
Vol.:(0123456789)1 3

Behavior Research Methods 
https://doi.org/10.3758/s13428-023-02258-3

ORIGINAL MANUSCRIPT

AuDrA: An automated drawing assessment platform for evaluating 
creativity

John D. Patterson1   · Baptiste Barbot2,3   · James Lloyd‑Cox4   · Roger E. Beaty1 

Accepted: 25 September 2023 
© The Author(s) 2023

Abstract
The visual modality is central to both reception and expression of human creativity. Creativity assessment paradigms, such 
as structured drawing tasks Barbot (2018), seek to characterize this key modality of creative ideation. However, visual 
creativity assessment paradigms often rely on cohorts of expert or naïve raters to gauge the level of creativity of the outputs. 
This comes at the cost of substantial human investment in both time and labor. To address these issues, recent work has 
leveraged the power of machine learning techniques to automatically extract creativity scores in the verbal domain (e.g., 
SemDis; Beaty & Johnson 2021). Yet, a comparably well-vetted solution for the assessment of visual creativity is missing. 
Here, we introduce AuDrA – an Automated Drawing Assessment platform to extract visual creativity scores from simple 
drawing productions. Using a collection of line drawings and human creativity ratings, we trained AuDrA and tested its 
generalizability to untrained drawing sets, raters, and tasks. Across four datasets, nearly 60 raters, and over 13,000 drawings, 
we found AuDrA scores to be highly correlated with human creativity ratings for new drawings on the same drawing task 
(r = .65 to .81; mean = .76). Importantly, correlations between AuDrA scores and human raters surpassed those between 
drawings’ elaboration (i.e., ink on the page) and human creativity raters, suggesting that AuDrA is sensitive to features of 
drawings beyond simple degree of complexity. We discuss future directions, limitations, and link the trained AuDrA model 
and a tutorial (https://​osf.​io/​kqn9v/) to enable researchers to efficiently assess new drawings.

Keywords  Automated creativity scoring · Computational creativity · Divergent thinking · Drawing assessment · Visual 
creativity

Introduction

How can human creativity be quantified? Researchers com-
monly administer tests of creative thinking – spanning 
verbal tasks (e.g., word association) to visual tasks (e.g., 
sketches) – yet they are confronted with the vexing ques-
tion of how to quantify creative outputs from such tests. A 

common approach is to ask human raters to provide sub-
jective judgements for each response, in the spirit of the 
classic Consensual Assessment Technique (CAT; Amabile, 
1982). Although subjective scoring can be reliable and 
valid (Amabile, 1982; Kaufman et al., 2007; Myszkowski 
& Storme, 2019), it is also time-consuming and resource-
intensive, slowing the pace of research, and acting as a bar-
rier for researchers and practitioners without the human 
resources to support subjective scoring methods such as 
the CAT. Recently, researchers have begun to rigorously 
test whether verbal creativity assessment can be automated 
using machine learning, with encouraging signs of progress, 
including strong correlations between computational met-
rics and human ratings (Acar et al., 2021; Beaty & Johnson, 
2021; Buczak et al., 2023; Dumas et al., 2021; Stevenson 
et al., 2020). This work builds on a seminal study of auto-
matic assessment of verbal creativity tests (Forthmann & 
Doebler, 2022; Paulus et al., 1970).

 *	 John D. Patterson 
	 jpttrsn@psu.edu

1	 Department of Psychology, Pennsylvania State University, 
University Park, PA, USA

2	 Psychological and Educational Sciences Research Institute, 
UCLouvain, Louvain‑la‑Neuve, Belgium

3	 Child Study Center, Yale University, New Haven, USA
4	 Department of Psychology, Goldsmiths, University 

of London, London, UK

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02258-3&domain=pdf
http://orcid.org/0000-0002-7455-3535
http://orcid.org/0000-0002-5096-2596
http://orcid.org/0000-0003-3492-9638
http://orcid.org/0000-0001-6114-5973
https://osf.io/kqn9v/


	 Behavior Research Methods

1 3

So far, however, computational creativity assessment has 
been limited almost exclusively to verbal creativity tasks. 
To our awareness, no extensively vetted tools for automatic 
scoring of visual creativity exist (though see Cropley & 
Marrone, 2022). In the present research, we aimed to address 
this issue by training a machine learning model on large data 
to automatically score responses from a creative sketching 
task. We examine the extent to which computational met-
rics correlate with human creativity ratings, and contrast 
those correlations to an elaboration baseline (i.e., ‘ink on 
the page’), which predicts human creativity ratings (e.g., 
Taylor et al., 2021) and would be a relatively easy heuristic 
for a machine to learn.

Creativity researchers often distinguish between conver-
gent-integrative (Barbot et al., 2015) and divergent creative 
thinking (but see Cortes et al., 2019). Convergent-integrative 
thinking involves finding a single or optimal solution to a 
problem, such as the Remote Associates Test, which pre-
sents three words and requires finding a fourth word that 
relates to all three. Divergent thinking, in contrast, involves 
generating ideas in response to open-ended prompts, with no 
single or correct solution. Divergent thinking is assessed in 
various modalities including both verbal and figural. Verbal 
tasks include the alternate uses task (AUT, e.g., Guilford, 
1956) – which requires thinking of creative uses for every-
day objects – among other word association tasks (Benedek 
et al., 2012; Olson et al., 2021; Prabhakaran et al., 2014). 
Figural tasks, such as those from the Torrance Test of Crea-
tive Thinking-Figural (Torrance, 1972), the Test of Creative 
Imagery Abilities (Jankowska & Karwowski, 2015), or the 
Multi-Trial Creative Ideation task (MTCI; Barbot, 2018) 
present participants with visual stimuli (e.g., incomplete 
shapes) and ask them to come up with creative sketches that 
incorporate the stimuli.

An ongoing question in creativity research is how to score 
responses to such divergent thinking tasks (Reiter-Palmon 
et al., 2019). Historically, researchers have relied on fluency-
based metrics – simply counting the number of responses 
produced on divergent thinking tasks – or counting the 
number of different categories of responses (i.e., flexibility; 
e.g., drawing houses or faces). However, fluency and flex-
ibility are very highly correlated (Acar et al., 2021; Krumm 
et al., 2016; Said-Metwaly et al., 2020) and they do not 
provide information about the creative quality of responses 
(i.e., participants could have many common ideas), raising 
questions about construct validity of fluency scores as sole 
criterion for creativity (Silvia et al., 2008). To assess origi-
nality, uniqueness scoring has also been employed, i.e., the 
statistical rarity of a response in the sample. Yet uniqueness 
has been criticized for its sample-dependence – a response 
that is rare in a small sample may be less rare in a larger 
sample (Runco, 2008), a well-established finding related to 
poor reliability (Forthmann et al., 2020). It should be noted 

that this literature is based largely on verbal and not figural 
creativity. Nevertheless, the influence of dataset size on rar-
ity should be expected to hold across modalities.

