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Abstract
Structural equation modeling (SEM) is a widespread and commonly used approach to test substantive hypotheses in the 
social and behavioral sciences. When performing hypothesis tests, it is vital to rely on a sufficiently large sample size to 
achieve an adequate degree of statistical power to detect the hypothesized effect. However, applications of SEM rarely con-
sider statistical power in informing sample size considerations or determine the statistical power for the focal hypothesis 
tests performed. One reason is the difficulty in translating substantive hypotheses into specific effect size values required to 
perform power analyses, as well as the lack of user-friendly software to automate this process. The present paper presents the 
second version of the R package semPower which includes comprehensive functionality for various types of power analyses 
in SEM. Specifically, semPower 2 allows one to perform both analytical and simulated a priori, post hoc, and compromise 
power analysis for structural equation models with or without latent variables, and also supports multigroup settings and 
provides user-friendly convenience functions for many common model types (e.g., standard confirmatory factor analysis 
[CFA] models, regression models, autoregressive moving average [ARMA] models, cross-lagged panel models) to simplify 
power analyses when a model-based definition of the effect in terms of model parameters is desired.

Keywords  Confirmatory factor analysis · Model evaluation · Sample size planning · Statistical power · Structural equation 
modeling

Structural equation modeling (SEM) is a commonly 
employed statistical technique to test various types of sub-
stantive hypotheses. These hypotheses may refer to global 
aspects of a model, such as whether the assumed structure 
provides an adequate description of the population mechan-
ics, but also to more local aspects, such as whether a par-
ticular model parameter differs from zero, across groups, or 
across measurement occasions. Regardless of the particular 
hypothesis under scrutiny, it is vital to rely on a sufficiently 
large sample size to achieve an adequate degree of statistical 
power to detect the hypothesized effect.

Statistical power is a concept arising in the context of 
classical (frequentist) null-hypothesis significance testing, 
where a null hypothesis (H0) is evaluated against an alter-
native hypothesis (H1). In any hypothesis test, two types 

of decision errors may occur: the alpha-error of incor-
rectly rejecting a true null hypothesis (and thus incorrectly 
accepting a false alternative hypothesis) and the beta-error 
of incorrectly retaining a false null hypothesis (and thus 
incorrectly rejecting a true alternative hypothesis). Statisti-
cal power is the complement of the beta-error and gives the 
probability of rejecting a null hypothesis if this hypothesis is 
factually wrong (and thus to correctly accept a true alterna-
tive hypothesis).

As an example, consider a simple confirmatory fac-
tor analysis (CFA) model involving two factors that are 
measured by three indicators each, and assume that the 
interest lies in the correlation between the factors. To test 
the null hypothesis that the factors are uncorrelated versus 
the alternative hypothesis that the correlation differs from 
zero, one can compare a model that freely estimates the 
factor correlation (reflecting the H1) with a model that 
restricts the correlation between these factors to zero but 
is otherwise identical (reflecting the H0). If the restricted 
model fits the data significantly worse than the unre-
stricted model, the null hypothesis of a zero correlation 
between the factors is rejected, in turn lending support 
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for the alternative hypothesis that the correlation between 
the factors differs from zero. Statistical power now gives 
the probability that the outcome of the statistical test con-
trasting the H0 and the H1 turns out significant on a cer-
tain alpha-error level with a certain sample size and given 
a certain discrepancy between the H0 and the H1 in the 
population. For instance, suppose that the true correlation 
between the factors in the population is r = .20 and that all 
nonzero primary loadings equal .50. Then, the statistical 
power to reject the factually incorrect null hypothesis (of r 
= 0) given alpha = .05 and a sample size of N = 125 is just 
20%. Stated differently, in four out of five samples (each 
of size N = 125) drawn randomly from the population, 
one will not detect that the factors are in fact correlated. 
Indeed, to obtain a more reasonable power of 80% in this 
scenario, a sample size of N = 783 is required.

As is evident from this example, hypotheses tests are 
only meaningful to the extent that statistical power is suf-
ficiently high, because otherwise a nonsignificant test 
outcome provides little information regarding the verac-
ity of the tested hypothesis. Conversely, even miniscule 
discrepancies between the H0 and the H1 that are of no 
practical relevance may turn out significant when statisti-
cal power is high. Statistical power is thus an integral part 
of sample size planning and statistical hypothesis testing 
more generally.

Unfortunately, statistical power analyses are often not 
reported at all in applications of SEM (Jackson et al., 
2009), or are only performed with respect to a single 
hypothesis. However, power is always tied to a particular 
hypothesis and might vary strongly depending on which 
hypothesis is considered. For instance, in a simple two-
wave cross-lagged panel model (CLPM; e.g., Newsom, 
2015) involving four factors, each comprising three indi-
cators loading by .50, N = 252 observations are required 
to yield 80% power on alpha = .05 to detect global mis-
specifications corresponding to a root-mean-square error 
of approximation (RMSEA) ≥ .05. In contrast, N = 4629 
observations are required to detect a cross-lagged effect 
≥ .10 in the same model with an equal level of power. 
Correspondingly, power analyses should be performed 
for the focal hypothesis of interest, which is rarely done 
in practice. One reason for the notable absence of power 
considerations is arguably the lack of powerful software 
tools easily allowing for the assessment of power for both 
global and local hypotheses. The present paper therefore 
introduces the semPower 2 package for the R environ-
ment, which supports various types of and approaches to 
power analyses covering both model-free and model-based 
definitions of the hypothesis of interest. In the remainder 
of this paper, we first provide the technical background 
underlying power analysis, and then illustrate how to use 
semPower 2 based on illustrative examples.

Statistical background

Statistical power depends on (a) the degree to which the null 
hypothesis is wrong (the magnitude of effect), (b) the sample 
size (N), (c) the specified alpha-error, and (d) the degrees 
of freedom (df). Everything else being equal, power will 
be higher for a larger effect, a larger sample size, a higher 
alpha-error, and fewer df. In a power analysis, one of these 
quantities is computed as a function of the other quantities, 
giving rise to different types of power analyses (Faul et al., 
2007). A priori power analyses determine the required num-
ber of observations to detect a certain effect with a desired 
power, given alpha and df, and are thus performed prior to 
data collection to inform sample size planning. Post hoc 
power analyses determine the achieved power to detect a 
certain effect with a given sample size, alpha, and df, and 
are thus performed after data collection to judge whether 
the given sample size yields a power that is sufficiently high 
for a meaningful test of a certain hypothesis. Compromise 
power analyses determine the alpha- and the beta-error, 
given the ratio between alpha and beta, the sample size, the 
effect, and the df, and are used to determine which deci-
sion rule to apply when the error probabilities should meet 
a desired ratio, such as being equal (see Moshagen & Erd-
felder, 2016, for details).

To understand how a power analysis can be performed, 
a brief discussion of model testing is required. Generally, 
when testing a model representing the H0 against a more 
general alternative model representing the H1, a likelihood-
ratio test (LRT) can be performed:

LM0 is the likelihood of the hypothesized (H0) model and 
LM1 is the likelihood of a more general (H1) model, where 
the H0 model must be statistically nested in the H1 model 
(i.e., the parameter space of the H0 model must be a subset 
of the parameter space of the H1 model; Bentler & Satorra, 
2010). In SEM, maximizing the likelihood is equivalent to 
minimizing the maximum likelihood (ML) fitting function 
(Jöreskog, 1967), so the LRT can also be obtained by consid-
ering the sample-size-weighted difference in the minimized 
sample values of the fitting function for the H0 model ( ̂FM0 ) 
and the H1 model ( ̂FM1).

