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Abstract
Measurement invariance (MI) of a psychometric scale is a prerequisite for valid group comparisons of the measured construct.
While the invariance of loadings and intercepts (i.e., scalar invariance) supports comparisons of factor means and observed
means with continuous items, a general belief is that the same holds with ordered-categorical (i.e., ordered-polytomous and
dichotomous) items. However, as this paper shows, this belief is only partially true—factor mean comparison is permissible in
the correctly specified scalar invariance model with ordered-polytomous items but not with dichotomous items. Furthermore,
rather than scalar invariance, full strict invariance—invariance of loadings, thresholds, intercepts, and unique factor variances
in all items—is needed when comparing observed means with both ordered-polytomous and dichotomous items. In a Monte
Carlo simulation study, we found that unique factor noninvariance led to biased estimations and inferences (e.g., with inflated
type I error rates of 19.52%) of (a) the observed mean difference for both ordered-polytomous and dichotomous items and (b)
the factor mean difference for dichotomous items in the scalar invariance model. We provide a tutorial on invariance testing
with ordered-categorical items as well as suggestions on mean comparisons when strict invariance is violated. In general,
we recommend testing strict invariance prior to comparing observed means with ordered-categorical items and adjusting for
partial invariance to compare factor means if strict invariance fails.

Psychological constructs are unobservable and often indi-
rectly measured by scales with multiple items. For example,
the Center for Epidemiologic Studies Depression Scale
(CES-D Scale; Radloff, 1977) measures the construct of
depression using 20 items that assess depressive symptoms
(e.g., how often one had a poor appetite during the past
week). Social and behavioral researchers commonly use the
sum or mean scores of scale items to compare a psycholog-
ical construct across groups. Using CES-D as an example,
past research has compared gender differences in depressive
symptoms among adolescents with the sum scores of the
scale (Avison &McAlpine, 1992), and examined depression
levels among U.S. adults during the COVID-19 pandemic
using the mean scores of the scale (Fitzpatrick et al., 2020).

Group comparisons with scale scores are valid only when
the observed items measure the same latent construct equiv-
alently across groups, a condition known as measurement
invariance (MI; Mellenbergh, 1989; Meredith, 1993; Mill-
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sap, 2011).MI is an importantmeasurement property that has
been widely assessed in psychological and behavioral sci-
ences. In a quick search on PsycINFO, 1,664 peer-reviewed
articles published in 2019-2021 contained the keyword “mea-
surement invariance” or “measurement equivalence” in the
abstract. If MI does not hold, a condition known as measure-
ment noninvariance, differences in scale scores may reflect
not only differences in the latent construct of interest but
also incomparable measurement across groups, leading to
biased estimates of group differences and erroneous infer-
ences. Therefore, MI is a prerequisite for the valid use of
scale scores, particularly when evaluating group differences.

Traditionally, popular approaches to MI testing often
involve four sequential stages (Widaman & Reise, 1997):
configural (equality of model structure), metric (equality
of loadings), scalar (equality of loadings and intercepts),
and strict (equality of loadings, intercepts, and unique fac-
tor variances) invariance.1 However, in practice researchers
often omit applying the test of strict invariance, because

1 We refer to the unique factor covariance matrix as “unique factor
variance” or “unique variance” for short. We indicate the invariance
of unique factor variances and covariances through the “unique factor
invariance”.
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scalar invariance supports group comparisons of theobserved
means or factor means with continuous items (Meredith
& Teresi, 2006; Putnick & Bornstein, 2016; Vandenberg,
2002).2 When one or more items are not scalar invariant,
group comparisons based on observed means may be biased
(Schmitt & Kuljanin, 2008), even though group comparisons
of factor means may still be permissible when researchers fit
a partial scalar invariance model that correctly adjusts for the
noninvariant parameters (Byrne et al., 1989).

As many psychological scale items are not continuous
but categorical, researchers have adapted the above mul-
tistage procedure to evaluating MI for ordered-categorical
items (e.g., Likert-scale questionnaire items;Millsap&Tein,
2004). For example, unlike a continuous measure that can
take on an unlimited number of values, a Likert-scale item
on “how often one had a poor appetite during the past week”
in CES-D often consists of four response categories: rarely,
sometimes, occasionally, and most of the time (Radloff,
1977). Under the item factor model (Birnbaum, 1968; Wirth
& Edwards, 2007), latent responses to ordered-categorical
items are continuous but discretized into observed categories
by a set of thresholds. As such, modeling ordered-categorical
items requires an additional set of threshold parameters, in
addition to loadings, intercepts, and unique variances. The
intercepts denote the conditionalmeans of the latent response
distributions when the latent factor mean is zero and are usu-
ally set to zero to define the scale of the latent responses
(Wu & Estabrook, 2016), whereas the thresholds indicate
the position on the latent trait where a respondent transitions
from a lower to a higher category and are often freely esti-
mated (Bovaird & Koziol, 2012). The MI testing procedure
for ordered-categorical items parallels the one used for con-
tinuous items but with some differences. In particular, while
the equality constraints for the configural and metric mod-
els are the same, the scalar model often evaluates equality of
loadings and thresholds, and the strict model tests equality of
loadings, thresholds, and unique variances, fixing intercepts
at zero in all models (Millsap & Tein, 2004).

With a different distribution, however, ordered-categorical
items often involve different MI testing practices than con-
tinuous items, including estimation methods (Millsap, 2011;
B. O. Muthén, 1984); identification conditions (Millsap &
Tein, 2004; Wu & Estabrook, 2016); and parameterization
(B. O. Muthén, 2002). In addition, dichotomous items (i.e.,
with two categories) have different properties and, therefore,
involve different practices than ordered-polytomous items
(i.e., with three or more ordered categories). An example of

2 We refer to the observedmeans as the unweighted sum ormean scores
of the observed items and the factor means as the means of the latent
common factors in a multigroup confirmatory factor analysis.

this difference is that dichotomous items require additional
constraints for identification than ordered-polytomous items
(Millsap & Tein, 2004; Wu & Estabrook, 2016).

Does scalar invariance support mean
comparisons with ordered-categorical
items?

While scalar invariance allows factor mean and observed
mean comparisons with continuous items, the question
remains as to whether or not the same practice general-
izes to both dichotomous and ordered-polytomous items.
Many methodological guidelines have suggested that scalar
invariance supports factor mean comparisons with ordered-
categorical items (e.g., Bauer, 2017;Bovaird&Koziol, 2012;
Bowen & Masa, 2015; Kite et al., 2018; Putnick & Born-
stein, 2016), and some studies have further advised that
scalar invariance allows observed mean comparisons with
such items (e.g., Svetina et al., 2019). A general belief is
that “scalar invariance supports cross-group comparisons of
manifest (or latent) variable means on the latent variable of
interest” (Svetina et al., 2019, p. 2). As such, strict invariance,
the most stringent invariance condition, is often considered
“optional” (Pendergast et al., 2017, p. 71) and is “rarely pur-
sued” (Svetina et al., 2019, p. 2).

For these reasons, tutorials on MI testing with ordered-
categorical items often include only tests of configural,
metric, and scalar invariance, but not strict invariance (e.g.,
Bowen & Masa, 2015; Pendergast et al., 2017; Svetina
et al., 2019). Moreover, in the popular software Mplus for
latent variable modeling, the convenient MODEL option for
MI testing supports only up to scalar invariance for both
dichotomous and ordered-polytomous items (L. K. Muthén
& Muthén, 1998–2017, 2013). Such an option may encour-
age users to stop invariance testing at the scalar invariance
stage for ordered-categorical items; however, researchers can
still manually define a strict invariance model in Mplus.

Whereas the common presumption is that scalar invari-
ance supports both factor and observed mean comparisons
with ordered-categorical items, opposing arguments have
maintained that strict invariance is required for some forms
of mean comparisons. Liu et al. (2017) proved that strict
invariance is necessary to ensure that differences in the
observed means of ordered-categorical items are attributable
to only the differences in the latent construct. In other words,
valid comparisons of observed means require invariance of
loadings, thresholds, intercepts, and unique variances for
both dichotomous and ordered-polytomous items. On the
other hand, Wu and Estabrook (2016) noted that scalar
invariance supports factor mean comparisons specifically for
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ordered-polytomous items, although they did not discuss the
dichotomous case. For dichotomous items, however, little is
known in the literature on whether factor mean comparisons
are valid in the scalar invariance model.

Given inconsistent guidelines and limited research on
the invariance condition required for observed and factor
mean comparisons with ordered-categorical items (Pender-
gast et al., 2017), there is a need to bring clarity to the
question of whether strict invariance is a prerequisite for
factor mean and observed mean comparisons. Moreover,
dichotomous and ordered-polytomous items are often con-
sidered together, implicitly or explicitly, in a broader type
of “ordered-categorical” items. However, whether the same
practices apply to both types of items also remains a question.

The current study

To fill that gap in the literature, the current paper dis-
cusses and evaluates the necessary MI condition for valid
observed and factor mean comparisons with dichotomous
and ordered-polytomous items. As illustrated, unlike the
cases for continuous items, strict invariance is necessary
when the goal is to compare observedmeans of both dichoto-
mous and ordered-polytomous items. Moreover, factor mean
comparisons are valid in the scalar or partial scalar model
with ordered-polytomous items but not dichotomous items;
for the latter, the strict or partial strict model is needed for
valid factor mean comparison, as demonstrated in the simu-
lation results.

