristics of cognitive categories (e.g., 
faces; Gosselin & Schyns, 2003) or social constructs (e.g., 
the trustworthiness of a face; Dotsch & Todorov, 2012). Full 
understanding of perceptual experience therefore depends on 
the ability to characterize these internal representations, as 
they encapsulate important abstractions that are necessary 
to make sense of complex sensory inputs (Fig. 1). While 
substantial progress has been made toward fully describing 

lower-level representations (e.g., visual and auditory recep-
tive fields), similar characterization of higher-level cognitive 
representations has proven to be more elusive. This is largely 
because, despite their central importance to perceptual expe-
rience and behavior (Brinkman et al., 2017), such repre-
sentations are notoriously difficult to measure (Gosselin & 
Schyns, 2003; Barth et al., 1999; Hansen et al., 2010; Smith 
et al., 2012; Varnet et al., 2013).

One of the more promising methods to overcome this 
difficulty attempts to uncover higher-level cognitive repre-
sentations using a standard method for characterizing lower-
level neural representations: reverse correlation (De Boer & 
Kuyper, 1968). Reverse correlation reveals the latent represen-
tation in these low-level contexts by eliciting neural responses 
to richly varying stimuli (e.g., white noise) and regressing 
the observed responses against the stimuli over many trials. 
The same method can be utilized in the higher-level context 
by substituting behavioral responses for neural ones, in much 
the same way that one can report whether they “see” faces 
and other familiar shapes in clouds and other ambiguous 
visual stimuli. Ambiguous stimuli can thus be used to force 
the internal representations to exert their influence directly 
on elicited responses. This approach began in the auditory 
domain, wherein subjects responded on whether they heard 
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a tone within a noise signal (Ahumada and Lovell, 1971). In 
ensuing years, visual noise was presented to subjects to recon-
struct internal representations or “classification images” of 
target objects (Ahumada, 1996; Eckstein & Ahumada, 2002). 
In one pioneering study, Gosselin & Schyns (2003) sought to 
find representations of letters by asking participants to iden-
tify a letter “S” in visual noise stimuli; critically, the stimuli 
were purely noise (and thus did not contain any actual letters), 
yet reverse correlation based on subject responses revealed 
a definitive “S” image recovered from each participant. 
Reverse correlation has subsequently been demonstrated to 
avoid the shortcomings of other techniques that bias expecta-
tions (Chauvin et al., 2005). Other groups have used reverse 
correlation to characterize the top-down processes of percep-
tion to abstract psychological categories, including the trust-
worthiness in voices (Ponsot et al., 2018), self-image (Moon 
et al., 2020), and “male” vs. “female” faces (Brinkman et al., 
2017), and shown that reverse correlation can quantitatively 
compare human decision-making to that of computers (Jäkel 
et al., 2009; Okazawa et al., 2018).

Despite this initial success in certain contexts, reverse 
correlation has severe limitations that have prevented its 
wide-spread use for uncovering higher-level internal repre-
sentations. Most critically, standard applications of reverse 
correlation require a burdensome number of stimulus-
response samples for accurate reconstruction of cognitive 
representations with an adequate signal-to-noise ratio (Var-
net et al., 2013). For example, Gosselin & Schyns’ (2003) 
experiment required 20,000 trials from each participant 
(Gosselin & Schyns, 2003); another required 11,400 (Barth 

et al., 1999). In cognitive and psychological experiments, 
the large number of trials combined with the long latency 
for measurable behavioral responses from subjects results 
in data collection protocols that can last weeks for each 
individual subject. This inefficiency limits the feasibility 
of applying reverse correlation to only those experimental 
protocols where subject participation and motivation can 
be maintained over long timelines. Even in such cases, the 
large amount of data required from each participant means 
the number of participants in a given study is typically 
very low (usually less than five; Gosselin & Schyns, 2003; 
Hansen et al., 2010; Smith et al., 2012). This severely limits 
any insight into the generalizability of existing findings to a 
broader population.

Existing methods attempt to overcome this fundamental 
limitation of reverse correlation by constraining the input 
stimuli to decrease the number of required trials. This can 
be accomplished, for example, by generating stimuli through 
adding noise to known examples of some real-world cat-
egory (e.g., an image of a face) rather than using pure noise, 
as done in (Moon et al., 2020). This increases the probability 
that subjects will report the stimulus as belonging to the 
category of interest but also constrains the results toward 
representations consistent with the initial example. In order 
to realize the full impact of reverse correlation in uncovering 
cognitive representations, it is necessary to reduce the num-
ber of trials required without introducing such constraints.

An alternative approach to improving the efficiency of 
reverse correlation is to impose constraints on the recon-
struction process. Adding constraints can be a powerful way 
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Fig. 1  Schematic overview of perception. At its most fundamental 
level, perception is maintained by a complex cognitive system in the 
perceiver, involving the combined efforts of bottom-up and top-down 
processes that bridge the gap between sensory input and cognitive 
representations. Bottom-up processes extract relevant features from 

the raw sensory signal, while top-down processes relate incoming 
features to perceptual categories by comparing against prior expec-
tations in the form of internal, cognitive representations. Such top-
down theories are widely posited across multiple domains of human 
perception (e.g., Gregory, 1997)
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to improve reconstruction quality but can also severely limit 
the richness of the reconstruction in ways prespecified by 
the constraints themselves. For example, current approaches 
constrain reconstructions through low-pass filtering (Smith 
et al., 2012), such as by smoothing with a 2D Gaussian ker-
nel (e.g., as in Gosselin & Schyns, 2003). While this can 
eliminate unwanted high-frequency noise from the recon-
struction, it also presupposes that such high-frequency infor-
mation does not form part of the underlying representation. 
For this reason, it is critical to assess the assumptions inher-
ent in any added constraint and to be careful in deciding 
whether to utilize that constraint (Mineault et al., 2009; Mur-
ray, 2011).