If the H0 model is correct, assuming multivariate normal-
ity, a sufficiently large sample size, and several mild regu-
larity conditions (Browne, 1984; Yuan & Bentler, 2007), 

(1)LRT = −2ln

(
LM0

LM1

)

(2)= (N − 1)(F̂M0 − F̂M1)

(3)= χ2
M0

− χ2
M1
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the LRT asymptotically follows a central χ2(df) distribu-
tion with df = dfM1 − dfM0, so it can be computed in prac-
tice as the difference between the χ2-model test statistics 
associated with the H0 ( χ2

M0
) and the H1 model ( χ2

M1
 ). If 

the H0 model is invalid, however, the LRT—again assum-
ing multivariate normality, a sufficiently large sample size, 
and several regularity conditions1 (Satorra & Saris, 1985; 
Steiger et al., 1985)—asymptotically follows a noncentral 
χ2(df, λ) distribution with non-centrality parameter λ and 
expected value df + λ, so that λ shifts the noncentral χ2(df, 
λ) distribution to the right of the central χ2 distribution. The 
non-centrality parameter is the sample-size-weighted dif-
ference in the population minima, F0, of the fitting func-
tion, λ = (N − 1)(F0,M0 − F0,M1) . Note that the minimized 
sample value of the fitting function, F̂ , is a biased estimate 
of F0 (McDonald, 1989) with an expected value of F0 + df 
/ (N − 1). The difference in the population minima between 
the H0 and the H1 expresses the extent to which the H0 is 
incorrect (with respect to the H1) and thereby defines the 
magnitude of effect.

As is evident from Eq. 1, an LRT always involves a com-
parison of the hypothesized H0 model against an alternative 
H1 model. The latter can either be explicitly specified or refer 
to the saturated model. Generally, a structural equation model 
in which the number of free parameters is identical to the num-
ber of observed means, variances, and covariances is saturated, 
so the saturated model typically just estimates each observed 
mean, variance, and covariance without any constraint. Conse-
quently, a saturated H1 model can always describe the observed 
data perfectly and shows F0,M1 = 0 on zero df.

Returning to the introductory example concerning the 
correlation between two factors in a CFA model, the H0 
model restricting the correlation to zero could thus be com-
pared either against a less restricted model that freely esti-
mates the correlation, but is otherwise identical to the H0 
model (leading to df = 1), or against the saturated model 
freely estimating all variances and covariances (leading to 
df = 9). Although either approach is valid, the comparison 
model should generally be chosen such that it allows for an 
immediate test of the hypothesis articulated in the H0 model 
(Jöreskog, 1978). Thus, when a (local) hypothesis explicitly 
refers to a zero correlation between two factors, the suit-
able comparison model should only differ in this particular 
parameter. However, when a (global) hypothesis states that 
the model as a whole adequately describes the data, the satu-
rated model is the proper comparison model.

Figure 1 exemplarily illustrates how the alpha- and beta-
error arise in a hypothesis testing situation involving 50 df 

and three different values for the non-centrality parameter. 
The null hypothesis is rejected when the p-value associated 
with the empirically observed LRT falls below the alpha-
error. This is equivalent to evaluating whether the value of 
the LRT exceeds the critical χ2

c
-value corresponding to the 

chosen alpha-error (e.g., χ2
c
(df = 50) = 67.50 for alpha = 

.05). Note that neither the alpha-error nor the implied critical 
χ2
c
-value change as a function of the non-centrality param-

eter. The area of the central χ2(df) distribution to the right of 
the critical value corresponds to the alpha-error, whereas the 
beta-error is the area of the noncentral χ2(df, λ) distribution 
to the left of the critical value, i.e.,

Correspondingly, the beta-error (and thus statistical 
power, 1 − β) can be computed given the non-centrality 
parameter, which depends on N and the magnitude of 
effect, and the critical value, which depends on the df and 
the alpha-error. Choosing a smaller alpha-error increases 
the beta-error by increasing the implied critical value χ2

c
 . 

The beta-error (but not the alpha-error) is also a function of 
the overlap between the central χ2(df) and the noncentral 
distributions χ2(df, λ), which decreases with increasing non-
centrality parameter λ, and thus with increasing sample size 
and with an increasing effect.

Analytical versus simulated power analysis

Power analyses can be performed either analytically drawing 
on asymptotic theory or based on a simulation approach. 
In SEM, analytical power analyses as described above 
require the definition of the effect of interest in terms of a 
measure that shows a direct relation to the non-centrality 
parameter, which is afforded by all non-centrality-based 
measures of fit such as the minimum of the employed fit-
ting function itself or derived indices such as the RMSEA 
(because F0 = df ⋅ RMSEA2 ; e.g., MacCallum et al., 1996). 
Analytical power analyses are thus inherently model-free 
in the sense that the achieved power to reject a H0 model 
exhibiting a specific degree of misspecification on a cer-
tain df and a defined alpha-error with a certain N is always 
the same, regardless of whether the model is a CFA model, 
a CLPM, a multigroup model, or any other SEM model. 
Beyond allowing for the direct comparison across differ-
ent model types, reliance on a non-centrality-based effect 
size for power analyses is particularly useful when only the 
overall degree of misfit of a particular model is of interest, 
or when the effect of interest spreads across many param-
eters (such as in tests of measurement invariance or when 
testing a bifactor versus a higher-order structure). However, 

(4)� = ∫
χ2
c

0

fχ2(df ,λ)(x)dx

1  The regularity conditions include the so-called parameter-drift 
assumption, which states that the degree of misspecification may not 
be too large relative to the degree of sampling error.
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a common problem is that a focal hypothesis often refers to 
a specific model parameter (such as a hypothesized cross-
lagged effect in a CLPM of a certain magnitude), but it is 
not straightforward to relate such hypotheses to a particular 
value of a non-centrality-based effect size.

Unlike analytical power analyses, simulated power analy-
ses perform a simulation study to obtain an empirical esti-
mate of power. Specifically, a model is defined that describes 
the true state of affairs in the population (in terms of the 
number of observed variables, the number of latent factors, 
the magnitude of loadings, (residual-)variances, covariances 
between latent variables, etc.), which in turn defines the pop-
ulation variance–covariance matrix and population means (if 

these are part of the model). Based on these population char-
acteristics, random data sets are repeatedly generated and 
analyzed (e.g., 1000 times). In addition, an analysis model 
is defined, which implements at least one restriction that is 
factually wrong (representing the H0). When the H1 does 
not refer to the saturated model, a more general, explicit H1 
comparison model can also be defined. Then, an empirical 
estimate of power is obtained by the proportion of significant 
outcomes of the LRT on a given alpha-error level.

As a consequence, simulated power analyses are directly 
tied to a particular model representing the H0 and define the 
effect of interest in terms of the difference in a particular 
(set of) parameter(s) that are embedded in a certain model 

Fig. 1   Central and noncentral χ2 distributions, critical χ2 value, and 
associated decision errors. Note. Central χ2(df) distribution (solid 
line) and noncentral χ2(df, λ) distributions (dashed lines) with df = 
50 and (from top to bottom) non-centrality parameters of λ = 30.25, 

λ = 46.75, and λ = 62.375. The dotted vertical line indicates a critical 
value for χ2

c
 of 67.50, which corresponds to alpha = .05. The beta-

errors are β = .20, β = .03, and β = .003, respectively
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structure with particular population values for all parameters 
(Satorra & Saris, 1983; Wang & Rhemtulla, 2021). Of note, 
the actual effect in terms of F0 not only is a function of the 
parameters that differ between the H0 and the H1 model, 
but also depends on all other parameters in the model (e.g., 
Moshagen & Auerswald, 2018; Wang & Rhemtulla, 2021). 
Therefore, the level of statistical power is generally specific 
to the particular model under scrutiny and might change not 
only with the population difference of a particular parameter, 
but also as a function of the value of other parameters.

However, although the model-free versus model-based 
definition of the effect of interest is indeed a key difference 
between analytical and simulated power analysis, analytical 
power analyses can also be performed in a model-based man-
ner. To this end, analytical power analysis requires that an 
effect defined in terms of model parameters is transformed 
into an effect based on non-centrality (Saris & Satorra, 1993). 
This can be achieved by evaluating the discrepancy between 
the population variance–covariance matrix ( � ) and the model-
implied variance–covariance matrix ( ̂� ) (and mean vectors � 
and �̂ , if means are part of model) as measured via a suitable 
fitting function, such as weighted least squares (Browne, 1984) 
or ML. By default, semPower 2 relies on the ML fitting func-
tion assuming continuously distributed data:

In more practical terms, the model representing the H0 is 
fitted to a population covariance matrix � and the population 
means � . The resulting parameter estimates are used to con-
struct the model-implied covariance matrix �̂ and means �̂ 
associated with the H0. Finally, Eq. 5 is used to obtain the 
population minimum of the ML fitting function F0. Effec-
tively, a model-based power analysis can be transformed into 
a model-free power analysis using F0 as an effect size metric. 
In this way, analytical power can always be performed for both 
model-based and model-free definitions of the effect. In con-
trast, simulated power analyses are necessarily model-based.

