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Abstract
This paper aims to compare a new webcam-based eye-tracking system, integrated into the Labvanced platform for online 
experiments, to a “gold standard” lab-based eye tracker (EyeLink 1000 - SR Research). Specifically, we simultaneously 
recorded data with both eye trackers in five different tasks, analyzing their real-time performance. These tasks were a subset 
of a standardized test battery for eye trackers, including a Large Grid task, Smooth Pursuit eye movements, viewing natural 
images, and two Head Movements tasks (roll, yaw). The results show that the webcam-based system achieved an overall 
accuracy of 1.4°, and a precision of 1.1° (standard deviation (SD) across subjects), an error of about 0.5° larger than the 
EyeLink system. Interestingly, both accuracy (1.3°) and precision (0.9°) were slightly better for centrally presented targets, 
the region of interest in many psychophysical experiments. Remarkably, the correlation of raw gaze samples between the 
EyeLink and webcam-based was at about 90% for the Large Grid task and about 80% for Free View and Smooth Pursuit. 
Overall, these results put the performance of the webcam-based system roughly on par with mobile eye-tracking devices 
(Ehinger et al. PeerJ, 7, e7086, 2019; Tonsen et al., 2020) and demonstrate substantial improvement compared to existing 
webcam eye-tracking solutions (Papoutsaki et al., 2017).
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Introduction

Tracking eye movements provides a comprehensive oppor-
tunity to study the allocation of visual attention. Therefore, 
in areas such as psychology (Rahal & Fiedler, 2019), mar-
keting (Białowąs & Szyszka, 2019), and clinical applica-
tions (Harezlak & Kasprowski, 2018), this unique tool is 
very popular (Kowler, 2011). Fixations, gaze position, sac-
cadic movements, pursuit movements, pupil diameter, and 
blinks are the key phenomena observed using eye tracking 
(Holmqvist et al., 2011). Based on the fixation duration, for 
example, researchers are then able to locate visual elements 

in psychophysical experiments that caught the subject's atten-
tion (Borys & Plechawska-Wójcik, 2017). Further, in the field 
of neuromarketing, it is common practice to combine gaze 
data with pupil dilation to study consumer preferences that 
potentially could reveal human emotions towards certain 
products or brands (Ungureanu et al., 2017). Analyzing fixa-
tions and gaze position is also essential for clinical studies 
that aim to understand how attention influences the decision-
making process and the relative saliency of different objects 
and related disorders. For instance, Wang et al. (2015) com-
pared eye movements among subjects with autism spectrum 
disorder (ASD) to a control group. The results suggest that 
participants with ASD had a stronger image center bias and 
reduced saliency for faces and locations indicated by social 
gazes. Given the vast number of possible applications and use 
cases, eye-tracking technologies and technical development 
have recently gained popularity (Yang & Krajbich, 2021).

The last two decades have brought substantial advances 
in eye-tracking technology. Many research laboratories have 
switched to remote (without chin rest) systems such as the 
EyeLink System (Bohme et al., 2006). It provides higher com-
fort for the subjects and similar or even higher accuracy of 
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the system. However, such equipment requires a specialist to 
operate and the appropriate software, which is characterized 
by high costs and a low degree of mobility in terms of where 
the experiment can be performed. Hence, other companies 
developing eye-tracking technology have focused mainly on 
mobility and ease of wearing the devices (Niehorster et al., 
2020a, b; Tonsen et al., 2020). Modern mobile eye-tracking 
devices, which often resemble standard glasses, are especially 
valuable for extended recording sessions, e.g., while driving 
a car, or for tasks that require strong head or body move-
ments, e.g., during sports activities. While these devices can 
frequently be worn without expert supervision, they are still 
relatively expensive. They, hence, are not suited to perform 
eye tracking for many subjects without enormous costs. One 
way to reduce costs and drastically increase the availability of 
eye-tracking research and applications is to use widely avail-
able consumer-grade hardware, particularly web cameras and 
browser-based applications for eye tracking.

Webcam-based eye-tracking technology allows conduct-
ing experiments outside the laboratory walls, e.g., at the par-
ticipant's home. It uses commonly available devices such as 
personal computers, laptops, mobile phones, or tablets, which 
are nowadays available in most households (Dupuis & Tsot-
sos, 2018). Additionally, the use of webcam-based technology 
does not require the presence of a specialist to conduct the 
measurements, since the whole procedure is automated and 
basic skills of operating a laptop, browser, and Internet access 
are sufficient. In other words, using the webcam for eye track-
ing introduces the technology to everyone owning and using 
a computing device with such a camera (Miller & Sinanan, 
2014). In line with this, browser-based research has become 
popular in recent years (Finger et al., 2017a, b). One primary 
framework that includes webcam-based eye tracking in the 
browser is called Webgazer, which was introduced in 2016 
(Saxena et al., 2022; Papoutsaki, 2015). It marks an important 
milestone in realizing webcam-based eye tracking as a whole. 
However, the authors reported an average accuracy of more 
than 4°, which limits its use for most eye-tracking research. To 
our knowledge, a significant improvement in accuracy, rela-
tive to Webgazer, has not yet been reported for webcam-based 
eye tracking, especially for a system that works in conjunction 
with browser-based behavioral experiments. However, given 
the enormous potential of delivering eye tracking to the general 
public, further technological development of webcam-based 
eye-tracking systems is an important area of ongoing research 
(Semmelmann & Weigelt, 2018). In line with this, the authors 
of this manuscript developed a new, deep-learning-based archi-
tecture for eye tracking that natively works in the browser, and 
integrated this into the Labvanced platform for online behav-
ioral experiments (Finger et al., 2017a, b). As this webcam-
based algorithm has already been accessible for a while in the 
online platform, a handful of publications utilizing this method 
have already been published (Sauter et al., 2022; Bánki et al., 

2022). However, as a comprehensive test of the algorithm is 
still missing, we now conducted a systematic comparison study 
to assess the system's quality.

Evaluating a new eye-tracking system requires consider-
ing and testing multiple factors. The subject of privacy-pre-
serving eye-tracking techniques has not been fully addressed 
in the case of webcam-based eye tracking. The obvious issue 
here is that the webcam records an RGB video of the par-
ticipants' faces, which makes it particularly easy to identify 
subjects, both for human observers and algorithms. When 
such a video/image of the participants' faces is transmitted 
to and saved on a third-party server, additional avenues for 
attack are offered. Therefore, the optimal way to secure data 
privacy (for webcam-based approaches) by design is to pro-
cess the image data on the participant's device directly, not to 
transmit video data and not to store them on a remote server. 
Thus, it complies with EU regulations: “Personal data shall 
be: … adequate, relevant and limited to what is necessary for 
relation to the purposes for which they are processed (‘data 
minimization’);” (GDPR, Art. 5.1 (c), https://​gdpr-​info.​eu/​
art-5-​gdpr/). Taken together, for evaluating the quality of the 
proposed webcam-based eye-tracking system, we consid-
ered accuracy, precision, and data loss in a variety of tasks 
including Head Movements, and data privacy concerns as 
the most critical factors.