One constraint that seems especially appropriate for 
reconstructing perceptual representations is that of sparsity. 
Sparsity is the notion that representations are composed of 
a finite and relatively small set of essential features. Impor-
tantly, sparsity is widely considered to be a fundamental 
principle of organization in perceptual systems at all levels 
(Olshausen & Field, 2004), with strong empirical and theo-
retical support (Olshausen & Field, 2004; Hubel & Wiesel, 
1968; Olshausen & Field, 1996; Srivastava et al., 2003). 
Thus, sparsity is a fairly innocuous assumption that is highly 
likely to preserve the essential aspects and important varia-
tion in cognitive representations. This assumption can also 
be exploited to improve estimation of internal representa-
tions (Mineault et al., 2009). Mineault and colleagues incor-
porated sparsity constraints in a generalized linear model 
(GLM) to reconstruct visual-domain representations more 
efficiently, demonstrating an approximately 80% reduction in 
the number of trials to produce an equivalent quality recon-
struction (Mineault et al., 2009).

Recent advances in signal processing have resulted in 
a proliferation of efficient sampling methods based on the 
idea of sparsity, collectively known as compressive sensing 
(Mineault et al., 2009; Murray, 2011). To date, however, 
compressive sensing has not been applied to the reverse 
correlation paradigm. Here, we explicate the underlying 
mathematical connections between reverse correlation and 
compressive sensing and provide a demonstration of the 
potential for dramatic efficiency improvements using the 
combined method. We will also show that, unlike previous 
approaches to incorporating sparsity constraints, it is also 
possible to obtain reconstructions from compressive sens-
ing analytically, using a closed-form solution that is highly 
efficient and guaranteed optimal. One such method by Zhang 
(Zhang et al., 2014) is presented in detail and applied here 
in a novel way.

Compressive sensing begins with the assumption that 
signals of interest, x, which can include latent cognitive 
representations (Fig. 2), are sparse (or, in the language of 
compressive sensing, compressible). This means specifically 
that they can be represented by a small number of functions 

from an appropriately-selected basis set (s = ΨTx, for basis 
Ψ and weights s). If one assumes that responses, 𝑦, stem 
from a process of comparing stimuli to the latent represen-
tation (𝑦 = Φx, for stimuli Φ), it is possible to estimate the 
latent representation using only a small number of measure-
ments by acquiring the basis function representation directly 
(i.e., 𝑦 = ΦΨs) via sparse optimization approaches to find s. 
In practice, sparse representations may be found even when 
the chosen basis domain is quite general and incorporates no 
specific prior knowledge of the signal characteristics (e.g., 
the discrete cosine transform, wavelet transform). The choice 
of an appropriate basis function may depend on the domain 
being interrogated, but here the cosine basis is shown to 
work adequately.

A critical point for the applicability of compressive sens-
ing for reverse correlation is that it has been demonstrated both 
theoretically (Tropp et al., 2009; Yotsukura et al., 2014) and 
empirically (Mineault et al., 2009) that using random (e.g., white 
noise) stimuli to elicit responses is a highly effective way to 
ensure accurate reconstruction of latent representations within 
the compressive sensing framework. Moreover, a substantial 
portion of the literature on compressive sensing has focused on 
inferring representations from binary responses (e.g., yes-no), 
a variation of classical compressive sensing called 1-bit com-
pressive sensing (Zhang et al., 2014; Boufounos & Baraniuk, 
2008; Jacques et al., 2013). That is, 1-bit compressive sensing 
maps directly onto the most common (i.e., “yes-no” response) 
reverse correlation paradigm. This opens the door to potentially 
providing all the efficiency benefits of compressive sensing to 
the reverse correlation paradigm.

To this end, computational simulations are used here to 
model reverse correlation in subject responses to visual stim-
ulation. Internal representations are reconstructed based on 
these simulated responses using either the traditional reverse 
correlation approach, the sparse GLM approach used by 
Mineault (2009), or compressive sensing, and compressive 
sensing improves both the efficiency of the sampling process 
and the quality of the reconstructions. Finally, compressive 
sensing is applied to human subject response data from a 
prior reverse correlation study (Smith et al., 2012), again 
demonstrating the ability of compressive sensing to enhance 
reverse correlation experiments.

Method

Modeling subject responses

The general model of subject response behavior under-
lying reverse correlation experiments is that responses 
(y) are a result of linear comparisons between a latent 
representation (x) and a collection of random stimuli (Φ):
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where y is a l-by-1 vector of responses, x is a m-by-1 repre-
sentation, and Φ is a l-by-m "measurement matrix". l refers 
to the number of data points, and m refers to the number of 
stimulus dimensions. Note that expected yes/no responses 
from subjects are coded numerically as 1 (yes) and 0 (no) 
in this formulation. This idealized model does not account 
for noise that is likely to be inherent in the human subject 
response process. Therefore, in simulation studies described 
here, we extend the idealized model by adding noise to the 
decision variable Φx as follows:

where ε is additive noise. This model of noise is consist-
ent with classic results (e.g., Burgess & Colbourne, 1988) 
showing that internal observer noise can be modeled as a 
perturbation to the decision variable, prior to the subject 
response being rendered.

Reverse correlation reconstruction

The subject response model is inverted in conventional 
reconstruction of the latent representation (e.g., Abbey & 

(1)y = sign (Φx),

(2)y = sign (Φx + �),

Eckstein, 2002; Gosselin & Schyns, 2003), in a method 
closely related to regression of the responses against the 
stimuli, and similar to that used in the spike-triggered aver-
aging (STA) approach to uncovering neural tuning (e.g., 
receptive fields):

This equation is commonly simplified, using the knowl-
edge that the stimuli in typical reverse correlation experi-
ments are uncorrelated, making it unnecessary to cal-
culate the full sum of squares and cross products matrix, 
and instead simply normalize by the number of responses 
gathered:

which amounts to an averaging procedure, whereby the 
mean of stimuli eliciting a "no" response is subtracted from 
the mean of stimuli eliciting a "yes" response.