Another approach to scoring responses to divergent think-
ing tasks is subjective creativity scoring (Silvia et al., 2008). 
Subjective scoring was inspired by the CAT of real-world 
creative products (e.g., poems, inventions), where “experts” 
provide their subjective evaluations of creativity based on a 
loose set of criteria. Consistent with the tenets of Classical 
Test or ‘true score’ theory – which assumes that observed 
data consist of a true underlying value plus random error 
– evaluations are most commonly averaged across experts 
to estimate the creativity of a given product (or modeled as 
a latent variable capturing the shared variance across raters). 
However, more contemporary latent variable approaches 
like Judge Response Theory (JRT) – an application of Item 
Response Theory to rating data – model evaluations as an 
underlying latent construct not only driven by the creativity 
of the product, but also the properties of the judges/raters 
(Myszkowski & Storme, 2019). When applied to divergent 
thinking tests, subjective scoring typically involves training 
raters to rate the originality of responses, using a continuous 
or ordinal scale (e.g., Silvia et al., 2008, 2009). Subjective 
scoring of divergent thinking responses has shown evidence 
of reliability and validity, including positive correlations 
with measures of real-world creative behavior and achieve-
ment (Jauk et al., 2014; Said-Metwaly et al., 2022).

Although subjective scoring and the CAT have their 
merits, they also have practical limitations for conducting 
creativity research, including labor cost and subjectivity. 
Regarding labor cost, researchers must train a team of care-
ful and consistent raters, who then have to rate thousands of 
responses to divergent thinking tasks. Many researchers – as 
well as practitioners administering creativity tests to stu-
dents – do not have access to the human resources required 
to score large volumes of creative responses, constituting a 
significant barrier for administering creativity assessments. 
Moreover, the rating process is time-consuming, leading to 
issues of rater fatigue, which adversely impacts reliability 
and validity of scores (Forthmann et al., 2017). Regard-
ing subjectivity, rater agreement can fluctuate dramatically 
from study to study, and can vary based on rater character-
istics (e.g., personality; Ceh et al., 2022; Tan et al., 2015) 
– another source of noise that adversely impacts the psycho-
metric properties of creativity assessments.

To address these challenges, researchers are exploring 
whether tools from machine learning can automate creativ-
ity assessment (Acar et al., 2021; Beaty & Johnson, 2021; 
Dumas et al., 2021). In the verbal domain, distributional 
semantic models have been applied to calculate semantic 
distance – the cosine distance between word vectors, based 
on their co-occurrence in large text corpora. Semantic dis-
tance captures notions of novelty and remoteness: words that 
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tend to co-occur frequently in language have a low seman-
tic distance compared to words that tend to co-occur infre-
quently. Several studies have examined the reliability and 
validity of semantic distance for verbal creativity measure-
ment. For example, Beaty and Johnson (2021) and Dumas 
et al. (2021) found that semantic distance correlates strongly 
and positively with human creativity ratings. Semantic dis-
tance scores also predict external indicators of creativity, 
such as personality (i.e., openness to experience) and real-
world creative achievement, highlighting its predictive valid-
ity and promise for addressing the limitations of subjective 
creativity scoring.

However, automated scoring methods in the visual 
domain of creativity – arguably the most canonical form 
of creative expression (Morriss-Kay, 2010) – have lagged 
behind their verbal counterparts. Visual creativity tests com-
monly present participants with open-ended prompts, such 
as incomplete shapes (e.g., Torrance, 1972), and ask them 
to provide an original sketch. Importantly, most visual crea-
tivity tests do not require artistic competence or technical 
proficiency; they tend to emphasize the originality of the 
ideas expressed, usually in the form of simple line drawings. 
Recently, Barbot (2018) introduced a tablet-based drawing 
task, which presents participants with incomplete shapes and 
asks them to make creative sketches that incorporate the 
shapes. Barbot’s tablet task offers a significant extension of 
paper-and-pencil tests by capturing rich reaction time (RT) 
data, which provide automated metrics of fluency that corre-
spond to distinct phases of the drawing process (e.g., explo-
ration: the elapsed time from prompt presentation to initial 
contact with the screen; Barbot, 2018). However, the task 
does not have an automated way to calculate the originality 
of the drawings – it can only provide RT data on fluency, 
not drawing quality – requiring manual/subjective creativity 
scoring by human coders.

At present, we are unaware of any extensively validated 
approaches for automated visual creativity assessment. In 
fact, we are aware of only one (recently introduced) approach 
for scoring the Torrance Test of Creative Thinking – Draw-
ing Production task (TCT-DP; Urban, 2004) via an artificial 
neural network (Cropley & Marrone, 2022). In their study, 
the authors trained and tested a convolutional neural net-
work (CNN) to classify TCT-DP drawing quality based on a 
total of 414 drawings. Although a promising approach, there 
are limits to the method employed by Cropley and Marrone 
(2022) that provide motivation for the present work. For 
one, the model only targeted the TCT-DP. Yet, there are 
a diversity of visual creativity tasks (including the MTCI; 
Barbot, 2018) that Cropley and Marrone’s (2022) approach 
do not address. Second, Cropley and Marrone’s model 
categorizes responses into different quality bins with no 
intermediate values between bins – unlike neural networks 
with a regression (instead of a classification) output layer 

which can output intermediate values even if trained only 
on ordinal targets. The issue with bins and the classification 
output layer, which the authors identify themselves, is that 
responses with very different degrees of creative quality can 
be treated as the ‘same’ (Cropley & Marrone, 2022). Third, 
from a machine learning perspective, the dataset (414 draw-
ings; ~ 60 test drawings) used to train and evaluate Cropley 
and Marrone’s (2022) model is fairly small. While Cropley 
and Marrone used best available practices for training neu-
ral networks under conditions of small data (e.g., transfer 
learning; C. Tan et al., 2018), additional data is often desir-
able for training a model and evaluating its generalizability. 
Finally, the model trained by Cropley and Marrone (2022) 
was not released publicly, and no other method for automati-
cally scoring visual creativity is currently accessible to the 
research community. In the present work, we develop an 
open-access, continuous-output, automated creativity assess-
ment platform using big data to train and vet our approach.

The present research

Computational creativity assessment offers powerful meth-
ods to automate and accelerate creativity research, with 
applications from education to industry. However, well-
validated, automated tools are currently only available in 
the verbal domain (e.g., semantic distance) – with limited 
options in the visual domain. Here, we developed and tested 
a machine learning model – Automated Drawing Assess-
ment (AuDrA) – to automatically predict the creative quality 
of individual sketches on a visual divergent thinking task. 
Leveraging contemporary approaches to computer vision, 
we trained a modified ResNet – a deep convolutional neural 
network (He et al., 2016) – to estimate human creativity 
judgments and evaluated its capacity to generalize to new 
sketches using a combined total of over 13,000 sketches 
drawn from the MTCI digital drawing task of Barbot (2018). 
In the task, participants start with an abstract or concrete 
shape on the screen and are asked to draw atop it in the most 
creative way they can think of, in a self-paced manner, while 
incorporating the starting shape into their drawing.

We first conduct a computational experiment to find the 
optimal model that minimizes mean squared error (MSE) 
and, later, maximizes Pearson correlation on the validation 
dataset (detailed further below). After training the optimal 
version of AuDrA on 70% of the primary dataset of 11,000 
sketches – rated by 50 human raters using a planned miss-
ing design – we then test the model on the held-out data to 
assess its predictive accuracy and generalizability, assess-
ing it on both MSE and global correlation between model 
predicted and actual ratings (i.e., on response-level data). 
Finally, we test the limits of AuDrA’s generalizability via 
additional datasets that span the near-to-far generalization 
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continuum. These datasets range from new drawings rated by 
new raters on the same drawing task (i.e., creating sketches 
using incomplete shapes; Barbot, 2018) to drawings result-
ing from a different drawing task altogether (i.e., creating 
sketches using recognizable, concrete objects as a starting 
point). At each step, we assess AuDrA’s correlation with 
human ratings at the response level and, as vital evidence 
of AuDrA’s incremental validity, compare with the correla-
tion between degree of elaboration (i.e., ‘ink on the page’) 
and human ratings, given that elaboration is a simple metric 
that correlates with human ratings on numerous creativity 
tasks (e.g., Taylor et al., 2021) and could be fairly easily 
“learned” by machine learning algorithms (i.e., “more ink 
is more creative”).