Beyond their greater versatility in terms of the definition of 
the effect of interest, analytical power analyses are generally 
preferable over simulated power analyses to the extent that the 
assumptions underlying the asymptotically expected χ2(df) 
distributions under the null and the alternative hypothesis are 
met. This is because computation is much faster (instantly); in 
particular, when an a priori power analysis is performed, there 
is no random error resulting from the sampling process, and 
there are no additional intricacies associated with model esti-
mation, such as non-convergence. However, when the assump-
tions underlying analytical power analysis are violated, simu-
lated power analysis may offer a more realistic assessment, 
provided that these violations are embedded in the simulation 
and that the defined population structure and data-generating 

(5)
F0

(
�, �̂

)
= ln

|||�̂
||| − ln|�| + tr(��̂

−1
) − p + (� − �̂)�̂

−1
(� − �̂)

process can be considered representative of empirical reality. 
Simulated power analysis further offers the advantage that it 
may provide information beyond statistical power, such as 
rates of proper convergence and parameter recovery, which 
helps to inform sample size requirements more generally. In 
sum, both analytical and simulated power analyses have their 
advantages and are best used complementarily.

Software for power analysis in SEM

Despite the importance of statistical power in sample size 
planning and hypothesis testing, available software programs 
and packages directed towards this goal are subject to various 
shortcomings. To our knowledge, existing tools rely on either 
an analytical or a simulated approach to power analysis, but do 
not provide both options. General power analysis software pro-
grams such as G*Power (Faul et al., 2007) do not offer effect 
sizes relevant for SEM. Existing tools providing analytical 
power analyses specifically for SEM (e.g., MacCallum et al., 
1996, 2006; Preacher & Coffman, 2006) require provision of 
a non-centrality-based measure of effect such as the RMSEA 
and are thus limited to a model-free approach. Although simu-
lation approaches to statistical power necessarily allow for a 
model-based definition of the effect of interest, most existing 
tools implement post hoc power analyses only and are typically 
limited to particular model types (Kievit et al., 2018; Mulder, 
2022; Schoemann et al., 2017; Zhang & Liu, 2018). A number 
of options providing either analytical (Jak et al., 2021; Miles, 
2003; Z. Zhang & Yuan, 2018) or simulated power analysis 
(Muthén & Muthén, 2002; Wang & Rhemtulla, 2021) allow 
for a generic model-based definition of the effect, but these 
require the manual definition of the values of all parameters of 
the population model. Such a manual definition is cumbersome 
and potentially error-prone, in particular when more complex 
models are considered and it is desired to define the model 
in terms of standardized parameters, which requires rather 
sophisticated knowledge concerning the proper definition of 
the residual variances (see e.g., Bader & Moshagen, 2022).

As a remedy, the present paper introduces the second 
version of the semPower package—semPower 2—for the R 
environment, which can be obtained from CRAN (https://​
cran.r-​proje​ct.​org/​packa​ge=​semPo​wer) or from GitHub 
(https://​github.​com/​mosha​gen/​semPo​wer), which also 
hosts its source code. The semPower 2 package is a massive 
improvement and extension over the first version of sem-
Power (Moshagen & Erdfelder, 2016), which only provided 
analytical power analysis for common effect size metrics or 
based on a covariance matrix input (thereby offering model-
based power analysis via rather cumbersome procedures; 
see Jobst et al., 2023). Specifically, semPower 2 provides 
a priori, post hoc, and compromise power analysis, both 

https://cran.r-project.org/package=semPower
https://cran.r-project.org/package=semPower
https://github.com/moshagen/semPower
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analytical and simulated, for structural equation models with 
or without latent variables, supports multigroup settings, and 
offers highly abstracted input for many common model types 
to simplify the model specification when a model-based defi-
nition of the effect in terms of model parameters is desired.

The remainder of this paper presents an overview of 
semPower 2. We illustrate various types of analytical power 
analyses based on both model-free and model-based defini-
tions of the effect, and also briefly describe how simulated 
power analyses can be performed.

semPower 2 overview

In the following, an introductory overview of the core fea-
tures of semPower 2 is presented. First, we provide various 
examples of how to perform analytical model-free power 
analyses comparing the H0 model either against the saturated 
model or against a less restrictive (but not saturated) compet-
ing model. We then illustrate analytical model-based power 
analyses based on the convenience functions of semPower 

2 using several examples. Finally, we move to simulation 
approaches to model-based power analysis. Readers are 
referred to the extensive online documentation available at 
https://​mosha​gen.​github.​io/​semPo​wer/ for a complete and 
more detailed description of the capabilities of semPower 2.

Analytical model‑free power analysis

We first consider analytical model-free power analyses com-
paring the H0 model against the saturated H1 comparison 
model. Any model-free power analysis requires provision of 
the measure (effect.measure) and magnitude (effect) of effect 
that is to be detected as well as the df. In an a priori power 
analysis, the desired power also needs to be specified, so that 
a model-free a priori power analysis can be performed by 
calling the semPower function setting type = 'a-priori' and 
corresponding further arguments. For instance, the following 
code requests the required sample size to detect misspecifi-
cations of a model involving 50 df corresponding to RMSEA 
≥ .05 on alpha = .05 with a power of 80%:

ap <- semPower(type = 'a-priori', effect = .05, effect.measure = 'RMSEA', 
               alpha = .05, power = .80, df = 50)
summary(ap)

##  semPower: A priori power analysis
##                                    
##  F0                        0.125000
##  RMSEA                     0.050000
##  Mc                        0.939413
##                                    
##  df                        50      
##  Required Num Observations 243     
##                                    
##  Critical Chi-Square       67.50480
##  NCP                       30.25000
##  Alpha                     0.050000
##  Beta                      0.199142
##  Power (1 - Beta)          0.800858
##  Implied Alpha/Beta Ratio  0.251077

The output first provides several non-centrality meas-
ures of effect, here showing that an RMSEA of .05 (on 50 
df) is equivalent to F0 = .125 and to McDonald’s (1989) 
index of non-centrality2 (Mc) of .939. The output further 

indicates a required sample size of N = 243 to detect this 
effect with a power of 80% on alpha = .05.

A post hoc power analysis computes the achieved 
power with a given sample size, so the semPower func-
tion with type = 'post-hoc' expects the N argument. For 
instance, the following code computes the achieved power 
with a sample size of N = 500 in the same situation as 
above:

2  McDonald’s (1989) index of non-centrality is computed from the 
minimum of the fit function by Mc = exp(−.5 ⋅ F0) , so that the Mc 
ranges from 0 to 1, with higher values indicating better fit.

https://moshagen.github.io/semPower/
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ph <- semPower(type = 'post-hoc', effect = .05, effect.measure = 'RMSEA', 
               alpha = .05, N = 500, df = 50)
summary(ph)

This yields an output structured identically to the one 
of an a priori power analysis and shows that with N = 500, 
the achieved power to detect misspecifications of a model 
involving 50 df amounting to RMSEA ≥ .05 on alpha = 
.05 is 99.7%. This implies that committing an alpha-error is 
about 15 times as likely as committing a beta-error (the ratio 
of alpha to beta is .05 / .00335 = 14.9).

