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Abstract
The many benefits of online research and the recent emergence of open-source eye-tracking libraries have sparked an interest 
in transferring time-consuming and expensive eye-tracking studies from the lab to the web. In the current study, we validate 
online webcam-based eye-tracking by conceptually replicating three robust eye-tracking studies (the cascade effect, n = 134, 
the novelty preference, n = 45, and the visual world paradigm, n = 32) online using the participant’s webcam as eye-tracker 
with the WebGazer.js library. We successfully replicated all three effects, although the effect sizes of all three studies shrank 
by 20–27%. The visual world paradigm was conducted both online and in the lab, using the same participants and a standard 
laboratory eye-tracker. The results showed that replication per se could not fully account for the effect size shrinkage, but 
that the shrinkage was also due to the use of online webcam-based eye-tracking, which is noisier. In conclusion, we argue 
that eye-tracking studies with relatively large effects that do not require extremely high precision (e.g., studies with four or 
fewer large regions of interest) can be done online using the participant’s webcam. We also make recommendations for how 
the quality of online webcam-based eye-tracking could be improved.

Keywords  Eye-tracking · Online studies · Cascade effect · Novelty preference · Visual world paradigm

Humans are the only species on earth with visible sclera 
(i.e., the white of the eye; Kobayashi & Kohshima, 1997). 
Even great apes, which are extremely close to humans in 
evolution, do not have visible sclera. It has been claimed that 
the white surrounding human’s darker-colored iris evolved 
to make it easier for humans to follow the gaze direction of 
their conspecifics (Kobayashi & Kohshima, 2001). Follow-
ing others’ gaze is a valuable feature because gaze direction 
is an indicator of human visual attention (Just & Carpenter, 
2018), and events that capture attention for one person could 
also be relevant for its conspecifics.

What a person is looking at is not only interesting for 
nonverbal communication in social interactions, but is also 
useful for exploring more general questions concerning 
human attention. Since the late twentieth century, video-
based eye-trackers have been used to track the eyes in real 
time (Singh & Singh, 2012) by measuring the position of 
an infrared light reflection on the cornea (i.e., the transpar-
ent layer forming the front of the eye), relative to the pupil 
(Carter & Luke, 2020). This method allows researchers to 
track gaze behavior and identify what guides visual atten-
tion. In the last 20 years, eye-tracking research gained much 
popularity and became a common measurement tool in many 
areas of science (Carter & Luke, 2020).

However, even though eye-tracking research has led 
to very interesting insights in recent years, this research 
method has some important limitations. The need for a lab, 
an expensive eye-tracker device, an experienced researcher 
who is familiar with the method, and a required calibra-
tion procedure make eye-tracking research a rather elabo-
rate, expensive, and time-consuming method. Furthermore, 
these limitations do not allow for field research in natural 
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environments. These restrictions recently sparked an interest 
in the use of common webcams to infer the eye-gaze loca-
tions of participants (e.g., Bott et al., 2017; Semmelmann & 
Weigelt, 2018). Moreover, the recent social and economic 
pressures of the COVID-19 pandemic reinforced this exist-
ing interest in webcam-based eye-tracking, as it would allow 
studies to move online.

The use of a webcam as eye-tracker would make the 
research quicker, easier, and cheaper, as no lab, experi-
menter, or dedicated hardware is needed. Moving from 
lab to web could also allow for reaching a larger and more 
diverse participant pool more quickly, or reaching a hard-to-
reach sample (e.g., patients with dementia; or a US-based 
researcher wishing to compare US and Chinese partici-
pants). The collection of data would no longer be limited by 
time or location, as individuals could participate whenever 
they wanted from the comfort of their homes. Importantly, 
in other fields, research has already shown that the benefits 
of online research do not necessarily come at a price. Data 
quality has been shown to be similar to that of lab research 
(Kees et al., 2017; Walter et al., 2019), and several effects 
from other fields have already been replicated in online set-
tings (e.g., Dodou & de Winter, 2014; Gosling et al., 2004; 
Klein et al., 2014; Semmelmann & Weigelt, 2018).