Furthermore, it is important to test this functionality of an 
eye-tracking system for a large variety of tasks. For instance, 
testing for accuracy and precision requires the subject to fix-
ate on a known target (Large Grid). However, in other tasks, a 
comparison with ground truth, i.e., the required fixation loca-
tion, might not be possible if the subjects have no particular 
task (Free View) (Xia & Quan, 2020; Martin et al., 2020) 
or are following a moving object (Smooth Pursuit) (Barnes, 
2008). In that case, we assess the quality of eye tracking by 
measuring the correlation of eye-tracking systems. Further, 
we report data loss and blinks (Head Movements) as impor-
tant factors affecting eye-tracker data quality, specifically in 
a setup outside of the laboratory with limited supervision 
(Franchak et al., 2011). This is because, during the experi-
ment, a subject can change the position of the head to a sig-
nificant degree so that the system loses the ability to detect 
the pupil, which leads to data loss. Solutions such as head-
mounted, tower chin rest, or remote setup have been proposed 
to solve this problem and have since significantly improved 
data quality (Bohme et al., 2006). As online eye tracking 
is fully automated and typically no specialist is physically 
present during the experiment for assistance, the method is 
particularly vulnerable to a drop in accuracy, precision, and 
an increase in data loss due to head movements without fur-
ther measures. Accordingly, the accuracy of systems such as 
Webgazer drops even further when subjects move their heads. 
These types of limitations and problems are an inseparable 
element of eye-tracking research.

https://gdpr-info.eu/art-5-gdpr/
https://gdpr-info.eu/art-5-gdpr/
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This publication primarily focuses on the real-time 
comparison and assessment of the native algorithms of 
both eye-tracking systems. To compare the classification 
approaches of the two eye-tracking systems, we utilized 
the EyeLink algorithm for real-time event detection and 
a webcam-based dispersion fixation detection algorithm. 
We decided to employ the built-in algorithms of the two 
eye-tracking systems in their default off-the-shelf setup. 
This decision was motivated by the proprietary and 
closed-source nature of the algorithms used in systems 
like EyeLink, as well as the limitations of online tech-
nologies imposed by the low sampling rate, which change 
some existing approaches, such as velocity-based algo-
rithms to be impractical. We want to emphasize that our 
primary focus is on the real-time comparison of the native 
algorithms in the eye-tracking systems. Additionally, we 
acknowledge the availability of alternative offline algo-
rithms like I2MC for fixation detection but emphasize that 
the current publication does not explore offline analysis 
due to potential variations in challenges, applications, and 
use cases.

Here, we introduce and test a new webcam-based eye-
tracking system integrated into an existing web-based plat-
form to create online experiments (Finger et al., 2017a, b). 
The authors also implemented and tested head tracking 
with a virtual chinrest feature (explained in detail in the 
section below). Functionality relies on real-time head posi-
tion calculations to mitigate this problem. To evaluate the 
system, we implemented an established an eye-tracking 
test battery (Ehinger et al., 2019) and followed the pro-
cedures as laid out in this article as far as possible. We 
recorded eye movements simultaneously with the webcam-
based system and a high-end laboratory eye-tracking sys-
tem (EyeLink 1000 - SR Research). First, the test battery 
includes a fixation-grid task, which enabled us to calculate 
the accuracy and precision of both systems. The second 
task is a Smooth Pursuit, i.e., following a moving object on 
the screen (Barnes, 2008). Third, a Free View task inves-
tigates visual saliency and compares the performance of 
the two eye-tracking systems' during more natural view-
ing behavior. Finally, the test battery includes a dedicated 
test to evaluate the amount of data loss caused by head 
movements for both systems. Overall, this multidimen-
sional comparison allowed us to answer the question of 
how the new webcam-based system holds up compared to 
the EyeLink system, one of the most accurate eye-tracking 
systems available on the market and often considered the 
“gold standard” for eye-tracking research. In line with 
this, we hypothesized that the EyeLink system outper-
forms the new webcam-based approach by far in pretty 
much all relevant metrics. That said, we are interested in 
whether our webcam-based system constitutes an improve-
ment compared to earlier webcam-based approaches. Most 

importantly, we seek to answer whether the system pre-
sented is accurate enough to meet the standards of the 
research being conducted.

Methods

Setup

The system was set up such that eye-tracking data could be 
obtained simultaneously for the EyeLink system and the web-
cam-based system. During the study, the participants were 
seated in a room separated from the experimenter (Fig. 1).

The setup included two computers, one for the EyeLink 
system, called the Host PC, and one for displaying the exper-
iment and calibration, called the Display PC. The experi-
ment was built with the Labvanced Task Editor (Finger et al., 
2017a, b) and ran online in the Google Chrome browser. 
The webcam eye tracking functionality was integrated and 
controlled by the Labvanced system.

Fig. 1   Presentation the entire setup used in the experiment, includ-
ing EyeLink 1000 and Logitech Webcam. The participants viewed a 
15′′ monitor with 1440 × 900 pixels resolution and a 120-Hz refresh 
rate at a distance of 600  mm. The EyeLink 1000 eye tracker (SR-
Research Ltd, Mississauga, Ontario, Canada) was placed directly 
below the monitor. The webcam was placed on top of the screen. 
The EyeLink system used a remote mode, i.e., with the remote cam-
era option, with a 500-Hz sampling rate. For the webcam, we used 
a Logitech StreamCam - Full HD 1080p Streaming Webcam with 
a maximum sampling frequency of 60  Hz. Even though the Lab-
vanced platform could record data at 60 Hz, for the purpose of this 
experiment, we set up a sampling rate of 30 Hz to match the major-
ity of webcams on the market at this time. The effective sampling 
rate observed during the experiment using a webcam-based eye 
tracker was 29.96 Hz on average
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Synchronization of eye trackers

Synchronization of the two eye trackers was handled via 
MATLAB (R2016b; MathWorks, Natick, MA, USA) code 
and Python 3. We sent the UNIX timestamp triggers, which 
correspond to the start and end of the experiment, from the 
Display PC to the Host PC. This information was forwarded to 
the EyeLink data file. For some participants, we experienced 
a time drift by the difference in the PC's clocks. This was 
solved using a data-driven approach to time-lag cross-corre-
lation using the Pandas (Python) library built-in function. This 
in effect eliminates the lag effect between two data streams. 
After that, data from EyeLink were downsampled and inter-
polated to the webcam sampling rate standards. The result 
was one data file where each sample from the eye tracker 
was matched based on time with the sample from another eye 
tracker, which made it possible to compare the two systems.

Participants

The study took place at the Institute of Cognitive Science at 
Osnabrück University. In total, we recruited 23 participants. 
Eligibility criteria were set up as follows: no photosensitive 
migraine or epilepsy, no motion sickness, no drug use, and 
no glasses. Wearing glasses during eye tracking can lead 
to additional light reflections, which can negatively affect 
data quality. Therefore, it is generally discouraged to wear 
glasses during the recording session. Since other studies that 
compared the two types of eye tracking have excluded the 
use of glasses (Ehinger et al., 2019), we have adopted this 
procedure as well. Nevertheless, in both systems, recording 
can be carried out with or without glasses.

Four of the participants were excluded from the analysis. 
In three of these participants, the cross-correlation procedure 
used to synchronize the different devices failed, resulting in 
unreliable data. Please note that the synchronization of the 
two eye trackers is only required for the particular compari-
son being conducted. Therefore, it is not a mandatory step 
when using either of the devices independently. The last 
participant was excluded due to an insufficient number of 
detected offset-related fixations (described in the Large Grid 
task section), which was less than 20% of the overall tar-
get number. Interestingly, all of these participants exhibited 
high initial accuracy scores during calibration for both eye-
tracking systems, emphasizing the significance of inspecting 
calibration data to maintain data quality. Out of the total 
data gathered from 23 participants, we analyzed the data 
of 19 participants in the first session. This session included 
the tasks Large Grid, Smooth Pursuit, and Free View. In the 
second session, we analyzed data from 17 participants doing 
Head Movements tasks, specifically Roll and Yaw move-
ments. We compensated the participants with either 9.60€ 
or 1 credit per hour. The participants gave written consent, 

and the ethics committee approved the study of Osnabrück 
University (number 58/2021, issued on December 15, 2021).