The result of any (model-free or model-based) a priori 
or post hoc power analysis can also be plugged into the 
semPower.powerPlot function to produce a figure show-
ing how power for the specified effect varies as a function 
of sample size. Thus, a plot akin to Fig. 2 is produced by 
calling

ph <- semPower(type = 'post-hoc', effect = .05, effect.measure = 'RMSEA', 
               alpha = .05, N = 500, df = 50)
semPower.powerPlot(ph)

If the goal is to determine a decision rule (i.e., the criti-
cal value χ2

c
 of the χ2 test statistic) that balances the error 

probabilities, a compromise power analysis can be used. The 
semPower function with type = 'compromise' expects the 

abratio argument defining the desired ratio between alpha 
and beta. For instance, the following code determines χ2

c
 and 

the associated error probabilities, such that the alpha- and 
beta-error are equal:

cp <- semPower(type = 'compromise', effect = .05, effect.measure = 'RMSEA', 
               alpha = .05, N = 500, df = 50, abratio = 1)
summary(cp)

The output is again structured identically to the one 
shown above and indicates that choosing a critical value of 
χ2
c
= 74.64 is associated with equal error probabilities, alpha 

= beta = .013.

Power for effect‑size differences

The examples above were concerned with the situation that 
an H0 model is compared against a saturated H1 model. A 
common scenario is to test two competing models against 
each other, where the more restrictive H0 model (involving 

more df) is compared against a less restrictive H1 model 
(involving fewer df), so that power is to be determined 
concerning the difference between these models in terms 
of overall fit. This can be achieved by providing a vector 
of effect sizes to the effect argument. For instance, the fol-
lowing determines the required sample size to test a more 
general H1 model exhibiting an RMSEA of .04 on 44 df 
against a nested H0 model exhibiting an RMSEA of .05 on 
41 df which shows that N = 247 observations are necessary 
to detect a difference of RMSEA = .01 between these mod-
els with a power of 80%.

ap <- semPower(type = 'a-priori', effect = c(.04, .05), effect.measure = 
               'RMSEA', alpha = .05, power = .80, df = c(41, 44))
summary(ap)
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The same approach can also be used in multiple-group 
contexts, when sufficient power is desired to detect whether 
certain cross-group constraints on the model parameters (such 
as equal loadings across groups) are tenable. The general syn-
tax is the same as above, but now the N argument also needs 
to be set, which gives the number of observations per group 
in compromise and post hoc power analyses and the group 
weights in a priori power analyses. For example, it has been 

suggested that a decline of ≥ .02 in the Mc associated with a 
metric in comparison to a configural invariance model may be 
considered a meaningful departure from measurement invari-
ance (Cheung & Rensvold, 2002). Accordingly, the following 
asks for the required sample size to detect that a model exhib-
iting an Mc of .99 on 57 df differs from a model exhibiting an 
Mc of .97 on 69 df in a three-group model, where all groups 
are of equal size (N = c(1, 1, 1)):

ap <- semPower(type = 'a-priori', effect = c(.99, .97), effect.measure = 'Mc', 
               alpha = .05, power = .80, df = c(57, 69), N = c(1, 1, 1))
summary(ap)

The results indicate that N = 426 (n = 142 by group) 
observations are required to yield a power of 80%.

Analytical model‑based power analysis

semPower 2 provides a number of convenience functions 
(see Table 1 for an overview) to perform (both analytical and 
simulated) a priori, post hoc, and compromise power analy-
ses using a model-based definition of the effect of interest in 
terms of particular values for the model parameters. These 
convenience functions offer a high level of abstraction to 
simplify the definition of the model and the effect of interest. 
In addition, semPower 2 includes a more generic function 
(semPower.powerLav), which allows one to perform model-
based power analyses for models and hypotheses not cov-
ered by any more specific convenience function dedicated 
to a particular model structure and thereby provides a high 
degree of flexibility.

To perform analytical model-based power analyses, a 
population model and a corresponding analysis model are 
transformed into the population and model-implied covari-
ance matrices (and mean vectors if these are part of the 
model), assuming continuously distributed data. In the con-
text of CFA models, the population variance–covariance 
matrix ( � ) is given by

where � is the loading matrix, � is the variance–covari-
ance matrix of the factors, and � is the variance–covariance 
matrix of the indicators. The population means ( � ) are

where � is a vector of indicator intercepts and � denotes a 
vector containing the latent factor means. In more general 
SEM models, � can be computed by

(6)� = ���
′

+�,

(7)� = � + ��

where B contains the regression coefficients between the 
factors and � is the (residual) variance–covariance matrix 
between the latent factors. The means are then given by

In any power analysis, the relevant model matrices 
are defined first, so that � and � in the population can be 
obtained. In analytical model-based power analyses, the 
model implementing the null hypothesis of interest is then 
fitted to the population variance–covariance matrix using 
the lavaan package (Rosseel, 2012), so that the population 
minimum F0 along with the resulting model-implied vari-
ance covariance matrix (�̂) and mean vector ( ̂�) are obtained 
based on the estimated parameters. In simulated power 

(8)� = �(I − B)−1�
[
(I − B)−1

]′
�

′

+�,

(9)� = � + �(I − B)−1�.

Fig. 2   Statistical power as a function of sample size to detect 
RMSEA = .05 on 50 df (F0 = 0.125)
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analyses, the analysis model is fitted repeatedly to random 
data generated from a population with � and �.

Regardless of which particular function is used to per-
form a model-based power analysis, a number of decisions 
always needs to be made. First, and obviously, the type of 
power analysis needs to be defined. Second, one needs to set 
the proper comparison model via the comparison argument. 
This can be either the saturated model (comparison = 'satu-
rated') or a less restricted model that merely differs from the 
analysis model in the absence of the constraint(s) defining 
the null hypothesis (comparison = 'restricted'). Finally, 
the measurement model for the factors (i.e., � ) needs to be 
defined. semPower 2 provides three ways to do this: by pro-
viding the complete loadings matrix via the Lambda argu-
ment, by providing the nonzero primary loadings on each 
factor via the loadings argument, or by providing a single 
loading magnitude to apply to each indicator of a factor or 
to all indicators (loadM) along with the number of indicators 
by factor (nIndicators). Given any definition of � , semPower 
2 defines the variance–covariance matrix of the residuals � 
as a diagonal matrix with elements such that the variances 
of the indicators are equal to 1, implying that the loadings 
are in a standardized metric.

In what follows, power analyses for hypotheses arising 
in a CFA model, a CLPM model, and a generic path model 
are described to provide illustrative examples. In all cases, 
an a priori power analysis (type = 'a-priori') to yield a 
power of 80% (power = .80) on alpha = .05 (alpha = .05) in 
reference to a less restricted alternative model (comparison 
= 'restricted') is requested.

Power analysis for hypotheses arising in a CFA 
model

semPower 2 provides prebuilt methods to perform power 
analyses concerning the following hypotheses arising in 
a standard CFA model: (a) detect that a loading differs 
from zero, (b) detect that a correlation differs from zero, 
(c) detect that a correlation differs across groups, and (d) 
detect that two correlations differ from each other. Here 
we restrict ourselves to examples covering the latter three 
hypotheses.

Consider the introductory example of a CFA model 
involving two factors that are measured by three indica-
tors each, and suppose one is interested in the sample 
size required to detect that the correlation between the 
factors is r ≥ .20. This type of hypothesis is set via the 
nullEffect = 'cor = 0' argument. The Phi argument defines 
the correlation between the factors in the population 
to be .20. The measurement model is defined using the 
loadings argument, which is a list of vectors giving the 
(nonzero primary) loadings on each factor. In line with the 

Table 1   semPower 2 functions providing model-based power analy-
ses

Note. CFA = confirmatory factor analysis. ARMA = autoregressive 
moving average. CLPM = cross-lagged panel model. RI-CLPM = 
random intercept cross-lagged panel model. The model matrices are 
defined in Eqs. 6-9. Indices i, j, k, l refer to a particular element of a 
given vector or matrix; indices m and n denote different groups.