The movement toward online webcam-based eye-track-
ing research has been facilitated by recent advances in eye-
tracking scripts. Open-source eye-tracking libraries such as 
WebGazer and TurkerGaze enable researchers to use par-
ticipants’ webcams to infer their gaze position in real time 
(Papoutsaki et al., 2016; Xu et al., 2015). To do this, the 
eye-tracking modules build a mapping between the charac-
teristics of the eye (e.g., pupil position) and gaze positions 
on the screen. The libraries can be easily integrated into any 
script or experiment with only a few lines of code.

Some studies have already successfully implemented eye-
tracking libraries in their online experiments (Semmelmann 
& Weigelt, 2018; Slim & Hartsuiker, 2021; Yang & Kra-
jbich, 2021). Semmelmann and Weigelt (2018), for exam-
ple, demonstrated some basic gaze properties (i.e., a fixation 
task, a pursuit task, and a free viewing task) with online 
webcam-based eye-tracking. Slim and Hartsuiker (2021), 
and Yang and Krajbich (2021) both successfully replicated 
a behavioral eye-tracking experiment (a visual world experi-
ment and a food choice task respectively), although in both 
studies most participants did not pass the initial calibration/
validation phase, and were excluded from the study (73% 
and 61% exclusions). Moreover, the latter two studies did 
not directly compare online webcam-based eye-tracking to 
lab-based eye-tracking. In conclusion, it remains to be estab-
lished to what extent online webcam-based eye-tracking 
could be a valid replacement for lab-based eye-tracking and 
what the cost in terms of capturing cognitive effects on gaze 
behavior would be.

To validate online webcam-based eye-tracking, we con-
ceptually replicated three classic, robust eye-tracking studies 
online using the participant’s webcam as an eye-tracker. Fur-
thermore, in the third study, we directly compared the data 
for participants undergoing both an online webcam-based 
and a classic lab-based eye-tracking study. Based on Sem-
melmann and Weigelt (2018), Slim and Hartsuiker (2021), 
and Yang and Krajbich (2021), we expect to be able to repli-
cate these effects in a web-based setting. Even though some 
loss of accuracy can be expected, online eye-tracking stud-
ies create unprecedented opportunities, as it makes research 
easier, quicker, and cheaper. This would create great possi-
bilities for studies that require large or hard-to-reach samples 
or have limited funding. It would also enable the progress of 
research during pandemic lockdowns.

Study 1: Cascade effect

The first effect we aimed to replicate was the cascade effect, 
originally shown by Shimojo et al. (2003). The cascade 
effect refers to the phenomenon that when people choose 
which of two presented faces they find most attractive, their 
gaze is initially distributed evenly between the faces, but 
then they gradually prioritize the face that they eventually 
choose. Here, we define the cascade effect as the likelihood 
of looking at the face that people eventually select during 
the 100 ms before reporting the decision.

Method

This study was preregistered (https:// osf. io/ ykd25). All 
materials, data, and analytic scripts have been made pub-
licly available and can be accessed at https:// osf. io/ p3xac/.

Participants

An a priori power analysis revealed that for a one-sided 
one-sample binomial test with an alpha of 0.05, the mini-
mum required sample size was 119 participants to reach 
90% power to detect a small effect (g = 0.13; which was 
the observed size of the cascade effect in our pilot study 
of N = 20 when conducting a one-sided one-sample bino-
mial test). Anticipating exclusions, 152 participants were 
recruited via the online crowdsourcing platform Prolific 
(https:// www. proli fic. co). Afterward, we decided that a 
one-sided one-sample t-test would be a more appropriate 
test. To achieve 90% power to detect a medium effect of 
d = 0.61 (i.e., the effect size of the pilot when conducting 
a one-sided one-sample t-test), we only needed to test 25 
participants, which we greatly exceeded in our study. Eligi-
bility was restricted to English-speaking participants with a 
computer connected to a functioning webcam who did not 

https://osf.io/ykd25
https://osf.io/p3xac/
https://www.prolific.co
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wear glasses at the time of the experiment and did not par-
ticipate in the pilot study.