We begin with a brief review of MI testing practices as
reported in the literature and present an illustrative example
showing that observed mean and factor mean comparisons
can provide diverging results. We then define the stages of
invariance testing for ordered-categorical items. Next, we
perform a Monte Carlo simulation study to systematically
evaluate the impact of strict noninvariance on observed and
factor mean comparisons. Even when all items are strict
invariant, using only a scalar invariance model can intro-
duce bias in the estimation of factor mean differences. Lastly,
we provide a tutorial on MI testing with ordered-categorical
items, including a demonstration of how to establish partial
invariance when needed and how to perform factor mean
comparisons when strict invariance fails.

Strict invariance was not commonly tested
in the literature

We performed a brief review of MI testing practices with
ordered-categorical items in the psychological-related research,
with a focus on studies that evaluated MI using multigroup
confirmatory factor analysis (MG-CFA) with weighted least

squares (WLS).3 From a search on the PsychINFO database
using the followingkeywords: (“measurement invarian*”OR
“factorial invarian*” OR “differential item function*”) AND
(WLS* OR “diagonally weighted” OR DWLS OR Categor-
ical OR Ordinal OR binary OR Likert), we identified 74
peer-reviewed articles published in 2017 and 2018. Fifteen
of them were excluded because they (a) were not written in
English (n = 3), (b) did not test MI using empirical data (n =
10), (c) did not treat scale items as ordered-categorical (n =
1), or (d)were a corrigendumof a previously published article
(n = 1). Thirty-one of the remaining articles tested MI using
MG-CFA, and the rest of them evaluated MI within the item
response theory (IRT) framework or used other approaches
(i.e., bootstrap, moderated nonlinear factor analysis, or mul-
tiple indicator multiple cause modeling).

Among the 31 articles that used MG-CFA, three involved
dichotomous items, and 28 included ordered-polytomous
items with more than three response categories. These arti-
cles used either a variant of the diagonally weighted least
square estimation (DWLS; n = 24) or a variant of the
maximum likelihood estimation (ML; n = 3),4 but four of
them did not specify the estimation method. Whereas some
(41.94%) of the articles evaluated strict invariance, themajor-
ity (58.06%) of them tested up to the model of configural
(n = 1), metric (n = 2), or scalar invariance (n = 15).
Finally, a handful of the articles further compared observed
means (n = 7) or factor means (n = 10) across groups. Two
of these articles compared observed means of the ordered-
polytomous items without establishing strict invariance, and
one compared factor means of dichotomous items in the
scalar invariance model.

This brief review shows that the test of strict invariance
was often missed when testing MI for scales with ordered-
categorical items. In addition,we found instances of observed
mean comparisons with ordered-categorical items without
the support of strict invariance and an instance of factor mean
comparison with dichotomous items in the scalar invariance
model.

3 An alternative approach is developed within the item response theory
(IRT) framework (Penfield & Lam, 2005; Teresi, 2006) to test MI, also
known as differential item functioning, for ordered-categorical items.
While IRT is beyond the scope of this paper, we refer interested readers
to other excellent sources on this approach (Meade and Lautenschlager,
2004; Tay et al., 2015).
4 DWLS and its variants (e.g., unweighted least squares [ULS],
weighted least square mean and variance adjusted [WLSMV]) are esti-
mators that allow unique variances to freely vary. Other estimation
methods, such as maximum likelihood (ML) and ML estimation with
robust standard errors (MLR), typically fix the unique variances to 1
(Asparouhov & Muthén, 2020). As such, the equality of unique vari-
ances is already assessed in earlier stages of invariance models, and
achieving scalar invariance with these estimators implies equality of
loadings, thresholds, and unique variances.
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An illustrative example

The following example shows how inferences of comparing
observed means and factor means can diverge due to non-
invariance in unique variances. To illustrate, we simulated
data based on an empirical study by Sharman et al. (2019),
who developed The Beliefs About Crying Scale (BACS),
a psychological scale that measures beliefs about whether
crying is a helpful or unhelpful behavior in individual and
social contexts. For simplicity, we focus here on the one-
dimensional Helpful subscale of BACS and compare means
between males and females to examine the role of unique
factor invariance in mean comparisons.

The Helpful subscale has seven ordered-polytomous
items, each with five response categories (1–5). To create
an example for dichotomous items, the response categories
below 3 were collapsed into 0, and those at or above 3 were
collapsed into 1. As will be illustrated in the tutorial of this
paper, the Helpful subscale achieves partial strict invariance
with ordered-polytomous items and achieves strict invariance
with dichotomous items.

We used the parameter estimates from Sharman et al.
(2019) to simulate two toy datasets, one for dichotomous
items and another for ordered-polytomous items with five
categories. We simulated the datasets to have invariant load-
ings and thresholds but noninvariant unique variances in the
last three items between the two groups. In other words, the
simulated datasets achieve scalar invariance but not strict
invariance. Each dataset had a sample size of 1000, and the
goal was to detect an assumed population mean difference
of 0.2. The full R script for the simulation is available in the
supplemental materials.

We evaluated the observedmean difference by performing
an independent sample t test on the mean scores of the seven
items between males and females. Furthermore, we exam-
ined the factor mean difference estimate, α̂ f , in two models:
(a) the scalar model, which allows the unique variances to
freely vary, and (b) the partial strict model, which constrains
the unique variances to be equal except for the noninvariant
items. To allow for factor mean comparison, we fixed the
factor mean of the male group at 0; thus, the factor mean of
the female group indicated the difference between the two

groups. Note that neither the t test nor the scalar invariance
model accounted for the noninvariance of unique variances,
whereas the partial strict model did.

As shown in Table 1, the result of the observedmean com-
parison did not agreewith that of the factormean comparison.
For dichotomous items, the independent sample t test failed
to detect a difference in observed means between the two
groups, t(998) = 1.40, p = 0.16; similarly, theWald test in the
scalar model also failed to detect a factor mean difference
between the two groups, z = 0.69, p = 0.49. However, the
Wald test in the partial strict model detected a factor mean
difference between the two groups, z = 2.19, p < .05. For
ordered-polytomous items, whereas the independent sample
t test failed to detect an observed mean difference, t(998) =
1.23, p = 0.22, the Wald test in both the scalar, z = 2.28, p
<.05, and partial strict models, z = 2.20, p <.05, detected a
factor mean difference.

The above example illustrates a case where the conclu-
sions of mean comparisons diverged in different models even
when the data was scalar invariant. While in practice the
population mean difference is unknown, the question lies
in which conclusion is valid if some items have noninvariant
unique variances. In the following, we will reviewMI testing
with ordered-categorical items and systematically evaluate
the impact of unique factor noninvariance on mean compar-
isons with a simulation study.

Measurement invariance testing

MI testing typically involves a multistage procedure that
sequentially evaluates nestedmodels each of which has addi-
tional equality constraints across groups. This procedure was
originally developed for continuous items under the multi-
variate normality assumption within a common-factor model
(Horn&McArdle, 1992;Meredith, 1993;Vandenberg, 2002;
Widaman&Reise, 1997). Since ordered-categorical items do
not fulfill such distributional assumptions, alternative mul-
tistage procedures were established within the item factor
model framework (Liu et al., 2017; Millsap & Tein, 2004;
Svetina et al., 2019; Wirth & Edwards, 2007). In this sec-
tion, we begin by defining the common factor model and the

Table 1 Observed and factor
mean comparison in the
illustrative example

Mean difference Model Estimate [95% C.I.]

Observed -0.02 [-0.01, 0.06]

Dichotomous Factor Scalar 0.26 [-0.54, 1.12]

Partial strict 0.33 [0.04, 0.76]

Observed -0.07 [-0.04, 0.19]

Ordered-polytomous Factor Scalar 0.15 [0.02, 0.3]

Partial strict 0.14 [0.02, 0.3]

Note. Bolded figures are the statistically significant estimated mean difference
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item factor model and then discuss theMI testing procedures
for ordered-categorical items.

Common factor model with continuous items

Let Yi j (i = 1, 2, . . ., N ; j = 1, 2, . . ., p) be the response of
the i th person on the j th item in a scale of p items measur-
ing a latent common factor η. A measurement model links
Y and η probabilistically with a set of parameters, expressed
as P(Yi j |η). Formally, MI holds when the conditional distri-
bution of the observed items is the same across subgroups,
such as gender and ethnicity (Mellenbergh, 1989; Meredith,
1993). That is, for a subgroup membership variable G,

P(Yi j |ηi ,Gi = g) = P(Yi j |ηi ),∀ j, g. (1)

In other words, responses to scale items depend solely on the
common factor but not the group membership. For example,
two people with the same beliefs about crying should have
the same propensity to respond to the scale items similarly,
regardless of their group membership.