Compressive sensing reconstruction

Compressive sensing uses a closely related model of subject 
behavior as above but assumes that the latent representation 
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Fig. 2  Process of reconstruction in reverse correlation and com-
pressive sensing. (A) In reverse correlation, the vector of subject 
responses is modeled as resulting from the multiplication of a latent 
representation vector (x) and a stimulus matrix (Φ), where each row 
of Φ is a presented stimulus. This can be thought of as a similarity 
calculation between the latent representation and a vector representa-
tion of each presented stimulus. (B) An estimate of the latent repre-
sentation ( ̂x ) is then reconstructed by regressing responses against the 
stimuli. (C) In compressive sensing, the vector of subject responses is 
modeled as resulting from the multiplication of a sparse latent repre-
sentation vector (s) and a compressive sensing matrix (Θ). The com-
pressive sensing matrix is formed by multiplying a matrix of basis 

functions by the stimulus matrix (Θ=ΦΨ), which amounts to a simi-
larity calculation between the stimuli and the known basis functions. 
(D) An estimate of the sparse latent representation ( ̂s ) is then recon-
structed by regressing the responses against the compressive sensing 
matrix, soft-thresholding the resulting regression coefficients, and 
then normalizing by ζ = ||P(m-1ΘTy)||, where m is the dimensionality 
of the stimulus vector and P is a soft thresholding function. The full 
representation estimate ( ̂x ) can be subsequently calculated using the 
estimated sparse representation and the known basis functions ( ̂x = 
Ψŝ ). Note that the response vector y in compressive sensing is gener-
ally assumed to contain many fewer entries than in reverse correla-
tion, and without sacrificing reconstruction accuracy
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is sparse in some basis domain (i.e., it is compressible). The 
objective of compressive sensing is to estimate the sparse 
representation directly, which will be expected to be more 
efficient than reconstructing the full representation itself. 
Given this assumption, the model of subject behavior 
becomes:

where s is the sparse representation, and Ψ is a matrix of 
orthonormal basis functions, specifically the 2D discrete 
cosine basis. It is helpful to calculate the similarity between 
the stimuli and the basis functions via matrix multiplication, 
producing a matrix of such similarity (i.e., inner product) 
values, Θ, which then leads to:

This I-by-m matrix is sometimes known as the "compres-
sive sensing matrix", which can be used as the basis for 
estimating s. The process of estimation has been an active 
area of research since the beginning of compressive sensing 
research, and many algorithms have been proposed, depend-
ing on assumptions about the nature of the responses, the 
error criteria to be optimized, and the method of optimiz-
ing a given criterion. In the present paper, we highlight the 
method of Zhang et al. (2014), which is intended to operate 
on binary, yes/no responses, and features a simple calcula-
tion and closed-form solution for finding an estimate of s:

where P(.) is a soft thresholding operation that zeros all but 
the γ elements of the vector with the largest absolute mag-
nitude, and the normalizing factor ζ = ||P(m-1ΘTy)||. The 
variable γ is the degree of sparsity, such that the solution 
will be γ-sparse.

As mentioned above, conventional reverse correlation can be 
viewed as taking the sum of all the “yes” stimuli and subtract-
ing from that the sum of all the “no” stimuli. The compressive 
sensing approach described here performs a similar difference-
of-sums, but rather than doing so over the stimuli, it performs the 
difference-of-sums over the stimuli transformed using the basis 
vectors. For instance, if the basis vectors are cosines of different 
frequencies, then the difference-of-sum will be done over the 
DCT (discrete cosine transform) coefficients representing the 
stimuli. In compressive sensing, the elements of the resulting 
vector are then soft-thresholded to promote sparsity, such that 
those with a small absolute magnitude are set to zero. In both 
methods, the elements of the vectors are then normalized.

Once s has been estimated, it can be used in conjunction 
with Ψ to reconstruct the latent representation x using the 
known basis functions:

(5)y = sign (ΦΨs),

(6)y = sign (Θs).

(7)ŝ = ζ−1P
(
m−1ΘTy

)
,

(8)x̂ = Ψŝ.

The signum function is used to model the transformation 
of stimulus-representation comparisons, the result of which 
can be a continuous value, into this numerical response code. 
Issues surrounding quantization of the responses – with 
reduction to binary, yes/no values being the most extreme 
example – are of theoretical and practical interest. Classi-
cal compressive sensing assumes the measurement of con-
tinuous response values, although compressive sensing over 
binary responses (termed "one-bit compressive sensing" or 
"binary compressive sensing") has been studied extensively, 
leading to the reconstruction process incorporated into the 
present framework (Zhang et al., 2014) and several other 
techniques (Jacques et al., 2013). One-bit compressive sens-
ing continues to be an active area of research (e.g., Shen, 
2020). In the case of experimental paradigms where continu-
ous or mildly quantized responses can feasibly be collected 
from subjects, classical compressive reconstruction tech-
niques (e.g., Blumensath & Davies, 2008) may be appropri-
ate, and perhaps superior, to employ. It seems that eliciting 
yes/no responses from subjects in the context of perceptual 
experiments is likely to remain the standard method because 
it is the most straightforward for subjects and experimenters 
to implement.