Based on our preregistered exclusion criteria, we 
excluded five participants for showing no variation in esti-
mated eye gaze across all trials, four for showing no varia-
tion in the selected responses across all trials, and seven for 
having more than 50% of the measurement points falling 
outside any of the AOIs. Our final sample contained 136 
participants (89% of the original sample; 69% male, 31% 
female, and 0% other) with a mean age of 25 years (SD = 7 
years, range 18–48 years). They originated from 28 different 
countries, of which Portugal had the largest share (24%).

Procedure

All participants gave informed consent before taking part 
in the study. The task was computerized and completed 
online. In the first part of the experiment, participants 
provided some demographic information and we double-
checked whether they had a working webcam and whether 
it was placed correctly on their computer. Next, participants 
saw an instruction screen detailing optimal conditions for 
webcam-based eye-tracking (see Semmelmann & Weigelt, 
2018). Once participants indicated that they had success-
fully set up according to the instructions, they proceeded 
to an eye-tracking calibration phase (i.e., participants were 
instructed that they would see a series of white squares and 
that they had to look at them and click on them), followed 
by the main task.

Each trial of the main task started with a fixation cross 
(2000 ms), followed by a pair of faces (see Fig. 1). They 
were instructed to select the one they deemed most attrac-
tive by pressing the corresponding key on their keyboard 
(“F” for the left face, “J” for the right face). They could 
take as long as they needed to make a decision. There were 
18 trials in total. The faces were selected from the Lon-
don Face Research database (DeBruine & Jones, 2017), 
which contains images of 102 adult faces with accompany-
ing attractiveness ratings from 2513 individuals. Face pairs 
were combined based on minimal differences in average 

attractiveness ratings to replicate the face attractiveness dif-
ficult condition of Shimojo et al. (2003). The selected face 
pairs were matched for gender and ethnicity and were lim-
ited to a maximum age difference of 4 years. The order and 
composition of the face pairs were fixed, meaning that the 
presentation and the location of each face were consistent 
across all participants. Faces were presented on a light gray 
background and vertically centered. The images were 173 × 
173 px in size and spaced 295 px apart.

After completing 18 trials, participants received a short 
debriefing and were thanked for their participation. The 
demographics and webcam check were programmed in and 
hosted on Qualtrics (https:// www. qualt rics. com), and the 
eye-tracking part was programmed in PsychoJS and hosted 
on Pavlovia (https:// pavlo via. org/). For the eye-tracking part, 
we made use of the WebGazer open-source eye-tracking 
library (Papoutsaki et al., 2016). The entire study was con-
ducted in English.

Results

Preregistered analyses

As previous studies that used online webcam-based eye-
tracking lost many participants because they did not pass 
the initial validation phase, we used an alternative approach 
in which we manipulated the data after they had been col-
lected, rather than excluding participants who had a too large 
offset. We extracted gaze position during the tailing 80% of 
each central fixation period at the beginning of each trial 
and estimated the measurement bias for that given trial. To 
account for the offset, the estimated bias was then added to 
the midline and area of interest (AOI) bounds of that trial 
(see Fig. 2). For instance, if we found an offset of 50 px to 
the right of the fixation cross, we would shift the midline and 
bounds of the AOIs 50 px to the right. As this experiment 
was limited to a left–right distinction, we applied this correc-
tion only for x-values. On average, the midline was corrected 
for 119 px to either direction (median = 97 px, min = 0 px, 
max = 480 px). Our confirmatory analyses are based on the 

Fig. 1  Schematic overview of the course of a trial of the face attractiveness task. Participants were required to select the more attractive face

https://www.qualtrics.com
https://pavlovia.org/


 Behavior Research Methods

1 3

midline corrected data. For a comparison between the raw 
data and the midline corrected data, see our non-preregis-
tered analyses.

Based on our preregistered exclusion criteria, no trials 
were excluded due to a deviation of the corrected midline 
of more than 25% of the total screen width from the true 
midline; no trials were excluded because the standard devia-
tion of the corrected midline was larger than 25% of the 
screen width; 12% of the measurement points were excluded 
because they fell outside any of the specified AOIs, and 16% 
of the trials because the response time was below 0.5 s or 
above 30 s.