For continuous items, the common factor model (Thur-
stone, 1947) is usually used, represented as

Yi j = ν j + λ jηi + εi j , (2)

where ν j is the measurement intercept, λ j is the factor
loading, and εi j is the realized value of the unique fac-
tor. It is commonly assumed that ε j is normally distributed
with constant variance θ j , so that Yi j is also normally
distributed conditioned on ηi . In addition, the local inde-
pendence assumption is usually applied such that, when
conditioned on ηi , Cov(Yi j ,Yi j ′ |ηi ) = 0 for j �= j ′. When
there are K groups, the model is

Yi jk = ν jk + λ jkηik + εi jk, (3)

where k = 1, 2, . . ., K , and Var(εi jk) = θ jk .
When a common factor model holds, MI requires that

the measurement parameters, for example ν j , λ j and θ j

for the model in Eq. 2, are the same across groups (e.g.,
Meredith, 1993). For continuous variables, valid group com-
parisons do not require all measurement parameters to be
equal across groups. Conventionally, researchers have distin-
guished between four stages of measurement invariance: (a)
configural invariance, which requires the configuration of the
factor loadings to be the same across groups (Horn &McAr-
dle, 1992); (b) metric/weak invariance, which requires equal
factor loadings (i.e., λ jk = λ j for all js and ks) in addition
to configural invariance; (c) scalar/strong invariance, which
requires equal measurement intercepts (i.e., ν jk = ν j for all
js and ks) in addition to metric invariance; and (d) strict
invariance, or strict factorial invariance, which requires all

measurement parameters (ν j , λ j , and θ j for all js) to be
equal across groups.

Item factor model with ordered-categorical items

Let yi j be the observed categorical response and y∗
i j be the

latent continuous response of the i th person for item j , under
the item factor model:

Y ∗
i j = ν j + λ jηi + εi j , (4)

whereηi is the latent common factor, ν j is the latent intercept,
λ j is the factor loading, and εi j is the realized value of the
unique factor. The equation is the same as the factor model
for continuous variables. From here, however, it is assumed
that Y ∗

i j is mapped to Yi j , the observed variable with C − 1
thresholds andC categories (0, 1, . . .,C−1), by a cumulative
link function such that

Yi j =

⎧
⎪⎨

⎪⎩

0 if Y ∗
i j ≤ τ

(1)
j

c if τ
(c)
j < Y ∗

i j ≤ τ
(c+1)
j

C − 1 if Y ∗
i j > τ

(C−1)
j

, (5)

where τ
(1)
j , . . ., τ (C−1)

j are the threshold parameters for the
j th item. For example, consider that the latent responses,
Y ∗, to the item “crying makes me feel better” take a normal
distribution. As shown in Fig. 1, the latent responses under
τ (1) fall in Category 0 (e.g., “Not true for me at all”), those
between τ (1) and τ (2) are in Category 1 (e.g., “Moderately”),
and those above τ (2) are in Category 2 (e.g., “Extremely true
for me”). The item factor analysis model assumes that an
observed response is “Extremely true for me” if the latent
response lies above τ (2).

With a probit link,5 it is assumed that ε follows a normal
distribution,

εi j ∼ N (0, θ j ). (6)

which implies that Y ∗
i j , conditioned on ηi , is normally dis-

tributed:

y∗
i j |ηi ∼ N (ν j + λ jηi , θ j ). (7)

Measurement invariance testing
with ordered-categorical items

Millsap and Tein (2004) identified four types of parameters,
ν j , τ j , λ j , and θ j , for MI testing with ordered-categorical

5 An alternative is to apply a logit link by assuming that ε follows a
standard logistic distribution (seeWirth&Edwards, 2007). The analytic
results in the current study also apply to the logistic parameterization.
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Fig. 1 An illustration of biases
due to noninvariance in different
parameters. All plots show the
latent response distributions of
an item with three response
categories, scoring 0, 1, and 2.
Both the reference group (red,
solid line) and the focal group
(blue, dashed line) share the
same factor mean (α = 0.2) and
factor variance (ψ = 1).
Regions below the first
threshold, between the first and
second thresholds, and above
the second threshold indicate the
probability of scoring 0, 1, and
2, respectively. E(Y) = observed
mean. λ = factor loading.
τ (1), τ (2) denote the first and
second thresholds. θ = unique
factor variance. ν = intercept.
Bias = observed mean
difference due to noninvariance
in different parameters while the
population mean difference is 0

items. As for continuous items, methodologists (Liu et al.,
2017; Millsap, 2011; Millsap & Tein, 2004; Svetina et
al., 2019) have proposed similar multistage procedures for
ordered-categorical items. These procedures also compare
nested models by adding equality constraints of parameters,
but they differ in the identification conditions, parameteriza-
tions, and order of tests of invariance.

Unlike the procedure used with continuous items,MI test-
ing with ordered-categorical items involves, additionally, τ j .
A typical option to identify an item factor model is by set-
ting ν j to zero (Liu et al., 2017; Millsap & Tein, 2004),
which is the default of popular statistical programsMplus and
lavaan in R. Alternative identification conditions allow esti-
mations of ν j (e.g., Svetina et al., 2019). Interested readers
are referred to Wu and Estabrook (2016) for a comprehen-
sive discussion on identification conditions of item factor
models with constraints on different types of parameters.
Furthermore, B. O. Muthén (2002) discussed two parameter-
izations for defining the scales of ordered-categorical items:
delta and theta. To allow the test of strict invariance, Millsap
and Tein (2004) recommended theta parameterization, with
which unique variances are estimable parameters.

Millsap and Tein (2004) introduced a procedure that
evaluates invariance models in the following order: (a) con-
figural invariance, (b) invariance of loadings (metric/weak),
(c) invariance of loadings and thresholds (scalar/strong) and
(d) invariance of loadings, thresholds, and unique variances
(strict). This order of invariance tests is also popular in liter-
ature (e.g., Liu et al., 2017; B. O. Muthén, 2002; Pendergast

et al., 2017), although the test of strict invariance is often
considered optional (Bowen&Masa, 2015; Pendergast et al.,
2017; Svetina et al., 2019). In an alternative order of tests,
the test of threshold invariance comes before the test of load-
ing invariance (Svetina et al., 2019; Wu & Estabrook, 2016).
Moreover, for dichotomous items, because the metric model
is an equivalent model to the configural model, the invari-
ance of loadings and thresholds are usually tested together
(Millsap & Tein, 2004; Wu & Estabrook, 2016), resulting in
only three stages: configural, scalar, and strict (B. O.Muthén,
2002; Putnick & Bornstein, 2016).

Observedmean comparison

Just as with continuous items, configural invariance andmet-
ric invariance do not support observed mean comparisons
with ordered-categorical items. As shown in Fig. 1d, even
with the same common factor mean α = 0.2, the differences
in loadings, thresholds, and unique variances yield different
observed scores of an ordered-categorical item in the two
groups. Such differences are not attributable to the group
difference in the latent construct, but merely due to measure-
ment artifacts when the ordered-categorical item is measured
differently between groups. Similarly, Fig. 1c shows that
when the thresholds are unequal, the two groups can have dif-
ferent observed scores. If two persons have a latent response
at around 1.25, the person from the reference group (red,
solid line) would endorse Category 1, as 1.25 falls below
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τ
(2)
r = 1.5, but the person from the focal group (blue, dashed
line) would choose Category 2, as 1.25 falls above τ

(2)
f = 1.

Hence, threshold noninvariance results in different probabil-
ities of item endorsement as well as observed scores of an
ordered-categorical item.

Although for continuous items scalar invariance supports
observed mean comparisons, strict invariance is required
for ordered-categorical items. Even when both loadings and
thresholds are invariant across groups, the differences in
observed responses of ordered-categorical items do not nec-
essarily reflect the differences in the latent responses or the
latent common factor (Liu et al., 2017). As shown in Fig. 1b,
due to unequal unique variances, the probability of choosing
any of the three response categories differs. This can result
in a difference in observed scores, even if the two groups
share the same factor mean. When strict invariance holds,
differences in the observed means are entirely attributable to
the differences in the latent common factor (Liu et al., 2017).
Figure 1a shows that the latent distributions of the two groups
align when strict invariance holds. Only in this situation do
the probabilities of endorsing each response category overlap
between groups, hence accurately reflecting the fact that the
two groups share the same standing in the latent construct.
The unique variance parameter generally affects the distribu-
tion and hence the expected value of the observed responses,
except when the distributions are symmetric for all groups. In
Appendix A, we present and discuss themathematical details
that support these conclusions.

To summarize, observed mean comparisons with ordered-
categorical items require full invariance in loadings, thresh-
olds, intercepts, and unique variances to accurately infer
differences in the latent common factor. If any of the items
are not strict invariant (i.e., partial strict invariance) dis-
tributed, observed means can be different across groups even
if they share the same common factor mean. Without full
strict invariance, one should consider comparing the factor
means.

Factor mean comparison

To allow factor mean comparisons, it is important to first
ensure that the identification conditiondoes not involvefixing
all factor means to be zero across groups (Wu and Estabrook,
2016). One way to identify the model is by fixing the factor
mean of one group (i.e., reference group) to zero and freely
estimating the factor mean of the other groups (i.e., focal
groups). The estimated factor mean of a focal group reflects
the factor mean difference between the focal group and the
reference group.

Factor mean comparisons are permissible in the scalar
or partial scalar invariance model for ordered-polytomous
items, but only in the strict or partial strict invariance model

for dichotomous items. For ordered-polytomous items, as
scalar invariance equates the scales of the latent responses,
group differences in the factor means reflect group differ-
ences in the latent common factor (Wu&Estabrook, 2016). If
some thresholds are invariant but some are not, factor means
can be compared in the partial scalar invariance model that
correctly frees the noninvariant thresholds and constrains the
invariant thresholds to be equal across groups.