Head tracking

Head movements are an essential factor negatively affect-
ing eye-tracking data quality (Franchak et al., 2011). The 
algorithm used for the head-tracking feature is a deep neu-
ral network. The algorithm uses a convolutional neural net-
work (CNN) to process the video feed from the participant's 
webcam in real-time. The CNN works by breaking down 
the video feed into a series of smaller images, or "patches," 
(Fig. 2), which are each analyzed independently. The patches 
are then analyzed by a series of layers within the neural net-
works, which are designed to identify and classify different 
features within the image. In the case of the Head Tracking 
feature, the algorithm is specifically trained to identify and 
track the participant's face. The neural network is trained 
using a large dataset of images that includes different head 
orientations, lighting conditions, and camera angles. By 
analyzing this dataset, the algorithm can learn to identify 
the unique features of a human face and track its movement 
within the video feed.

Once the algorithm has identified the participant's face, 
it uses a series of mathematical operations to estimate the 
position and orientation of the head. This information is 
then used to track the movement of the head and ensure that 
the participant's eyes remain within the designated area of 
interest.

Virtual chinrest

Labvanced offers a virtual chin rest that simulates the phys-
ical chin rest commonly used in experimental settings to 
stabilize head movements during tasks. At the start of the 
study, the subject is allowed to select a comfortable head 
position. Throughout the study, the subject's head move-
ments are continuously monitored, and the trial is automati-
cally interrupted if the subject moves away from the initial 
head position. Unlike a physical chin rest, the virtual version 
provides on-screen feedback and instructions (Fig. 2). The 
virtual chin rest sensitivity can be adjusted on a six-step 
scale, ranging from very loose to very strict. This feature 
is particularly relevant when working with subjects whose 
head movements are unavoidable or when conducting long-
duration studies. For our research, we used the medium-
strict sensitivity level to minimize head movements.

Calibration

Specifically for the comparison, we performed the calibration 
of two eye trackers one after the other. We used the EyeLink 
monocular recordings (500 Hz, head free-to-move mode) 
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setup (Ehinger et al., 2019) with nine fixation points on the 
grid. The researcher's task is to click the accept button if 
the subject properly aims their eyes at the displayed target. 
This procedure was followed by a validation in which the 
researcher performed the same procedure. The result given 
by the EyeLink system was the calibration error average and 
maximum for each point on the grid. We repeated the cali-
bration procedure until achieving a suitable score (average 
error < 1.0°, maximum error < 1.5°). EyeLink informs about 
the acceptable standards via the message “GOOD” (green 
background, cf. (EyeLink manual) during the calibration pro-
cess. We chose these calibration criteria because they were 
introduced in the previous paper comparing EyeLink with the 
Pupil Lab eye-tracking system (Ehinger et al., 2019).

In our study of webcam-based eye tracking, we adapted 
the calibration procedure to fit the specific needs of webcam-
based eye tracking. This was necessary to account for the 
differences in camera position and head movements that 
occur in a non-stationary setup. The Labvanced platform 
provides users with the option to select from a range of cali-
bration procedures based on the duration time and different 

subsets of calibration. The calibration procedures offered 
include a 1-min option, which is the shortest in duration 
and least accurate, a 5-min option (default), which is a mid-
dle solution, and an 8-min option, which is the longest in 
duration but offers the highest accuracy. For the calibra-
tion in this experiment, we chose a default 5-min procedure 
that involves seven head poses with approximately 12 tar-
gets each. The calibration process involves a fixation grid 
pattern, as well as a brief Smooth Pursuit task and Head 
Movements task to calibrate the webcam. During calibra-
tion, participants are instructed to make slight adjustments 
to their head position to account for small variations in head 
position (Fig. 2). Only subjects with a calibration error of 
less than 7% of the total screen size were allowed to con-
tinue in the experiment. In case of a failure, the subject was 
informed that the calibration accuracy was insufficient and 
the calibration had to be repeated. This calibration process 
is designed to meet the highest scientific standards. The offi-
cial documentation shows a detailed overview of the web-
cam calibration (https://​www.​labva​nced.​com/​conte​nt/​learn/​
guide/​eyetr​acking/).

Fig. 2   Photo showing the instructions provided to the user. The user follows the instructions described below for the head photo until the blue 
face mesh is aligned with the green face mesh. When the re-alignment is matched, then the study continues

https://www.labvanced.com/content/learn/guide/eyetracking/
https://www.labvanced.com/content/learn/guide/eyetracking/
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Re‑Calibration

Slight changes in lighting, subject fatigue, and other environ-
mental factors can affect data quality during the experiment 
(Ehinger et al., 2019). Hence, an essential step to maintain-
ing high data quality throughout a study, especially for a 
webcam-based system, is a re-calibration/drift correction 
measure. Hence, we choose to recalibrate seven points after 
every six trials in the Large Grid, every trial for the Smooth 
Pursuit Task, and every seven trials for Free View. This drift 
correction feature calculated the cross-validated systematic 
error across those seven points and subsequently accounted 
for this in future gaze predictions. Besides such real-time 
drift correction of the gaze prediction, the re-calibration 
error can also be saved separately, serving as a continu-
ous measure of measurement reliability. To ensure that the 
experiment's length will not be disproportionately increased 
by re-calibration, this procedure is set up to take around 15 
s. The overall duration of the re-calibration for the whole 
experiment should introduce an additional 4 min to the total 
time of the experiment. Further, in the case of need the re-
calibration could be entirely switched off, or the amount of 
grid points or initialization per trial is customizable within 
the Trial Editor. This allows us to adjust re-calibration for 
the longest large-scale studies if this is needed. This type of 
online eye-tracking calibration using the Labvanced system 
was successfully implemented in other projects, including 
infant studies (Bánki et al., 2022). This procedure allows the 
calibration to be user-friendly and strikes a balance between 
data quality and the feasibility of experimental procedures.

Task sequence

The battery of tests used for this study was transferred and 
adapted to online testing conditions from a paper that earlier 
compared EyeLink with Pupil Labs (Ehinger et al., 2019). For 
our study, we adopted tasks such as Large Grid, Smooth Pursuit, 
and Free View. To be able to investigate data loss, we adopted 
tasks such as Rolls and Yaw Head Movements (Fig. 3).

In the first task, which was Large Grid, we investigated 
accuracy, precision in the offset-related fixations, gaze 
data correlation, and data loss. In the Smooth Pursuit and 
Free View tasks, we were mainly interested in the gaze 
data correlation, as it is an unbiased measurement that was 
not processed by any event detection algorithm.

Tasks such as Blink task, Micro Saccades task, and Pupil 
Dilation task were excluded from the online adaptation for a 
number of methodological reasons. For example, detecting 
changes in pupil size may not be feasible with the current 
webcam hardware standards, as most cameras lack the neces-
sary infrared detection technology to accurately track pupil 
dilation. Also, detecting micro-saccadic movements was 
not yet implemented in the webcam-based eye tracker when 
this experiment was conducted. The Blink task, on the other 
hand, was moved and merged into the Head Movements task.