Method

The rating datasets, trained AuDrA model (along with 
a tutorial), and analysis scripts are all accessible on OSF 
(https://​osf.​io/​kqn9v/).

Datasets

This work employed four distinct datasets of rated drawings 
– totaling over 13,000 drawing–rating pairs. Though all four 
datasets resulted from experiments that employed the same 
general procedure (Barbot, 2018), the datasets differed with 
respect to the starting stimuli: the starting stimuli were either 
abstract (which did not form a closed object; the ‘incom-
plete shapes’ task) or concrete (which formed recognizable 
objects, like sunglasses; the ‘object transformation’ task). 
Three of the four datasets (~ 95% of the 13,000 total draw-
ings) were based on the abstract version of Barbot’s (2018) 
drawing task. Thus, we focused on training the model to 
perform on the abstract drawing task in order to optimize its 
predictive capacity for that specific task – though we also 
did test whether creativity score predictions from our model 
trained on abstract drawings could generalize to concrete 
object drawings. The breakdown and attributes of the four 
datasets are detailed immediately below.

The primary dataset (n = 11,075 drawings) was used 
with the purpose of establishing the canonical train/valida-
tion/test split, following best standard practices in machine 
learning (Zhou, 2021). We employed a 70/10/20% split for 
training, validation, and test, respectively. Drawings and cor-
responding ratings from the primary dataset were randomly 
assigned to one of the subsets (i.e., train, validation, or test). 
To be clear, the training subset is the data the model gets to 
learn from, the validation subset is used to determine the 
best settings for the model, and the held-out test subset is 
used to assess model generalizability only once the best fit-
ting model settings are obtained. The primary dataset was 

developed and rated specifically with the purpose of deriving 
a machine learning model capable of automated predictions. 
Rather than using the standard three or four raters, as is 
common in creativity assessment, we obtained ratings from 
50 raters in order to provide stable (i.e., approaching the 
population mean) ratings for the model to train on. Interrater 
reliability for each of the splits was assessed using a two-
way random effects intraclass correlation coefficient model 
of average consistency (ICC[C,k]), via the ‘irrNA’ package 
for R (Brueckl & Heuer, 2022). Reliability for the training 
(ICC = .89; 95% CI [.89, .9]), validation (ICC = .9; 95% 
CI [.89, .91]), and test (ICC = .9; 95% CI [.89, .9]) subsets 
were all high. The 50 raters (MAge = 19.4; 60% identifying 
as female) rated the primary dataset using a planned missing 
data design (Graham et al., 2006). The raters were trained 
undergraduate students recruited from Penn State University 
who received partial course credit for their participation and 
completed informed consent. Raters were instructed to rate 
the creativity of the idea expressed in the drawing, not the 
technical proficiency of the drawing. They rated each draw-
ing using a 1 (not at all creative) to 5 (very creative) scale 
(Forthmann et al., 2019). When making their ratings, the 
raters also viewed the respondents’ (i.e., the people who 
made the drawings) descriptions of what they drew, but the 
labels/descriptions were not used by the model for its train-
ing or when making creativity predictions in this work. Full 
rater instructions and training materials are available on OSF 
(https://​osf.​io/​kqn9v/); below is a sample of the instructions:

“During this task, you will rate how creative you think 
a set of simple drawings are. The drawings were created 
by a range of people (adults, children, from different coun-
tries). Their task was to create the most original drawing 
they could think of from a simple abstract shape that had to 
be used as a part of the drawing.

You will be shown each drawing together with a label 
that will help you identify what was drawn. For each draw-
ing, rate the creativity on a 1 to 5 scale, with 1 being "not 
at all creative", and 5 being "very creative". Try not to rate 
how artistic or pretty the drawings are, but how creative the 
ideas are.”

The three additional datasets were used to test the limits 
of AuDrA’s ability to generalize to new raters and tasks. 
Rater generalization dataset 1 consisted of 670 new draw-
ings from the abstract, incomplete shapes task (the task the 
model was trained on) and was rated by three new raters 
(ICC = .73; 95% CI [.69, .76]). Rater generalization data-
set 2 was composed of 722 drawings that resulted from the 
abstract, incomplete shapes task and was rated by six raters 
(ICC = .9; 95% CI [.89, .91]). Finally, the rater and task 
generalization dataset consisted of 679 drawings (resulting 
from the concrete ‘object transformation’ task, which uses a 
recognizable concrete object as a starting image, as opposed 
to the abstract figure in the incomplete shapes task) and was 

https://osf.io/kqn9v/
https://osf.io/kqn9v/
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rated by three raters that evaluated that dataset (ICC = .63; 
95% CI [.58, .68]).

The differences between these datasets offer alluring 
opportunities to test the generalizability of our modelling 
approach. Specifically, these datasets allow us to test the 
extent to which the model can generalize to: (1) drawings 
that the model was not trained on, (2) drawings the model 
was not trained on that were also rated by raters it was not 
trained on; and (3) drawings the model was not trained on 
that resulted from a distinct drawing task (i.e., concrete 
object starting images of the transformation task) and that 
were rated by raters the model was not trained on. Thus, the 
datasets are situated on a continuum based on the degree 
of generalization required to succeed at creativity score 
prediction.

Model choice and modification

There exists a multitude of computer vision approaches 
based on the CNN and visual transformer frameworks (Bi 
et al., 2021; Dosovitskiy et al., 2021; He et al., 2016) that 
may be suitable for creativity score prediction. In the present 
work, we opted to use ResNet (He et al., 2016), a CNN, as 
the computer vision backbone for AuDrA. Though no longer 
the state-of-the-art, ResNet is often appealed to as a baseline 
in machine learning research due to its excellent accuracy 
to model size ratio (Canziani et al., 2017), and its enhanced 
generalization ability over standard feedforward neural net-
works (Huang et al., 2020). In other words, the model archi-
tecture is able to do “more with less,” relative to many other 
convolutional neural networks. As neural networks can be 
rather large – containing millions or billions of parameters 
– selecting a model that is performant but also compatible 
with computational resources researchers are likely to have 
is key for making AuDrA as accessible as possible.

Though we opted to use ResNet in the current work, it is 
important to note that ResNet is not directly extensible to 
the issue of creativity score prediction. This follows from 
the fact that ResNet is geared toward image classification. In 
other words, ResNet, once trained, answers the question of 
‘what is it?’ (e.g., is it a Bird? A Chair? A Building?), like 
the visual creativity model of Cropley and Marrone (2022). 
Accordingly, ResNet has an output layer which yields a pre-
dicted probability distribution across the category labels it 
was trained on (e.g., Bird: 95%, Chair: 3%, Building: 2%). 
To tailor the model to the problem of creativity prediction 
on a continuous scale, we swapped ResNet’s n-category 
output layer with a single regression output node. By doing 
this, it transformed ResNet from a categorical, ‘what bin is 
it?’ model to a continuous creativity prediction model. The 
scalar value produced by AuDrA’s single regression output 
node corresponds to its creativity assessment (on a scale 

of 0–1.0) for the input item. Figure 1 presents the AuDrA 
architecture.