For dichotomous items, however, using the scalar or par-
tial scalar invariance model does not ensure valid factor
mean comparisons. When unique variances are allowed to
freely vary across groups, the scalar or partial scalar invari-
ance model fails to uniquely identify factor means of the
focal groups, even if the model correctly constrains invari-
ant loadings, intercepts, and thresholds to be equal across
groups. Contrarily, with additional equality constraints on
unique variances, the strict or partial strict invariance model
uniquely identifies factor means of the focal groups. There-
fore, valid factor mean comparisons require correct equality
constraints on the invariant unique variances in addition
to loadings, intercepts, and thresholds. Appendix B shows
the mathematical support for factor mean comparisons with
ordered-polytomous and dichotomous items.

Table 2 summarizes the practices required for valid mean
comparisons with ordered-polytomous and dichotomous
items. If the goal is to compare observed means, the data
must establish strict invariance for both ordered-polytomous
and dichotomous items. Whereas factor mean comparisons
with ordered-polytomous items are permissible in the scalar
or partial scalar invariance model, such comparisons with
dichotomous items are valid only in the strict or partial strict
invariance model.

Simulation study

We conducted a Monte Carlo simulation study to evaluate
the observed and factor mean differences when scale items
demonstrate unique factor noninvariance. The goal was to
address the following two main questions: (a) How does

Table 2 Practices for valid mean comparisons

Observed mean
comparison is valid

Factor mean
comparison is valid

Ordered-polytomous In the correctly
specified scalar or
partial scalar
invariance model

Dichotomous When the data
establish strict
invariance

In the correctly
specified strict or
partial strict
invariance model
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the lack of strict invariance impact the statistical inference
and estimation of the observed mean difference between
groups with ordered-categorical items? and (b) Does the
scalar model give an accurate estimate and inference of the
factor mean difference for both dichotomous and ordered-
polytomous items?

In this simulation study, we examined the impact of
unique factor noninvariance on items with two, five, or seven
response categories, which are common item types in psy-
chological scales. We used three sets of parameter values to
generate observed data (a) with negatively skewed distribu-
tions, (b) with positively skewed distributions, and (c) based
on an empirical example. Table 3 summarizes the parameter
values for data generation, as well as the skewness of the
observed response distribution and the proportion of endors-
ing each response category. For (a) and (b), we adapted
parameter values in the Sass et al. (2014) to simulate data
of ten items. For ease of comparison, we maintained a con-
stant skewness in the observed response distribution across
item types. For (c), as a follow-up of the Illustrative Example,

we simulated data of seven items based on the parameter esti-
mates from the Helpful subscale of BACS to systematically
evaluate the impact of unique factor noninvariance on empir-
ical data. As most BACS items have a negatively skewed
distribution, the result patterns for the simulated BACS data
are expected to be similar to those for negatively skewed data.

To isolate the effect of unique factor noninvariance, we
simulated data that are scalar invariant but noninvariant in
unique variances between groups. Specifically, the focal
group had a larger unique variance than the reference group.
Wedefined themeandifference as themeanof the focal group
minus the mean of the reference group. Based on these def-
initions and the analytic results discussed above, we expect
the following:

1. In the conditions with unique factor noninvariance,
observed mean difference will be underestimated for
the simulated data with negatively skewed distributions
and overestimated for the simulated data with positively
skewed distributions.

Table 3 Parameter values for data generation

C Item(s) λ θr τ Proportion (%) Skewness

Negatively skewed

2 1-10 0.6 0.64 -0.59 (28, 72) -1.00

5 1-10 0.6 0.64 -1.55, -1.08, -0.55, 0.15 (6, 8, 15, 27, 44) -1.00

7 1-10 0.6 0.64 -1.65, -1.23, -0.92, -0.61, -0.28, 0.3 (5, 6, 7, 9, 12, 23, 36) -1.00

Positively skewed

2 1-10 0.6 0.64 0.59 (72, 28) 1.00

5 1-10 0.6 0.64 -0.151, 0.553, 1.08, 1.555 (44, 27, 15, 8, 6) 1.00

7 1-10 0.6 0.64 -0.305, 0.279, 0.613, 0.915, 1.227, 1.645 (36, 23, 12, 9, 7, 6, 5) 1.00

BACS

1 2.68 1 -2.92 (0.2, 99.8) -1.92

2 2.16 1 -2.66 (0.4, 99.6) -2.18

3 2.21 1 -2.13 (1.7, 98.3) -1.58

4 1.83 1 -2.01 (1.8, 98.2) -1.89

2 5 1.43 1 -2.37 (0.9, 99.1) -2.93

6 1.38 1 -1.41 (7.9, 92.1) -1.46

7 1.31 1 -1.41 (7.9, 92.1) -1.52

1 2.68 1 -3.34, -1.84, -0.22, 2.27 (0, 3.2, 38.2, 57.4, 1.2) -0.53

2 2.16 1 -3.29, -1.99, -0.69, 0.99 (0.1, 2.3, 22.1, 59.4, 16.2) -0.68

3 2.21 1 -3.58, -1.90, -0.33, 1.32 (0, 2.8, 34.1, 53.7, 9.3) -0.46

4 1.83 1 -3.31, -1.94, -0.41, 1.37 (0, 2.6, 31.6, 57.3, 8.5) -0.53

5 5 1.43 1 -3.47, -1.88, -0.74, 0.57 (0, 3, 19.9, 48.8, 28.3) -0.64

6 1.38 1 -2.09, -1.15, -0.34, 1.25 (1.8, 10.8, 24.1, 52.7, 10.6) -0.58

7 1.31 1 -2.36, -1.10, -0.53, 0.77 (0.9, 12.6, 16.2, 48.4, 21.9) -0.62

Note. Parameter values used to generate data with negatively skewed distributions, positively skewed distributions, and based on the BACS example.
C = number of response categories. λ = loadings. θr = unique variances for the reference group. Unique variances for the focal groups may change
depending on the simulation conditions. τ = thresholds. Proportion (%) = proportions of endorsing response categories of 0 and 1 for C = 2, 0 to
4 for C = 5, and 0 to 6 for C = 7
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2. For dichotomous items, as the scalar invariance model is
unidentified, the factor mean estimate will be biased in
this model, whether or not the data achieve strict invari-
ance. However, using the correctly specified strict (or
partial strict) invariancemodel will give an unbiased esti-
mate of the factor mean difference.

3. For ordered-polytomous items (items with five or seven
categories), using either the correctly specified scalar or
strict (or partial strict) invariance model will produce
unbiased estimates of factor mean differences.

Simulation design factors

We manipulated five design factors: group size, number of
noninvariant items (pni ), degree of noninvariance (dni ), pop-
ulation factor mean difference (α f ), and number of response
categories (C). Similar to previous simulation studies (Hsiao
& Lai, 2018; Yoon & Lai, 2018), we set the group size (nk)
to 100, 200, and 500. With two groups, therefore, the total
sample sizes were 200, 400, and 1000, indicating relatively
small, medium, and large sample sizes, respectively.

With reference to the simulation design in Liu and West
(2018), we simulated data to have zero, one, and three items
that demonstrated unique factor noninvariance in the same
direction. The numbers of noninvariant items (pni ) corre-
sponded to 0, 10, and 30% of the ten items (first and second
sets of parameter values) and 0, 14, and 43% of the seven
items (third set of parameter values) with larger unique vari-
ances in the focal group than in the reference group, reflecting
an absence, a small amount, and a large amount of nonin-
variance, respectively. Similar to the design in Liu and West
(2018), in the conditions with noninvariant items, the focal
group had 1.252 or 1.52 times larger unique varaince(s) than
the reference group, indicating a small or a large degree of
noninvariance (dni ).

Following conventional practices with model identifica-
tion, we fixed the factor mean of the reference group at 0. As
such, the factor mean difference between the two groups was
equivalent to the factor mean of the focal group (α f ). The
population factor mean of the focal group was set at 0, 0.2,
and 0.5, similar to the design in Lai et al. (2021). We simu-
lated items that have two, five, and seven response categories
(C = 2, 5, 7).

Data generation

We used the SimDesign package (Chalmers &Adkins, 2020)
in R (R Core Team, 2022; version 4.1.3) to structure the
simulation. For each design condition, we generated 2500
data sets for analysis.

Assuming a single underlying factor, we simulated the
latent common factors (ηi jk) from a normal distribution with

a variance of one for both groups. The common factor mean
was set at 0 for the reference group (αr = 0) and varied
depending on the design conditions for the focal group (α f ).
The continuous latent responses for each itemwere generated
based on Eq. 4, where both groups shared the same intercepts
of 0 (ν jr = ν j f = 0) and the same loadings (λ jr = λ j f ).
The unique factors (e jk) were simulated from a normal distri-
bution with a mean of zero for both groups. For the reference
group, the unique factor variances were 1 (θ jr = 1); for the
focal group, the unique factor variances (θ j f ) varied accord-
ing to the design conditions. Lastly, we used the same set of
thresholds (τ (c)

jr = τ
(c)
j f ) for both groups to convert the latent

responses into observed responses with two, five, or seven
categories based on Eq. 5.

Data analysis

Per generated data set, we compared the observed means
and factor means between groups. For observed mean com-
parison, we computed the average item score across the
seven items per individual, Ȳik = 1

P

∑P
j=1 Yi jk for P items,

and the observed means across individuals in each group,
Ȳk = 1

nk

∑nk
i=1 Ȳik .

