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Abstract
A common challenge in designing empirical studies is determining an appropriate sample size. When more complex models
are used, estimates of power can only be obtained using Monte Carlo simulations. In this tutorial, we introduce the R package
mlpwr to perform simulation-based power analysis based on surrogate modeling. Surrogate modeling is a powerful tool in
guiding the search for study design parameters that imply a desired power or meet a cost threshold (e.g., in terms of monetary
cost). mlpwr can be used to search for the optimal allocation when there are multiple design parameters, e.g., when balancing
the number of participants and the number of groups in multilevel modeling. At the same time, the approach can take into
account the cost of each design parameter, and aims to find a cost-efficient design. We introduce the basic functionality of the
package, which can be applied to a wide range of statistical models and study designs. Additionally, we provide two examples
based on empirical studies for illustration: one for sample size planning when using an item response theory model, and one
for assigning the number of participants and the number of countries for a study using multilevel modeling.

Keywords Simulation · Sample size · Power analysis · Machine learning

Introduction

Reliable testing of scientific hypotheses requires a suffi-
ciently large sample size.Aubiquitous challenge in empirical
research is that recruiting large samples is difficult due to
resource constraints (e.g., time, money, labor) or ethical con-
straints (e.g., inconvenience or participation risks). However,
if the sample sizes are small, random noise can mask the
true effects, e.g., with regard to observed behavior or cogni-
tive processes. In a formal hypothesis-testing framework, this
trade-off between resource constraints and statistical signif-
icance is best described by the measure of statistical power.
Statistical power describes the probability of finding an effect
that is actually present in the population of interest. In gen-
eral, we want our sample size to be large enough to achieve
high statistical power while using as few resources as neces-
sary.
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To address the challenges in finding a cost-efficient sam-
ple size while maintaining high statistical power, researchers
can utilize power analysis tools to optimize their study
designs. The mlpwr package provides a means to perform
simulation-based power analysis for a broad class of applica-
tions (Zimmer and Debelak, in press). It fills two previously
existing gaps in the literature by allowing for user-defined
scenarios with multiple design parameters and explicitly
accounting for the cost of study designs during the search
algorithm. As Lakens (2022) recently pointed out, there are
many power analysis tools available, but learning to use them
effectively takes time. In response to this issue, we provide
an introduction to the background and the application of the
mlpwr package.

This paper is aimed at researchers who want to perform
power analysis for complex statistical models, specifically
those requiring Monte Carlo simulations. To effectively use
the approach outlined in the paper, readers should possess a
fundamental understanding of R and be proficient in setting
up simulated hypothesis tests, which includes artificial data
generation and model fitting.

The remainder of this introduction provides an overview
of power analysis for complex study designs, including the
motivation behind it, different approaches to conducting
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power analysis, a brief review of previous research, and
an overview of our framework. In the “The mlpwr pack-
age” section, we introduce the mlpwr package with a basic
example andgradually progress towardsmore complex usage
scenarios. Finally, in the “Practical examples” section, we
demonstrate the practical application of the package by pre-
senting two examples based on empirical studies utilizing
item response theory and multilevel modeling models.

Motivation

Justifying sample sizes

The recent replication crisis has put low statistical power
and replicability of scientific research into focus (Open Sci-
ence Collaboration, 2015; Button et al., 2013). Starting from
the observation that most published research results might
be wrong (Ioannidis, 2005; Simmons et al., 2011), there
have been several developments to improve the replicabil-
ity of scientific studies (Shrout and Rodgers, 2018). One of
these are registered reports, in which research projects are
reviewed and conditionally accepted based on soundmethod-
ology rather than on the statistical significance of the result.
In registered reports, justification of sample size based on
power analysis is usually mandatory. For example, in the
journal Nature Human Behaviour, the sample size should be
large enough to achieve at least 95% statistical power (Nature
Human Behaviour, 2022). Looking at recent developments,
registered reports are indeed accompanied by more frequent
justification of sample size (Soderberg et al., 2021). Another
means to ensure replicability is through pre-registrations,
where key properties of the planned research are fixed before
data collection and statistical analyses. A study by Bakker et
al. (2020) found that pre-registered studies had larger sample
sizes than earlier psychological studies. However, the study
did not find that explicit recommendations for performing
power analysis led to larger sample sizes. Although the sam-
ple size is still often only stated but not justified (Lakens,
2022), stating and justifying a sample size before conduct-
ing a study is arguably becoming common practice.

Multiple design parameters

In addition to sample size, a study can be characterized by
other adjustable design parameters that influence statistical
power. Instead of only one study design parameter (e.g., sam-
ple size), a study design can then be characterized by a set
of two or more study design parameters. For example, the
design parameters may consist of the sample size plus

• the number of measured time points in a longitudinal
design,

• the number of questionnaire items,
• the number of trials per participant in an experimental
design (see also Baker et al. 2021), or

• the number of groups in a multilevel design.

In these examples, calculating the power and finding a
good study design can be much more difficult than if there is
only one design parameter.

As an illustrative example, we consider testing the effect
of a novel reading exercise on the reading competency of
elementary pupils. To ensure the reliability of our results, we
want to collect pupils from multiple schools. We set up two
conditions that differ in whether an older reading exercise
or the novel exercise is used. Within each school, half of the
pupils get administered the old exercise and half the new one.
We use a multilevel/mixed-effects model to analyze the data
and specify a random intercept and slope for the different
schools. This is done to control for different baseline read-
ing skills as well as potential differences in the effectiveness
of the exercise in the different schools. As a predictor, we
include the type of reading exercise (old versus new). The
design parameters are a set of the number of schools and the
number of pupils per school. We want to find out how many
pupils from howmany schools are sufficient for our research
design to have a power of .95.

Figure 1 shows the power as a function of the number of
schools and the number of pupils per school on the x- and
y-axes. The surface shows the power for all sets of design

Fig. 1 Power for multiple design parameters. The surface displays the
power levels for all design parameter sets. The brighter colors indicate
higher power values, whereas darker colors correspond to lower values.
Design setsmarkedwith a line correspond to a power of .95. The optimal
design parameter set when also accounting for costs is marked with a
dot
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parameters (including designs that are not realistic because
they use fractions of pupils or schools). The brighter colors
indicate higher power values, while the darker colors indicate
lower ones. As we will go into detail below, obtaining this
relationship between the design parameters and power can
be complicated and computationally intensive, depending on
the specific study design and hypothesis test we consider.