Function Model Hypotheses

semPower.power-
CFA

CFA Λi,j = 0

�i,j = 0

�i,j = �k,l

�i,j,m = �i,j,n

semPower.powerBi-
factor

Bifactor �i,j = 0

�i,j = �k,l

�i,j,m = �k,l,n

semPower.power-
Regression

Single linear regres-
sion

Bi,j = 0

Bi,j = Bi,k

Bi,j,m = Bi,j,n

semPower.powerMe-
diation

Mediation Bi,j ⋅ Bk,l = 0

Bi,j,m ⋅ Bk,l,m = Bi,j,n ⋅ Bk,l,n

semPower.powerPath General regression Bi,j = 0

Bi,j = Bk,l

Bi,j,m = Bi,j,n

semPower.powerAu-
toreg

Autoregression Bi,j = 0

Bi,j = Bk,l

Bi,j,m = Bi,j,n

�i,j = 0

�i,j = �k,l

�i,j,m = �i,j,m

�i,j,k = �k,l,m

αi = 0

αi = �j
αim = �in

semPower.power-
ARMA

ARMA Bi,j = 0

Bi,j = Bk,l

Bi,j,m = Bi,j,n

�i,j = 0

�i,j = �k,l

�i,j,n = �i,j,m

αi = 0

αi = �j
αim = �in

semPower.power-
CLPM

CLPM Bi,j = 0

Bi,j = Bk,l

Bi,j,m = Bi,j,n

�i,j = 0

�i,j = �k,l

�i,j,k = �k,l,m

semPower.power-
RICLPM

RI-CLPM Bi,j = 0

Bi,j = Bk,l

Bi,j,m = Bi,j,n

�i,j = 0

�i,j = �k,l

�i,j,k = �i,j,m

semPower.powerMI Multigroup invari-
ance

Λm = Λn

τm = τn,
Θm = Θn

�m = �n

αm = �n
semPower.powerLI Longitudinal invari-

ance
Λm = Λn

τm = τn,
Θm = Θn

�m = �n

αm = �n
semPower.powerLav Generic Any
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introductory example, assume that all loadings are equal to 
.50. Running semPower.powerCFA with these arguments 
provides an output structured identically to the one of a 

corresponding model-free power analysis and indicates 
that 783 observations are required to detect this effect with 
a power of 80% on alpha = .05.

powerCFA <- semPower.powerCFA(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define model
  loadings = list(
    c(.5, .5, .5),   # factor 1
    c(.5, .5, .5)    # factor 2
  ),
  Phi = .2,
  # define hypothesis
  nullEffect = 'cor = 0'
)
summary(powerCFA)

The results variable (powerCFA) also contains additional 
information such as the population and model-implied vari-
ance–covariance matrices (Sigma, SigmaHat) and means 
(mu, muHat; if these are part of the model) as well as lavaan 

model strings representing the H0 (modelH0) and the H1 
(modelH1) models. These model strings can be plugged into 
lavaan to verify that the population was defined as intended:

library(lavaan)
lavres <- sem(model = powerCFA$modelH1, sample.cov = powerCFA$Sigma, 
              sample.cov.rescale = FALSE, sample.nobs = 1000)
summary(lavres, standardized = TRUE)

It should be noted that the actual degree of discrep-
ancy between the H0 and the H1 models (in terms of F0) 
depends not only on the magnitude of the population cor-
relation between the factors, but also on other parameters 
in the model. Indeed, power generally varies strongly with 
the number of indicators and the loading magnitude. When 
repeating the analysis above assuming five indicators for 
each factor with loadings of (.70, .80, .90, .70, .90) and 
(.80, .60, .90, .50, .70), respectively, the required N drops 
to 237. It is crucial to take care in defining appropriate fac-
tor loadings, which should be guided by previous empiri-
cal results.

semPower.powerCFA can also be used to perform 
power analyses regarding whether a correlation between 
factors differs across two or more groups by setting nullEf-
fect = 'corA = corB'. Generally, semPower 2 uses the 
“A” / “B” suffix (e.g., corA = corB) to refer to equal-
ity constraints across multiple groups, whereas the “X” / 
“Z” suffix (e.g., corX = corZ) is used to refer to equality 
constraints across different parameters in a single group 
(see below). The syntax for power analyses in a multi-
ple group setting is highly similar to the previous exam-
ple, except that the factor correlation must now be pro-
vided for each group, so the Phi argument becomes a list 
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containing the correlation in the first and second groups 
(of .00 and .20, respectively). Furthermore, any type of 
power analysis now expects the N argument, which gives 
the group weights in the case of an a priori power analy-
sis. For instance, N = list(1, 1) specifies that both groups 
are of equal size. Given that cross-group comparisons of 

factor correlations are only meaningful when both load-
ings and factor variances are equal across groups, sem-
Power 2 implements these invariance constraints when 
determining power and therefore requires that the meas-
urement model is defined only once (which then applies 
equally to all groups). 

powerCFA <- semPower.powerCFA(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, N = list(1, 1), 
  comparison = 'restricted',
  # define model
  loadings = list(
    c(.5, .5, .5),   # factor 1
    c(.5, .5, .5)    # factor 2
  ),
  Phi = list(0, .2), # cor in group 1 and group 2
  # define hypothesis
  nullEffect = 'corA = corB'
)
summary(powerCFA)

Running the power analysis indicates that N = 3116 
observations (1558 per group) are required to detect that 
the specified factor correlation differs across groups with a 
power of 80%. Note again that this power estimate is only 
valid for this particular measurement model and the par-
ticular values assumed for the correlations. For instance, 
when replacing Phi above by Phi = list(.6, .8), the required 
sample size is only N = 2286, although the difference 
between the correlations across groups remains .20.

semPower.powerCFA also supports hypotheses regard-
ing the equality of correlations in a single-group design 
using nullEffect = 'corX = corZ'. Consider a CFA model 
involving two factors measured by three indicators each 
and an additional observed covariate. The factors are 
assumed to correlate by .50, and the correlations of the 
factors to the observed covariate are assumed to be .20 
and .30, respectively. Phi now becomes a correlation 
matrix, where the first two columns refer to the factors, 

and the final column refers to the observed covariate. 
The loadings argument defines the loadings on the first 
factor to equal .5, .6, and .7, and those on the second 
factor to equal .8, .4, and .8, and defines the observed 
covariate by specifying a single loading of 1. Note that 
if a single loading equal to 1 is provided for all factors, 
semPower.powerCFA reduces to the special case of power 
analyses for correlation coefficients between observed 
variables (Olkin & Finn, 1995). Suppose the interest lies 
in detecting that the two factors correlate differently to 
the observed covariate. The nullWhich argument is a 
list comprising two vectors, jointly defining which ele-
ments in Phi to set to equality, so in the present example 
nullWhich = list(c(1, 3), c(2, 3)) targets the correlation 
between the first factor and the covariate as well as the 
correlation between the second factor and the covariate. 
Based on these input values, the required sample size is 
N = 1329.
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# define factor correlation matrix
Phi <- matrix(c(
  # f1 f2 cov 
  c(1, .5, .2),
  c(.5, 1, .3),
  c(.2, .3, 1)), 
  ncol = 3, byrow = TRUE)

powerCFA <- semPower.powerCFA(
  # define power analysis
  'a-priori', alpha = .05, power = .80, N = list(1, 1), comparison = 'restricted',
  # define model
  loadings = list(
    c(.5, .6, .7),   # factor 1
    c(.8, .4, .8),   # factor 2
    c(1)             # observed covariate
  ),
  Phi = Phi,
  # define hypothesis
  nullEffect = 'corX = corZ', 
  nullWhich = list(c(1, 3), c(2, 3))
)
summary(powerCFA)

Power analysis for hypotheses arising in a CLPM

The semPower.powerCLPM function can be used to perform 
power analyses concerning different hypotheses arising in 
a CLPM. In the present example, the CLPM involves two 
factors X and Y, each of which are measured at three waves. 
This allows for various relevant hypotheses: (a) detect that 
an autoregressive effect differs from zero, (b) detect that 
a cross-lagged effect differs from zero, (c) detect that the 
autoregressive effect of X differs from the autoregressive 
effect of Y, (d) detect that the cross-lagged effect of X differs 
from the cross-lagged effect of Y, (f) detect that an autore-
gressive effect differs from wave to wave, (g) detect that 
a cross-lagged effect differs from wave to wave, (h) detect 
that the synchronous residual correlations between X and Y 
differ across waves, (i) detect that an autoregressive effect 
differs across groups, and (j) detect that a cross-lagged effect 
differs across groups. In the following examples, we exem-
plarily consider power analyses to detect that a cross-lagged 
effect differs from zero, that the cross-lagged effect of X 
differs from the one of Y, and that the cross-lagged effect of 
X varies across waves.