Contrary to what we described in the preregistration, we 
decided that a t-test was ultimately a more appropriate test 
for this study than a binomial test. We did also run all analy-
ses as described in the preregistration, from which the same 
conclusions were drawn. These analyses can be found at 
https:// osf. io/ kwnxc. The results revealed that the likelihood 
of looking at the face that was eventually selected as more 
attractive by the participant during the 100 ms leading up 
to the decision was 62% (as compared to the 50% chance 
level). A one-sided one-sample t-test revealed that this rate 
was significantly larger than chance, t(135) = 7.58, p < .001, 
d = 0.65, 95% CI [0.62; ∞]. Additionally, a Bayesian one-
sample t-test with the default Cauchy scale of 0.707 showed 
that the data were 3.10 ×  109 times more likely under the 
alternative model in which participants looked more at the 
eventually chosen face than under the null model of no dif-
ference in viewing proportion. This cascade effect is also 
shown in Fig. 3, which demonstrates a steady increase in 
viewing proportion over time, and resembles the overall 

trend reported by Shimojo et al. (2003), although smaller in 
magnitude (the original study reported an 83% likelihood 
of looking at the selected face in the 100 ms leading up to 
the decision).

Non‑preregistered analyses

Midline correction In the raw data, 7% of the measurement 
points fell outside of any of the AOIs. In the midline cor-
rected data, 5% of the measurement points fell outside of any 
of the AOIs. This indicates that we captured slightly more 
measurement points when adjusting for the offset. When we 
reran the analyses without the midline correction, we found 
a 61% likelihood of looking at the face that was eventually 
selected (compared to 62% with midline correction). This 
proportion was also significantly higher than chance level, 
t(134) = 7.84, p < .001, d = 0.67, 95% CI [0.65; ∞]. A Bayes-
ian one-sided one-sample t-test showed that the data were 
1.19 ×  1010 times more likely under the alternative model 
than under the null model.

Study 2: Novelty preference

The second effect we replicated was the novelty prefer-
ence effect. This effect refers to the finding that people are 
more likely to attend to new stimuli than to stimuli they 
have already seen. This effect is typically demonstrated with 
the visual paired-comparison task and has been shown by 
Crutcher et al. (2009), among others.

Fig. 2  Illustration of how the midline and AOI bounds were corrected based on the estimated gaze during the fixation cross

https://osf.io/kwnxc
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Method

The preregistration, materials, data, and analytic scripts of 
this study are available at https:// osf. io/ eqg2n/.

Participants

An a priori power analysis revealed that for a one-sided one-
sample t-test (with α = 0.05), a minimum sample size of only 
six participants was required to reach 90% power to detect 
a large effect (d = 1.47; which was observed in our pilot 
study). To make sure we do have a sufficiently large sample 
size (as the pilot sample size may not suffice to reliably esti-
mate the true effect size; Brysbaert, 2019), and to account 
for exclusions, we decided to use a Bayesian stopping rule 
(Schönbrodt et al., 2017). As described in the preregistra-
tion, we first opened the experiment to 50 participants on 
Prolific. Eligibility was restricted to English-speaking partic-
ipants with a computer connected to a functioning webcam 
who did not wear glasses at the time of the experiment and 
did not participate in the pilot study. Then, after applying 
the preregistered exclusion criteria (see below), we ran a 
Bayesian one-sided one-sample t-test. The decision to stop 
collecting data was based on the observed Bayesian factor 
(BF). We planned that once we reached substantial evidence 
for either the alternative hypothesis (i.e.,  BF10 larger than 
5; participants look more at novel stimuli than what could 
be expected by chance) or the null hypothesis (i.e.,  BF10 
smaller than 1/5; participants do not look more at the novel 
stimuli), we would stop testing; otherwise, we would open 

up the experiment for another 50 participants. After our first 
batch of 50 participants (which ended up being only 49 par-
ticipants because one participant did not consent to the use 
of their data), we reached a  BF10 of 18.16, so data collection 
was stopped.