Note that the subject response model assumed within a 
compressive sensing context (Eq. 5) is closely related to 
sparse models developed by Mineault (2009). Indeed, when 
looking to solve the problem of finding an optimal value for 
s, Mineault reached for an optimization algorithm devel-
oped with compressive sensing applications in mind – spe-
cifically, the fixed-point continuation algorithm proposed by 
Hale et al. (2007). However, explicit identification of that 
problem as one that can be solved using compressive sensing 
(not provided by Mineault) allows for a deeper analysis of 
which techniques available in the sizeable compressive sens-
ing literature are most appropriate for the problem at hand.

The focus on binary, yes/no responses in a reverse cor-
relation context points to similarities with 1-bit compressive 
sensing, which also focuses on binary responses and has 
been studied extensively beginning at least with the work 
of Bounfounos & Baraniuk (2008). Furthermore, the fact 
that human subjects’ responses are often noisy points to the 
need for robust compressive sensing that looks at accurate 
estimation despite the presence of noise. A landmark result 
in this area was due to Plan & Vershynin (2012), who cast 
one-bit, robust compressive sensing as the following opti-
mization problem:

where λ is a threshold that determines the degree of sparsity 
of the solution. Inspired by this result, Zhang (2014) was 
able to cast 1-bit, robust compressive sensing as the follow-
ing optimization problem:

(9)max s of sTΘy s.t. ‖s‖2 ≤ 1, ‖s‖1 ≤ sqrt(λ)
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and show that this optimization problem has an analytical 
solution, which is Eq. (7). In the present work, the value of λ 
is always determined such that the solution will be γ-sparse.

Functions implemented in MATLAB code for compres-
sive sensing (Eq. 7), reverse correlation (Eq. 4), and simu-
lated subject response generation (Eq. 1) are available at 
https:// github. com/ alamm ert/ compr essive- sensi ng, along 
with a MATLAB script constituting a working example 
exemplifying their use.

Sparse generalized linear model

To compare compressive sensing to an established sparse 
method for generating reverse correlation reconstructions 
(Murray, 2011), the generalized linear model (GLM) with 
sparse priors described by Mineault (2009) was used to 
generate reconstructions of the latent representations. The 
method works by finding the maximum a posteriori esti-
mate of the representation using a sophisticated optimiza-
tion algorithm. The code to do this was downloaded from 
the online repository (http:// packl ab. mcgill. ca/ publi catio ns. 
html, accessed May 24, 2022).

The method employs a fixed-point iteration algorithm due 
to Hale et al. (2007) to fit a GLM in accordance with:

where Lb is the negative log-likelihood function for the 
model of subject behavior:

with auxiliary variables U and corresponding weights u, 
explained in Mineault (2009), and where f(∙) is the logistic 
function. Note that the matrix of basis functions, Ψ, used 
with the GLM method was the 2D discrete cosine basis, 
consistent with the proposed compressive sensing method.

Simulating Gosselin & Schyns (2003)

The latent representation, x, was generated by recreating 
the “superstitious” perception of “S” for subject NL from 
Gosselin & Schyns (2003) original work as a template for 
simulating NL’s responses. The “S” was recreated by hori-
zontally scaling a lowercase Verdana “S”, as described in the 
original manuscript, and resizing the letter to 50 × 50 pixels 
using MATLAB (R2021a, The MathWorks, Inc.). This “S” 
was then converted to grayscale pixel intensity values scaled 
between 0 and 1. Random stimuli (Φ) were generated by 
randomly drawing values 0 and 1 with equal probability. 
Subject responses to the stimuli were simulated as described 

(10)min s ‖s‖2 ≤ 1,m−1sTΘy + λ‖s‖1

(11)argmin
s
= L

b
+ λ‖s‖1,

(12)Lb = −
∑n

i=1
log f

(
yi(ΦΨs + Uu)i

)
,

in Eq. (2), using the template “S” as x, and with ε ~ N(0,σ), a 
Normal distribution with mean zero and variance σ.

Simulations of Gosselin & Schyns (2003) were conducted 
with 1250, 2500, 5000, 10,000, and 20,000 samples. For 
each number of samples, ten simulations obtained repre-
sentation estimates using conventional reverse correlation, 
another ten used compressive sensing, and another ten used 
the sparse GLM from Mineault et al. (2009). For all simula-
tions at a given number of samples, the mean reconstruc-
tion quality (see below) and 95% confidence intervals were 
calculated separately for the reverse correlation, compres-
sive sensing, and GLM estimates. Simulations of noisy 
subject responses were also conducted, following the model 
described in Eq. (2). Ten additional simulations were con-
ducted at each number of samples with this added noise 
(ten simulations at σ = 25 and ten at σ = 50) for each of 
reverse correlation, sparse GLM, and compressive sensing. 
The variance value σ can be thought of as the percent of 
incorrect responses generated by the simulated observer. In 
each simulation condition, the value of γ was determined by 
examining the prediction accuracy (see “Assessing Recon-
struction Quality”, below) across a range of γ values on 
held-out data, specifically novel data sets generated using 
Eq. (2). Eight such novel data sets were generated in each 
condition, and the mean prediction accuracy was calculated. 
The values of γ considered comprised {2, 4, 8, 16, 32 ,64, 
128, 256, 512, 1024, 2048}. It was found that γ = 64 pro-
vided the best mean accuracy in all simulation conditions. 
Similar experiments were performed with a letter “K”, the 
phoneme /i/ (as presented by Mesgarani et al. (2009), and a 
dot/impulse (Fig. S1), as detailed in supplemental material.