Computational experiment

CNNs have different hyperparameters (i.e., free parameters 
in cognitive science lingo), including extra-model param-
eters (e.g., how many passes through the data should occur 
during training), that can be adjusted to optimize predictive 
accuracy. We searched over five potentially relevant hyper-
parameters in a computational experiment – using perfor-
mance (mean squared error and, later, Pearson correlation) 
on the validation dataset to assess which hyperparameter 
settings were best. First, we compared two different variants 
of ResNet – the 18 and 34 layer versions. While deeper net-
works have theoretically higher capacity to represent more 
information by virtue of their larger number of weights and 
ability to compose more complex visual features, recent 
work suggests that deeper is not always better and smaller 
networks may yield better performance on some learning 
problems (Tan & Le, 2019). Second, we searched over 
learning rate – i.e., the degree to which the weights of the 
model are updated on each batch of training images. Larger 
learning rates correspond to larger changes to the model 
weights each batch. Using too small of a learning rate can 
mean the model trains slowly and never reaches a good solu-
tion within the training time allotted. Too high of a learn-
ing rate can cause instability during training, such that the 
model never converges on a solution or gets progressively 
worse at the target problem. Based on piloting, we found 
good validation set performance with a value of 1e-5, so we 
expanded the range to include possible learning rate values 
in the range of 1e-7 to 1e-4. Third, we varied the state of the 
model’s weights before the model was trained on the draw-
ings dataset. Specifically, we varied whether the weights of 
the model’s body (i.e., all weights except the newly added 
regression head) were randomly initialized or set to values 
obtained from training the model on the ImageNet 1k data-
set (Deng et al., 2009). To be clear, we did not pre-train the 
models on the ImageNet 1k dataset ourselves. Instead, we 
used the pre-trained ImageNet 1k weights available via the 
PyTorch package (Paszke et al., 2019) for each model vari-
ant (ResNet-18 or -34). As the ImageNet dataset consists 
of over 1,281,167 training images, each which belongs to 
one of 1000 non-overlapping real-world object concepts, 
we pursued this hyperparameter based on the assumption 
that structure present in images of real-world objects may 
transfer well to drawings (Hendrycks et al., 2019) – to the 
extent that sketches recapitulate the structure present in real-
world objects. It is important to note that using the Ima-
geNet pre-trained weights as the starting point for training 
on the drawings dataset is an instance of ‘transfer learning,’ 
a machine learning approach that can be used to maximize 
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model performance by adapting knowledge learned from 
one domain or problem to another domain or problem (for 
a review see Tan et al., 2018). Transfer learning can be par-
ticularly helpful in cases where insufficient training data 
are available. Fourth, we searched over batch size (i.e., the 
number of images the model gets accuracy feedback on at 
a time). Larger batch sizes lead to faster model training, 
but this can come with the tradeoff of slightly poorer gen-
eralization capacity for the fully trained model (Masters & 
Luschi, 2018). For this reason, we looked at two mini-batch 
sizes that tend to perform well (16 vs. 32 items). Finally, we 
searched over the number of training epochs (i.e., the num-
ber of full passes through the training dataset).

To manage the hyperparameter search process during the 
experiment, we used a Tree Parzen Estimator (TPE). TPEs 
use Bayesian logic to select the most promising hyperpa-
rameter values by initially assuming a uniform prior over 
hyperparameter settings but, as the TPE gains more infor-
mation about how different hyperparameter setting com-
binations relate to the model’s performance, it gets better 
at selecting settings that are most likely to maximize accu-
racy. The performance metric we aimed to minimize in our 

computational experiment via the TPE was mean squared 
error between the model-predicted and human-provided rat-
ings, at the individual response/drawing level. We ran the 
TPE for 505 hyperparameter selection iterations – that is, 
505 Bayesian-selected values of model depth, learning rate, 
ImageNet pretraining, and training batch size. After the TPE 
search was completed, we searched for the number of train-
ing epochs that maximized the Pearson correlation between 
individual human and model-provided ratings (again, using 
the validation dataset).

Dataset preprocessing

To prepare the data for training and test, we preprocessed 
both the drawing images (the model’s inputs) and human-
provided creativity ratings (the model’s targets) in all data-
sets. To prepare the drawings – which were black ink on 
white background as seen in Fig. 2 – we first inverted the 
color scheme. In grayscale RGB color space, white is rep-
resented by high values and black is represented by low 
values. As we wanted the metrics to focus on predicting 
positive space (ink) and not negative space (background), 

Fig. 1   AuDrA model architecture, based on the ResNet-18 Architec-
ture. The model consists of initial convolution and max pooling lay-
ers followed by four stages (shown as transparent gray rectangular 
prisms). Each stage includes four convolutional layers. Skip connec-
tions – shown as green ‘hopping’ arrows that go from the beginning 
of each stage to the end – add the stage’s input to its output (shown as 
spherical green addition signs at the end of each stage). This focuses 

the model on learning the difference (i.e., residual) between the out-
put and input of the function (i.e., stage). After the final stage, model 
activations are pooled and flattened to a 1k dimension activation vec-
tor that is densely connected to a single regression output node (pur-
ple cube) that produces AuDrA’s creativity prediction. For greater 
detail on the ResNet architecture, see He et al. (2016)
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we inverted the RGB values such that ink was represented 
by high values. This facilitated interpretability of our elab-
oration metric, such that ink on the page would correlate 
positively with human ratings (as is commonly observed in 
the creativity literature; e.g., Taylor et al., 2021). We also 
followed the standard practice of standardizing each image 
from the generalization datasets (i.e., validation, test, rater 
generalization 1 and 2, and far generalization) – on a chan-
nel-wise basis (i.e., RBG) – by the mean and standard devia-
tion of the training set’s channel activations. To be clear, 
this standardizes datasets according to degree of elaboration 
within whole images irrespective of spatial location (i.e., not 
on the individual pixel level). Also note, in grayscale images 
the mean is identical across channels and so is the standard 
deviation. Lastly, we performed image resizing on all input 
images such that they fit the required input dimensionality of 
ResNet (224 × 224 pixels by three channels, RGB).

To prepare the human creativity ratings (i.e., the mod-
el’s target values) for the computational experiment, in 
each dataset individually (i.e., primary, rater generaliza-
tion 1, rater generalization 2, and far generalization), we 
first z-scored the totality of each rater’s ratings across items 
(to adjust for rater severity; Long & Pang, 2015). Z-scored 
values for each item were then averaged across raters. This 
yielded a composite rating for each sketch – a common prac-
tice used in procedures inspired by the CAT (Barbot et al., 
2019), and one that may be particularly important given our 
use of a planned missing design for the primary dataset, in 
which raters rate few items. The composite ratings were then 

min-max normalized to a 0–1 scale, where 1 is maximally 
creative. This was done to shift the negative values from 
the z-score scale to be zero or greater, as the model’s output 
node employs a rectified linear unit activation function – the 
outputs of which are always zero or greater.

Results

Computational experiment

The top five hyperparameter combinations found can be 
seen in Appendix Table 2. The results of the computational 
experiment revealed that the best fitting model – the one 
that minimized mean squared error between model-predicted 
and human ratings – was one that (1) used the shallower 
18-layer ResNet architecture, (2) was pre-trained on the Ima-
geNet dataset prior to learning to predict sketch creativity, 
(3) employed a mini-batch size of 16 images, and (4) used a 
learning rate 3.466e-4. With the best fitting model, we then 
searched for which epoch (between 1 and 150) maximized 
the Pearson correlation between human and model-predicted 
ratings on the validation set; we found 136 epochs maxi-
mized correlation magnitude.