6 We then performed an independent sam-
ple t test in R to test against the null hypothesis that the
population observed mean difference was zero at α = .05.
For factor mean comparisons, we used lavaan (Rosseel,
2012) to analyze the data with (a) a correctly specified scalar
invariance model and (b) either a correctly specified strict
or partial strict invariance model, depending on the design
conditions. All models were identified with the default iden-
tification conditions in lavaan and the theta parameterization
to allow for free estimation of unique variances.7 In all mod-
els, we examined the factor mean estimate and statistical
significance of the focal group, which denoted the factor
mean difference as the factor mean of the reference group
was set at 0.

We summarized the simulations in terms of rejection rate
and raw bias of the observed or factor mean differences.
Rejection rate denotes the type I error rate or power when

6 McNeish and Wolf (2020) and McNeish (2022) discussed that using
sum (or mean) scores require strict assumptions such as equal factor
loadings across items,whereasWidaman andRevelle (2022) argued that
using sum scores requires only unidimensionality and avoids indetermi-
nacy issues in factor scores. We recommend consulting these papers for
a more in-depth discussion and advise researchers to carefully examine
their data to make educated decisions in comparing observed scores
or factor scores. We note that whether or not the equal factor loading
assumption holds, valid observedmean comparisons require unique fac-
tor invariance, as shown in the current simulation study using parameter
values that have equal loadings (adopted from Sass et al., 2014) and
unequal loadings (adopted from the BACS empirical data).
7 We have also fit the scalar models using the delta parameterization
(provided in supplemental materials), of which the results are consistent
with the scalar models using theta parameterization.
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the population factor mean difference was zero or nonzero,
respectively. The expected standard error of the current simu-
lation was .44%, calculated using

√
(1 − α)α/R (Sass et al.,

2014) with R = 2, 500 and α = 5%. Therefore, we deter-
mined that the acceptable range for type I error rates was
4.13%-5.87%—two standard errors away from the nominal
5% alpha level. As power is a function of sample size, we
compared other conditions with noninvariant items against
the baseline conditions that had zero noninvariant items to
evaluate the impact of unique factor noninvariance. The raw
bias was the average deviation of the sample observed or
factor mean difference from the population mean difference
across the replications.

Simulation results

The result patterns for the simulated BACS data, of which
most items have a negatively skewed distribution, were the
same as those for the negatively skewed data. The result pat-
terns between negatively skewed and positively skewed data
were highly similar, except that the directions of biases in the
observed mean difference varied. As expected, although the
magnitudes of biases were similar, the observed mean dif-
ference was underestimated for negatively skewed data and
overestimated for the positively skewed data. For observed

mean comparison, the result patterns of type I error rate were
the same between both types of data, but power decreases for
the negatively skewed data and “increases” for the positively
skewed data. The increase in power, however, was due to an
overestimated mean difference between the focal and refer-
ence group, and should not be considered desirable. For the
factor mean comparison, the result patterns were consistent
across all three types of data. Since the result patterns were
highly similar, we report the simulation results for the neg-
atively skewed data in the following and provide the details
for positively skewed data and simulated BACS data in the
supplemental materials.

Observed mean comparison

Overall, the effect of unique factor noninvarianceonobserved
mean comparisons was similar for all types of items. As
shown in Fig. 2, comparing observed means from data with-
out noninvariant items controlled the type I error rate at the
5% level. However, when unique factor noninvariance was
present, observed mean comparisons resulted in an inflated
type I error rate. The type I error rate increased with more
noninvariant items, a larger degree of unique factor nonin-
variance, and a larger group size. The type I error rate was
similar across item types and was as large as 18.16% for

Fig. 2 Type I error rate of the
observed mean comparisons. nk
= group size. C = number of
response categories. pni =
number of unique factor
noninvariant items. dni = degree
of unique factor noninvariance.
α f = population factor mean of
the focal group. The shaded
area is the acceptable range of
type I error rates, 4.13–5.87%,
in this study
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dichotomous items, 18.56% for items with five categories,
and 19.52% for itemswith seven categories whenmore items
(pni = 3) demonstrated a large degree of unique factor non-
invariance (dni = 1.52).

As shown in Fig. 3, compared to the level in the baseline
conditions, power dropped as the degree of noninvariance
and the number of noninvariant items increased. From the
level in the baseline conditions, power decreased from 73%
to 28.32%, from 79.52% to 33.92%, and from 80.60% to
33.80% for items with two, five, and seven categories, when
the degree of noninvariance and number of noninvariant
items were large and the population mean difference was
small (pni = 3, dni = 1.52, and α f = 0.2).

The raw bias of the observed mean difference is sum-
marized in the supplemental materials. The sample mean
difference of observed items underestimated the population
mean difference when the data contained noninvariant items.

Themagnitudeof the rawbias increasedwithmorenoninvari-
ant items and a larger degree of unique factor noninvariance
(e.g., the magnitude of the bias went up to 0.07 when three
items had a large degree of noninvariance).

Factor mean comparison

Figures 4 and 5 show the results of factor mean comparisons
in the scalar and strict/partial strict models. If the simulated
data were strict noninvariant, we freely estimated the nonin-
variant item(s) in the correctly specified partial strict model;
otherwise, we evaluated the factor mean difference in the
strict model. The model convergence rates were high for
items with five response categories (> 99%). For items with
seven response categories, the convergence rates were lower
(< 80%)when thegroup sizewassmall (nk =100) but reached
high convergence rates (> 99%)when the group sizewas suf-

Fig. 3 Statistical power of the observed mean comparisons. nk = group size. C = number of response categories. pni = number of unique factor
noninvariant items. dni = degree of unique factor noninvariance. α f = population factor mean of the focal group. The dashed line indicates 80%
power
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Fig. 4 Type I error rate of the factor mean comparisons. nk = group
size.C = number of response categories. pni = number of unique factor
noninvariant items. dni = degree of unique factor noninvariance. α f =
population factor mean of the focal group. Scalar = the scalar invari-

ance model. (Partial) Strict = the strict invariance model if all items are
invariant or the partial strict invariancemodel if some items demonstrate
unique factor noninvariance. The shaded area is the acceptable range
of type I error rates, 4.13–5.87%, in this study

ficiently large (nk = 200). Models failed to converge when
there were empty categories in the simulated data, which
occurred more often when the group size was small and the
number of response categories was large. For dichotomous
items, although the convergence rates of the strict/partial
strictmodelswere high (> 99%), the convergence rates of the
scalar models were low (< 51%) due to model identification
issues regardless of sample size conditions.

For dichotomous items, using the strict/partial strict model,
factor mean comparisons resulted in type I error rates within
the acceptable range. Power was low in conditions with a
small group size and a small population factor mean dif-
ference (nk = 100, α f = 0.2) but increased as the group
size and/or the mean difference were larger. By contrast,
using the scalar model, the type I error rate was substan-

tially outside the acceptable range and was highest (30.12%)
when the group size was small and more items demonstrated
a large degree of unique factor noninvariance (nk = 100,
(pni = 3, dni = 1.52). Power in the scalar model was low
even when the group size and the population factor mean
difference were large (nk = 500, α f = 0.5). Regardless of
whether the simulated data were strict invariant, using the
scalar model consistently led to inflated type I error rates and
reduced power. On the other hand, for ordered-polytomous
items with five or seven categories, using either the scalar or
the partial strict invariance model resulted in a type I error
rate within the acceptable range and similar power for all
conditions.

The supplemental materials include a summary table that
shows the raw bias and standard error of the factor mean
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Fig. 5 Statistical power of the factor mean comparisons. nk = group
size.C = number of response categories. pni = number of unique factor
noninvariant items. dni = degree of unique factor noninvariance. α f =
population factor mean of the focal group. Scalar = the scalar invari-

ance model. (Partial) Strict = the strict invariance model if all items are
invariant or the partial strict invariancemodel if some items demonstrate
unique factor noninvariance. The dashed line indicates 80% power
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difference. For dichotomous items, the raw biases and the
standard errors were substantially larger in the scalar model
than in the strict/partial strict model. Although both the raw
biases and the standard errors decreased as the group size
increased, they converged to zero more slowly in the scalar
model than in the strict/partial strict model. This finding
explains the high type I error rate and low power issues
in the scalar model for dichotomous items. For ordered-
polytomous items, the raw biases were close to zero in both
the scalar and strict/partial strict models, and the standard
errors were the same between the two models across all con-
ditions.

Summary

The results of our simulation study show that different levels of
invariance were required for comparing the observed means
or factor means with dichotomous or ordered-polytomous
items. For all types of ordered-categorical items, valid
observed mean comparisons required full strict invariance.
Unique factor noninvariance led to biases and erroneous
inferences in the observed mean differences between groups
for all types of simulated data. For factor mean compar-
isons, using both scalar and strict/partial strictmodels yielded
similar results for ordered-polytomous items. However, for
dichotomous items, comparing factor means in the scalar
model consistently resulted in a higher type I error rate,
lower power, higher bias, and higher standard error than the
strict/partial strict model across conditions.

Tutorial onmeasurement invariance testing
for ordered-categorical items

In the following tutorial, we aim to demonstrate the MI
testing procedure with ordered-categorical items and illus-
trate mean comparisons when a subset of the items fails the
invariance assumptions (i.e., partial invariance). Although
the previous literature has discussed the procedure for
testing configural,metric, and scalar invariancewith ordered-
categorical items (e.g., Bowen & Masa, 2015; Svetina et al.,
2019), we extend the demonstration to the test of strict invari-
ance and the search for partial invariance when a few items
exhibit threshold or unique factor noninvariance.