Compressive sensing on human data

Human data from Smith et al. (2012) was obtained for use 
in this paper. In the original paper, subjects (n = 5) were 
presented with binary noise visual stimuli and were asked to 
identify if they perceived a face in the image; unbeknownst 
to the subjects, none of the images contained a face. Reverse 
correlation was used to reconstruct each subject’s internal 
representation of a face. Here, conventional reverse corre-
lation, reverse correlation with compressive sensing, and 
estimation using a sparse GLM were performed on the 
stimulus-response pairs for each subject. For reverse cor-
relation, representation reconstructions were generated by 
multiplying the matrix of stimuli by the vector of responses. 
For compressive sensing, ŝ was calculated and multiplied 
by Ψ to reconstruct the representation. For the sparse GLM 
method, a GLM was fit as described in (Mineault et al., 
2009) and was used to estimate the representation. Response 
values of 0 were mapped to – 1 to be compatible with the 
original code.

https://github.com/alammert/compressive-sensing
http://packlab.mcgill.ca/publications.html
http://packlab.mcgill.ca/publications.html
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The parameter γ was determined through a ten-fold cross-
validation for each subject individually. For a subject, the 
matrix of orthonormal basis functions, Ψ, was generated, and 
Ψ was regressed against 8/10 of the stimuli to produce Φ. Φ, γ 
and 8/10 of the subject responses were used to produce s, the 
sparse weights, as in Eq. (7). The weights were then regressed 
against Ψ to generate a compressive sensing estimate of the 
subject’s internal representation of a face, as in Eq. (8). The 
resulting reconstruction then served as a template for the simu-
lated response generating procedure, whereby another 1/10 of 
the stimuli were regressed against the estimated template to 
generate estimated subject responses. The balanced accuracy 
between these estimated responses and the actual responses for 
these 1/10 of the stimuli was calculated. This procedure was 
done with γ in {2, 4, 8, 16, 32 ,64, 128, 256, 512, 1024}. The 
value of γ that produced the highest accuracy was used to gen-
erate a reconstruction with the remaining 1/10 of the data, and 
the accuracy of this reconstruction (the “test accuracy”) was 
calculated. This procedure was repeated using each tenth of the 
stimulus-response pairs to compute the test accuracy, and the 
value of γ that most frequently produced the highest test accu-
racy was selected as the appropriate gamma for that subject. 
This procedure was repeated individually for each of the five 
subjects, and the selected γ values for S1-S5 were 64, 16, 64, 
32, and 64, respectively.

Assessing reconstruction quality

Two measures of reconstruction quality were employed: 
(1) similarity of the reconstruction to the template by direct 
comparison (for simulated data only), and (2) accuracy 
obtained from using the reconstruction to predict subject 
responses. The first measure more specifically used Pear-
son’s r to quantify similarity between reconstructions and 
the corresponding templates the responses were gener-
ated from. The second measure relies on predicted subject 
responses that can be made by applying Eq. (2) to held-out 
or novel data using reconstructions in place of x. Recon-
struction quality can then be calculated and expressed as 
balanced accuracy over such predictions. In assessing pre-
diction accuracy on human data, the second measure was 
conducted using within-subject five-fold cross validations 
separately on estimates obtained from each reconstruction 
method (detailed below). In assessing prediction accuracy 
on simulated data, a novel data set was generated for the 
assessment using Eq. (2), which eliminated the need for 
implementing a cross-validation scheme.

Both measures were used to assess reconstruction qual-
ity in simulation studies, while only the second measure 
was used to assess reconstruction quality from human 
data. In simulation studies, the quality of reconstructions 
can be determined directly by comparing reconstructions 
against the template because the entire response process 

is observable, whereas the template/representation is not 
directly observable in the context of human data.

To assess the quality of the reconstruction estimation pro-
cedure for the human data, stimuli and responses from each of 
the five subjects (S1-S5) from Smith et al. (2012) were used for 
a fivefold cross-validation procedure. For a subject, 4/5 of the 
stimuli and the corresponding responses were used to generate 
a reconstruction using Eq. (4). That reconstruction then served 
as a template for the simulated response generating procedure 
with the remaining 1/5 of the stimuli, whereby the remaining 1/5 
of the stimuli were regressed (compared) against the template 
reconstructed from 4/5 of the stimulus-response pairs to gener-
ate estimated subject responses, as in Eq. (2). This procedure 
was repeated for each fifth of the stimulus-response pairs for a 
subject. The simulated subject responses for all cross-validations 
were compared to the actual human responses, and balanced 
accuracy was calculated. This cross-validation was conducted 
independently on the data for each of the five human subjects.

A similar cross-validation was performed on the human data 
to assess the compressive sensing simulation model. The matrix 
of orthonormal basis functions, Ψ, was generated for each sub-
ject, and Ψ was regressed against 4/5 of the stimuli to produce 
Φ. The determined γ value for the subject, Φ, and 4/5 of the 
subject responses were used to produce s, the sparse weights, as 
in Eq. (7). The weights were then regressed against Ψ to gener-
ate a compressive sensing estimate of the subject’s internal rep-
resentation of a face, as in Eq. (8). The resulting reconstruction 
then served as a template for the simulated response generat-
ing procedure, whereby the remaining 1/5 of the stimuli were 
regressed against the estimated template to generate estimated 
subject responses. This procedure was repeated for each fifth of 
the stimulus-responses for a subject. The simulated estimated 
subject responses for all cross-validations were compared to 
the actual human subject responses, and balanced accuracy was 
calculated. The cross-validation was conducted independently 
on the data for each of the five human subjects.

Cross-validation was again performed on the data to assess 
the simulation with Mineault’s GLM. The GLM was fit with 
4/5 of the stimuli and 4/5 of the subject responses, and the 
fit GLM’s output was the estimate of the subject’s internal 
representation of a face. That reconstruction then served as 
a template for the simulated response generating procedure. 
The remaining 1/5 of the stimuli were regressed against the 
estimated template to generate estimated subject responses. 
This procedure was repeated for each fifth of the stimulus-
responses for a subject. The produced estimated subject 
responses for all cross-validations were compared to the actual 
human subject responses, and balanced accuracy was calcu-
lated. The cross-validation was conducted independently on 
data for each of the five human subjects.