After obtaining the best fitting model, we re-trained and 
tested the model on judge response theory (JRT; Mysz-
kowski & Storme, 2019) theta scores, instead of the mean 
z-scored human ratings used in the computational experi-
ment. The rationale is that, because JRT theta scores esti-
mate a latent factor that accounts for the underlying cre-
ativity level for each drawing (i.e., controlling for raters’ 
inaccuracy and measurement error), they may augment 
AuDrA’s predictive accuracy. To this end, we used a Graded 
Response Model from the JRT package for R (Myszkowski, 
2021) to compute theta scores for the creativity ratings in 
all of our datasets before then range normalizing the theta 
scores of each dataset individually to a 0–1 scale (the scale 
the model expects). To be explicit, we computed theta scores 
on an individual dataset basis (i.e., ratings for the primary, 
rater generalization 1, rater generalization 2, and far general-
ization sets were transformed to theta scores independently). 
We decided to compute theta scores on a dataset-to-dataset 
basis – instead of merged into one large dataset – for two rea-
sons. First, the raters were not shared across datasets in most 
cases. Thus, merging all datasets into one and computing 
theta scores for the combined dataset would treat different 
raters (who likely have different biases) as the same rater, 
invalidating the approach. Second, computing theta scores 
based on a merged dataset would allow properties of the 
primary dataset (including the training set) to influence the 
theta scores generated for the other datasets – a form of data 
leakage that holds the potential to affect performance on the 
generalization datasets.

Fig. 2   Example of an MTCI Incomplete Shapes Task item and 
responses. On the left is one of the starting images from the ‘incom-
plete shapes’ task. On the right are products from two participants
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Informally, we found the theta scores to have a net-neutral 
effect – adding ~ 1–2% performance for some measures and 
reducing performance by roughly the same amount for oth-
ers. However, given the theoretical appeal of using scores 
that tap the underlying construct of creativity, we retain the 
JRT-based approach in the analyses that follow. Plots of 
conditional reliability – i.e., rater reliability across different 
degrees of creativity – from the JRT package for each assess-
ment dataset are found in Appendix Fig. 9.

Primary dataset analyses

The primary dataset constituted 11,075 sketches that were 
divided into training (70%), validation (10%), and held-out 
test (20%) subsets. Because performance on the training sub-
set says little about the model’s abilities – CNNs can attain 
perfect accuracy on the items they were trained on, but fail 
to generalize to untrained inputs – we focus the analysis on 
sketches the model was not trained on (i.e., the validation 
and test subsets). However, the rating distribution for the 
training dataset can be found in Appendix Fig. 10.

Validation

The validation set consisted of 1104 sketches. Model per-
formance was evaluated on the validation subset after each 
training epoch. Using these data, changes to AuDrA’s pre-
dictive capacity can be tracked across the time course of the 
136-epoch learning period. If the model is acquiring prop-
erties of sketches that are effective for predicting creativity, 

performance should improve across epochs. To track per-
formance, we computed the Pearson correlation between 
model-predicted and human-provided ratings for each of 
the 136 training epochs (i.e., the optimal number of epochs 
according to the computational experiment).

As an added baseline measure, we computed the correla-
tion between the number of inked pixels in the sketches and 
human creativity ratings. This serves two purposes. For one, 
indicators of elaboration have been shown to be positively 
related to creativity ratings (e.g., r = .41; Beaty & Johnson, 
2021; Forthmann & Doebler, 2022; Paulus, 1970; Taylor 
et al., 2021). Second, it provides a degree of insight into 
what AuDrA is learning. If AuDrA’s performance is com-
parable to the baseline measure, it would suggest AuDrA 
merely learns a “more ink is more creative” rule. Alterna-
tively, if AuDrA’s performance exceeds the baseline meas-
ure, it would suggest that it is acquiring knowledge of figu-
ral properties of sketches that are associated with creativity 
ratings.

AuDrA’s validation performance across epochs is 
depicted in Fig. 3. As can be seen, correlations with human 
ratings became stronger as training progressed. AuDrA suc-
cessfully learned to predict human ratings, achieving a high 
degree of accuracy (MSE = .009), and reaching asymptotic 
performance above r = .80. Importantly, while degree of 
elaboration correlated strongly with human creativity ratings 
(rInk = .53; 95% CI [.49, .57]), AuDrA’s correlation with 
human ratings was much larger (rAuDrA = .81; 95% CI [.79, 
.83]). This suggests AuDrA did not simply learn that “more 
is more creative” but, instead, that AuDrA developed more 

Fig. 3   Model–human correlation on the validation set across train-
ing epochs. Each dot corresponds to the correlation between model-
predicted creativity ratings (blue) or amount of ink on the page 
(black) and human creativity ratings. The blue line shows the line of 
best fit (Loess curve) across training steps for the correlation AuDrA 

achieved with human ratings. The yellow bands show the 95% con-
fidence intervals for the line of best fit across the time course of 
training, not the momentary 95% confidence interval for the AuDrA-
human correlation at each time point, given that each time point has 
only one observation
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sophisticated knowledge about how visual features relate to 
creativity. Notably, the prediction accuracy was computed at 
the level of individual drawings, not the aggregated level of 
participants (i.e., averaged across multiple drawings), which 
should be expected to be even higher.

While AuDrA’s predictions strongly correlated with 
human ratings, the coefficient says little about where the 
model tends to perform well and where it does not – is 
AuDrA equally accurate, no matter the creativity level of 
the product? Or does AuDrA’s accuracy differ as a func-
tion of how creative humans evaluate a given drawing? For 
example, AuDrA may be better at predicting less creative 
drawings than more creative drawings (according to human 
ratings).

To examine this qualitatively, we plotted AuDrA’s predic-
tions against human creativity ratings (Fig. 4). Interestingly, 
AuDrA performed best on products that were evaluated by 
humans as being moderately creative (i.e., between .3 and .6 
on the 0–1 scale) but displayed larger prediction errors for 
items that were either the least or most creative. This may be 
due to lower conditional reliability in the validation set at the 
low and high end of the rating spectrum (Appendix Fig. 9) 
or simply due to the fact that the model received very little 
supervision at the tails of the rating distribution during train-
ing (Appendix Fig. 10). Irrespective of the cause, the nature 
of these prediction errors differed as a function of whether 
the drawing was on the high or low end of the creativity 
spectrum. For products deemed the least creative by humans, 
AuDrA tended to overestimate how creative they were. Con-
versely, on the opposite side of the spectrum, AuDrA also 

tended to underestimate the creativity of products humans 
deemed most creative.

Test

An important consideration is that the computational experi-
ment to find AuDrA’s best settings was based entirely on 
maximizing performance on the validation subset’s draw-
ings. In this way, there is a risk that performance on the 
validation subset may reflect ‘teaching to the test’ more 
than AuDrA’s ability to generalize to new images. Criti-
cally, the held-out test set, consisting of 2216 drawings, had 
no influence on AuDrA’s final form and serves as a more 
stringent test of AuDrA’s abilities to generalize to a new set 
of drawings.

Using this test subset, AuDrA’s predictions closely fit the 
human ratings (MSE = .009). We again computed the corre-
lation between AuDrA’s predictions and human-judged crea-
tivity, and compared that to the correlation between degree 
of elaboration and human ratings. With this larger sample 
of held-out sketches, AuDrA’s predictions achieved a very 
strong correlation with human creativity ratings (rAuDrA = 
.80; 95% CI [.79, .82]), with minimal loss of performance 
relative to the validation subset. Importantly, AuDrA’s pre-
dictive accuracy dramatically outpaced that of elaboration 
(rInk = .41; 95% CI [.37, .44]), suggesting AuDrA developed 
a nuanced understanding of predictive visual features above 
and beyond the amount of ink on the page.