The tutorial follows the identification conditions pro-
posed by Millsap and Tein (2004) and Liu et al. (2017).
While there are alternative procedures for MI testing with
ordered-categorical items, such as Wu and Estabrook (2016)
and Svetina et al. (2019), regardless of identification condi-
tions, the central idea remains that researchers should ensure

strict invariance before comparing the observed means with
ordered-categorical items and adjust for strict noninvariance
to make valid factor mean comparisons with dichotomous
items. We provide the lavaan syntax for MI testing with
ordered-polytomous items in the following. The supplemen-
tal materials include the complete R script of this tutorial
with both ordered-polytomous and dichotomous items.

We used the same example as in previous sections: the
seven-itemHelpful subscale of BACSdeveloped by Sharman
et al. (2019). The data were collected from a sample of 210
college students aged between 17 and 48 (71.4% female;
Mage = 20.18, SD = 4.79). The reliability of the subscale
is high with Cronbach’s α = 0.91. Our goal was to examine
whether there is a gender difference in the helpful beliefs
about crying. For replicability, we use the following syntax to
import the data provided by Sharman et al. (2019) and select
only relevant variables, including the grouping variable and
the seven items in the Helpful subscale:

dat<- read.csv("https://osf.io/6gsy8/
download")

dat_sub < - subset(dat, select = c
(Gender, BACS_38, BACS_31, BACS_29,
BACS_30, BACS_1, BACS_26, BACS_4))

We begin this tutorial by testing the unidimensionality
assumption,which is a prerequisite for the use of the observed
mean of a psychological scale (McNeish & Wolf, 2020;
Widaman & Revelle, 2022) and a one-factor model.8 Unidi-
mensionality denotes that a single dimension underlies a set
of items and can be evaluatedwith statistical methods such as
the scree plot (Cattell, 1966), parallel analysis (Horn, 1965;
Humphreys &Montanelli, 1975; Velicer, 1976), and the Hull
method (Lorenzo-Seva et al., 2011). We briefly illustrate
the test for the unidimensionality assumption with paral-
lel analysis and refer interested readers to Bandalos (2018)
for a comprehensive discussion of other methods. To per-
form parallel analysis on the Helpful subscale, we utilize the
fa.parallel() function in the psych package (Revelle,
2022).

library(psych)
fa.parallel(subset(dat_sub, select =
BACS_38:BACS_4), fm = "pa")

The first three eigenvalues from the parallel analysis are
4.24, 0.16, and 0.09, where the first eigenvalue was sub-
stantially larger than the subsequent eigenvalues. The result

8 We thank an anonymous reviewer for suggesting the inclusion of the
test for unidimensionality in the tutorial.
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supports the undimensionality assumption that there is one
factor underlying the seven items of the Helpful subscale.

In this tutorial, we follow the MI testing procedure
discussed in Liu et al. (2017) and sequentially evaluate con-
figural, metric, scalar, and strict invariance. The configural
model is identified by fixing the common factor variance to
1 for the reference group and freely estimate all loadings Wu
and Estabrook (2016).9 For ordered-polytomous items, the
configural model has additional identification constraints as
follows (Liu et al., 2017, p. 494):

1. Fix the latent intercepts ν j to 0 across groups.
2. For each of m common factors, select an observed item

as the marker variable, and fix the loading of this marker
variable to equality across all groups.

3. In one group (i.e., the reference group), fix the common
factor mean αk to 0 and the unique factor variances θk
to 1. For the remainder of the groups, freely estimate the
unique factor variances.

4. Fix one threshold for each item across groups. For the
marker variable, additionally fix a second threshold.

We start with identifying the marker variable, which
should have an invariant loading between groups, at least
two invariant thresholds, and a meaningful metric or a high
factor loading (Liu et al., 2017). We fit a single-group one-
factormodel to the data and identifyBACS_38 as a candidate
item, which has the highest factor loading. With BACS_38
as the marker variable, we continue the MI testing proce-
dure and examine if this item has invariant loadings and/or
thresholds. If invariance fails in this item, we return to the
beginning and select another candidate item as the marker
variable. This process is repeated until a marker variable has
been identified.

To identify the set of thresholds to constrain, we ini-
tially fix the first threshold of all items to be equal between
groups and then examine whether the selected thresholds are
invariant in the metric model. If invariance holds for these
thresholds, we will proceed to the next stage of invariance
testing; otherwise, we return to the beginning and repeat the
process with another set of thresholds (Liu et al., 2017).

In all invariance models, we use the cfa() function
to perform MG-CFA along with specifying the group-
ing variable in group = "Gender". To account for the
ordered-categorical nature of the data, we specify the items
as ordered and the estimation method as "WLSMV"

9 An alternative and equivalent way of model identification is to fix the
loading of an item to 1 and free the common factor variance for the
reference group (Liu et al., 2017; Millsap & Tein, 2004).

with "theta" parameterization. Depending on the specific
model,mod refers to the corresponding lavaanmodel syntax,
which is available in the supplemental materials. The syntax
of the configural model is as follows:

configural_fit < - cfa(mod =
configural_mod,
data = dat_sub,
estimator = "WLSMV",
ordered = TRUE,
group = "Gender",
parameterization = "theta")

This configural model has an acceptable fit, χ2(28) =
56.56, p = .001, RMSEA = 0.10, 95% CI [0.06, 0.14], CFI
= 0.99, SRMR = 0.04.

We then move on to assess metric invariance, which has
the same identification constraints as the configural model,
except that it includes additional equality constraints on the
loadings across groups. This metric model has an accept-
able fit, χ2(34) = 61.25, p = .003, RMSEA = 0.09, 95%
CI [0.05, 0.12], CFI = 0.99, SRMR = 0.04. The modifica-
tion indices (see syntax below) suggest the loadings and
thresholds of item BACS_38 are invariant, as well as the
first threshold of all items.

modificationindices(metric_fit,
free.remove = FALSE, op = "|",
sort = TRUE)

Thus, we confirm the initial identification constraints for
the configuralmodel, i.e., fixing the first threshold of all items
equal between groups and using BACS_38 as the marker
variable. The chi-square difference test is statistically non-
significant (syntax provided below), scaled �χ2(6) = 9.13,
p = .166, suggesting insufficient evidence that the loadings
are noninvariant.10

lavTestLRT(configural_fit, metric_fit,
"satorra.bentler.2010")

Next, we move on to the scalar model which further con-
strains all thresholds to be equal between groups in addition
to the constraints in the metric model. The scalar model has
an acceptable fit, χ2(54) = 101.91, p < .001, RMSEA
= 0.09, 95%CI [0.06, 0.12], CFI = 0.99, SRMR = 0.04,
but is significantly different from the metric model, scaled

10 Because the usual chi-square different test statistics may not follow
a χ2 distribution, given the distribution of the data, Satorra and Bentler
(2001) proposed a scaled chi-square difference test to improve the chi-
square approximation. The current study used this scaled chi-square
difference test to compare model fit.
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�χ2(20) = 43.41, p = .002, indicating that some thresh-
olds are noninvariant.

Since full threshold invariance failed, the unconstrained
thresholds for all itemsmust be tested sequentially to identify
the noninvariant threshold(s). This sequential specification
search has been found to perform well in controlling false
positive rates (Yoon&Kim, 2014). As themodification index
suggests that the first threshold of BACS_30 is noninvari-
ant, we free this threshold and use the resulting model as
the partial scalar model. The partial scalar model has an
acceptable fit (χ2(53) = 91.11), (p = .001), RMSEA =
0.08, 95% CI[0.05, 0.11],CFI = 0.99,SRMR = 0.04, and
does not fit worse than the metric model, scaled �χ2(19) =
32.15, p = .030. Thus, we proceed to the partial strict invari-
ance model, which constrains the unique factor variances to
be equal in the items that have invariant thresholds in the
partial scalar model.

The fit of the partial strict model is similar to that of the
partial scalar model, scaled �χ2(6) = 15.76, p = .015.
Therefore, the final model is a partial strict invariant model
with the first threshold and unique factor variance of the
item BACS_30 freed. In other words, items BACS_38,
BACS_31, BACS_29, BACS_1, BACS_26, BACS_4 are
strict invariant, whereas item BACS_30 is metric invari-
ant. This final model has acceptable fit, χ2(59) = 106.03,
p < .001, RMSEA = 0.09, 95% CI[0.06, 0.11],CFI =
0.99,SRMR = 0.05.

As only partial strict invariance holds, we recommend not
comparing observed means of this subscale between groups.
Instead, we can compare the factor means in the partial scalar
or partial strict model and use the following command, for
example, to examine the factor mean difference in the partial
strict model:

parameterestimates(partial_strict_fit)

The factor mean difference is statistically significant in
both the partial scalarmodel,−.63, 95% CI [−0.99,−0.29],
and the partial strict model, −.64, 95% CI [−0.99,−0.28].
For ordered-polytomous items, factor mean comparisons are
valid in both the scalar/partial scalar and strict/partial strict
models. For dichotomous items, however, we recommend
researchers compare factor means in only the strict/partial
strict model, as suggested in the simulation results.