Quality of reconstructions from compressive sensing was 
compared to that obtained from conventional reverse correla-
tion and the sparse GLM by performing a hypothesis test on 



 Behavior Research Methods

1 3

the balanced accuracies produced by the aforementioned cross-
validation. A paired t test was performed across subjects with the 
null hypothesis that the mean difference in balanced accuracies 
obtained from compressive sensing versus those obtained from 
reverse correlation or the Sparse GLM was zero. A level of α = 
0.05 was used as the significance threshold.

We note that methods for assessing reconstruction quality 
in the case of human data have been the subject of discussion 
in the literature (Murray, 2011). Here, we follow the approach 
suggested by Neri & Levi (2006), that validates estimates by 
considering their ability to predict subject responses on a trial-
by-trial basis using the same subject response model discussed 
in Eq. (2). Prior efforts following this approach have focused on 
showing that predicted responses using the estimated representa-
tion were close to a theoretical upper bound for accuracy (akin 
to goodness of fit assessment), suggesting that the representation 
is a valid encapsulation of subject behavior given the response 
model. Prediction accuracy in such approaches is bounded by 
any noise in the subject response process (Murray et al., 2005), 
and so determining the overall validity of the estimate requires 
an estimate of the level of subject response noise. Here, the goal 
is rather simpler: to show that predicted responses using the 
compressive sensing-derived estimate are more accurate than 
predicted responses using other methods of reconstruction.

Results

Compressive sensing improves reconstruction 
accuracy in simulated data

To directly assess the applicability of compressive sensing to 
recovering cognitive representations, we compare the results 
of simulations of Gosselin & Schyns’ original study on repre-
sentations of “S” (Fig. 3) using both conventional reverse cor-
relation (Gosselin & Schyns, 2003) and compressive sensing 
approaches. We used an image of the letter “S” as the target 

cognitive representation for reconstruction (Fig. 3A). Specifi-
cally, the reshaped, vectorized “S” image was used as the rep-
resentation vector, x (Fig. 2), the basis for generating simulated 
subject responses in light of random stimuli contained in the 
stimulus matrix, Φ. The elements of Φ were generated by ran-
domly sampling from a uniform distribution over the interval 0 
and 1 and rounding those values to the nearest integer. A total of 
10,000 subject responses were simulated using this procedure, 
representing the subject responses in Gosselin & Schyns (2003). 
In the simulations, as in most cognitive experiments, we assume 
binary responses.

The simulated subject responses were used as the basis for 
reconstructing the latent representation, x, using both conven-
tional regression-based estimation and compressive sensing-
based estimation. Reconstructions were generated using both 
the full set of 10,000 stimulus-response pairs and using a lim-
ited subset of a randomly selected 10% of pairs (1000). Qual-
ity of a given reconstructed representation was assessed using 
two-dimensional correlation coefficient (r2) between the target 
representation and the reconstructed estimate. Results (Fig. 3) 
indicate that the accuracy of the reconstructed representation 
obtained using 10% of the samples via compressive sensing 
is effectively equivalent to that obtained using the full cohort 
of samples via conventional reconstruction, implying a 90% 
improvement in sampling efficiency. When allowed to operate 
on the full complement of samples, compressive sensing addi-
tionally shows improved accuracy over conventional reconstruc-
tion of approximately 15%. Similar improvements were shown 
on other types of naturalistic stimuli (Figs. S2–S3).

Compressive sensing outperforms reverse 
correlation across sample sizes and levels of noise 
in participant responses

An additional simulation study was conducted to provide 
a more complete view of the performance of compressive 
sensing as a function of the number of samples. This study 

A. “Cognitive” 
Representation

B. Conventional 
Estim (n=10k)

C. Conventional 
Estim (n=1k)

D. Compr Sens 
Estim (n=1k)

E. Compr Sens 
Estim (n=10k)

F. White Noise 
Stimulus

r(A,A)2 = 1.00 r(A,B)2 = 0.70 r(A,C)2 = 0.18 r(A,D)2 = 0.66 r(A,E)2 = 0.87

Fig. 3  Comparison of conventional regression-based estimation and 
compressive sensing estimation. The template image (A) of the “S” 
from Gosselin & Schyns (2003) is estimated in (B–E). An example 
noise stimulus is shown in (F). The method of estimation and num-
ber of samples used (n) is indicated below the image. The correla-

tion coefficient (r2) between the template and the estimate is shown 
above the image, indicating estimation quality. In the simulation, 
compressive sensing provides equivalent accuracy as the conventional 
approach with only 10% as many trials
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followed Gosselin & Schyns’ (2003) letter "S" example, 
as above, varying the number of stimulus-response pairs 
between 1250 and 20,000. A total of 30 simulations were 
conducted with each number of pairs, with ten obtaining 
estimates using conventional reverse correlation, another 
ten using compressive sensing, and another ten using the 
sparse GLM. For all simulations at a given value of n, the 
mean estimation quality (r2) and 95% confidence intervals 
were calculated separately for reverse correlation, compres-
sive sensing and sparse GLM estimates (Fig. 4), and the 
prediction accuracy and 95% confidence intervals were also 
calculated in the same conditions (Fig. 5).