Large Grid task

In the Large Grid task, we presented 56 targets (1.1° black 
fixation cross with a surrounding circle and red dot in the 
center) at equidistant intervals in an 8 × 7 grid across the 

Fig. 3   The task sequence used from the top left to the lower right
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screen. In each trial, we presented one target at a different 
randomized location. The subject's task was to focus on the 
presented target that gradually shrank in diameter until it 
completely disappeared. As soon as the target disappeared, 
the subject had to press the Spacebar key. We recorded the 
reaction time of the button press, the timestamp of the tar-
get disappearance, and the timestamp of the start and end 
of fixations directly in the system. We wanted to compare 
fixations in the most precise way possible. Therefore, we 
considered only trials in which the subject fixated on the 
target. We included fixations in the analysis if the button was 
pressed during the duration of the fixation and if the dura-
tion of the button press was below 500 ms. If any of the two 
criteria were not met, the fixation was not included in the 
analysis. These stringent criteria were motivated by the fact 
that we were only interested in the fixations correlated with 
the offset of displayed stimuli. Therefore, we assessed the 
criteria individually for each eye tracker, i.e., if a fixation did 
not meet the criteria for one system, we did not necessarily 
disregard that fixation when analyzing the data for the other 
system. The analysis revealed that 58.17% of offset-related 
fixations were detected by EyeLink, while the webcam-
based eye tracker identified 57.80% of such fixations. To 
determine the accuracy, we calculated the Euclidean dis-
tance between the centroid of the selected fixation and the 
target location of the stimulus. The analysis was conducted 
separately for inner and outer targets (Fig. 4).

Smooth Pursuit task

In the Smooth Pursuit task, a red circle was used as a target 
with a size of 0.52°. The target moved continuously in various 
directions and speeds while bouncing off the screen edges, 
and the subject was instructed to follow it. A Wiener process 
or Brownian motion was applied to the target's movement 
to create realistic changes in its direction. The variance of 
the Brownian motion of the direction angle was 887 deg2/s. 
Consequently, the target moved across the screen at differ-
ent speeds and directions, making it difficult for the subject 
to predict its acceleration or movement. The experiment is 
publicly available to inspect and share the template, under 
this link (https://​www.​labva​nced.​com/​page/​libra​ry/​28983).1

We correlated horizontal coordinates from one eye tracker 
with horizontal coordinates obtained by another eye tracker. 
Similarly, the vertical coordinates obtained by one eye 
tracker are correlated with the vertical coordinates obtained 
by another eye tracker. This way, we could validate the cor-
rectness of the webcam system in terms of raw data output 
and also were able to distinguish any difference between 
horizontal and vertical correctness.

Free View task

In the free-viewing task, photos of natural images with a size 
of 900 × 720 pixels were presented. Each image was shown 
for 6 s, and in total, 18 images were shown to each subject. The 
participants were instructed to explore the images freely, and 
the 7-point re-calibration was performed after every 7th trial.

For the analysis, we performed several examinations. 
First, we calculated the correlation of horizontal and verti-
cal coordinates identically as in the Smooth Pursuit task. 
Second, we calculated and visualized the kernel-density 
estimate using a Gaussian kernel across all trials and sub-
jects. Third, we selected trials and created a scatter plot for 

Fig. 4   The red color marks the targets that were classified as inner in A and outer in B. We referred to the inner and outer terms further in the 
analysis section

1  After clicking, there are two options: import and inspect, inspect 
works without having to create an account on the platform and allows 
a review of the logic of all the experiments used in this study. To 
review the Smooth Pursuit logic, go to the Task Editor tab and select 
the Smooth Pursuit task.

https://www.labvanced.com/page/library/28983
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single-trial data, giving a direct visual impression of how 
similar recorded data were between both systems.

Head Movements

The Head Movements part of the study consisted of two sep-
arate tasks, head roll movements and head yaw movements. 
In the head roll task, a line was displayed in the center of the 
screen. The line was then rotated by various degrees (– 15°, 
– 10°, – 5°, 0°, 5°, 10°, 15°) relative to a horizontal orien-
tation. The subject had to focus the gaze on the line while 
rolling the head according to the slope of the line. Once 
this was achieved, the participant had to press the spacebar 
to confirm the head position. In the yaw task, targets were 
arranged in a 3 × 5 grid and displayed in a randomized order 
with one target per trial. The participants were instructed 
to rotate their heads while they were fixating on the target. 
Once the subject fixated on the target, they were instructed to 
press the spacebar to confirm that they assumed the required 
head position.

For the analysis of both tasks we were interested in how 
much these movements affected the ability of both eye track-
ing systems to produce reliable data. Hence, for the EyeLink 
system, we used the built-in event detection algorithm to 
calculate the data loss. In the webcam-based approach, we 
used the confidence measure metric, which was defined as a 
continuous range between 0 and 1. In our study, data points 
near 0 were deemed unreliable, while those near 1 were con-
sidered reliable. We treated all data marked as 0 as data loss.

Fixation detection algorithm

Due to the unavailability of the fixation detection script 
from the EyeLink system to the general public, we opted to 
conduct real-time comparisons of embedded classification 
algorithms. Among the numerous algorithms available for 
classifying fixations (Blignaut, 2009), we chose to imple-
ment the dispersion-based algorithm (as shown in Fig. 5). 
A comprehensive description of the algorithm is accessible 
via the following hyperlink on GitHub, which is open to 
the public. (https://​github.​com/​Labva​nced/​eye-​track​ing-​fixat​
ion-​detec​tion.).

Results

Calibration error

Comprehensive information regarding the calibration error 
of both eye trackers is presented in the following section. 
For the EyeLink eye tracker, the mean calibration error 

across all participants was M = 0.50, with a maximum 
calibration error of M = 1.04. In contrast, for the webcam-
based eye tracker, the mean calibration error was M = 1.44 
for all participants. It should be noted that the maximum 
calibration error was not ascertainable for the webcam-
based eye tracker Table 1.

Large Grid

To determine spatial accuracy, we calculated the distance 
between the average fixation-centroid and target in visual 
angle in the grid task for each location and subject and 
then calculated the mean (M) and standard deviation (SD) 
across subjects. Using this approach, we found that the 
average accuracy for the webcam-based system was M = 
1.45°, SD = 0.76°, and the average accuracy for EyeLink 
was M = 0.91°, SD = 0.54°. To explore variances in accu-
racy in more depth, we also investigated how accuracy 
differed based on the eccentricity of the targets (inner 
vs. outer points of the screen). Further, we investigated 
whether the participants' performance remained consist-
ent over time. To achieve this, we compared the preci-
sion and accuracy of participants in the first and second 
halves of the task. This approach allowed us to determine 
if there were any significant effects of temporal decay on 
the quality of their performance (Fig. 6). Accordingly, we 
conducted a three-way ANOVA (Table 2), with the fac-
tors eye-tracker type (webcam-based vs. EyeLink), spatial 
eccentricity (inner vs. outer targets), and first vs. second 
half of the task. The factor eye tracker type revealed a 
significant difference (p < 0.001, F = 117.5), indicating 
that EyeLink did have better accuracy than the webcam-
based approach. Also, the factor spatial eccentricity was 
significant (p < 0.01, F = 10.416), showing that inner 
targets (webcam-based: 1.35°, EyeLink 0.85°) had better 
accuracy than outer targets (webcam-based: 1.50°, Eye-
Link 0.95°). The factor first vs. second half of the task 
was non-significant (p = 0.075), i.e., we have no evidence 
that the accuracy changed systematically throughout the 
task. Also, none of the interactions revealed a significant 
difference.