One thing to note is we used the sequential approach of
testing proposed by Yoon and Millsap (2007), which does
not guarantee to yield the true model when a large number
of items violate the MI assumption (Yoon & Kim, 2014).
Since we did not find evidence of noninvariance for all items
except item BACS_30, we believe the results given by this
sequential approach are valid. Further details on the compar-
isons of sequential approach versus nonsequential approach
can be found in Yoon and Kim (2014) and Pohl et al. (2021).

Discussion

The literature lacks consensus about the necessary condition
for valid mean comparisons with ordered-categorical items
(Pendergast et al., 2017). On one hand, generalized from
the literature for continuous items, some authors assumed
that strict invariance is optional for ordered-categorical items
when comparing factor means (e.g., Bauer, 2017; Bovaird &
Koziol, 2012; Putnick & Bornstein, 2016), as well as when
comparing observedmeans across groups (e.g., Svetina et al.,
2019). Therefore, strict invariance has rarely been tested in
published research (Svetina et al., 2019), as observed in
the brief review of the present paper on MI testing with
ordered-categorical items.On the other hand,Liu et al. (2017)
argued that strict invariance is needed for valid observed
mean comparisons with ordered-categorical items. Given the
inconsistent recommendations in the literature, the aim of the
present paper was to revisit the question: Is strict invariance a
prerequisite for valid group comparisons of observed means
and factor means with dichotomous and ordered-polytomous
items?

For observed mean comparisons, the present study echoes
the argument of Liu et al. (2017) that valid group compar-
isons require ordered-categorical items to achieve full strict
invariance: invariance of loadings, thresholds, intercepts, and
unique factor variances. In the simulation study, we found
that the observed mean difference had increased bias and
inflated type I error rate as the number of unique factor non-
invariant items and the degree of noninvariance increased.We
note that the impact of unique factor noninvariance could be
worse than what is shown in the simulation study. For exam-
ple, if the items were simulated with a stronger skewness of
-2, the type I error rate would increase to more than 40% and
power would decrease by more than 60 percentage points for
all item types. Furthermore, as a function of group size, the
type I error rate could also reach more than 50% for all item
types when we increased the group size to 2000. We report
details of additional analyses in the supplemental materials.

Relatedly, the distributions of the observed responses also
impact the magnitude of the bias. As shown in Appendix A,
the impact of unique factor noninvariance reduces with a
less skewed (i.e., more symmetric) distribution. Stated dif-
ferently, ordered-categorical items with a more symmetric
distribution are less influenced by unique factor noninvari-
ance in observed mean difference and behave more similarly
as continuous items. This is in line with previous studies,
which showed that continuous methodology can outperform
categorical methodology for ordered-categorical items with
a symmetric distribution (e.g., Rhemtulla et al., 2012; Sass
et al., 2014).

The simulation study showed that for dichotomous items,
factor mean comparisons are valid only in the correctly
specified strict/partial strict invariance model; for ordered-
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polytomous items, such comparisons are valid in both the
correctly specified scalar/partial scalar and strict/partial strict
invariance models. Consistent with the past literature (e.g.,
Wu & Estabrook, 2016), scalar invariance (i.e., invariance of
loadings and thresholds) effectively equates the scale of the
latent responses with the latent common factor for ordered-
polytomous items. As such, the factor mean difference in the
scalar model accurately reflects the group difference in the
latent common factor. By contrast, dichotomous items con-
tain fewer response categories and reduced information than
ordered-polytomous items, resulting in unidentified param-
eters when the unique variances freely vary between groups.
As confirmed in the simulation study, the factor mean differ-
ence in the scalar model consistently had inflated type I error
rates, lower power, higher biases, and higher standard errors
than in the strict/partial strict model. Such biases are present
in the scalar model even when the data are strict invariant.

In summary, for dichotomous items, we strongly advise
testing strict invariance prior to any form of mean com-
parisons. If full strict invariance holds, one can compare
the observed means or compare the factor means in the
strict model, but not in the scalar model. If strict invariance
fails, one should establish a partial strict invariance model
to compare the factor means with dichotomous items. For
ordered-polytomous items, if the goal is to compare observed
means, we suggest the support of full strict invariance. Other-
wise, factor mean comparison is valid in either the correctly
specified scalar or strict model.

Limitations and future research directions

The current paper fills the gap in the literature about the nec-
essary invariance conditions for factor and observed mean
comparisons with ordered-categorical items. However, we
have not examined the impact of unique factor noninvariance
on more complex analyses, such as regression and longitu-
dinal analysis, with ordered-categorical items. It is relatively
straightforward to generalize mean comparison to a regres-
sion model with the group membership as the only predictor
and the latent common factor of interest as the outcome
variable measured by a set of ordered-categorical items, as
these are equivalent analyses. However, when the regression
model includes an additional latent predictor that is mea-
sured by another set of ordered-categorical items, it is unclear
whether unique factor noninvariance would bias the regres-
sion slopes. While past research has investigated the impact
of loading and intercept noninvariance on regression slopes
(Chen, 2008; Hsiao & Lai, 2018), similar future research
should similarly examine the effect of unique factor nonin-
variance on regression slopes.

Furthermore, the current paper focused on the invariance
of unique factor variances; however, whether the results

generalize to the invariance of unique factor covariances
requires further investigation. Liu et al. (2017) mathe-
matically showed that observed mean comparisons require
invariance of unique factor variances as well as covariances.
Future research could evaluate the impact of which nonin-
variance in unique covariances on statistical inferences and
parameter estimations of observed and factor mean compar-
isons.

Open Practices Statement

Simulation codes and data are openly available on the project’s
GitHub page (https://github.com/winniewytse/micat-supp).

Appendix A

Observedmean comparison

When items are continuous and normally distributed, estab-
lishing scalar invariance allows group comparisons with
means of both the factormeans and observedmeans (Millsap,
2011). Specifically, under the assumption that E(ε j ) = 0 for
all (j)s, from (2), the expected value of the observed items
(i.e., observed mean), is

E(Yi j |ηi ) = ν j + λ jηi , (A.1)

which is not a function of the unique factor ε. This shows
that having invariant intercepts and factor loadings secures
equality of the scales of observed continuous items across
groups. In other words, when scalar invariance is achieved,
if any individuals from the two groups have the same factor
means, they should also have the same observed means at
the population level. In this case, differences in the observed
means accurately reflect differences in the latent construct.

However, with regard to the expected value of observed
ordered-categorical items, only when strict invariance holds
(i.e., ν j , τ j , λ j , and θ j are invariant across groups) are
changes in the expected values of the observed ordered-
categorical items solely due to changes in the latent construct
between groups (Liu et al., 2017). That is, differences in the
expected values of the observed ordered-categorical items
are unbiased estimates of differences in the latent construct
only if strict invariance holds. Liu et al. (2017) detailed the
mathematical support for the necessity of strict invariance
for valid observed score comparisons of ordered-categorical
items. In the followingwe illustrate the cases of dichotomous
and ordered-polytomous variables separately.
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Observedmeans of dichotomous items (C = 2)

First let Y be a dichotomous item, which follows a Bernoulli
distribution, conditioned on ηi . The expected value of Y ,
given η = η0 for an arbitrary η0 value, is:

E(Yi j |ηi = η0) = P(Yi j = 1|η0) = P(Y ∗
i j > τ j |η0) (A.2)

= P

(
Y ∗
i j − ν j − λ jη0

√
θ j

>
τ j − ν j − λ jη0

√
θ j

)

= P

(

Z >
τ j − ν j − λ jη0

√
θ j

)

= 1 − �

(
τ j − ν j − λ jη0

√
θ j

)

,

where Z is a standard normal variable and�()̇ is the standard
normal cumulative distribution function (cdf). The marginal
distribution of the latent responses, Y ∗, has an expected value

of E(Y ∗
i j ) = νi +λ jα and a variance of Var(Y ∗

i j ) = λ2jψ +θ j .
Thus, the marginal distribution of Y has an expected value
of

E(Yi j ) = 1 − �

⎛

⎝
τ j − ν j − λ jα
√

λ2jψ + θ j

⎞

⎠ . (A.3)

As illustrated, the expected value of y is a function of not
only τ j , ν j , and λ j , which are part of the assessment of scalar
invariance, but also of θ j , which is only examined in the strict
invariance model.

Observedmeans of ordered-polytomous items
(C > 2)

Similarly, when Y is an ordered-polytomous variable with C
categories for C > 2, it follows a categorical distribution,
conditioned on ηi . Let P

(c)
i j = P(Y ∗

i j ≤ τ (c)|ηi = η0) be

Fig. 6 Illustration of biases due
to unique factor noninvariance.
Both groups share the same
loading (λ), threshold (τ ),
intercept (ν), factor mean
(α = 0), and factor variance
(ψ = 1), but differ in unique
variances (θr �= θ f ). E(Y)
denotes the observed group
mean. Bias indicates the
observed mean difference due to
unique factor noninvariance as
the population mean difference
is assumed 0. The observed
response distribution is
negatively skewed when
τ = −1.5 (a), positively skewed
when τ = 1.5 (b), symmetric
when τ = 0 (c)
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the probability that Yi j < c. The expected value of Y is (Liu
et al., 2017):

E(Yi j |ηi = η0) =
C−1∑

c=0

cP(Yi j = c|ηi = η0)

=
C−2∑

c=1

cP(τ
(c)
j < Y ∗

i j ≤ τ
(c+1)
j |ηi = η0)

+ (C − 1)P(Y ∗
i j > τ

(C−1)
j |ηi = η0) (A.4)

= [P(2)
i j − P(1)

i j ] + 2[P(3)
i j − P(2)

i j ] + . . .