Based on the preregistered exclusion criteria, one par-
ticipant was excluded for showing no variation in estimated 
gaze position across all trials, and three participants were 
excluded for having more than 50% of the measurement 
points falling outside any of the AOIs. The final sample 
consisted of 45 participants (92% of the original sample; 
62% female, 38% male, and 0% other) with a mean age of 27 
years (SD = 6 years, range 19–41 years). Participants origi-
nated from 14 countries, with the majority having a South 
African nationality (45%).

Procedure

The first part of the procedure was the same as in study 1 
(i.e., informed consent, demographics and camera check, 
instructions about optimal conditions for webcam-based eye-
tracking followed by a calibration phase). After this first 
part, participants proceeded to the main novelty preference 
task.

Each trial of the main task started with a fixation cross 
(2000 ms), followed by a familiarization phase which con-
sisted of two identical images on the left and right side of 
the screen (5000 ms). After the familiarization phase, par-
ticipants saw a black screen (2000 ms), followed by the test 
phase (5000 ms), in which participants saw two images: one 

Fig. 3  The proportion of time gaze was directed toward the chosen stimulus with respect to the decision time. The period on which we based our 
analyses is in yellow

https://osf.io/eqg2n/
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that was the same as the one presented during the familiari-
zation phase and another one that was novel. The left or right 
positioning of the novel stimulus was randomized across tri-
als. Each experimental trial ended with a black screen (7000 
ms; Fig. 4). There were 10 trials in total. Stimuli were black 
and white, horizontally oriented clipart images selected from 
the Snodgrass and Vanderwart (1980) database. They were 
presented on a light gray background, centered vertically, 
were 472 × 331 px in size, and were 295 px apart from each 
other.

After the main task, an attention check was performed 
in which participants were asked to select which of three 
image pairs they recognized from the experiment. After-
ward, they were asked to estimate the reliability of their own 
data on a five-point Likert scale (with 1 as “unreliable, do 
not use my data,” and 5 as “very reliable, use my data”). The 
demographics and webcam check were programmed in and 
hosted on Qualtrics (https:// www. qualt rics. com); the eye-
tracking part was programmed in PsychoJS and hosted on 
Pavlovia (https:// pavlo via. org/). For the eye-tracking part, we 
made use of the open-source eye-tracking library WebGazer 
(Papoutsaki et al., 2016). The entire study was conducted 
in English.

Results

Preregistered analyses

In the current study, we corrected the midline on average 
for 128 px to either direction (median = 122 px, min = 36 
px, max = 256 px). Our confirmatory analyses are based 
on this midline corrected data. For a comparison between 
the raw data and the midline corrected data, see our non-
preregistered analyses. Based on our preregistered exclu-
sion criteria, we excluded 14% of the measurement points 

because they fell outside any of the specified AOIs; no trials 
were excluded because the corrected midline deviated more 
than 25% of the total screen width from the true midline, 
and 8% of the trials were excluded because the standard 
deviation of the corrected midline was larger than 25% of 
the screen width.

On average, participants looked at the novel stimulus 
57% of the time (compared to the 50% chance level). A one-
sided one-sample t-test revealed that this viewing propor-
tion toward the novel stimulus was significantly higher than 
chance level (.5), t(44) = 3.06, p = .002, d = 0.46, 95% CI 
[0.42; ∞]. Additionally, a Bayesian one-sided one-sample 
t-test with the default Cauchy scale of 0.707 showed that 
the data were 18.16 times more likely under the alternative 
model in which participants looked at the novel stimulus 
more than 50% of the time, than they were under the null 
model of no difference in viewing proportion. The effect is 
visualized in Fig. 5. The results are similar to those reported 
in previous studies about the novelty preference such as the 
paper by Crutcher et al. (2009), but with a smaller effect 
size. For example, in the original study of Crutcher et al. 
(2009), participants looked at the novel stimulus 71% of the 
time.