Next, we aimed to test for spatial precision, which is a 
measure of variance. For eye-tracking systems, precision 
refers to the spread in the systems’ prediction given a sub-
ject repeatedly looks at the same location, i.e., the input 
is the same. However, as our fixation-grid task did not 
include repeated fixations on the same target location for 
the same subject, we could not perform a within-subject 
precision calculation. Instead, we took data from differ-
ent subjects but at the same grid-fixation location. Addi-
tionally, we investigated RMS-S2S (root mean square of 
successive displacements) which is used in eye-tracking 

https://github.com/Labvanced/eye-tracking-fixation-detection
https://github.com/Labvanced/eye-tracking-fixation-detection
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systems to evaluate the precision of gaze position signals 
within a measurement (subject). It measures the average 
displacement magnitude between consecutive gaze posi-
tions, serving as an indicator of the smallest discernible 
eye movement amidst background noise (Niehorster et al., 
2020a, b; Holmqvist & Blignaut, 2020). This was done 
separately for the horizontal and vertical components of 
the eye movements. The results for the webcam-based sys-
tem were X-axis M = 1.66° and SD = 0.41°, for Y-axis 
M = 1.42° and SD = 0.45°. For EyeLink the results were 
X-axis M = 0.79°, SD = 0.23° and Y-axis M = 1.01° and 
SD = 0.31°. Please note that the accuracy of this metric 
relies on a stable sampling rate, which may be challeng-
ing to achieve with a webcam-based system. Because of 
this, we also investigate the grand mean of SD not within 
but across the subjects. For the webcam-based system was 
X-axis: M = 1.22°, SD = 0.32°, Y-axis: M = 1.00°, SD 
= 0.25°. For EyeLink, the X-axis was: M = 0.58°, SD = 
0.15°, Y-axis: M = 0.68°, SD = 0.19° (Fig. 6C). We did 

expect precision values to be higher, i.e., worse, for both 
eye-tracking systems compared to the results from Ehinger 
et al. (2019) and other reports based on within-subject 
calculations. Therefore, the relative difference between the 
tested eye-tracking systems and not the absolute numbers 
is the most important to consider here. Accordingly, we 
calculated two separate ANOVAs for X and Y coordinates 
as dependent variables and the factors eye-tracker type 
and spatial eccentricity as independent factors (Tables 3 
and 4). The results revealed that precision values were 
significantly different between both eye trackers for both 
X (p < 0.001, F = 183.940) and Y dimensions (p < 0.001, 
F = 63.594), with the EyeLink system demonstrating 
lower (better) precision values. Spatial eccentricity was 
also significantly different for both X and Y, demonstrating 
that inner targets generally had higher precision than outer 
targets. Remarkably, the interaction between the two fac-
tors was non-significant. That is, the dependence of preci-
sion on eccentricity is not significantly different between 

Fig. 5   Main concepts of the developed dispersion-based fixation-
detection algorithm. First, a new fixation is created if three or more 
gaze points are found with low enough dispersion. Then more gaze 
points are added to fixation if both the overall dispersion and also 

relative dispersion change are below a threshold. It can also lower the 
dispersion by adding a new gaze point and removing the oldest one. 
Once a new gaze point exceeds the threshold for dispersion, the fixa-
tion is concluded
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the two eye trackers. In conclusion, precision values for 
EyeLink were only about 50% better than for the webcam-
based system, and a central target location improved preci-
sion for both systems similarly.

Smooth Pursuit

To analyze the Smooth Pursuit task, we aimed to look at the 
overall correlation of the unprocessed gaze signal between 
the two eye-tracking systems. We chose this method because 
it is independent of the fixation detection algorithm and we 
do not have ground truth available, i.e., where the partici-
pants look at any moment in time. Thus, it complements the 
fixation-based analysis performed in the grid task. We reduced 
biases and possible deficiencies of that newly introduced algo-
rithm. Accordingly, we first removed all data points from both 
eye trackers where the EyeLink system reported data loss or 
where webcam-based confidence was zero. Then, we calcu-
lated for each subject a Pearson correlation separately for X 
and Y for both eye trackers. In the final step, we averaged these 
values across subjects. This analysis revealed a strong positive 
and significant correlation between the webcam-based system 
and the EyeLink system (Fig. 7A, B). For the horizontal com-
ponent, the average correlation coefficient across subjects was 

r = 0.86 (p < 0.01), and for the vertical component, it was r 
= 0.78 (p < 0.01). Such a strong correlation between Eye-
Link and the webcam-based system underlines the good raw 
data quality of the webcam-based approach during periods of 
continuous eye movements. Analyzing the individual correla-
tion between subjects, we observe that this high correlation is 
robust and consistent for almost all subjects (Fig. 7C).

Free View

We analyzed the gaze patterns during Free View to com-
pare the two eye-tracking systems in a more natural task. 
A qualitative visual comparison of single-subject gaze data 
showed a great overlap between the two eye-tracking sys-
tems (Fig. 8). To verify these qualitative observations, we 
then performed a Pearson correlation of the raw gaze signals 
in the same way we did in the smooth pursuit task. The out-
come showed a strong correlation between the raw gaze sig-
nals between the two eye-tracking systems. For coordinates 
X (r = 0.83, p < 0.01) and Y (r = 0.84, p < 0.01). These 
results confirmed the data quality of the newly introduced 
webcam-based system is also during a Free View scenario.

Head Movements

We compared the amount of data loss between two eye 
trackers for the two tasks that included Head Movements. 
On average, data loss was lower for the webcam-based 
system compared to EyeLink for both tasks: In Fig. 9A, 
the roll movements task results for the webcam-based eye 
tracker showed a mean (M) of 2.05% with a standard devia-
tion (SD) of 2.05%, while the results for the EyeLink had 
a mean of 12.09% with a SD of 17.74%. Similarly, the yaw 
movements task for the webcam-based eye tracker had a 
mean of 3.24% with an SD of 7.41%, and for the EyeLink, 
the mean was 5.70% with an SD of 9.26%. We performed 
paired wise t test to compare data loss from the Roll task 
(t = – 2.28; p = 0.03), which shows a significant differ-
ence between the two eye-tracking systems; however, the 
results for the Yaw task (t = – 1.11; p = 0.28) were not 
significant. These results show that the webcam-based eye 
tracker was more robust to roll head movements than the 
EyeLink 1000. The EyeLink system identifies instances of 
data loss and categorizes them as eye blinks, with the start 
and end of the blink event being marked. Consequently, 
it is difficult to ascertain whether data loss or blink has 
been detected by this system accurately without additional 
data processing. On the other hand, the webcam eye tracker 
records data continuously, with data loss being represented 
as unreliable, as indicated by the low confidence levels that 
are usually 0.0. Table 4 provides comprehensive informa-
tion on data loss and other relevant metrics.