As can be seen in Fig. 1, we have multiple options to pick
from if we want to choose a set of design parameters that
corresponds to a specific power. To help in our example, we
have highlighted all sets with a power of .95 with a line. For
example, 22 pupils each from 17 schools and 11 pupils each
from21 schoolswould both correspond to a power of approx-
imately .95. Such design sets are termed power-equivalent in
the literature (von Oertzen et al., 2010). They underline the
fact that a power analysis in multiple dimensions is more
complex, as there is no simple answer to our question of
which design to choose.

Costs of study designs

When we need to choose one design, we can usually distin-
guish between designs that are power-equivalent using the
required resources, such as the financial costs to recruit more
participants or increase the number of groups.

For our example above, we want to assume that the ele-
mentary school students participate without compensation.
However, producing one set of exercise material costs $100.
We assume that the study is conducted by the same investi-
gators in each school, therefore this exercise material can be
reused in all schools. Also, performing the evaluation with
another group of pupils in an additional school produces costs
of $200. We can express the total costs of our study as fol-
lows:

Cost = 100 · Pupils per school + 200 · Schools

We can use this function to calculate the costs for three
promising design parameter sets, see Table 1. If we continue
evaluating the costs for all promising candidate sets, we find
that only one of the power-equivalent designs on the line in
Fig. 1 is optimal with respect to the overall study cost. This
design (11 pupils per school and 21 schools) is marked with
a dot.

Table 1 Sets of design parameters and associated power and cost

Pupils per school Schools Power Cost

22 17 .951 5600

11 21 .952 5300

6 27 .949 6000

Finding such cost-optimal designs in the presence of mul-
tiple design parameters can be very computationally inten-
sive with currently available implementations. The mlpwr
package we introduce in this paper is aimed to provide an
efficient approach that is easily accessible.

Another challenge that can arise in the context of multiple
design parameters is that there is a strict limit on resources,
such as amaximumbudget for a study. In this case, onewants
to find a design with maximum power among designs that
are similar in terms of cost. For example, if two experimental
designs are associated with a cost of $1,000, we would prefer
a set of parameters with a power of .9 over a set with a power
of .8. The design with a power of .9 might then be the best
compromise given the cost constraint. Also for this scenario,
the mlpwr package aims to provide an efficient solution.

Approaches to power analysis

Beforewepresent our implementation tofindoptimal designs
in these scenarios, we want to give an overview over power
analysis methodology and implementations. Methodologi-
cally, two approaches can be distinguished for determining
the power of a study. One is the analytical or formula-based
approach. It is generally fast but sometimes unavailable,
in particular for more complex or uncommon statistical
hypothesis tests (Lakens, 2022). An alternative approach
with higher availability but higher computational effort is the
simulation-based approach. Both analytical and simulation-
based approaches can be used in the presence of multiple
design parameters.

Analytical approach

In analytical approaches, the known mathematical relation-
ship between design parameters and statistical power is the
basis for power analysis. This is illustrated in the left panel in
Fig. 2. It shows the power for using a dependent t test to detect
a mean difference between two measurement time points.
With such a graph describing the relationship between sam-
ple size and power, we can determine the power for a given
sets of study design parameters or sets of design parameters
with a desired power.

There are well-known implementations of analytical
power analysis. Examples include the standalone G*Power
software (Faul et al., 2009) or the pwr package (Champely,
2020) implemented in R (R Core Team, 2022).

The speed of analytical approaches makes them the first
choice for simpler models. However, a slight change in the
study design and the hypothesis test in question may require
a different analytical treatment. This is because it can be
difficult or even impossible to derive analytical formulas for
more complex models (such as determining the power to test
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Fig. 2 Analytical approach (left panel) and simulation-based approach (right panel) to power analysis. In the right panel, power was estimated
using 200 simulations for each sample size. The error bars represent the standard error of the power estimate

a random effect in a multilevel model, Cools et al. 2008). For
this reason, a common challenge is that analytical solutions
are unavailable (Lakens, 2022).

Simulation-based approach

The simulation-based approach is based on repeated sim-
ulation of the desired study. Each simulation run involves
generating artificial data, fitting a statistical model, and per-
forming a statistical test. The resulting rate of significant test
results across simulation runs serves as an estimate of sta-
tistical power. When we perform a simulation-based power
analysis, we want to repeat this process several times for dif-
ferent sample sizes or, put more generally, for different sets
of study design parameters.

The result of this approach is shown in the right panel of
Fig. 2 for our illustrative example. As indicated by the error
bars, we receive estimates together with their uncertainty for
the power at the different sample sizes. For each sample size,
the error bars indicate the standard error of the estimated
power. The estimated power for a given sample size may
differ from the true power and becomes more accurate if we
increase the number of simulation runs.Moreover, compared
to an analytical approach, we can only get an approximation
of the overall relationship between sample size and power.
Determining the optimal sample size, e.g., to achieve a power
of .95, can therefore be computationally intensive.

Guiding simulation-based power analysis

Without using systematicmethodology to guide a simulation-
based methodology, one can perform a manual search for a
suitable set of design parameters. Manual search involves
estimating power for a particular set of design parameters
and then repeating the procedure for a different set of design
parameters based on the result and subjective evaluation. It

should be noted that this procedure is much easier if there
is one design parameter compared to multiple parameters.
For example, if there is only sample size, and the estimated
power is too low for a specific sample size, we can continue
searching among higher sample sizes. If we consider a set
of multiple design parameters, it is much more difficult to
decide which design parameter set to try next. As we have
seen in Table 1, promising sets can be far apart from each
other. In such situations, it can be difficult to find all good
candidate sets, even ifwe have already stumbled across some.
Therefore, depending on the computational complexity of
individual simulations, a manual search may not be compu-
tationally feasible, especially formultiple design parameters.
In addition, manual search is not guaranteed to find optimal
parameter sets in terms of power or cost. This is because
in scenarios with multiple design parameters, we may com-
pletely miss the region where the optimal set of design
parameters is located during a manual search.

To compensate for these drawbacks, especially when indi-
vidual simulation runs take a long time, we need additional
tools to guide simulation-based power analyses. The goal of
these tools is to increase computational efficiency in approx-
imating a set of design parameters with desired power and
cost.

Basic methods

Onebasicmethod to guide a simulation-based power analysis
is to systematically search a grid of plausible parame-
ter values. It is commonly applied for study designs with
one design parameter and often sufficient in this case.
There are many available implementations of grid search
for simulation-based power analysis that provide addi-
tional support for specific applications. Examples include
simr for multilevel models (Green and MacLeod, 2016),
mc_power_med for mediation models (Schoemann et al.,

123



Behavior Research Methods

2017), or PowerLAPIM for intensive longitudinal designs
(Lafit et al., 2022). To facilitate the decision for a specific
study design, one can repeat the grid search with iteratively
smaller grids. As a more standardized alternative, a bisection
search algorithm to systematically narrow down on a suitable
sample sizewas suggested byWilliams et al. (2007) and Jung
(2008).