As with the validation set, we again qualitatively exam-
ined how AuDrA performed as a function of the drawings’ 
human-judged creativity. We found that AuDrA exhibited 

Fig. 4   Validation set: Predictive accuracy by rating magnitude. Each 
dot corresponds to a particular sketch from the validation subset of 
the primary dataset. The y-axis shows the value predicted by AuDrA 
whereas the x-axis shows the creativity value provided by human 

raters. The diagonal black line reflects ideal performance (i.e., r = 1), 
where greater deviations from the line reflect poorer predictive accu-
racy. The blue line reflects the line of best fit with 95% confidence 
intervals in yellow
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the same tendencies observed on the validation set. Gener-
ally, AuDrA was highly accurate but tended to underestimate 
the human evaluation of products that were most creative 
and overestimate the human evaluation of products that 
were deemed least creative (Fig. 5). Again, conditional rat-
ing reliability for the most and least creative products was 
lower than that of moderately creative products (Appendix 
Fig. 9), which may help account for poorer performance at 
the extremes in isolation or in conjunction with low item 
density in the training set (Appendix Fig. 10).

Rater generalization analyses

In previous analyses, the validation and test subsets con-
sisted of drawings AuDrA was never trained on but that were 
rated by the same pool of raters as the training set. We found 
that AuDrA can generalize effectively to new drawings, but 
we cannot generalize these findings to new raters it was not 
expressly trained with. The two rater generalization datasets 
(‘one’ and ‘two’) resulted from separate experiments, each 
of which consisted of over 600 drawings (and corresponding 
ratings) that were entirely independent from the training set. 
In this way, each of these datasets provides the opportunity 
to examine the extent to which AuDrA generalizes to both 
new drawings and new raters, which is important for the 
practical utility of this model in research applications.

Despite the fact that each of the rater generalization data-
sets was rather small and rated by a smaller set of raters (e.g., 
n = 3) relative to the primary dataset – a configuration that 
resembles typical experiments in creativity research in terms 
of number of raters and productions to be rated – AuDrA 

provided predictions that were highly aligned with human 
judgments of creativity. On both rater generalization datasets 
one (MSE = .034; rAuDrA = .76; 95% CI [.73, .79]) and two 
(MSE = .022; rAuDrA = .65; 95% CI [.61, .69]), AuDrA cor-
related strongly with human creativity judgments (Fig. 6). 
Importantly, AuDrA’s correlation with human ratings for 
each was well in excess of the correlations between elabora-
tion and human ratings in both rater generalization datasets 
one (rInk = .55; 95% CI [.5, .6]) and dataset two (rInk = .33; 
95% CI [.26, .39]). In terms of the distribution of prediction 
errors AuDrA made on these generalization datasets, AuDrA 
displayed a pattern comparable to that of the validation and 
test subsets. That is, although generally accurate, AuDrA 
tended to overestimate the least creative products and under-
estimate the most creative products – likely attributable in 
part to lower conditional reliability for ratings at the low and 
high end of the spectrum (Appendix Fig. 9) and few train-
ing examples at those extremes of the spectrum (Appendix 
Fig. 10).

Task and rater (far) generalization analyses

Thus far, AuDrA has demonstrated the capacity to transfer 
to (1) new drawings it was never trained on and (2) new 
drawings it was never trained on that were rated by unique 
sets of raters it was never trained on. However, all drawings 
AuDrA has been tested on hitherto have been based on the 
“abstract” starting image task of Barbot’s (2018) structured 
drawing paradigm (MTCI “Incomplete shapes” task). The 
“concrete” version of Barbot’s drawing paradigm (MTCI 
“object transformation” task) involves providing participants 

Fig. 5   Test set: Predictive accuracy by rating magnitude. Each dot 
corresponds to a sketch from the test subset of the primary dataset. 
The y-axis shows the value predicted by AuDrA whereas the x-axis 

shows the creativity value provided by human raters. The black diag-
onal line reflects ideal performance (r = 1). The blue line reflects the 
line of best fit with 95%-confidence intervals in yellow
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with contour representations of real-world objects as the 
starting image for their drawings, instead of abstract starting 
images. Here, we use drawings from the concrete version of 
Barbot’s (2018) structured drawing task as a far generaliza-
tion test of AuDrA’s performance. That is, in addition to 
testing AuDrA on drawings it was never trained on, rated 
by raters the model was not trained on, these drawings 
also pertained to a substantially different task than AuDrA 
was trained on (Fig. 7). Although the expectation was that 
AuDrA’s accuracy would be substantially decreased rela-
tive to the abstract starting image task it was trained on, this 
test served the important goal of gauging the boundaries of 
AuDrA’s predictive capabilities.

As expected, we found that AuDrA’s correlation with 
human ratings (rAuDrA = .49; 95% CI [.43, .54]; Fig. 8) was 
considerably lower than the correlations observed for the 
abstract drawing datasets shown above. However, despite the 
degraded performance, AuDrA achieved reasonably good 
fit to human ratings (MSE = .037) and numerically out-
performed the correlation between elaboration and human 
ratings (rInk = .40; 95% CI [.34, .46]) – albeit by a much 
smaller magnitude than those observed for the abstract start-
ing image task it was trained on. This highlights the impor-
tance of using AuDrA on tasks it was explicitly trained on 
when predictive accuracy is the goal, but also the promise 
of AuDrA to model creativity ratings on other graphic tasks.

Fig. 6   Rater generalization datasets: Predictive accuracy by rating 
magnitude. The datasets consisted of untrained sketches (i.e., unlike 
those in the validation and test sets), and were each rated by a pool 
of raters distinct from the primary dataset. In each panel, a dot cor-
responds to a specific sketch from its respective dataset. The y-axis 
shows the AuDrA-predicted creativity rating whereas the x-axis 

shows the rating provided by human raters. The black diagonal line 
reflects perfect performance (r = 1). The blue line shows the line of 
best fit and the yellow reflects 95% confidence intervals. Note that, 
due to the small number of raters (n = 3) and 1–5 response range, the 
data appear nearly ordinal in dataset one

Fig. 7   Examples responses from the MTCI object transformation task. From left to right; ‘scissors’, ‘watermelon’, and ‘compass’ items
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On this “concrete” object-based task, AuDrA also showed 
the same pattern of prediction error seen on the abstract 
“incomplete shapes” task – the magnitude of which may, 
again, be attributable to low conditional reliability of rat-
ings at the high and low end of the spectrum (Appendix 
Fig. 9) or little training supervision on items at the extremes 
of the rating scale (Appendix Fig. 10). However, in con-
trast to AuDrA’s previously shown pattern of larger errors 
on the most creative products (relative to the least creative 
products), AuDrA showed larger errors on the least creative 
products on the object task. It is important to highlight that 
neural network behavior is a direct product of the training 
data it receives. Accordingly, abstract starting images that 
were turned into recognizable and/or closed figures may 
have been associated with higher creativity ratings during 
the learning process. If so, the object starting images might 
push AuDrA toward higher creativity ratings, even in cases 
where additional embellishment beyond the starting image 
is minimal.