The simulations described above assume an ideal 
observer – essentially a participant that does not make mis-
takes. However, human subjects are not ideal observers but 
rather will sometimes provide responses that are incorrect 

with respect to the task (i.e., responding "no" to a stimulus 
that well-matches the representation, or responding "yes" to 
a stimulus that doesn't). Importantly, prior results have dem-
onstrated both theoretically and empirically that compressive 
sensing is robust to such noise (Zhang et al., 2014; Donoho, 
2006). In order to verify those prior results and reproduce 
them in the compressive sensing context, we conducted a 
series of additional simulations that relaxed the assumption 
of an ideal observer. Specifically, “noisy” subject responses 
were modeled in accordance with Eq. (2). Levels of error 
considered, in addition to σ = 0, included σ = 25 and σ = 50. 
Results of these simulations are shown in Figs. 4 and 5. As 
expected, less accurate responses (higher σ values) produced 
lower estimation qualities and prediction accuracies across 
all sizes of stimulus-response pairs. Critically, however, 
compressive sensing continued to outperform conventional 

Fig. 4  Estimation quality as a function of sample size. Estimation 
quality (mean and 95% CI) obtained from reverse correlation, com-
pressive sensing, and the sparse GLM from (Mineault et  al., 2009) 
in our stimulation study shown across a range of sample sizes. Esti-
mation quality is shown separately for various levels of noise in the 

subject responses, including no noise (σ = 0), moderate noise (σ = 
25), and heavy noise (σ = 50). At all sample sizes and levels of noise, 
compressive sensing provides a much more accurate reconstruction 
than conventional reverse correlation, and the performance of the 
GLM diminishes when noise is added to the responses

Fig. 5  Response prediction accuracy as a function of sample size. 
Accuracies (mean and 95% CI) in predicting responses using recon-
structions obtained from the template, reverse correlation, compres-
sive sensing, and the sparse GLM from (Mineault et al., 2009) in our 
stimulation study shown across a range of sample sizes. Estimation 
quality is shown separately for various levels of noise in the subject 

responses, including no noise (σ = 0), moderate noise (σ = 25), and 
heavy noise (σ = 50). At all sample sizes and levels of noise, com-
pressive sensing provides a much more accurate reconstruction than 
conventional reverse correlation, and the performance of the GLM 
diminishes when noise is added to the responses. Correlation of the 
noisy template with the template is shown as the solid black line 
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reverse correlation in all cases. Similar improvements were 
shown with compressive sensing when the stimulus was a 
different letter (Fig. S2) or a phoneme (Fig. S3), although 
the sparse GLM outperforms compressive sensing when the 
stimulus was a dot/impulse (Fig. S4).

Compressive sensing improves reverse correlation 
on data from human participants

Human response data is the gold standard when proposing a 
technique intended to improve the processing of human subject 
responses. To this end, we reanalyzed human response data from 
Smith et al. (2012) in which reverse correlation was used to 
reconstruct internal templates of faces. In that study, five subjects 
were each shown approximately 10,500 binary noise images and 
asked to identify those stimuli with a face in them. Here, reverse 
correlation, sparse GLM estimation, and compressive sensing 
were all performed on the actual data from Smith et al. (2012) 
to generate reconstructions. The reconstructions using reverse 
correlation, essentially a recapitulation of the original results, 
are shown in Fig. 6A. As may be expected in a sparse image, 
the compressive sensing reconstructions have a smoother, more 
face-like appearance (Fig. 6B). Furthermore, Smith et al. (2012) 
identified several facial structures in their reconstructions (e.g., 
a hairstyle on subject S3 and a nose, mouth, and chin outline for 
S1, S2, and S3), and these are more clearly observable in the 
reconstructions using compressive sensing. The reconstructions 
presented here are notably symmetric and lack high frequency 
variation. These properties are not enforced by the compressive 
sensing method. Rather, faces themselves are largely symmetric, 
and these reconstruction properties are driven by the data.

For all subjects, compressive sensing yielded a higher 
balanced accuracy than did conventional reverse correlation 
or the sparse GLM (Fig. 7). Most markedly, using compres-
sive sensing over reverse correlation increased the accuracy 
for subject S1 from 56 to 61%, a nearly 9% upward change. 
A paired t test, performed across subjects under the null 
hypothesis that the mean difference in balanced accuracies 
obtained from compressive sensing versus those obtained 
from reverse correlation was zero, was found to be statis-
tically significant (p = 0.031). A paired t test, performed 
across subjects under the null hypothesis that the mean dif-
ference in balanced accuracies obtained from compressive 
sensing versus those obtained from the sparse GLM was 
zero, was found to be statistically significant (p = 0.023).

Discussion and conclusion

Reverse correlation is a technique commonly used in neu-
roscience and psychology research which requires gather-
ing many stimulus-response pairs. When used in cognitive 
studies to infer internal representations of target stimuli, the 

high number of trials needed to produce an adequate recon-
struction can make a study burdensome or even infeasible. 
Despite this inefficiency, reverse correlation is widely used 

Fig. 6  Comparison of conventional regression-based estimation and 
compressive sensing estimation of faces from human response data. 
(A) The reconstructions created with reverse correlation from the 
data collected by Smith et  al., (2012). (B) The compressive sensing 
reconstructions. (C) Color-adjusted reconstructions generated from 
the sparse generalized linear model described by Mineault (2009) for 
subjects S1–S5. Structural features identified in (A), such as a nose, 
mouth, and chin outline on S1, S2, and S3, are more noticeable in 
(B). GLM reconstructions in (C) have been brightened for clearer 
viewing (see Methods). Note that the faces for S1 and S2 appear 
switched compared to the 2012 paper, but they are named as labeled 
in the provided data

Fig. 7  Balanced accuracies of cross-validation for five human sub-
jects. Human subject response data (Smith et al., 2012) was used to 
generate a reconstruction with reverse correlation, compressive sens-
ing, or the sparse GLM technique from (Mineault et  al., 2009), and 
simulated responses to stimuli were generated using the reconstruc-
tion as a template. A fivefold cross-validation was done to compare 
the subject responses to the simulated responses for each subject. For 
all subjects, compressive sensing provides a more accurate estimate 
of responses than either conventional reverse correlation or the GLM 
method
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to uncover lower-level perceptual and neural representa-
tions and has had impactful initial success when applied to 
higher-level cognitive representations. Here, we propose an 
improvement to conventional reverse correlation by coupling 
it with compressive sensing, an advanced signal processing 
technique designed to enhance sampling efficiency.