Table 1   Detailed calibration output from both eye trackers for each 
subject

EyeLink calibration output in [°] Webcam-based eye 
tracker calibration 
output in [°]

Participant 
number

Mean calibra-
tion error

Max calibration 
error

Mean calibration 
error

1 0.64 1.45 1.38
2 0.35 0.55 0.96
3 0.44 1.13 1.44
4 0.61 0.93 1.37
5 0.39 0.85 1.21
6 0.58 1.52 1.74
7 0.45 0.90 1.09
8 0.59 0.86 1.17
9 0.50 1.38 1.46
10 0.48 1.42 1.59
11 0.42 1.10 1.92
12 0.49 0.95 0.97
13 0.46 0.97 1.77
14 0.55 0.95 1.31
15 0.47 0.67 2.60
16 0.51 0.98 1.20
17 0.63 1.24 1.33
18 0.52 1.28 1.10
19 0.50 0.80 1.76
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Fig. 6   This figure represents the outcomes of the Large Grid task and 
includes the following comparisons: A Spatial accuracy: distance 
of the detected gaze to the target, comparing EyeLink and webcam-
based eye trackers and inner versus outer eccentricity targets; B Spa-
tial accuracy with first vs. second half of the task: comparing Eye-

Link and webcam-based eye trackers and the first versus the second 
half of the task; C Precision: comparing EyeLink and webcam-based 
eye trackers, horizontal (X) versus vertical (Y), and inner versus outer 
eccentricity targets. The error bars represent the  standard deviation 
of the precision measurement.
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Results summary

Table 5 provides a comprehensive summary of all measure-
ments obtained in this study. It is noteworthy that accuracy 
and precision measurements were exclusively available for the 
Large Grid task, and no offset-related fixations were observed, 
as described in the Large Grid section. We reported a total 
number of fixations without pre-processing, with a native sam-
pling rate for the system as well as offset-related fixation which 
were pre-processed and downsampled. Insufficient data due to 
head rolls can impede the ability to accurately perform data 
interpolation and downsampling, resulting in a lack of correla-
tion analysis for head roll tasks.

Discussion

Here, we compared a new webcam-based eye tracking 
algorithm to the well-established EyeLink system using a 
standardized test battery (Ehinger et al., 2019). While Eye-
Link showed, as expected, better accuracy and precision for 
fixation-based analysis than the webcam-based approach, 
these differences were only about 0.5° in size. In turn, this 
marks a huge improvement of the webcam-based method in 
accuracy and precision of about 300% compared to earlier 

webcam-based approaches (Papoutsaki et al., 2017). With 
this improvement, our approach comes close to the accura-
cies reported for mobile eye-tracking devices (Ehinger et al., 
2019). Further, the raw gaze signal showed a consistent, robust 
correlation between the two eye-tracking systems. Finally, a 
surprising but encouraging finding was that the difference of 
webcam-based systems in data loss differed from the EyeLink 
in Roll movement task, showing that EyeLink was more sus-
ceptible to vertical head movements than the webcam-based 
solution.

Limitations and possible improvements

While our results demonstrate a substantial improvement 
in webcam-based eye tracking, several improvements can 
still be made, and a few limitations are worth mentioning.

First, we used in the analysis of several tasks not accuracy 
and precision, but correlation as the relevant metric. This 
decision was motivated by the lack of ground truth in these 
tasks. In the Large Grid task, the participants are explicitly 
instructed to fixate on a specific location. Any deviation of 
gaze from that location results in a finite accuracy. In con-
struct, in the other tasks, the subjects might variably explore 
the visual stimulus (e.g., in the Free View task) and, as a con-
sequence, no deviation from a ground truth can be computed. 

Table 2   Accuracy: ANOVA results of the mean distance to target 
between different subsets division. F: test statistic for hypothesis testing; 
p-unc: uncorrected p value for determining statistical significance; η2: 
effect size measure indicating the proportion of variance explained by 

the independent variable; df: degrees of freedom representing the num-
ber of independent observations used to estimate the variance in the data

Mean subsets division Sum of squares df Mean square F p-unc η2

First vs. second half of the task 4577.853 1.0 4577.853 3.157 .075 .002
Spatial division 15100.74 1.0 15100.740 10.416 .001 .008
Eye-tracker type 170455.2 1.0 170455.194 117.583 < .00001 .087
First vs. second half of the task * spatial division 428.502 1.0 428.502 .295 .586 .0002
First vs. second half of the task * eye-tracker type 110.956 1.0 110.955 .076 .782 .00006
Spatial division * eye-tracker type 284.027 1.0 284.027 .195 .658 .0001
First vs. second half of the task * spatial division * 

eye-tracker type
213.669 1.0 213.669 .147 .701 .0001

Residual 1777271 1226.0 1449.650 NaN NaN NaN

Table 3   Precision: ANOVA results of standard deviation around 
target across participants for X coordinates related fixations. F: test 
statistic for hypothesis testing p-unc: uncorrected p  value for deter-
mining statistical significance; η2: effect size measure indicating the 

proportion of variance explained by the independent variable; df: 
degrees of freedom representing the number of independent observa-
tions used to estimate the variance in the data

Bold text highlight the significance of the observation

Mean subsets division Sum of squares df Mean square F p-unc η2

Eyetracker type 11.246 1.0 11.246 183.940 < .00001 .630
Spatial division .271 1.0 .271 4.446 .037 .039
Eye tracker type * spatial division .271 1.0 .002 .0464 .829 .0004
Residual 6.603 108.0 .061 NaN NaN NaN
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Calculating the cross-correlation of the data obtained by the 
two eye trackers gives an objective and unbiased metric. 
Further, it is independent of any event detection algorithm 
manipulation. Nevertheless, we acknowledge that correlation, 
as a metric, does not cater to constant offsets and constant 
scaling. In other words, even when there are considerable 
disparities in accuracy and precision, signals could still dis-
play a high degree of correlation. To address this inherent 
limitation of correlation, we examined these aspects within 
the Large Grid task (mean correlation 0.93, Table 5), which 
specifically focuses on investigating accuracy and precision. 
By identifying and analyzing any constant offsets and scaling 
within this task, we could more effectively utilize correlation 
as a useful measure in our other tasks. In other words, when 
interpreting the correlation values, we have to bear in mind 
that a limited accuracy and precision as observed in the Large 
Grid task presumably applies to the other tasks as well.

We also derived the motivation for choosing this metric 
from the prior application of this metric in a comparative 
study between humans and monkeys to unveil both conver-
gent and divergent patterns of movie viewing (Shepherd 
et al., 2010). Furthermore, the correlation between gaze 
data and behavioral studies is commonly employed in the 
exploration of decision-making processes (Fletcher & Zelin-
sky, 2009; Weill-Tessier & Gellersen, 2018).

The second limitation of any current webcam-based 
eye tracking is the comparably low sampling rate match-
ing standard video frame rates of on average approximately 
30 Hz. There are many other vendors using low-sampling-
rate devices, for example Tobii Sticky (https://​www.​tobii.​
com/​produ​cts/​softw​are/​online-​marke​ting-​resea​rch/​sticky), 
RealEye.io (https://​www.​reale​ye.​io/), and GazeRecorder 
(https://​gazer​ecord​er.​com/). As of today, webcam-based 
eye-tracking systems primarily work with gaze data sam-
pled at 30 Hz because most webcams are working at such 
frequencies. And while the availability of these systems 
does not directly suggest their correctness or usefulness, it 
indicates that some (UI/UX/market/psychology) researchers 
derive meaningful value from these 30-Hz systems. Hence, 
webcam-based eye tracking is not yet suitable for detecting 

fast saccadic events (Aljaafreh et al., 2020; Semmelmann 
& Weigelt, 2018), microsaccades (Martinez-Conde et al., 
2009), or other signals that are only detectable on very tran-
sient timescales. Interestingly, it should be noted that at the 
moment of writing this paper, the webcam-based system is 
already adapted and ready for webcams with higher fps rates, 
so once these are more widely available, the system will also 
be able to handle more transient events. We believe that in 
the near to mid-term future, such sampling rates are also 
consistently achievable in online webcam-based eye-tracking 
studies. Third, a promising approach seems to be using the 
EyeLink gaze and fixation data as ground truth and optimiz-
ing fixation detection for the webcam-based gaze data by 
machine learning algorithms. The dispersion-based fixation 
detection algorithm currently in use is a custom-built version 
that is openly available at (https://​github.​com/​Labva​nced/​eye 
tracking-fixation-detection). It is important to acknowledge 
the existence of alternative offline algorithms, such as the 
I2MC (identification by two-means clustering) algorithm 
(Hessels et al., 2017), for fixation detection in eye-tracking 
data. The I2MC algorithm is specifically designed to handle 
varying levels of noise and data loss, ensuring reliable and 
precise identification of fixations. However, this publication 
does not include offline analysis, as offline algorithms may 
encounter different challenges and serve different applica-
tions and use cases.