Non‑preregistered analyses

Midline correction In the raw data, 15% of the measure-
ment points fell outside of any of the AOIs. In the midline 
corrected data, 14% of the measurement points fell outside 
of any of the AOIs. When we reran the analyses without 
performing the midline correction, we found a likelihood of 
54% for looking at the novel stimulus (compared to 57% with 
midline correction). This proportion was still significantly 
higher than chance level, t(44) = 2.05, p = .023, d = 0.31, 
95% CI [0.27; ∞]. A Bayesian one-sided one-sample t-test 

Fig. 4  Schematic overview of the course of a trial of the novelty preference task

https://www.qualtrics.com
https://pavlovia.org/
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showed that the data were 2.12 times more likely under the 
alternative model than under the null model.

Sensitivity analysis: Can we improve the quality of the 
data? In this non-preregistered analysis, we examined 
whether alternative ways of analyzing the data could 
improve the results. This could indicate which choices 
are most consequential for the outcomes. To that end, we 
sequentially added an increasing number of exclusion cri-
teria so that our data became increasingly strict. First, we 
excluded participants who failed more than one attention 
check at the end of the study. Second, we excluded partici-
pants who clicked through the instruction screen too fast 
(i.e., < 7.5 s). Third, we excluded participants who indicated 
that their data were unreliable at the end of the experiment. 
Lastly, we excluded measurement points in which the live 
webcam feed (indicating that the eye-tracker lost the partici-
pant’s eyes) appeared. The results can be found in Table 1. 

Note that these exclusion criteria led to no or very few exclu-
sions, making the results in the different rows very similar.

Study 3: Visual world paradigm

The first two studies of this validation project indicate that 
it is possible to replicate robust eye-tracking effects with the 
participant’s webcam while retaining 89–92% of the original 
sample. However, in both studies, the effect was noticeably 
smaller than in the original studies. This could be because 
webcam-based eye-tracking data are noisier, but also 
because these studies are replications, as it has been dem-
onstrated that the effect sizes of replications are on average 
50% smaller than the original effect sizes (Camerer et al., 
2018). To estimate how much of the effect size reduction 
could be attributed to webcam-based eye-tracking, we set up 
a third study in which each participant conducted the visual 
world paradigm both online and in the lab with a standard 
state-of-the-art laboratory eye-tracker (Eyelink 1000 Plus; 
SR Research Ltd., Mississauga, Ontario, Canada).

We replicated the visual world paradigm effect demon-
strating that when people hear utterances while looking at 
a visual display showing common objects, some of which 
are mentioned in the sentences, they tend to look more at 
the images of the words that they hear in the utterances. 
This effect has been shown by Huettig and Altmann (2005), 
among others.

Method

The preregistration, materials, data, and analytic scripts of 
this study are available at https:// osf. io/ jucge/.

Fig. 5  The proportion of time participants looked at the novel stimulus during the test phase of the novelty preference task

Table 1  Non-preregistered sensitivity analysis

The table displays the statistical results from the one-sided one-sam-
ple (Bayesian) t-test for the different exclusion criteria. The exclusion 
criteria are presented in hierarchical order and include the previous 
criteria. * Bonferroni-corrected, statistically significant with p < .01

N Proportion 
direct gaze

p Cohen’s d [95% 
CI]

BF

Confirmatory 
analyses

45 57% .002* 0.46 [0.42; ∞] 18.16

+ Attention 
checks

45 57% .002* 0.46 [0.42; ∞] 18.16

+ Instruction 
screen

44 57% .001* 0.50 [0.46; ∞] 33.85

+ Unreliable data 44 57% .001* 0.50 [0.46; ∞] 33.85
+ Live feed 44 57% .001* 0.48 [0.44; ∞] 24.77

https://osf.io/jucge/
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Participants