Discussion

Creativity research has benefited from the development of 
computational scoring methods, overcoming the burden of 
human rating, and offering increased standardization to the 
scoring process. Yet such developments have been restricted 
to verbal creativity tasks, with limited tools available for 

visual, or graphic, creativity tasks. In this work, we trained a 
deep convolutional neural network (ResNet) to automatically 
predict the creative quality of sketches on a psychometric test 
of visual creativity. We found that the model successfully 
learned to predict the creativity scores of human drawings it 
was not trained on with remarkably high accuracy. Table 1 
summarizes properties of, and results for, each dataset. The 
model showed evidence of learning visual features of draw-
ings, beyond simply predicting their level of elaboration (i.e., 
ink on the page). Critically, AuDrA generalized to predict the 
creativity of sketches from entirely independent datasets of 
human ratings that were not used in training the model. As 
expected, AuDrA showed poorer performance on a drawing 
task it was not trained on, pointing to a boundary condition 
of its predictive power. The present work represents the first 
extensively trained and vetted demonstration that machine 
learning methods can be reliably used to predict human crea-
tivity on drawing tasks, routinely used in creativity research. 
We provide open access to the AuDrA model with the goal 
of accelerating the pace of discovery in creativity research.

We obtained a large batch of drawings (n = ~ 11,000) 
and corresponding creativity ratings from human raters (n = 
50 raters) to train and test the drawing prediction model. A 
computational experiment showed that the best performing 
model required 136 training epochs to learn to predict human 
creativity ratings, hitting a validation set model-human cor-
relation of r = .81 – substantially exceeding the extent to 
which “ink on the page” (i.e., drawing elaboration) predicted 

Fig. 8   Far generalization set: Predictive accuracy by rating mag-
nitude. The far generalization  set contained drawings from distinct 
drawers, rated by distinct raters, and that came from a different task, 
relative to the training set. Each dot corresponds to a particular 
sketch. The y-axis shows the AuDrA-predicted creativity rating while 

the x-axis shows the rating provided by human raters. The black diag-
onal line reflects perfect performance (r = 1). The blue line shows 
the line of best fit and the yellow reflects 95% confidence intervals 
around that curve. Note that, due to the small number of raters (n = 3) 
and 1-5 response range, the data appear nearly ordinal
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creativity. Importantly, when tested on the larger held-out 
test set, the final model matched human ratings equally as 
well (r = .80), again surpassing ink on the page. Put another 
way, approximately 65% of the variance in human ratings 
could be explained by the model-predicted scores on the test 
set. Also of note is that AuDrA’s strong prediction of visual 
creativity was at the level of individual sketches, not at the 
aggregated level of participants (averaged across multiple 
drawings) which can cover up insensitivities to response-
level variation. The strong prediction of creativity ratings, 
beyond the baseline of their elaborative quality (i.e., ink), 
suggests that AuDrA developed a sophisticated “understand-
ing” of the features of drawings that humans find creative, 
and that it was not simply learning a “more is better” heu-
ristic in predicting human creativity.

For reference, we compare the magnitude of AuDrA’s 
correlation to research on verbal creativity using semantic 
distance. In a recent study on creative writing, for exam-
ple, Johnson et al. (2022) applied the BERT neural network 
model to automatically score creativity on short stories, find-
ing that the best prediction of human ratings (across multiple 
tasks and samples) yielded a value of r = .76 (i.e., correlation 
between human ratings and a single short story) – compara-
ble to the prediction magnitude found in one of the rater gen-
eralization samples in the present work (e.g., r = .76, dataset 
one). Notably, creative writing is actually an exception in the 
automated assessment literature: other studies on verbal crea-
tivity (e.g., divergent thinking tasks such as the Alternate Use 
Task, AUT) tend to show lower correlations at the response 
level (i.e., correlations between model scores and human rat-
ings for single AUT responses; r ~ .3; Beaty & Johnson, 
2021), with correlations only increasing once aggregated to 
the person level (i.e., across multiple responses; but see Yu 
et al., 2023 for improved performance at the response level).

AuDrA’s pattern of high correlations with human ratings 
across datasets and raters suggests that bottom-up variables 

explain much of the variance in humans’ perceptions of 
creativity (Lindell & Mueller, 2011). This follows from the 
nature of what CNNs are able to represent. CNNs only have 
the capacity to learn perceivable visual features – be they 
simple or complex – that are predictive of some outcome 
variable. However, they are not well equipped to repre-
sent latent relational/conceptual content that may elevate 
human evaluations of a given drawing (e.g., ‘this is a draw-
ing of a couple holding hands in the rain’). The inability to 
acquire non-visuoperceptual knowledge may explain why 
AuDrA tended to underestimate the creativity of items that 
humans found most creative, particularly given the simplis-
tic medium and constraints imposed by the starting images.

There may also be more general factors that contributed 
to AuDrA’s lower accuracy at the extreme ends of the crea-
tivity scale. CNNs are limited in their ability to learn visual 
features that predict some outcome when few examples 
of that outcome (i.e., rating magnitude) are present in the 
training dataset or when the outcome variable is noisy or 
unstable. Given the data occupied a relatively normal dis-
tribution (Appendix Fig. 10), the model received very little 
supervision at the high and low ends of the scale. Moreover, 
the conditional reliability at the ends of the scale was lower 
(Appendix Fig. 9), which added noise to the model’s super-
vision. It should be noted that conditional reliability at the 
scale’s extremes was much higher in the primary dataset 
relative to the smaller generalization sets. Thus, an impor-
tant goal for future work is to enhance model performance 
at the extremes. In terms of minimizing noise in the train-
ing signal, future work should employ rater pools that are 
comparable in size, or larger, than the primary dataset in the 
present work. With respect to low data density at the tails of 
the rating distribution, future work may use compensatory 
methods to increase data density in the tails. One machine 
learning approach to address such imbalances is to use selec-
tive data sampling, such that the distribution of the outcome 

Table 1   Dataset characteristics and AuDrA results

Note: The New task/drawings/raters columns denote similarities and differences relative to the dataset AuDrA was trained on. The Drawings 
and Raters columns refer to the number of unique drawings and raters in each dataset, respectively. r reflects the Pearson correlation between 
AuDrA’s predictions and composite human ratings along with 95% confidence interval (in brackets). r_ink corresponds to the Pearson correla-
tion between the elaboration metric and human ratings, with 95% confidence interval in brackets. Intraclass correlation coefficients (ICC) with 
95% confidence interval (in brackets) were computed using a two-way random effects model for average consistency (ICC[C,k]) via the ‘irrNA’ 
package in R (Brueckl & Heuer, 2022). This variant of ICC is equivalent to Cronbach’s alpha

Dataset New task? New drawing? New raters? Drawing Raters r r_ink ICC

Primary: validation ✗ ✓ ✗ 1104 50 .81 [.79, .83] .53 [.49, .57] .9 [.89, .91]
Primary: test ✗ ✓ ✗ 2216 50 .80 [.79, .82] .41 [.37, .44] .9 [.89, .9]
Rater generalization 1 ✗ ✓ ✓ 670 3 .76 [.73, .79] .55 [.5, .6] .73 [.69, .76]
Rater generalization 2 ✗ ✓ ✓ 722 6 .65 [.61, .69] .33 [.26, .39] .9 [.89, .91]
Rater + task generalization ✓ ✓ ✓ 679 3 .49 [.43, .54] .40 [.34, .46] .63 [.58, .68]
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variable (in this case, creativity rating) in the training dataset 
is close to uniform. This can be done by randomly sampling 
only a subset of the high probability items each epoch and/or 
by duplicating low probability items for each training epoch 
(Van Hulse et al., 2007), and can be performed in conjunc-
tion with other data augmentation (e.g., vertically flipping 
the image). Future work should explore the potential for such 
techniques to improve AuDrA’s overall predictive accuracy.