Surrogate modeling

Whenwe consider study designswithmultiple design param-
eters, guiding a simulation-based power analysis becomes
more difficult. This is because the power associated with a
single design parameter set can take a long time to estimate
and the possible number of design parameter sets becomes
much larger when there are multiple design parameters. Sur-
rogate modeling represents a straightforward solution to this
problem. The idea of surrogate modeling is to approximate
a relationship that is very costly to investigate with a func-
tion that is cheaper to evaluate (Bhosekar and Ierapetritou,
2018; Forrester and Keane, 2009). One early example appli-
cation is the relationship between geographic location and
groundwater quality (Razavi et al., 2012). To study this rela-
tionship optimally, for example, to find optimal sites for
groundwater remediation, we would need to study ground-
water quality at countless sites. A more economical option is
to test fewer sites and use a surrogate model for the relation-
ship between site and groundwater quality. Using the fitted
surrogate model, one can then make predictions about water
quality at untested sites based on water quality at neighbor-
ing sites. Once a site of interest is identified, one can test the
groundwater there to measure quality. Then one can expose
the surrogate to this newly collected data and adjust it accord-
ingly. At the end of this iterative process, an optimal site
for groundwater remediation can be found, requiring only a
small number of actual tests.

Another example of surrogate modeling can be found in
psychophysics, where a psychometric function such as a
logistic or Weibull function is used to model the relationship
between stimulus intensity and perception intensity (Leek,
2001). The function describes the probability of perceiving a
stimulus at a certain intensity, and, once fitted, can be used to
predict the stimulus intensity at which the perception thresh-
old (i.e., 50% perceived) is reached (Watson and Pelli, 1983).

We can also adopt the idea of surrogate modeling to the
functional relationship between study design parameters and
power. For the right panel of Fig. 2, we had estimated power
for a range of sample sizes. For the purpose of an example,
we want to find a sample size that corresponds to a power
of .95. We can use logistic regression as a surrogate model
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Fig. 3 A basic surrogate model fit. The underlying example uses a t test
to test for a mean difference between two time points. For each sample
size, the error bars represent the standard error of the estimated power

to fit this relationship, see Fig. 3. Through this fitted model,
we obtain a good idea of the relationship between sample
size and power, similar to the known functional relationship
in an analytical power analysis. We can use this functional
relationship to predict the power for a sample size that we
did not perform a simulation at beforehand. For example, for
a sample size of N = 100, the power can be predicted to be
.680. We can also obtain a guess for which sample size will
imply our desired power of .95. Accordingly, we would next
perform further simulations using a sample size of N = 204.
Afterwards, we can fit our surrogate model again to refine
our idea of the relationship between sample size and power.
In this way, we can iteratively approach a suitable sample
size.

Surrogatemodeling is computationallymore efficient than
manual search or grid search. With surrogate modeling, a
small number of simulations can be sufficient to obtain
an idea of the overall relationship and appropriate design
parameter sets. This is particularly pronounced with multi-
ple dimensions of design parameters. Since there are many
possible options, it can be very difficult to select the next set
of design parameters to estimate performance in a manual
search. Also, in a grid search, the computational cost can be
very high if we want to estimate the performance for a larger
number of design parameter sets. Surrogate modeling can be
more efficient than grid search even when there is only one
design parameter: In a simple example comparing it to a grid
search reported in Green andMacLeod (2016), our approach
required only a fifth of the computational effort (Zimmer and
Debelak, in press).
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Previous research and implementations

Surrogate modeling in the context of optimizing the power of
a study design has already been applied in multiple studies,
including clinical trials and network models. In this section,
which is aimed more at the technically interested reader, we
provide an overview of these.

Mulay et al. (2021) applied surrogatemodelingof power in
three scenarios: A linear regression, logistic regression, and a
repeated measures ANOVA. As design parameters, they var-
ied not only the sample sizes, but also the model parameter
weights, e.g., the regression weights. To predict the power
as a function of the study design parameters and the model
parameter weights, their most successful surrogate model
was an approach using a neural network. Presumably because
they focused on describing the overall power function, they
did not apply an iterative algorithm to find an optimal constel-
lation of study design parameters. To find an optimal design
parameter set, the use of an iterative algorithm is usually a
better strategy in terms of computational cost. We also use
one in the package mlpwr to focus computational resources
on finding promising design parameter sets.

Wilson et al. (2020) use surrogate modeling in the con-
text of a clinical trial. They apply a multilevel model and
consider multiple study design dimensions. Since their sta-
tistical approach has an unknown alpha error, they optimize
for a desired alpha error alongside a desired statistical power.
They use R to implement their surrogate model algorithm,
and find a selection of suitable sets of design parameters. One
drawback of the approach is that the cost of the parameter
sets is not taken into consideration during the search. This
can be computationally suboptimal if many simulations are
performed for design parameter sets that are relatively cost-
intensive.An approach that takes the cost of design parameter
sets into account during the search would be more desirable
for computational efficiency. By considering cost, we can
discard design parameter sets that have promising power but
high cost (such as the third set in Table 1) early during the
search.

Another application for clinical trial designs was recently
published by Richter et al. (2022). They performed opti-
mization of multiple study design parameters for an adaptive
seamless design (Friede et al., 2020). They considered mul-
tiple design parameters, such as a proportion of participants
allocated to different stages of the research design, but the
total sample was held fixed. For their surrogate model imple-
mentation, they used the mlrMBO package (Bischl et al.,
2017). mlrMBO is a flexible and comprehensive implemen-
tation of surrogate modeling written in R. In their study,
Richter et al. (2022) found that surrogate modelling allows
suitable designs to be found in a fraction of the time required
by an exhaustive grid search. Because the total sample size

was held constant in their example, the cost of the design
parameter sets did not need to be considered in the search
algorithm. However, this may be desirable in other scenarios
where costs vary more between design parameter sets.

Constantin et al. (2021) applied a surrogate modeling
approach to find adequate sample sizes for network mod-
els. For network models, power usually refers to achieving a
desired performance measure, such as a desired sensitivity,
rather than significant p values. They provide the powerly
R package, which is also available on CRAN. It supports
optimization in one design parameter dimension and applies
monotone splines as a surrogate model. While the package
is designed for network models, it can also accommodate a
wide range of other statistical models.