Our results suggest that compressive sensing can reduce 
the number of trials required for accurate estimation of 
cognitive representations using reverse correlation by up 
to 90% without any loss of accuracy. Because estimating 
representations with traditional reverse correlation typi-
cally requires the collection of several thousands of stimulus 
response pairs, very few participants are examined in any 
given study, which limits the possible analyses and infer-
ences about potential universal aspects of human cognitive 
representation, as well as examination of individual differ-
ences. The 90% reduction in required trials demonstrated 
here opens the door to conducting more studies with more 
participants. Cognitive studies that would presently take 
weeks to complete could instead be performed in one sit-
ting, and those studies that would otherwise impose limiting 
constraints on either the stimuli or the reconstructions (e.g., 
Moon et al., 2020) could be conducted with assumptions 
only about sparsity; this would lead to clearer, less biased 
representations. Given the central importance of cognitive 
representations in mediating human perceptual experience 
and behavior, this presents a substantial increase for reverse 
correlation’s potential for wide-spread use in the psychologi-
cal and cognitive sciences.

Alternatively, the compressive sensing approach may be 
used to generate more accurate reconstructions for a given 
number of trials, as was done here with representations of 
faces. The same number of stimulus-response pairs gener-
ated a clearer face than in the original work (Smith et al., 
2012), and using compressive sensing created reconstruc-
tions that elicited more accurate simulated responses than 
reverse correlation or the GLM in the cross-validation 
(Fig. 7). This same improvement in reconstruction qual-
ity could be seen in other cases where a full complement 
of trials is possible to collect, or even retrospectively in 
the context of already-collected data sets.

The simulations reconstructing “S” showcase compres-
sive sensing’s utility for analyzing novel data, yet com-
pressive sensing is not limited to use solely in new studies. 
Rather, reanalysis of human response data from (Smith 
et al., 2012) shows that compressive sensing can also be 
retrospectively applied to existent data to improve results. 
Real human subject responses are the gold standard data 
when proposing a technique intended to improve the pro-
cessing of human subject responses. However, whereas 
the human subject responses demonstrate compressive 
sensing’s utility on real data, the simulations also used in 
this work offer the benefit of being an entirely observable 

process, including the access to underlying representations 
that the responses are based off of. This means that the 
quality of the reconstruction can be assessed directly by 
comparing the representation to the reconstruction. The 
subject response model used in simulation here is con-
sistent with that assumed in other applications of reverse 
correlation (Ahumada, 2002). What’s more, this work 
takes the additional step of modeling subject noise in the 
responses (Fig. 4).

Both compressive sensing and the sparse GLM greatly out-
performed traditional reverse correlation in simulations with-
out added noise. Under noiseless conditions, the performance 
of sparse GLM and compressive sensing is comparable when 
the number of trials is small, and the Sparse GLM performs 
somewhat better than compressive sensing when the number 
of trials is large (Fig. 4). Critically, any advantage of the GLM 
approach was not present when noise was added to simulate 
subject responses that are more realistic (i.e., imperfect). 
Prior attempts to improve the efficiency of reverse correla-
tion using GLMs have shown that the benefit over traditional 
linear reverse correlation diminishes as more noise is added 
(Mineault et al., 2009; Abbey & Eckstein, 2001; Knoblauch 
& Maloney, 2008), and the present work further demonstrates 
that. When the noise level was at 20%, the GLM performed 
similarly to reverse correlation at all values of n. These results 
were further supported when using real human data, which 
is inherently noisy; compressive sensing had a higher bal-
anced accuracy than the GLM for all five subjects, and the 
GLM performed similarly to the standard reverse correlation 
approach. Furthermore, the compressive sensing procedure 
used here (adapted from Zhang et al., 2014) was several orders 
of magnitude faster than the optimization method of the GLM 
from (Mineault et al., 2009).

Given earlier discussion regarding 1-bit, robust compres-
sive sensing being highly appropriate in the present context, 
we can speculate that the poor performance of Mineault’s 
method compared to the presently employed method of 
Zhang (2014) may be due to either (a) reliance on an itera-
tive, as opposed to analytical, solution, which may result 
in failure to minimize the objective function with sufficient 
precision, or (b) failure to effectively deal with the high lev-
els of noise typical of real human responses.

Despite the apparent advantages of taking a compressive 
sensing approach to reverse correlation, careful considera-
tion should nevertheless be given for specific applications 
regarding whether the target representations can reasonably 
be expected to be sparse. Even though the assumption of 
sparsity, which is so critical to the successfully application 
of compressive sensing, seems well justified for images and 
visual representations, the assumption of sparsity will be 
expected to bias results toward sparse estimates even when 
the underlying representation is non-sparse.
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Compressive sensing holds promise for drastically improv-
ing the efficiency and accuracy of analysis in reverse cor-
relation beyond cognitive science, in domains including a 
broad range of electrophysiology paradigms (e.g., De Boer 
& Kuyper, 1968; Ringach & Shapley, 2004; Stark, 1968), cal-
cium imaging (Ramdya et al., 2006), auditory system func-
tion (Ahumada and Lovell, 1971), and gene expression (Lin 
et al., 2015). Given that reverse correlation responses can 
be continuous (e.g., neural firing rates; Ringach & Shapley, 
2004), ordinal (e.g., similarity scores; Zymnis et al., 2009), or 
binary (e.g., yes/no; Zhang et al., 2014; Boufounos & Bara-
niuk, 2008; Jacques et al., 2013), compressive sensing has 
the potential to be widely utilized in areas of science beyond 
where reverse correlation is currently in common use.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 023- 02281-4.
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