While there are different ways for specifying a CLPM 
with three waves (nWaves = 3) (e.g., Newsom, 2015), a 
common approach is to place equality constraints on the 
autoregressive and cross-lagged effects on waves, so that 

there is only one autoregressive and one cross-lagged effect 
each for X and Y. This specification can be achieved by 
setting the waveEqual argument accordingly (waveEqual 
= c('autoregX', 'autoregY', 'crossedX', 'crossedY')). These 
equality constraints then apply to both the H0 model imple-
menting the hypothesized effect and the H1 model omit-
ting the restriction associated with the hypothesized effect. 
Similarly, when X and Y are latent factors (as in the pre-
sent example), metric invariance over waves and autocor-
related indicator residuals are usually assumed. This is 
implemented by setting the arguments metricInvariance = 
TRUE and autocorResiduals = TRUE, which also applies 
to both models. The population values for the autoregres-
sive effects for X and Y are provided in the autoregEffects 
argument, and take values of .60 for X and .70 for Y (both 
equal across waves). The cross-lagged effects (equal across 
waves) are defined in the crossedEffects argument, speci-
fying a cross-lagged effect of X on Y of .10 and a cross-
lagged effect of Y on X of .20. The synchronous (residual) 
correlations between X and Y are defined to be .30, .20, 
and .10 at the first, second, and third waves, respectively 
(rXY = c(.3, .1, .1)). Because the standardized argument 
is set to TRUE, all coefficients are treated as completely 
standardized, which implies that semPower 2 generates the 
(residual) variance–covariance matrix of the factors ( � ) and 
the variance–covariance matrix of the indicators ( � ) such 



Behavior Research Methods	

1 3

that all variances are equal to 1. If standardized = FALSE, 
semPower 2 sets all diagonal elements of � equal to 1, thus 
leading to unstandardized synchronous correlations, autore-
gressive, and cross-lagged effects. Finally, the hypothesis 

of interest is defined in the nullEffect argument. Here, the 
required sample size is requested to detect that the cross-
lagged effect of X on Y (nullEffect = 'crossedX = 0') is ≥ .10 
with a power of 80% on alpha = .05, which yields N = 958.

powerCLPM <- semPower.powerCLPM(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define model
  nWaves = 3,
  autoregEffects = c(.6, .7),    # (X1 -> X2 & X2 -> X3), (Y1 -> Y2 & Y2 -> Y3)
  crossedEffects = c(.1, .2),    # (X1 -> Y2 & X2 -> Y3), (Y1 -> X2 & Y2 -> X3)
  rXY = c(.3, .1, .1),           # X1 <-> Y1, X2 <-> Y2, X3 <-> Y3
  waveEqual = c('autoregX', 'autoregY', 'crossedX', 'crossedY'),
  loadings = list(
    c(.4, .5, .6, .4),   # X1 
    c(.5, .7, .5),       # Y1 
    c(.4, .5, .6, .4),   # X2 
    c(.5, .7, .5),       # Y2 
    c(.4, .5, .6, .4),   # X3 
    c(.5, .7, .5)        # Y3 
  ),
  standardized = TRUE,
  metricInvariance = TRUE,
  autocorResiduals= TRUE,
  # define hypothesis
  nullEffect = 'crossedX = 0'
)
summary(powerCLPM)

If the required sample size to detect that the cross-lagged 
effect of X (of .10) differs from the cross-lagged effect of Y (of 
.20) is to be determined, the only change refers to the nullEf-
fect argument. Setting nullEffect = 'crossedX = crossedY' 
and rerunning semPower.powerCLPM gives a required sam-
ple of N = 2208 for a power of 80% on alpha = .05.

If the CLPM is based on observed variables (rather than 
latent factors), the measurement model needs to be defined 
such that there is a single loading of 1 for each factor, 
which is most easily done by providing an identity matrix 
to the Lambda argument. For instance, when replacing the 
loadings argument by Lambda = diag(6) in the previous 
example, the required sample size to detect that the cross-
lagged effects of X and Y differ with a power of 80% is N 

= 449. The metricInvariance and autocorResiduals argu-
ments are ignored for the observed variables.

The previous examples implemented the CLPM assum-
ing constant autoregressive and cross-lagged effects 
across waves. Wave-dependent effects can be specified 
by dropping the respective entries in the waveEqual argu-
ment and providing lists to the autoregEffects and crosse-
dEffects arguments. In the following example, the autore-
gressive effects are still constant across waves, whereas 
the cross-lagged effect of X on Y is .10 from wave 1 to 2, 
but .30 from wave 2 to 3. Then, the required sample size 
to detect that the autoregressive effects of X vary across 
waves (nullEffect = crossedX) is requested, which yields 
N = 1348.
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powerCLPM <- semPower.powerCLPM(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define population model
  nWaves = 3,
  autoregEffects = list(
    c(.7, .7),           # X1 -> X2, X2 -> X3
    c(.6, .6)            # Y1 -> Y2, Y2 -> Y3
  ),
  crossedEffects = list(
    c(.1, .3),           # X1 -> Y2, X2 -> Y3
    c(.2, .2)            # Y1 -> X2, Y2 -> X3
  ), 
  rXY = c(.3, .1, .1),   # X1 <-> Y1, X2 <-> Y2, X3 <-> Y3
  loadings = list(
    c(.4, .5, .6, .4),   # X1 
    c(.5, .7, .5),       # Y1 
    c(.4, .5, .6, .4),   # X2 
    c(.5, .7, .5),       # Y2 
    c(.4, .5, .6, .4),   # X3 
    c(.5, .7, .5)        # Y3 
  ),
  standardized = TRUE,
  metricInvariance = TRUE,
  autocorResiduals= TRUE,
  # define hypothesis
  nullEffect = 'crossedX'
)
summary(powerCLPM)

Power analysis for hypotheses arising in a generic 
path model

Although semPower 2 contains several functions for spe-
cial regression problems (such as a single linear regres-
sion, mediation structures, and CLPMs; see Table 1), some 
regression-related hypotheses are not covered. Therefore, 
semPower 2 also provides a more generic function to per-
form model-based power analyses arising in path models 
that requires specification of B and, optionally, �.

As an example, consider a model involving two cor-
related factors and two correlated observed outcomes. 
A substantive hypothesis might be that the slope of the 
first factor in the prediction of the first outcome does not 
differ from the slope of the second factor in the predic-
tion of the second outcome. The Beta matrix defined in 
the code below sets up the regression relationships in the 
population and implies a slope for the first and second 
factors of .20 and .10, respectively, in the prediction of 
the first outcome, and a slope for the first and second 

factors of .10 and .40, respectively, in the prediction 
of the second outcome. Further, the Psi matrix defines 
a correlation between the factors of .30, and a residual 
correlation between the outcomes of .20. If the standard-
ized argument is set to TRUE, all slopes are interpreted 
in a standardized metric and the matrix provided to Psi 
is interpreted as the matrix of (residual-)correlations, so 
that the actual � is computed such that all variances are 
equal to 1. If standardized = FALSE, the coefficients in 
Beta and Psi are directly used to define B and � , thus (in 
general) implying unstandardized coefficients. Finally, 
the hypothesis that the slope of the first factor in the pre-
diction of the first outcome is equal to the slope of the 
second factor in the prediction of the second outcome is 
defined in nullEffect = 'betaX = betaZ' along with the 
nullWhich argument, which is a list containing vectors 
referring to which elements in Beta to constrain to equal-
ity. Running semPower.powerPath with these arguments 
leads to a required sample size of N = 840 to detect the 
specified effect with a power of 80%.
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Beta <- matrix(c(
  c(0.0, 0.0, 0.0, 0.0),  # F1
  c(0.0, 0.0, 0.0, 0.0),  # F2
  c(0.2, 0.1, 0.0, 0.0),  # Y1 = .2*F1 + .1*F2
  c(0.1, 0.4, 0.0, 0.0)   # Y2 = .1*F1 + .4*F2
), ncol = 4, byrow = TRUE)