Our framework

In a recent manuscript, we proposed a novel surrogate mod-
eling framework for finding optimal designs (Zimmer and
Debelak, in press). Our framework is based on the core ideas
of iterative data collection and predictions, as described in
the “Surrogate modeling” section, and can be located in the
literature alongside existing approaches for modeling statis-
tical power in multiple design parameter dimensions, such
as those presented by Wilson et al. (2020) and Richter et al.
(2022).

As an implementation of our framework,we developed the
mlpwr R package, which can be applied to a wide range of
study designs and statistical hypotheses. The package closes
two gaps in the literature by providing an implementation
for multiple study design parameters and allowing for the
consideration of costs during optimization. By taking cost
into account, our framework enables a more efficient search
for optimal designs compared to other approaches, such as the
one presented by Wilson et al. (2020), where a selection by
cost can only be performed after identifying suitable design
parameter sets.

Our algorithm involves repeated phases of simulated
hypothesis tests and the prediction of suitable study designs.
In the Appendix, we provide a detailed description of the
algorithm and its phases.

In an extensive simulation study, we demonstrated the
accuracy of our framework for a range of different scenarios,
including t tests, ANOVA, item response theory (IRT) mod-
els, multilevel models, andmultiple imputation (Zimmer and
Debelak, in press).

It is important to note that our framework is designed to
address a broad class of study design scenarios, which may
result in less-than-optimal performance in specific situations.
For example, as we take a general function approximation
approach tomodel the relationship between study design and
statistical power, there will be less flexible approaches that
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offer better solutions for specific scenarios. However, by pri-
oritizing good results across different scenarios, we believe
that our framework can be a valuable tool for power analysis
in practice.

The mlpwr package

This section introduces how to find optimal study designs
using the mlpwr package. To begin, we present an illus-
trative example to showcase the basic functionality of the
package. Next, we delve into more complex usage scenarios
and introduce them alongside specific topics, such as setting
up simulation functions, terminating and continuing a search,
selecting a surrogate model, and managing multiple design
dimensions.

The mlpwr package is intended as an easy-to-use inter-
face to performing the surrogate modeling approach to study
design finding. Since optimization of power is a very specific
use case of surrogatemodeling, the mlpwr package provides
a specifically tailored interface on top of its own imple-
mentation of surrogate modeling. This serves the purpose
of simplifying the use of surrogate modeling compared to
directly using more general implementations, e.g., mlrMBO.

This tutorial uses version 1.1.0 of the mlpwr package. It
is available on CRAN1. All code used in this tutorial paper
is also available in the supplementary material at https://osf.
io/xebsj/.

An illustrative example

First, we will go through a simple example to show the
basic functionality of the package for determining a sam-
ple size. We will cover additional functionality and options
in the sections from “Simulation function” to “Additional
options”. We therefore consider the evaluation of a medical
intervention to reduce the symptoms of a cold. Our goal is
to determine a suitable sample size for a study that examines
the utility of the intervention. Specifically, we want to test
whether the within-person difference in symptoms of a cold
between two time points (before and after an intervention)
differs from 0. For the sake of simplicity, we assume that the
cold symptomatic is measured using real values. We further-
more assume that the intervention has a small effect size of
Cohen’s d = 0.3 and apply Student’s t test within subjects
using an alpha level of .01.

As a prerequisite to the surrogate modeling procedure,
we express a single simulation run in a simulation function

1 install.packages("mlpwr") can be used to install the pack-
age. It can be loaded using library(mlpwr).

simfun_cold. It takes the study design as input and out-
puts an indication of significance:

simfun_cold <- function(N) {
# Generate a data set
dat <- rnorm(n = N, mean =
0.3 , sd = 1)
# Test the hypothesis
res <- t.test(dat)
res$p.value < 0.01

}

In the simulation function, the object dat, which corre-
sponds to artificial data, is first generated based on the sample
size N. This data set contains the reduction of cold symptoms
between the two time points for each person in the study. We
then perform the planned t test to test whether the reduction
of cold symptoms differ from 0, and obtain a p value. Finally,
the output of simfun_cold is either TRUE if the p value
is less than .01 and FALSE otherwise. To obtain an estimate
of the statistical power for a sample size N = 120, we can
repeatedly execute simfun_cold(N = 120) and obtain
the rate of successful tests. For further guidance on setting
up a simulation function in more advanced settings, see the
“Simulation function” section.

We can now use the simulation function simfun_cold
as an input to the find.design function in mlpwr to
perform the search using surrogate modeling. As boundaries
to search within, we want to specify 100 participants as a
lower bound and 300 participants as an upper bound. We
can do this by specifying the vector c(100, 300) in the
boundaries argument.Wecould also put this vector inside
a list, specifying that the boundaries refer to the sample size
n: list(n = c(100, 300)). This will be more useful
later when we consider multiple design parameters. Further-
more, we indicate that we search for the sample size that
corresponds to a power of .95.

res <- find.design(simfun =
simfun_cold , boundaries =
c(100, 300), power = 0.95)

We can display a summary of the results with
summary(res):

Call:
find.design(simfun = simfun_cold ,

boundaries = c(100, 300),
power = 0.95)

Design: N = 203

Power: 0.95096 , SE: 0.0041
Evaluations: 4000, Time: 1.16 ,

Updates: 16
Surrogate: Logistic regression
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In the console output, we can read off the sample size pre-
dicted by the algorithm, as well as the estimated power and
estimated uncertainty (standard error, SE) for this design. In
this example, the final predicted sample size was N = 203
and the power was estimated to be .95096 for this sample
size (SE = 0.0041). The summary also provides further
information about the search. Accordingly, the simulation
function was evaluated 4000 times, the calculation took 1.16
s in total, and the updating phase was performed 16 times.
During each updating phase, the simulation function is eval-
uated at promising locations. Technical details such as the
number of evaluations during each update and more infor-
mation about the different algorithm phases are described in
the Appendix. A logistic regression was used here as the sur-
rogate model. We will go over the surrogate models and the
available options in more detail in the “Surrogate models”
section.