Fourth, one might consider the implications of the virtual 
chinrest, which is a unique and novel approach to online test-
ing used to reduce head movements. The virtual chinrest is 
implemented by pausing the trial as soon as the participants’ 
head moves out of the allowed range of the chinrest and 
showing the participant their face with the masked over-
lay. Only after bringing their head back into position does 
the trial continue. According to our observations, the vast 
majority of participants learned rather quickly that they were 
not allowed to move their heads and kept very still. How-
ever, some participants might have had more difficulties with 
this than others, so the number of interruptions and pauses 
within a trial might have been large for some subjects. Also, 
the implications of pausing and resuming a trial are arguably 

Table 4   Precision: ANOVA results of standard deviation around 
target across participants for Y coordinates related fixations. F: test 
statistic for hypothesis testing p-unc: uncorrected p  value for deter-
mining statistical significance; η2: effect size measure indicating the 

proportion of variance explained by the independent variable; df: 
degrees of freedom representing the number of independent observa-
tions used to estimate the variance in the data

 Bold text highlight the significance of the observation

Mean subsets division Sum of squares df Mean square F p-unc η2

Eyetracker type 2.901 1.0 2.901 63.594 < .00001 .370
Spatial division .289 1.0 .289 6.341 .013 .055
Eye tracker type * spatial division .057 1.0 .057 1.268 .262 .011
Residual 4.928 108.0 .045 NaN NaN NaN

https://www.tobii.com/products/software/online-marketing-research/sticky
https://www.tobii.com/products/software/online-marketing-research/sticky
https://www.realeye.io/
https://gazerecorder.com/
https://github.com/Labvanced/eye
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different depending on the paradigm. Such a virtual chinrest 
might be problematic for some paradigms where uninter-
rupted stimuli presentation is a prerequisite. One possible 
solution could be to discard such trials and only analyze 
trials without interruptions.

The fifth area for potential improvement pertains to 
calibration, which is a critical component of the EyeLink 
system that involves both calibration and validation tasks. 
Our calibration protocol involved presenting nine fixation 
targets twice, which theoretically is a straightforward and 
expeditious process. However, in practice, several other 
parameters, such as the subject's distance, the focal point 
of the lens, and the pupil size, among others, can impact 
the accuracy of the calibration. Furthermore, the calibra-
tion procedure had to be set up by the researcher, who then 
had to verify its quality. Consequently, in many cases, the 
entire calibration process had to be repeated to achieve the 
desired low calibration error. The duration of the EyeLink 

Fig. 7   The panel represents scatter plots A and B with one partici-
pant's raw gaze data, showing the gaze data's alignment during the 
Smooth Pursuit task, separably for the X- and Y- axes. C The gaze 
data correlation for each participant separately. We could observe the 
low performance of one participant; however, the rest of the results 
remain similar

◂

Fig. 8   Heatmaps with two scatter plots from the participants and two 
different trials, where left-red represents EyeLink and right-blue web-
cam-based eye tracker. The corresponding stimuli image is used as the 
backdrop for the heatmap in each task. The values from 0 to 1 in the 
color bar represent the normalized density values of the kernel density 

estimate. From the given graphics, we could conclude that the gaze 
data are assigned roughly to the same objects in the image; however, 
there is a higher variance across the webcam gaze data distribution
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calibration process varied from 2 to 5 min. While the web-
cam-based eye tracker calibration time is adjustable in the 
algorithm, we chose the 5-min calibration (~ 120 points) 
for the current study. This is rather long for an eye-tracking 
calibration and requires the subject's close attention during 
the whole period. However, we can also clearly see that the 
shorter the calibration, the less accurate the results. This is 
because the neural network used for pose estimation will 
generalize better the more customized training samples it 
can use. We even tested an ~ 8-min calibration but consid-
ered it impractical after the initial online tests of some sub-
jects. Hence, for most of our preliminary online and in-lab 
data recordings, we used the 5-min calibration. We see an 
initial success rate of about 80% for the calibration, which 
seems acceptable. However, while such a calibration time 
seems to work for dedicated subjects using crowdsourcing 
platforms, it seems that it will be necessary to shorten fur-
ther and simplify the calibration to expand webcam-based 
eye tracking to other use cases. The duration of the re-cal-
ibration time can be customized to suit the needs of the 
specific experiment and it comprises seven equally spaced 
fixation targets that are presented for approximately 15 s. 
For the Large Grid experiment, the entire re-calibration 

process took about 2 min, while for the Smooth Pursuit 
experiment, it took 1.5 min and for the Free View experi-
ment, it took only 0.60 ms. As a result, approximately four 
extra minutes were added to the total experiment time. 
Notably, the Head Movements task did not require a re-
calibration procedure since the entire experiment, including 
subject preparation and calibration, lasted about an hour. 
Therefore, an additional 4 min for recalibration should not 
pose any challenges, even for large-scale studies. However, 
as previously mentioned, the recalibration procedure can be 
completely deactivated or adjusted.

Finally, it is important to note that we here focused on 
and reported the accuracy of webcam-based eye tracking on 
a desktop, as we believe this has the most significant impact 
on professional empirical research at the moment. When 
applying the same method for mobile devices, the overall 
accuracy will likely be better, as the calibration is performed 
on a much smaller area. However, given the much smaller 
screen area and additional degrees of freedom due to arm 
and hand movements, we consider smartphone eye tracking 
experiments still experimental and plan to investigate it more 
closely in the future.

Real‑time and client‑side vs. post hoc gaze 
estimation

The webcam-based eye-tracking system we are proposing 
here performs real-time gaze estimation directly on the par-
ticipant's device. An alternate solution would be to record 
and save a webcam video while the participant is doing 

Fig. 9   Percentage representation of overall data loss for Yaw and Roll 
tasks (Head Movements tasks; A). This analysis shows consistent 
small data loss over many subjects. However, we could also see the 
high data loss over a few participants (B and C) from the EyeLink 
system and high data loss for one participant from the webcam-based 
eye tracker

◂

Table 5   Comprehensive summary of all metrics used in this paper and detailed information about each eye-tracking system with different tasks

Task name Metrics Large Grid Smooth Pursuit Free View Yaw Roll

Webcam-based Mean gaze samples loss in % 2.63 3.06 1.54 3.24 12.09
Standard deviation gaze samples loss in % 1.96 2.72 1.29 7.41 17.74

EyeLink Mean gaze samples loss in % 2.08 7.24 2.39 5.7 2.05
Standard deviation gaze samples loss in % 2.14 19.4 1.42 9.26 2.05

Webcam-based and EyeLink Mean correlation X coordinates 0.93 0.78 0.83 - -
Webcam-based and EyeLink Mean correlation Y coordinates 0.89 0.86 0.84 - -
Webcam-based Total number of fixations 9278 8943 2950 - -
EyeLink Total number of fixations 17640 6382 5256 - -
Webcam-based Total number of offset-related fixations 619 - - - -
EyeLink Total number of offset-related fixations 615 - - - -
Webcam-based Mean accuracy [°] 1.45 - - - -
EyeLink Mean accuracy [°] 0.91 - - - -
Webcam-based Standard deviation accuracy [°] 0.76 - - - -
EyeLink Standard deviation accuracy [°] 0.54 - - - -
Webcam-based Mean precision [°] 1.23 - - - -
EyeLink Mean precision [°] 1.02 - - - -
Webcam-based Standard deviation precision [°] 0.33 - - - -
EyeLink Standard deviation precision [°] 0.26 - - - -
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the task and perform the gaze estimation post hoc without 
any real-time restrictions. In fact, this is what several other 
frameworks and researchers have been doing before (Saxena 
et al., 2022; Schultz et al., 2007; Desai et al., 2019). While 
this distinction might sound like a smaller technicality, it has 
large implications that can be compared in the domains of 
accuracy, utility, and data privacy.