Psi <- matrix(c(
  c(1.0, 0.3, 0.0, 0.0),  # F1
  c(0.3, 1.0, 0.0, 0.0),  # F2
  c(0.0, 0.0, 1.0, 0.2),  # Y1
  c(0.0, 0.0, 0.2, 1.0)   # Y2
), ncol = 4, byrow = TRUE)

powerPath <- semPower.powerPath(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define population model
  Beta = Beta, 
  Psi = Psi,
  loadings = list(
    c(.6, .5, .7),   # F1
    c(.6, .5, .7),   # F2
    c(1),            # Y1
    c(1)             # Y2
  ),
  standardized = TRUE,
  nullEffect = 'betaX = betaZ',
  nullWhich = list(c(3, 1), c(4, 2))
)
summary(powerPath)

Generic model‑based power analysis

semPower 2 also provides a generic function to perform 
model-based power analyses for scenarios not covered in any 
more specific function. Consider the situation in which one 
is interested in determining whether the observed responses 
on eight indicators reflect two separate (but correlated) fac-
tors or can be described by assuming just a single factor, 
and that a correlation of r ≥ .90 is considered to imply that 
a single factor is sufficient. A suitable H0 model to test this 
hypothesis would specify two factors and constrain their 

correlation to 1. Although the model conforms to a stand-
ard CFA model, this particular hypothesis is not covered 
by the semPower.powerCFA function, so the more general 
semPower.powerLav function needs to be employed.

semPower.powerLav requires a lavaan model string 
defining the H0 model (and optionally a model string defin-
ing the H1 model), and either a lavaan model string defining 
the population model or a population variance–covariance 
matrix (and mean vector, if necessary). A useful utility 
function supporting the definition of the population vari-
ance–covariance matrix is semPower.genSigma, which 
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expects the model matrices (see Eqs. 6-9) as input, but 
accepts the same shortcuts as any other function perform-
ing model-based power analysis. For instance, the following 
generates the implied covariance matrix from a population 
model involving two factors that are correlated by .90 and 
are measured by four indicators each.

generated <- semPower.genSigma(
  Phi = .90, 
  loadings = list(
    c(.7, .7, .5, .5),
    c(.8, .6, .6, .4))
)

Beyond the implied covariance matrix (Sigma), the 
results variable returned by semPower.genSigma also 
includes a lavaan model string (modelTrue) created such that 
the model perfectly describes the population. In the present 
example, this is a simple two-factor model that freely esti-
mates the factor correlation, and thereby represents a suit-
able H1 model. The model string representing the H0 must 
restrict the factor correlation to be equal to 1:

modelH0 <- '
  f1 =~ NA*x1 + x2 + x3 + x4
  f2 =~ NA*x5 + x6 + x7 + x8
  f1 ~~ 1*f1
  f2 ~~ 1*f2
  # restrict correlation to 1
  f1 ~~ 1*f2
'

Finally, everything is plugged into semPower.powerLav, 
in the present example requesting an a priori power analysis, 
which shows that 323 observations are required to detect a 
factor correlation < .90 with a power of 80%.

powerLav <- semPower.powerLav(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80,
  # define population Sigma
  Sigma = generated$Sigma,
  # define analysis models
  modelH0 = modelH0,
  modelH1 = generated$modelTrue
)
summary(powerLav)

Simulated power analysis

All model-based power analyses provided by semPower 2 can 
also be performed as a simulated, rather than analytical, power 
analysis by adding the argument simulatedPower = TRUE to 
the respective function call. In addition, a list with options 
controlling the simulation process can be provided via the 
simOptions argument, allowing for changing the number of 
replications, parallel processing, and the generation of non-
normal data and/or missingness. For instance, the following 
code performs a simulated a priori power analysis concerning 
the correlation in a two-factor model using the default settings 
(i.e., 500 replications, multivariate normal and complete data, 
ML estimation), and additionally requests parallel processing 
using four cores (simOptions = list(nCores = 4)):
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set.seed(1234)
powerCFA <- semPower.powerCFA(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define model
  loadings = list(
    c(.7, .8, .6, .6, .7),   # F1
    c(.8, .8, .5, .6, .5)    # F2
  ),
  Phi = .2,
  # define hypothesis
  nullEffect = 'cor = 0',
  # request simulated power
  simulatedPower = TRUE,
  # set simulation options 
  simOptions = list(
    nCores = 4
  )
)
summary(powerCFA)

Given that simulated power analyses are arguably most 
useful when the data generation process implements vio-
lations of the assumptions underlying the chosen estima-
tor (and as a consequence also the assumptions underlying 
analytical power analysis), semPower 2 includes options 
to generate non-normal data and data with missing val-
ues. Generating multivariate non-normal data with known 
covariance structure is an intricate issue and active area 
of research. Therefore, semPower 2 interfaces four dif-
ferent data generation methods, namely Foldnes and 
Olsson (2016), Qu et al. (2020), Ruscio and Kaczetow 
(2008), and Vale and Maurelli (1983), each of which is 
associated with different multivariate distributions that 
may affect the empirically observed χ2-distributions dif-
ferently (e.g., Auerswald & Moshagen, 2015; Foldnes & 

Grønneberg, 2015; Jobst et al., 2022) and requires dif-
ferent input. As an example, the following code uses the 
Vale-Maurelli approach (type = 'VM') specifying sym-
metric (skewness), but moderately to strongly kurtotic 
(kurtosis) marginal distributions. Moreover, there are also 
missing data on the first and second indicator of the first 
factor as well as the final two indicators of the second 
factor (missingVars = c(1, 2, 9, 10)), generated based on 
a missing-at-random mechanism (missingMechanism = 
'MAR') with a missing proportion of 25% (missingProp 
= .25). For MAR, semPower 2 implements the percentile 
method generating the maximum number of missing pat-
terns (Zhang, 2021). When missing data are generated, 
semPower 2 resorts to full information maximum likeli-
hood estimation.
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set.seed(1234)
powerCFA <- semPower.powerCFA(
  # define power analysis
  type = 'a-priori', alpha = .05, power = .80, comparison = 'restricted',
  # define model
  loadings = list(
    c(.7, .8, .6, .6, .7),   # factor 1
    c(.8, .8, .5, .6, .5)    # factor 2
  ),
  Phi = .2,
  # define hypothesis
  nullEffect = 'cor = 0',
  # request simulated power
  simulatedPower = TRUE,
  # set simulation options
  simOptions = list(
    nReplications = 500,
    nCores = 4,
    type = 'VM', 
    skewness = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
    kurtosis = c(10, 10, 10, 10, 10, 15, 15, 15, 15, 15),
    # missingness
    missingVars = c(1, 2, 9, 10),
    missingMechanism = 'MAR',
    missingProp = .25 
  ) 
)
summary(powerCFA)

##  semPower: A priori power analysis
##  
##   Simulated power based on 500 successful replications.
##   Note that simulated a-priori power analyses are only approximate,
##   unless the number of replications is large.
##  
##                             Analytical Simulated
##  
##   F0                        0.027787   0.028790 
##   RMSEA                     0.166695   0.169675 
##   Mc                        0.986202   0.985708 
##  
##   df                        1          1        
##   Required Num Observations 284        291      
##  
##   Critical Chi-Square       3.841459   3.841459 
##   NCP                       7.863790   8.349022 
##   Alpha                     0.050000   0.050000 
##   Beta                      0.199255   0.184000 
##   Power (1 - Beta)          0.800745   0.816000 
##   Implied Alpha/Beta Ratio  0.250934   0.271739 
##  
##  
##   Simulation Results:
##  
##   Convergence Rate (%) of the H0 model        100.00  
##  
##   Chi-Square Bias (%)                                 
##   H0 Model                                    17.77   
##   H1 Model                                    20.98   
##   H0-H1 Difference                            5.44    
##  
##   Chi-Square KS-Distance                              
##   H0 Model                                    0.173592
##   H1 Model                                    0.198021
##   H0-H1 Difference                            0.014572
##  
##   Rejection Rate (%)                                  
##   H0 Model                                    46.60   
##   H1 Model                                    22.40   

##   Average Parameter Bias (%) in the H1 Model:         
##   Loadings                                    -1.59   
##   Variances/Covariances                       -0.39
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The output now contains an additional column contain-
ing the simulation results. Note that the measures of effect 
refer to the estimates of the population values (rather than 
being averaged sample values), so these can be immedi-
ately compared across the different approaches to power 
analysis. Of note (and perhaps surprisingly, but consist-
ent with Steiger et al., 1985), the simulation results very 
closely match the analytical results in terms of the sample 
size required to detect the hypothesized effect despite the 
non-normal and incomplete data.