We can obtain a graphical representation of the result by
using plot(res), see Fig. 4. The black dots in this plot
indicate the estimated power for all simulated sample sizes.
The gray ribbon shows the estimated standard error for all
sample sizes within the boundaries (see the “Surrogate mod-
els” section for more details on its calculation). The graph
illustrates the efficiency of the surrogate modeling method,
namely that the algorithm leads to a concentration of search
effort in the promising region. This can be seen from the
fact that many of the simulated data points are close to the
optimal value around N = 200. This speeds up the search
considerably, especially for more complicated designs, as we
will see below

Simulation function

The simulation function requires the study design parame-
ters as input and returns an indication of significance. While
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Fig. 4 Illustrative example: graphical representation of the result

this allows for a high degree of flexibility as many simula-
tion functions are compatible, depending on the study design
being planned, setting up the simulation function correctly
canof course be challenging.Most often, the simulation func-
tion internally consists of two steps, as exemplified by the
simfun_cold above.

1. Generating a data set. This can be done using an object
that contains a fitted model or via specifying the model
parameters directly.

2. Testing the hypothesis. This usually first involves fitting a
statistical model to the generated data. Using the model,
we can perform a statistical test and output the signifi-
cance.

In most cases, the test of the hypothesis is more straightfor-
ward for applied researchers, as it is a standard use case of R
packages and taught in many statistics courses. Generation
of artificial data is however less often practiced and may be
unfamiliar to applied researchers. An important prerequisite
for generating data and planning a study design in general
is the determination of the expected size of the effect to be
studied (Lakens, 2022). There are many definitions of effect
size that depend heavily on the statistical model used (e.g.,
Brysbaert and Stevens 2018; Lorah 2018; Chalmers 2022).
Options to determine an effect size include using the results
of a meta-analysis, consulting with experts, or conducting a
pilot study. To assist with data generation, many R packages
offer special functions that can greatly help with this step.
Examples are the simulate function in the lme4 package
(Bates et al., 2015) and the simdata function in the mirt
package (Chalmers, 2012). These functions can be used as
a part of simulation functions to generate a data set with
the desired study design parameters, such as a desired sam-
ple size. Because of this possibility, the mlpwr package is
highly compatible with any existing artificial data generation
functions in other packages and can be used in combination
with them.

Togivesomeexamplesofhowtosetupsimulation functions,
including using data generation functions from other packages,
we provide the vignettesimulation_functions.Rmd2.
Here, we collect different example simulation functions.
These are fully functional simulation functions that can serve
as a blueprint and starting point for adaptation to your own
use case. The amount of customization required may vary
depending on your planned scenario of data generation and
hypothesis testing. The included templates are from the fol-
lowing areas and use the respective R packages:

2 Vignettes contain additional guidance for packages. This vignette
can be retrieved at https://cran.r-project.org/package=mlpwr or using
browseVignettes("mlpwr") after installing the mlpwr pack-
age.
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• t test, ANOVA, and generalized linear models using the
stats package (R Core Team, 2022)

• Item response theory models using the mirt package
(Chalmers, 2012)

• Multilevel models using the lme4 package (Bates et al.,
2015)

Terminate and continue

In the course of the surrogatemodeling algorithm,many eval-
uations of the simulation function are performed to obtain
power estimates. By default, find.design terminates
after 4000 evaluations of thesimfun. To change this accord-
ing to your needs, you can set the evaluations argument
of the function to a custom value. Another option for termi-
nation is reaching a specified certainty about the estimated
power for the predicted study design. Using ci = .03, for
example, we can indicate that we want to reach a 95% con-
fidence interval with a width of .03 or smaller for the power
estimate. Finally, we can specify a number of seconds after
which the function should terminate via the time argument.
We can set multiple criteria for termination, in which case the
algorithm ends if at least one of them is met. For example:

res <- find.design(simfun =
simfun_cold , boundaries =
c(100, 300), power = 0.95 ,
evaluations = 2000, ci = 0.03 ,
time = 2)

In this case, the algorithm would terminate when either at
least 2000 evaluations of the simulation function have been
performed, the estimated confidence interval width is less
than .03, or more than two seconds have elapsed.

In case the result found by find.design should still
be improved further, you can continue a terminated search
at any time, e.g., if more evaluations should be performed
or the confidence interval width should be even smaller. The
simplest way to do so is via:

res_continued <- find.design(
continue = res)

This way, the algorithm is continued using all previously
performed simulation function evaluations. You do have the
option to specify different termination criteria than before at
this point. If not, all previously specified options are retained
(e.g., time, ci, evaluations). One use case would be
to first run the algorithm for one minute with time = 60
and then continue the search for five minutes with time =
300.

Surrogate models

During the search, the surrogate models are used to fit the
relationship of design parameters and power to determine
the next search location, see Figs. 3 and 4. By default,
find.design uses a logistic regression when one design
dimension is used (e.g., when only sample size is searched
for) and Gaussian process regression (GPR) when multiple
design dimensions are used (e.g., in multilevel models when
sample size and the number of clusters are searched for).
Technically speaking, in GPR, the design parameter space
is modelled as a collection of random variables (Rasmussen
and Williams, 2006). The relationship of the estimates of
neighboring points is described through a specific covariance
function, which functions as a prior. This is one of the major
advantages of GPR: One can estimate not only the power but
also the error variance of sets of design parameters that have
not been simulated yet. We make use of this property to cre-
ate the gray ribbon in Fig. 4 of the illustrative example. The
variance estimated using GPR is used to gain more insight
into the collected data by showing which ranges of sample
sizes have been closely investigated and which remain unex-
plored. It is important to note that this gray ribbon is always
calculated using GPR, even if the line in the plot represents a
different fitted surrogate model (e.g., logistic regression). As
an alternative to GPR, one may use support vector regression
(SVR). Based on more general work on surrogate model-
ing, SVR can be expected to perform better than GPR for
higher numbers of design parameter dimensions (Jia et al.,
2020). However, as SVR generally takes longer than GPR
and offers similar performance in the simulation studies in
Zimmer and Debelak (in press), we recommend leaving the
surrogate model settings at their default. Nevertheless, based
on future research, specific surrogate models may emerge
as beneficial for specific scenarios, and the default surrogate
models could be modified.

The surrogate models can be chosen via the surrogate
argument, for example by:

res <- find.design(simfun =
simfun_cold , boundaries =
c(100, 300), power = 0.95 ,
surrogate = "svr")

Multiple design dimensions

We turn again to our example in the Introduction (“Multiple
design parameters” section), where we wanted to evaluate
a reading exercise and tried to find adequate numbers of
pupils per school n.per.school and number of schools
n.schools. We apply a multilevel model and test the new
versus an old reading exercise as a fixed effect. To account
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for a potentially different effectiveness of the reading exer-
cise among the schools, we include the schools via a random
intercept and slope. In the interest of brevity, we include
the simulation function simfun_multilevel in the file
papercode.Rmd in the online supplement. It has the two
arguments n.per.school and n.schools and outputs
either TRUE or FALSE depending on the significance of the
hypothesis test.