A key difference between the present study and prior 
work on automated scoring of verbal creativity – beyond 
differences in response modality (visual vs. verbal) – is the 
nature of the model training involved. Because semantic dis-
tance methods rely on pre-trained or “out of the box” word 
embedding models that were not trained specifically to pre-
dict human creativity ratings, they represent “unsupervised 
learning” approaches (Zhou, 2021). The present work, in 
contrast, provided a CNN with accuracy feedback on its pre-
dictions (via the human-provided ratings); this feedback was 
used to update the weights of the model to optimize predic-
tive accuracy for this specific drawing task and set of draw-
ing prompts. Because human-provided ratings were used to 
update the model, the current work represents a “supervised 
learning” approach (for further discussion of supervised and 
unsupervised methods in creativity assessment see Buczak 
et al., 2023). Future studies on verbal creativity assessment 
may similarly benefit from supervised “fine-tuning” of large 
language models (e.g., BERT, GPT3) to maximize their pre-
diction of individual verbal responses, which may boost the 
signal of creativity prediction at the response level (r ~ = .8; 
see Organisciak et al., 2023).

Another potential direction for future research is to com-
bine verbal and visual information in the prediction of human 
creativity. Indeed, drawing tasks, such as the drawing task 
used in the present study, typically ask participants to pro-
vide a label or description for their drawing. Labels provide 
additional context for the human rating process, and they are 
aligned with the goal of drawing tasks in creativity assess-
ment for expressing an original idea – not simply showing 
technical drawing proficiency (which is confounded with 
artistic expertise; Barbot, 2018). On the other hand, a strength 
of drawing tasks is that they have the potential to be less 
biased against participants with less language proficiency/
vocabulary knowledge, potentially capturing a “purer” form 
of creativity that relies less on language and is less associated 
with education. Although the drawing labels were included 
with the drawings in the present study for the purposes of 
creativity rating – to clarify the drawings, which were often 
abstract and difficult to discern for human raters – we did 
not incorporate the labels when training the image-based 
machine learning model. One reason for not including the 
labels (in addition to CNNs being tailored to intake images, 
not text) was that the drawing datasets came from multiple 

countries, requiring a translation of the labels to English for 
the purpose of creativity scoring by our 50 English-speaking 
raters. Nevertheless, in our view, it is all the more remarkable 
that AuDrA could predict human ratings with only the visual 
information, whereas human raters were given both visual 
and verbal/conceptual information. Future studies might add 
verbal label knowledge (e.g., via transformer neural network 
embeddings; Vaswani et al., 2017) to aid creativity prediction 
of drawings, while considering and adjusting for the potential 
linguistic biases related to SES, education, and other experi-
ence that such labels may introduce.

Despite AuDrA’s impressive performance in predicting 
human ratings, we identified a limit of its predictive power. 
Specifically, AuDrA showed a substantial performance 
decline on drawing tasks that it was not trained on, i.e., the 
“concrete” object drawings task. This performance dec-
rement was to be expected, and it is consistent with prior 
machine learning research showing limited far transfer to 
untrained tasks (e.g., von Rueden et al., 2023). Notably, 
however, AuDrA’s prediction of human ratings was still 
nominally higher than ink on the page, suggesting that it 
was able to detect some visual features predictive of ratings 
in the concrete object drawings, yielding a correlation in the 
range of what a human rater would obtain with a group of 
human raters. Future research could attempt to expand the 
range of drawing tasks predicted by AuDrA by specifically 
retraining the model on additional tasks and ratings. AuDrA 
is openly available for such purposes, and we hope it will 
serve as a benchmark for future work to build upon.

We see many possible applications of AuDrA for creativ-
ity researchers. For example, the model could be used as a 
form of dynamic feedback, generating real-time creativity 
predictions as people iteratively produce new sketches. Real-
time drawing feedback could accelerate the learning process 
for interventions aimed at improving creative thinking. In 
addition, AuDrA could be applied at longer timescales in 
the context of longitudinal studies, to assess developmen-
tal trajectories of visual creativity and to track the efficacy 
of creativity interventions. And there is still much to learn 
about what AuDrA itself is learning about human creativ-
ity. While the present work makes abundantly clear that it 
does not simply boil down to a ‘more’ rule, understanding 
the exact nature of what’s creative to humans through the 
learned model’s lens is a vital avenue for future work. Aes-
thetics research could further explore the visual features of 
the input images that are predictive of human ratings and 
those predicted by the model (e.g., curvature, symmetry). 
Complementary computational approaches to visualizing 
feature representations (e.g., Olah et al., 2017) may be used 
to peer into the figurative ‘black box’ and shed light on fea-
tures, textures, and objects the trained model (and conse-
quently humans) find creative.
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As one last direction for future work, we note the break-
neck speed at which machine learning advances are made. 
In the current work, we drew on the CNN framework as the 
computer vision backbone of AuDrA. While we selected 
ResNet to serve that role in the present work, there exists a 
constellation of other CNNs, with different design princi-
ples, that may be explored and compared to our approach. 
Additionally – and in contrast to the CNN framework used 
here – the transformer framework (Dosovitskiy et al., 2021; 
Vaswani et al., 2017), which incorporates sophisticated 
attention mechanisms that allow the model to learn contex-
tually sensitive relations between parts of the input (i.e., text 
or images) provides another promising avenue for further 
performance gains.

Appendix 1 Hyperparameter search: Top five 
settings

The hyperparameter search yielded several settings that 
performed roughly the same, as measured by mean squared 
error at the conclusion of the 150-epoch training period. 
These top settings varied with respect to model depth, Ima-
geNet pre-training, and learning rate magnitude. Though 
regularities are hard to discern, it is notable that all but one 
of the top five settings used a batch size of 16 images.

Appendix 2 Judge response theory 
conditional rating reliabilities by dataset

The conditional reliabilities show, in general, that items 
towards the extremes of creativity (i.e., least or most crea-
tive) have lower reliabilities than their moderate creativity 
counterparts. This may be due in part to the relatively low 
number of items at those extremes. However, the large num-
ber of raters used for the primary dataset (50 raters) appears 
to attenuate the sharp drop off in reliability observed in the 
other datasets, which employed either three or six raters. 
Reliability for products deemed least creative is generally 
lower than products deemed most creative by raters.

Table 2   The top five hyperparameter search fits to the validation 
dataset. MSE refers to mean squared error. The table is ordered by 
MSE, from smallest (best performance) to largest. The top row con-
tains the model settings used for the test and generalization datasets 
in the manuscript

MSE Model Depth Pre-trained? Learning Rate Batch Size

.002305 resnet18 True .000347 16

.002697 resnet18 False .000027 32

.003048 resnet34 True .002809 16

.003100 resnet34 True .000020 16

.003974 resnet18 False .001441 16

Fig. 9   Conditional reliabilities across degrees of creativity (i.e., JRT theta) for each of the datasets used to test AuDrA. Lower theta values cor-
respond to lower creativity, and vice versa
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Appendix 3 Distribution of ratings 
in the training dataset

The ratings the model was trained on assumed a roughly 
Gaussian normal distribution, with most of the items 

receiving middling ratings (i.e., near the center of the rating 
scale) and relatively few items receiving ratings in the tails. 
As such, AuDrA received few learning experiences at the 
tails of the distribution.
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