The output further reports on the simulation results 
in greater detail. In particular, the convergence rate 
(of the H0 model) and the average relative param-
eter bias by type of model parameter is provided 
(i.e., RB = 100 ⋅ (�̂ − �)∕� ), jointly giving an indica-
tion of whether the sample size is sufficient to sup-
port successful parameter estimation of the model 
under scrutiny. In addition, the empirically observed 
central and noncentral χ2 distributions are compared 
against the respective asymptotically expected refer-
ence distribution using three measures. First, the rela-
tive bias evaluates the departure of the empirical mean 
from the expected value ( RB = 100 ⋅ (χ2 − df )∕df  and 
RB = 100 ⋅ (χ2 − (df + λ))∕(df + λ)), respectively). Sec-
ond, the average Kolmogorov–Smirnov (KS) distance 
measures the discrepancy between the empirical and 
the reference cumulative distribution functions akin to 
the Kolmogorov–Smirnov test statistic, but relies on the 
average, rather than the maximum, absolute distance, 
KS = M(|Fe(x) − Fr(x)| ) (see Yuan et al., 2007). The aver-
age KS distance thus ranges from 0 (for no difference) to 
.50 (for completely nonoverlapping distributions). Finally, 
the empirical rejection rate given the specified alpha-error 
is provided as a measure of how strongly the tail of the 
empirical distribution differs from the asymptotic refer-
ence distribution. When the model representing the H0 is 

compared against the saturated model, this is the same as 
the empirical power estimate.

In the example above, the relative bias and the KS-dis-
tance indicate strong departures of the empirical distribu-
tions from the respective asymptotic distribution, which is 
also mirrored by a rejection rate of the (correctly specified) 
H1 model that clearly exceeds the nominal alpha-error of 
5%. However, the difference distribution closely follows the 
theoretically expected distribution, so there is virtually no 
difference (beyond sampling error) between the analytical 
and the simulated power estimate. Indeed, it is our experience 
that simulated power analyses for the comparison against an 
explicit H1 model usually show only minor departures from 
corresponding analytical power analyses. When the com-
parison is performed against the saturated model, however, 
simulated power is often higher as a consequence of the well-
documented positive bias of the model test when the assump-
tions are violated (e.g., Curran et al., 1996; Moshagen, 2012).

By default, semPower 2 performs simulated power 
analyses employing ML estimation with the uncorrected 
model test statistic. However, semPower 2 also allows one 
to change the estimator and test statistic employed in a 
simulated power analysis by setting the lavOptions argu-
ment, which is passed to lavaan and thus conforms to the 
standard lavaan conventions. For instance, lavOptions = 
list(estimator = 'mlr') leads to a simulated power esti-
mate relying on a corrected test statistic that is asymp-
totically equivalent to the Yuan & Bentler (2000) statis-
tic, whereas the analytic power estimate is still based on 
the asymptotically expected distributions based on ML. 
Repeating the previous example with this additional argu-
ment yields less biased distributions of the corrected test 
statistic under both the H0 and the H1 as compared to the 
results obtained above using the uncorrected test statistic, 
Note that the simulated power estimate is still very close 
to the analytical power estimate:
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##                                                 
##                             Analytical Simulated
##                                                 
##   F0                        0.027787   0.028610 
##   RMSEA                     0.166695   0.169146 
##   Mc                        0.986202   0.985797 
##                                                 
##   df                        1          1        
##   Required Num Observations 284        284      
##                                                 
##   Critical Chi-Square       3.841459   3.841459 
##   NCP                       7.863790   8.096706 
##   Alpha                     0.050000   0.050000 
##   Beta                      0.199255   0.206000 
##   Power (1 - Beta)          0.800745   0.794000 
##   Implied Alpha/Beta Ratio  0.250934   0.242718 

##   
##   
##   Simulation Results:
##                                                       
##   Convergence Rate (%) of the H0 model        100.00  
##                                                       
##   Chi-Square Bias (%)                                 
##   H0 Model                                    15.08   
##   H1 Model                                    19.04   
##   H0-H1 Difference                            6.03    
##                                                       
##   Chi-Square KS-Distance                              
##   H0 Model                                    0.151380
##   H1 Model                                    0.171136
##   H0-H1 Difference                            0.025160
##                                                       
##   Rejection Rate (%)                                  
##   H0 Model                                    44.80   
##   H1 Model                                    20.80   
##                                                       
##   Average Parameter Bias (%) in the H1 Model:         
##   Loadings                                    -1.76   
##   Variances/Covariances                       1.00   

##   
##   
##   Simulation Results:
##                                                       
##   Convergence Rate (%) of the H0 model        100.00  
##                                                       
##   Chi-Square Bias (%)                                 
##   H0 Model                                    15.08   
##   H1 Model                                    19.04   
##   H0-H1 Difference                            6.03    
##                                                       
##   Chi-Square KS-Distance                              
##   H0 Model                                    0.151380
##   H1 Model                                    0.171136
##   H0-H1 Difference                            0.025160
##                                                       
##   Rejection Rate (%)                                  
##   H0 Model                                    44.80   
##   H1 Model                                    20.80   
##                                                       
##   Average Parameter Bias (%) in the H1 Model:         
##   Loadings                                    -1.76   
##   Variances/Covariances                       1.00   

Conclusion

The present paper provided an introductory overview of the 
semPower 2 package for the R environment, which provides 
both analytical and simulated a priori, post hoc, and com-
promise power analysis based on either a model-free or a 
model-based definition of the effect and provides high-level 
functions to simplify the definition of meaningful hypoth-
eses arising in popular types of models (which are to be 
expanded to cover additional models in future versions). 

semPower 2 thus offers a high degree of both accessibility 
and flexibility in performing power analysis, and thereby 
overcomes several limitations of previous tools provid-
ing either analytical or simulated power analysis (but not 
both), thus complicating a direct comparison across these 
approaches. In addition, most existing tools offering simu-
lated power analysis  provide post hoc power analyses only, 
often consider particular model types, require the cumber-
some and error-prone definition of the values of all popula-
tion parameters, and do not offer easily accessible options to 



Behavior Research Methods	

1 3

change the estimator or to embed non-normally distributed 
data and or different patterns of missingness in the simula-
tion process.

Although the examples provided in the present paper 
focused on power analysis concerning models that include 
latent variables, semPower also provides power analysis of 
correlation and regression problems involving only observed 
variables as a special case. As such, we hope that semPower 
2 may promote the use of power analysis in determining the 
required sample size and evaluating hypothesis tests in a 
meaningful way more generally.

Limitations of the current version of semPower 2 include 
that multilevel models and models involving ordered cat-
egorical data are not yet supported. Also, semPower 2 is 
operated entirely through the R language. Although a Shiny 
app providing model-free power analyses is available at 
https://​sempo​wer.​shiny​apps.​io/​sempo​wer, there is currently 
no graphical user interface covering the complete functional-
ity of semPower 2. Readers who are more comfortable with 
a graphical user interface are referred to Jak et al. (2021) for 
analytical and to Wang and Rhemtulla (2021) for simulated 
power analyses.

Finally, it must be stressed that the prime purpose of 
semPower 2 is to perform power analyses concerning a par-
ticular hypothesis. Although the simulation option provides 
some indication of whether the required sample size yielding 
a particular power is also sufficient to support successful 
estimation of the model parameters, the question of whether 
a certain sample size guarantees proper convergence and 
good parameter recovery is not the focus of semPower 2. 
Statistical power is only one of several aspects to consider 
in determining sample size requirements.
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