As we observed in Fig. 1 and Table 1, there are multiple
design parameter sets that correspond to a power near .95.
To differentiate among those, we assumed that each exercise
material costs $100 and every additional school implies addi-
tional costs of $200. We can express the overall cost of the
study with a cost function in R:

costfun_multilevel <- function(
n.per.school , n.schools) {
100 * n.per.school + 200 *

n.schools
}

We use both the simulation function and the cost func-
tion as arguments in the find.design function to start
the search. Again, we need to specify the boundaries for the
design parameters. Formultiple dimensions,we need to spec-
ify the boundaries as a list, with one element for each design
parameter dimension:

res <- find.design(simfun =
simfun_multilevel , costfun =
costfun_multilevel , boundaries
= list(n.per.school = c(5, 25),
n.schools = c(10, 30)),
power = 0.95)

The output of summary(res) now shows:

Call:
find.design(simfun =

simfun_multilevel , boundaries
= list(n.per.school = c(5, 25),
n.schools = c(10, 30)),
power = 0.95 , costfun =
costfun_multilevel)

Design: n.per.school = 12,
n.schools = 20

Power: 0.9511 , SE: 0.00488 ,
Cost: 5200

Evaluations: 4000, Time: 298.91 ,
Updates: 32

Surrogate: Gaussian process
regression

The result shows that the optimal design is to test 12 pupils
in each of a total of 20 schools. This design will produce
a total cost of $5,200. All further output is identical to the
one-dimensional use case.

To visualize the result, plot(res) produces a two-
dimensional plot, see Fig. 5. Here, we can see all design
parameter sets for which simulations have been performed
as black dots. A purple ’X’ highlights the optimal design and
a red line indicates all parameter sets that have the same cost
as the optimal design. Additionally, a heat map illustrates the
power as estimated by the surrogate model: Design parame-
ter sets with a power closer to the desired power are shown
in a darker blue.

Fig. 5 Multiple design
dimensions: graphical
representation of the result
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As mentioned above, another usage scenario than reach-
ing a desired power is to reach a maximum power given a
cost threshold. This can be relevant when there is a limit to
the available resources, e.g., a maximum grant budget. The
search for a design can then be performed by replacing the
power argument with a cost argument. For example, to
search the set with the highest power among all sets that
involve a cost of $4,500 or less, we can use:

res <- find.design(simfun =
simfun_multilevel , costfun =
costfun_multilevel , boundaries
= list(n.per.school = c(5, 25),
n.schools = c(10, 30)),
cost = 4500)

Knowing that the optimum for a power of .95 went along
with a cost of $5,300, we can expect that the power of
the optimal value is lower for this scenario. The out-
put of the find.design function can be viewed using
summary(res):

Call:
find.design(simfun =

simfun_multilevel , boundaries
= list(n.per.school = c(5,

25), n.schools = c(10,
30)),

costfun = costfun_multilevel ,
cost = 4500)

Design: n.per.school = 13,
n.schools = 16

Power: 0.87623 , SE: 0.00566 ,
Cost: 4500

Evaluations: 4000, Time: 348.96 ,
Updates: 32

Surrogate: Gaussian process
regression

The resulting plot is shown in Fig. 6. From this plot, we
can confirm that the optimal design has a power of about
.88. Please note it is also possible to find optimal designs
with more than two design dimensions, see the vignette
extensions.Rmd.

Additional options

One set of additional options concerns the specifics of the
surrogate modeling algorithm. The initialization phase of the
algorithm, to which the following arguments refer, and the
other phases of the algorithm are explained in more detail
in the Appendix. Additional options include the number of

sets of design parameters (n.startsets, default is 4), or
the percentage of total evaluations used during initialization
(init.perc, default is 20%). These are available for exper-
imentation or for when the default settings should not lead
to satisfying results.

For example, increasing the percentage of evaluations
or the number of points during initialization can be useful
if the surrogate model initially fails to capture the shape
of the power function. To know if this was the case, one
can find the number of failed surrogate model fits using
res$n.bad.fits, given that res was created by the
find.design function.

In case the evaluations of the simulation function take
longer, it might be advisable to backup intermediate results
to prevent the loss of data. This can be done by indi-
cating a directory to save the generated files at using the
autosave_dir argument.

To investigate the simulated data during the algorithm in
more detail, you can use the simulations_data func-
tion. It outputs a data frame that, for each set of design
parameters, includes the cost, the estimated power and SE,
the surrogatemodel estimated power and SE, and the number
of performed evaluations. Here, the power is estimated using
the proportion of significant hypothesis tests among the per-
formedevaluations. TheSE is estimatedusing

√
p(1 − p)/n,

where p is the estimated power and n is the number of per-
formed evaluations. It should be noted that, for the estimation
of SE using a surrogate model, GPR is employed because it
is capable of variance estimation, unlike the other surrogate
models.

To allow more experimentation, we have included the
possibility to change the options of the surrogate mod-
els. This can be done via the control argument of the
find.design function. All arguments specified here are
passed on to the respective model function. One exam-
ple for GPR is to specify the above mentioned covari-
ance function by settingcontrol = list(covtype =
"gauss").

Practical examples

We further demonstrate the packagewith two practical exam-
ples inspired by recent studies. The first study set out to
investigate fairness in a test for scientific reasoning and
applied IRT models (Opitz et al., 2021). Based on the origi-
nal data set, we determine a suitable sample size to achieve
a power of .95. The second study evaluated an interven-
tion to increase psychological resilience in an international
sample and applied a multilevel modeling approach (Wang
and Rhemtulla, 2021). Again based on the original data, we
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Fig. 6 Multiple design
dimensions: search considering
a cost threshold
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determine the number of countries and participants that
would be needed for a replication study.

Example 1: Item response theory

A common challenge in developing educational tests such
as PISA (OECD, 2017) is ensuring fairness. One factor that
can lead to unfairness in a test is when certain groups have
advantages they should not have.An example for PISAwould
be if an item is less difficult in one language version than
in another. For example, English-speaking participants may
have an unfair advantage in this case. When the same item
can be easier or more difficult in different language versions,
this is referred to as differential item functioning (DIF) in the
IRT literature.

Opitz et al. (2021) investigated DIF for a test of scien-
tific reasoning. They hypothesized that some specific items
might be easier for individuals with a physics degree than
for individuals with a biology degree or vice versa. One
possible explanation is that some items do not exclusively
measure scientific thinking but also benefit from domain-
specific knowledge.