+ (C − 2)[P(C−1)
i j − P(C−2)

i j ]
+ (C − 1)[1 − P(C−1)

i j ]

= (C − 1) −
C−1∑

c=1

P(c)
i j

= (C − 1) −
C−1∑

c=1

�

(
τ

(c)
j − ν j − λ jη0

√
θ j

)

,

where the last step follows from the derivation in the dichoto-
mous case. In a similar fashion, the marginal distribution of
Y has an expected value of

E(Yi j ) = (C − 1) −
C−1∑

c=1

�

⎛

⎝
τ

(c)
j − ν j − λ jα
√

λ2jψ + θ j

⎞

⎠ . (A.5)

Once again, the expected value of the observed item score
is a function of θ j . This shows that group comparisons with
the observed ordered-categorical items are only valid when
all ν j , τ j , λ j , and θ j are invariant.

Bias in observedmean difference due to unique
factor noninvariance

Consider that Y is an ordered-categorical item with invariant
loadings (λr = λ f ), thresholds (τ (c)

r = τ
(c)
f ), and inter-

cepts (νr = ν f ), but noninvariant unique factor variances
(θr �= θ f ) between two groups, reference and focal. Suppose
that the two groups share the same mean (αr = α f = α)
and variance (ψr = ψ f = ψ) in a latent construct. If the
observed scores accurately reflect their mean standings in
the latent construct, the observed mean difference between

the two groups should be equal to zero. However, the unique
factor noninvariance induces an observed mean difference of

E(Yi jr ) − E(Yi j f ) =
⎡

⎣(C − 1) −
C−1∑

c=1

�

⎛

⎝
τ

(c)
j − ν j − λ jα
√

λ2jψ + θ jr

⎞

⎠

⎤

⎦ (A.6)

−
⎡

⎣(C − 1) −
C−1∑

c=1

�

⎛

⎝
τ

(c)
j − ν j − λ jα
√

λ2jψ + θ j f

⎞

⎠

⎤

⎦

=
C−1∑

c=1

�

⎛

⎝
τ

(c)
j − ν j − λ jα
√

λ2jψ + θ j f

⎞

⎠

−
C−1∑

c=1

�

⎛

⎝
τ

(c)
j − ν j − λ jα
√

λ2jψ + θ jr

⎞

⎠ ,

which is non-zero unless θ j f = θ jr or τ
(c)
j −ν j−λ jα = 0.

The distribution shape of observed responses generally
affects the direction andmagnitude of bias due to unique fac-
tor noninvariance, which can be derived using Eq. A.6. As
noted above, the bias will be zero when τ j − ν j − λ jα = 0.
The bias will also be zero if the observed distribution is sym-
metric (e.g., with an equal probability of endorsing Category
0 or 1 for a dichotomous item). Figure 6 illustrates an exam-
ple of biases in observed mean difference for a dichotomous
item with different shapes of observed distributions.

Appendix B

Factor mean comparison

Here we provide the mathematical support for that factor
mean comparisons with dichotomous items require the use
of strict or partial strict invariance model, whereas such com-
parisons with ordered-polytomous items are permissible in
the scalar invariance model.

Factor means of dichotomous items (C = 2)

Consider a dichotomous item with invariant loadings (λr =
λ f ), thresholds (τr = τ f ), intercepts (νr = ν f ), and unique
factor variances (θr = θ f ), for two groups, reference and
focal. That is, the item achieves strict invariance. Also,
assume that both groups have the same population factor
mean and variance, i.e., αr = α f and ψr = ψ f . The popula-
tion mean difference is hence zero. With equality constraints
on loadings, intercepts, and thresholds, under typical identi-

123



Behavior Research Methods

fications (i.e., νr = ν f = 0) and theta parameterization, the
scalar model

1. estimates λr and fixes λ f to be the same as λr ;
2. estimates τr and fixes τ f to be the same as τr ;
3. fixes θr to 1 and estimates θ f ; and
4. fixes αr = 0 and estimates α f .

Suppose that the parameter estimates of the reference
group recovers the population parameters. Without loss of
generality, we additionally constrain ψr = ψ f in the model
to examine the relationship between α and θ . For the focal
group, the scalar model constrains λr = λ f and τr = τ f ,
leaving θ f and α f to be freely estimated. In the following,
we focus on the focal group and drop the subscripts of the
parameters. For dichotomous items in the item-factor model,
parameters are estimated by equating the univariate propor-
tion of participants endorsing Category 1, P(Y = 1), to the
model implied proportion. That is

P(Y = 1) = 1 − �

(
τ − λα

√
λ2ψ + θ

)

. (B.1)

For the focal group in the scalar model, while τ, λ, and ψ

are known by the model constraints, α and θ remain unde-
termined. In other words, there exists at least one other set of
estimated factor mean and unique variance, α̃ and θ̃ , which
yields the same model implied statistic, P(Y = 1), for this

item. The indeterminacy of the factor mean in the scalar
model can be expressed as follows,

P(Y = 1) = 1 − �

(
τ − λα

√
λ2ψ + θ

)

= 1 − �

⎛

⎝
τ − λα̃

√

λ2ψ + θ̃

⎞

⎠ (B.2)

τ − λα
√

λ2ψ + θ
= τ − λα̃

√

λ2ψ + θ̃

α̃ = α

√

λ2ψ + θ̃

λ2ψ + θ

+ τ

λ

⎛

⎝1 −
√

λ2ψ + θ̃

λ2ψ + θ

⎞

⎠ .

Notice that the factor mean is uniquely identified, α̃ = α,
onlywhen the unique variance is fixed at somevalue such that
θ̃ = θ . As shown in the derivation, more than one sets of the
factor mean and unique factor variance estimates correspond
to the same model-implied statistic, indicating the same the
latent response distribution (Y ∗). As such, the factor mean
is not uniquely identified when unique factor variances are
freely estimated in a dichotomous item.

To illustrate, suppose that the population parameters of
the dichotomous item are λr = λ f = .8, τr = τ f = −1.5,
νr = ν f = 0, θr = θ f = 1, αr = α f = 0, and
ψr = ψ f = 1. For example, 88% participants in the focal
group endorsed Category 1. As shown in Fig. 7, in the scalar
model, a set of solution α̃ f = .61 and θ̃ f = 2.25 yields
the same univariate proportion, P(Ỹ = 1) = .88, as does
another set of solution that aligns with the population param-
eters α f = 0 and θ f = 1, P(Y = 1) = .88. Whereas the
population factor mean is 0, the scalar model gives an esti-

Fig. 7 Indeterminacy in the factor mean of a dichotomous item. All
curves show the latent response distributions of a dichotomous item,
with categories of 0 (below τ ) and 1 (above τ ). Assume that the popu-
lation factor mean is α = 0 (orange, solid curve), and the probability
of endorsing 1 is P(Y = 1) = 88%. A scalar invariance model (left
panel), which freely estimates the unique variance to be θ̃ = 2.25,

yields a factor mean estimate of α̃ = 0.61 (purple, dashed curve). A
strict invariance model (right panel), which constrains the unique vari-
ance to be θ̃ = 1, yields a factormean estimate of α̃ = 0 (purple, dashed
curve). λ = factor loading. τ = threshold. θ = unique factor variance. ν
= intercept
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mated factor mean of .61 for the focal group by freeing its
unique variance, artificially inflating the factor mean differ-
ence in this example. Contrarily, the strict model constrains
the unique variance of the focal group to be the same as the
unique variance of the reference group. With the equality
constraint of the unique variances between groups, the factor
mean is uniquely identified and accurately recovers the pop-
ulation factor mean and hence the population factor mean
difference.

Factor means of ordered-polytomous items (C > 2)

The indeterminacy issue of the factor mean in dichoto-
mous items does not generalize to ordered-polytomous items,
which have more response categories and provide more
information than dichotomous items. Consider an ordered-
polytomous item with three response categories: {0, 1, 2}.
Similarly, in the item-factor model, the parameters are esti-
mated by equating the univariate proportions to the model
implied proportions of each response category, given by the
following set of equations

⎧
⎪⎪⎨

⎪⎪⎩

P(Y = 1) = �

(
τ (2)−λα√

λ2ψ+θ

)

− �

(
τ (1)−λα√

λ2ψ+θ

)

P(Y = 2) = 1 − �

(
τ (2)−λα√

λ2ψ+θ

)

.

(B.3)

For the focal group in the scalarmodel, τ (1), τ (2), andλ are
known as they are set to be equal to the parameter estimates
of the reference group. Suppose that we constrain ψ to be
equal between groups such that it is also known for the focal
group. This leaves two unknowns, α and θ , to be solved by
twoequations. Therefore, the scalarmodel canuniquely iden-
tify the factor mean without having to constrain the unique
variance. Specifically, the scalar model sufficiently equates
the location and scale of the two groupswith the equality con-
straints on loadings and thresholds. With additional equality
constraints on the unique variances, the strict model yields
comparable results to those of the scalar model, as confirmed
in the simulation study.Note that an itemwithmore than three
response categories has more than two equations to solve the
two unknowns, α and θ . As such, the factor mean is still
uniquely identified.
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