Regarding accuracy, webcam-based real-time gaze estima-
tion is limited to the capabilities of the participant's device. 
In contrast, for post hoc estimation, a researcher can use the 
most powerful machine available. This can be considered 
a clear advantage for post hoc processing because CPU 
and especially GPU hardware specifications are crucial in 
machine learning architectures. Hence, to speed up the per-
formance of the real-time system, we employed the latest web 
technologies such as web workers, i.e., parallel processing 
techniques, and fast inference methods based on web assem-
bly and Tensorflow (Reiser & Bläser, 2017; Smilkov et al., 
2019). Furthermore, the present system allows us to check 
the performance of the participants’ devices, specifically 
CPU and GPU speeds, and reject setups below an adjustable 
threshold beforehand. These measures mitigate hardware-
based deficiencies of real-time inference to a considerable 
degree but also reduce the number of eligible remote sub-
jects. However, given the almost unlimited number of sub-
jects one can reach with online crowdsourcing techniques 
(Chittilappilly et al., 2016), this seems to be an appropriate 
trade-off. Also, the accuracy is only partly dependent on the 
performance of the inference machine; most important is, of 
course, the data quality. Using a real-time inference mecha-
nism, we can create precise millisecond timestamps for each 
processed webcam image because we can directly access and 
analyze the raw webcam stream. Instead, when creating an 
mp4/h264 encoded HTML video, there is data loss both on 
the video content due to image compression, as well as on 
the timestamps because the video does not create millisecond 
precise timestamps for each image and because the frame 
rate is not necessarily 100% constant across time. This data 
loss and temporal imprecision could be circumvented by not 
saving a compressed video but instead single uncompressed 
images. In this case, however, the amount of data to handle 
would be enormous, up to 180 MB/s of data per subject for 
an HD webcam. A final important consideration is that our 
real-time gaze estimation enables us to implement a virtual 
chinrest, effectively decreasing the number of head move-
ments during the recording to a controllable degree. Without 
a real-time calculation of the head pose, this is, of course, 
not possible, and hence post hoc inference has to deal with 
a much larger amount of head movements. Our intuition 
is that the virtual chinrest, and consequently reduced head 
movements, have a strong positive impact on the reported 
accuracy of our system. This idea is supported by the results 
of a recent study from Saxena et al. (2022), who conducted a 

webcam-based eye-tracking study but instead used a post hoc 
inference strategy and reported an average accuracy of about 
2.58° – less accurate compared to what we report with an 
enabled virtual chin-rest. However, future research directly 
comparing the accuracy with and without virtual chinrest will 
bring more conclusive evidence.

A second important factor regarding real-time vs. post 
hoc gaze estimation is the question of utility, meaning which 
experiments are possible to realize depending on the method 
chosen. Most importantly, real-time gaze estimation can use 
the predicted gaze data and even online calculated fixations 
to interact with the experiment. For instance, using our sys-
tem, one can force the subject to look at a fixation cross 
before showing a specific stimulus, or a subject can choose 
by fixating on an object for a certain amount of time. One 
could even stream the gaze location between participants in 
a multi-participant study or invent other more advanced use 
cases. As post hoc inference, one does not have any of these 
capabilities, it is clear that real-time analysis possesses a 
much higher utility.

A final consideration is the aspect of data privacy. Accord-
ing to Bozkir et al. (2023), eye movements could be asso-
ciated with various attributes such as gender, sexual prefer-
ences, body mass index, health status, etc. The collection of 
eye-tracking data raises concerns regarding user privacy, as it 
contains unique characteristics that can be exploited for exam-
ple for targeted advertising purposes. The studies mentioned 
in the text primarily focus on high-sampling-rate devices in 
virtual reality (VR) and behavioral authentication. Mentioned 
methods exhibit limited accuracy and require the incorpo-
ration of more intricate fine-grained features to effectively 
differentiate and identify personal attributes. In contrast, the 
authors highlight the potential of iris-based authentication, 
which offers high accuracy in privacy identification by cap-
turing iris-texture data. Identification methods explained in 
the paper (Bozkir et al., 2023) rely heavily on high sampling 
rates in combination with behavioral features or iris images. 
It should be noted that the webcam-based eye-tracker sys-
tem discussed in the paper does not store raw image data. 
However, the authors of this publication demonstrate a strong 
awareness of the potential risks associated with technology 
development. They emphasize the importance of exercising 
caution and considering the implications of privacy and secu-
rity while advancing new technologies.

In the present work, we argue for real-time gaze estima-
tion on the participants' devices. This means that no face/
image data ever leaves the participants’ devices, but only 
the predicted eye location is sent to the server. Doing post 
hoc inference requires that the video data of the subjects’ 
faces must be sent from the participants’ devices over the 
Internet to a server controlled by the researcher. One could 
decide to only scramble/blur the face data or only extract 
the eye images client side, save those extracted or modified 
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images on a server, and post-process these images to arrive 
at gaze data. However, eye-only images (even if harder to 
use for identification) are still private data and the amount 
of data processing needed for this on the participant device 
is still significant. Hence, the additional step to also do the 
gaze prediction in real time, on the participant's devices, 
and only store gaze information seems like the most elegant 
and privacy-preserving solution. Even if this data would be 
client-side (end-to-end) encrypted and only decrypted for 
data analysis, this would still expose the raw face data to the 
system of the person analyzing the data. To our understand-
ing, this not only constitutes a relatively large risk of a data 
privacy breach, e.g., by lack of secure data transport, stor-
age, or access mechanisms but also stands against the idea of 
modern data privacy laws such as GDPR or HIPPA (Tovino, 
2016). In our opinion, this critical fact alone strongly argues 
in favor of local real-time gaze inferences. In summary, our 
preferences and judgments are rather clear.

With state-of-the-art technologies, real-time gaze estima-
tion can be considered more accurate, feature complete, and 
especially secure and privacy-preserving compared to post 
hoc inference methods. Potential accuracy deficiencies due 
to inferior hardware can be mitigated using modern web 
technologies and should finally be overcome by better com-
puting devices.

Outlook

The use cases for accurate, cheap, and real-time eye track-
ing, working natively in the web browser without needing 
dedicated hardware, are enormous. The potential benefits 
range from improved marketing approaches (Białowąs & 
Szyszka, 2019), more interactive gaming (Alhargan et al., 
2019), improved videoconferencing tooling (Adams, 2020), 
to more insightful academic research (Orquin et al., 2019) 
and more accessible medical diagnostics and the treatment 
(Boraston & Blakemore, 2007; Guillon et al., 2014; Stuart 
et al., 2016; Bueno et al., 2019; Bek et al., 2020). We are 
glad to be part of this journey and hope our contribution will 
provide the next step toward this common goal.
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