We want to determine the sample size for a scenario based
on the original study by Opitz et al. (2021). The data used
in this example are included in their published article. We
first divide the participants into two groups, depending on
whether they study "physics" or "other" subjects. Then, using
the Rasch model (Rasch, 1960), we estimate item parame-
ters separately for both groups, using the original, publicly
available data set. Using these item parameters, we set up a
simulation function simfun_irt to generate artificial data
in the form of responses to the scientific reasoning test. The
simulation function then performs a test for DIF and returns

the result. It is included in the file papercode.Rmd in the
online supplement for the interest of brevity. In this partic-
ular case, we use a score-based test by Strobl et al. (2015)
that detects whether DIF is present in any items. Alternative
approaches could also be used, including those that measure
DIF only for specific items.

These prerequisites allow us to use the find.design
function to determine a suitable sample size as introduced in
the section “The mlpwr package”.

res <- find.design(simfun =
simfun_irt , boundaries =
c(100, 500), power = 0.95)

summary(res) gives us the following output:

Call:
find.design(simfun = simfun_irt ,

boundaries = c(100, 500),
power = 0.95)

Design: N = 331

Power: 0.95009 , SE: 0.00414
Evaluations: 4000, Time: 229.84 ,

Updates: 16
Surrogate: Logistic regression

The approach leads to a sample size of N = 331 with a
high confidence of the implied power, as SE = 0.00414.
We can obtain a plot using plot(res), see Fig. 7. To put
these results in context, a total sample size of 331 would
be required to reliably detect differential item functioning
for physics students in comparison with students in other
disciplines.

123



Behavior Research Methods

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500
N

Po
w

er

Fig. 7 Example 1: Resulting relationship of sample size and power

Following this example, the mlpwr package can be used
in combination with many other IRT models. To assist in
setting up simulation functions, artificial data generation
functions are available, e.g., in the R packages eRm (Mair
and Hatzinger, 2007) or mirt (Chalmers, 2012).

Example 2: Multilevel model

To showcase an application to multiple design parameter
dimensions, we look at a recent study by Wang and Rhem-
tulla (2021) that applies multilevel modeling. The data used
in this example are included in their published article. In
light of the COVID-19 pandemic, the authors investigate
brief reappraisal as an intervention to increase psychologi-
cal resilience. Cognitive reappraisal is a strategy of changing
one’s thoughts about a situation in order to influence an emo-
tional response (McRae and Gross, 2020). One exploratory
analysis in the work of Wang and Rhemtulla (2021) is
directed at the potential mitigating effect of reappraisal on
negative feelings. They employed a between-subjects design
with participants from 87 different countries. For the statisti-
cal analysis, they tested for the fixed effect of the reappraisal
intervention against a control condition. In their multilevel
model, they included the participant’s country via a random
intercept. Furthermore, they controlled for the negative emo-
tion at baseline by including it as another fixed effect. Since
this analysis was exploratory in nature, one question for a
confirmatory analysiswould be:Howmanyparticipants from
how many countries are sufficient to replicate the effect? We
assume here that the effect size is actually at least as large as
the one found in the original study.

The two design parameters we consider are the number
of participants per country n and the number of countries
n.countries. As a first step in the simulation func-
tion simfun_multi we generate artificial data using all

parameter values as estimated from the original data. Then,
we apply the same hypothesis test as in the original study.
Full code for the simfun_multi is included in the file
papercode.Rmd in the online appendix. To again differ-
entiate between power-equivalent sets, we assume in this
case that each participant produces a cost of $5 while adding
another country costs $1,000. Since n denotes the number of
participants per country, the total number of participants is
calculated as n * n.countries. We specify a cost func-
tion accordingly:

costfun_multi <- function(n,
n.countries) {
n * n.countries * 5 +

n.countries * 1000
}

As far as the search area, we choose values for n between 20
and 300 and values of n.countries between 4 and 30.
Since there is a large total number of possible sets of design
parameters in this case, we set the evaluations to a higher
number of 6000. Using these prerequisites, we can perform
the search using find.design:

res <- find.design(simfun =
simfun_multi , costfun =
costfun_multi , boundaries =
list(n = c(20, 300),

n.countries = c(4, 30)),
power = 0.95 , evaluations =
6000)

The results can be accessed using plot(res), see Fig. 8,
and summary(res):

Call:
find.design(simfun = simfun_multi

, boundaries = list(n = c(20,
300), n.countries = c(4,
30)),

power = 0.95 , evaluations =
6000, costfun = costfun_multi)

Design: n = 92, n.countries = 14

Power: 0.9491 , SE: 0.00598 ,
Cost: 20440

Evaluations: 6000, Time: 689.04 ,
Updates: 32

Surrogate: Gaussian process
regression

Accordingly, the optimal design for a replication effort with a
power of .95wouldbe to collect data from14countries and92
participants each. The total cost of the study can be estimated
at $20,440. It is also apparent from the plot that there are
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Fig. 8 Example 2: Result plot
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suitable alternative designs (with a similar cost and power)
in which data are to be collected from a smaller number of
countries (e.g., 13) with a larger number of participants per
country (greater than 100).

Discussion

In this paper, we provided a tutorial for performing sample
size planning and power analysis using the mlpwr package.
It uses a surrogatemodel framework that canefficiently organize
the simulation-based approach to power analysis. Incremen-
tal to already available approaches, the mlpwr package
implements the surrogate model approach for when there
are multiple study design parameters. Also, it contributes a
consideration of costs during the search via a cost function.

While other tools for simulation-based power analysis are
tailoredmore towards specificmodels, such assimr formul-
tilevel models (Green and MacLeod, 2016) and powerly
for network models (Constantin et al., 2021), the mlpwr
package is designed as a general tool. One advantage of
this approach is that it is compatible with a large number
of study designs, namely those for which simulations can
be expressed via a simulation function. The requirements
for this simulation function are only that it takes the design
parameters as input and returns an indication of significance.
As a disadvantage, depending on the context, it can take
more knowledge and effort to correctly set up this function.
Depending on the desired model, there are many parameters
that must be specified for generating artificial data or fitting
a model. However, there is already ample work aimed at

supporting the preparation of data simulation, such as that of
DeBruine and Barr (2021) for multilevel models, as this can
also facilitate the understanding of the model. As our own
contribution to assist in the definition of simulation functions,
weprovide the vignettesimulation_functions.Rmd.
It includes templates for several models, including t test, gen-
eralized linear models, multilevel models, and item response
theory models. We plan to update it regularly in the future,
for example to include structural equation models estimated
using the lavaan package (Rosseel, 2012).

One possible future extension of the package is the inclu-
sion of additional surrogate models. For example, we could
use functions that describe the relationship between design
size and power in analytical power analysis as a surrogate
model. While these functions may provide more accurate
results when applied to corresponding simulation functions,
their performance may not be as good as a general function
approximation approach, such as Gaussian process regres-
sion, across a wide range of scenarios. Our main goal is to
offer an approach that works well in many different appli-
cations. However, we plan to allow users to input custom
surrogate models in the future as our package is currently
under development, so they can use specific surrogate func-
tions that may work better for their desired scenarios.

As study designs and statistical methods become more
complex, analytical solutions for power analysis are not
always available. In addition, the requirements for justify-
ing a choice of design parameters have arguably increased
since the replication crisis.With the mlpwr package, we aim
to assist in meeting these increased quality requirements for
study design planning.
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Appendix

We describe the surrogate modeling algorithm used in the
mlpwr package inmore detail. The algorithm is started using
the find.design function. The goal of the algorithm is to
find a suitable study design, this can be either:

• A design that implies a desired statistical power while
going along with minimal costs. Here, the power argu-
ment must be specified to indicate the desired power.

• Adesign that meets a specified cost threshold while max-
imizing statistical power. In this case, the argument cost
must be provided to define the cost threshold.

In addition to the desired power or the cost threshold, the
inputs required are the simulation function simfun and the
upper and lower bounds for each design parameter. Using
these inputs, the algorithm shown in Fig. 9 organizes the
search procedure. The algorithm proceeds through several
phases, each of which involves a distinct set of operations.
These phases are designed to iteratively explore the design
space and identify promising regions for further investiga-
tion. In this section, we will describe each of the phases in
detail, including the specific operations involved and their
role in the overall search process.

Initialization To enable the algorithm to capture the overall
relationship between study designs and power, we begin by
estimating power for a select few designs. This data provides
the algorithm with a preliminary understanding of where to
direct its focus. In particular, certain regionswithin the design
parameter space may exhibit power values that are signifi-
cantly different from the desired power, while others may be
comparatively closer to it. With this information, the algo-
rithm can then proceed to explore the parameter space in a
more focused and efficientmanner, ultimately identifying the

study design that bestmeets the desired power or cost criteria.
We use the quasi-random Halton sequence (Halton, 1960)
to select these initial designs. The Halton sequence gener-
ates evenly distributed points in a deterministic way, which
helps to efficiently cover the design parameter space. In con-
trast, using random sampling as an alternative could result
in points that are clustered together and do not effectively
cover the design parameter space. The number of sets used
in this phase is determined by the n.startsets argument.
It is set to 4 per design parameter dimension as a default. For
estimating the power at these design sets, 20% of the total
number of evaluations are used. This can be changed via the
init.perc argument.

Fit surrogatemodel Thefunctionspecifiedviathesurrogate
argument is fit to all data available up until this point.
The defaults are logistic regression ("logreg") and Gaus-
sian process regression ("gpr") for one and two dimen-
sions, respectively. Currently available alternatives are linear
regression ("reg") and support vector regression ("svr").
Further details on the available surrogate model options are
provided in the “Surrogate models” section. In our paper,
we also discuss these options and present a simulation study
that informed our selection of default models (Zimmer and
Debelak, in press). Given the wide range of potential power
functions resulting from the simulation functions, we assume
that there is no single surrogate model that would outperform
all others in all scenarios.

Predict Using the fitted surrogate model, we aim to derive
a prediction for a study design suitable for further search.
Depending on the scenario (characterized by a desired power
or a cost threshold), we search for suitable values. In the case
of a design that has a desired power, we do not want to penal-
ize values that have a higher than desired power. Also, we
do not want to overlook values that apparently have a subop-

Fig. 9 Surrogate modeling
algorithm
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timal power, but have been estimated with a relatively high
standard error. Simultaneously, we want to favor values with
low cost. Analogously, in the cost threshold scenario, we do
not want to penalize values with lower than desired cost and
we simultaneously want to prefer values with higher power.
The functions that are minimized to realize these purposes
are in detail:

Desired power: f1(x) = W1 · relu
(
pg − p(x) − W2 · SEp(x)

)
+ c(x)

cm
,

Cost threshold: f2(x) = W1 · relu
( c(x) − cg

cg

)
− p(x)

The relu (rectified linear unit) function maps all negative
values to 0 and is otherwise the identity function. Further-
more, p(x) denotes the power and SEp(x) denotes the SE
for the design parameter set x , as given by the fitted surro-
gate model. c(x) is the cost of the design parameter set x . pg
and cg , respectively, denote the desired power and the cost
threshold. cm is the cost of a parameter set in the center of
the specified boundaries for the purpose of setting c(x) in
relation.W1 andW2 are weighting constants that balance the
two summands in the formulas.

The relu function plays a key role in both functions to
achieve our search goals. As long as the argument to the relu
function is negative, we don’t apply a penalty for a design
parameter set. For example, for the desired power scenario,
this may be the case if the power p(x) is higher than the
desired power pg , or if it is slightly lower but the uncer-
tainty SEp(x) is high. To find the design parameter set that
is a minimum to these functions in both cases, we use an
evolutionary search algorithm implemented in thergenoud
package (Mebane and Sekhon, 2011). It is inspired by natural
selection and seeks to find the global optimum of a function
by iteratively generating and selecting candidate solutions
based on their fitness.

Termination criterion met? We check whether any of the
termination criteria is met. This can be the number of eval-
uations (evaluations), the time passed (time), or the
95%confidence interval of the power for the predicted design
parameter set (ci), see also the “Terminate and continue”
section. Independent of the specified surrogate model, the
latter is calculated using the standard error estimated with
Gaussian process regression. Gaussian process regression is
used at this point because it can estimate the standard error
also for points for which the power has not yet been esti-
mated.

Updating The simfun is evaluated at the predicted study
design. The number of evaluations used is the same as is
used for a single design parameter set during the initialization
phase. For example, if the design has one parameter and all
settings are set to the default values, this is 200 evaluations.

Terminate Before saving the result, the standard error at the
final prediction is estimated again, using Gaussian process
regression if necessary. After termination, the algorithm can
be continued, see also the “Terminate and continue” section.
In this case, the algorithm starts in the ’Fit surrogate model’
phase, using all previously generated data as the initialization
data.
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