As described in our preregistration, we first opened the 
experiment to 50 participants on the participant recruit-
ment site of the University of Amsterdam. Eligibility was 
restricted to English-speaking participants with a laptop 
or computer with a functioning webcam and audio device 
who were not wearing glasses at the time of the experiment. 
Then, after applying our preregistered exclusion criteria (see 
below), we ran two Bayesian t-tests using the JASP default 
Cauchy scale of 0.707. First, we ran a Bayesian one-sided 
one-sample t-test on the data of the online version compar-
ing the mean proportion viewing time at the target word to 
chance level (25%). Second, we compared the mean propor-
tion of viewing time towards the target between the two con-
ditions (lab vs. online), using a Bayesian one-sided paired-
sample t-test. The decision to stop collecting data was based 
on the BFs of both t-tests. We planned that once we reached 
substantial evidence for either the alternative hypothesis 
(i.e.,  BF10 larger than 5) or the null hypothesis (i.e.,  BF10 
smaller than 1/5) for both tests, we would stop testing; if 
not, we would test another 25 participants. We intended to 
repeat this procedure until we reached substantial evidence 
in both t-tests for either the null or the alternative model or 
until we had tested N = 150. We reached substantial evidence 
favoring the alternative hypotheses for both models after 
testing 50 participants.

Based on the preregistered exclusion criteria, no partici-
pants were excluded for showing no variation in estimated 
gaze position across all trials, no participants were excluded 
for having more than 50% of the measurement points falling 
outside any of the AOIs, and 18 participants were excluded 
for having more than 50% missing data (often due to only 
finishing either the online version or the lab version of the 
experiment). The final sample consisted of 32 participants 
(64% of the original sample) that performed both tasks. The 
sample consisted of 72% females, 28% males, and 0% oth-
ers and had a mean age of 20 years (SD = 2 years, range 
18–27 years). Most participants indicated to be of German 
nationality (32%).

Procedure

This study had a within-subjects design, in which partici-
pants completed the experiment both online and in the lab. 
The order (first online or first in the lab) was counterbal-
anced. The online part started with a similar procedure as 
in studies 1 and 2 (i.e., they started with a webcam and 
audio check, received instructions about optimal condi-
tions for webcam-based eye-tracking, and finished with a 
calibration phase). In the lab part, we immediately started 
with the calibration phase as eye-tracking conditions are 
already close to optimal in the lab. The task in the lab 

was displayed on a 23-inch Samsung SyncMaster moni-
tor, with a 120 Hz refresh rate and 1024 × 768 screen 
resolution. Monocular gaze position was tracked at 1000 
Hz with an Eyelink 1000 Plus (SR Research Ltd., Missis-
sauga, Ontario, Canada). The participant’s head was sta-
bilized using a chinrest, situated 60 cm from the screen. 
The experiment started with the standard nine-point cali-
bration and validation procedure provided with the eye 
tracker. The experiment began if the validation procedure 
yielded average errors measuring less than 1 degree of 
visual angle. After the calibration phase, the main task 
(the visual world paradigm) started, which was identical 
for the online and lab versions but used different stimuli. 
The set of stimuli that were used online or in the lab was 
counterbalanced across participants.

Each trial of the main task started with a fixation cross 
(2000 ms), followed by a screen with four images (e.g., 
a desk, a car, a foot, and a horse), one in each quadrant 
of the screen (9000 ms). Each screen with images was 
paired with a sentence such as “Eventually, the man looked 
around thoroughly, and then he spotted the desk and real-
ized that it was magnificent.” One of the four images of 
each scene was a target object that was mentioned in the 
sentence (in the above example this was the desk), and 
the other three images (car, foot, and horse) were unre-
lated distractors (see Fig. 6). Participants were instructed 
to listen to the sentences carefully and were told that they 
could look wherever they wanted (they were not asked to 
perform any task). There was a 1000 ms preview of the 
display before the onset of the sentence, and the trial was 
automatically terminated after 9000 ms, which is typically 
2000 ms after the end of each sentence. The target word 
typically appeared 4000 ms after the onset of the sentence. 
These materials (sentences and scenes) were recreated 
based on the materials of the experiment of Huettig and 
Altmann (2005). The images were presented on a white 
background, were centered on each of the four quadrants 
of the screen, and had a size of 265 × 189 px. There were 
12 trials in each version of the experiment, so 24 trials in 
total per participant.

After the main task, participants were asked to report 
how reliable they estimated their own data on a five-point 
Likert scale (with 1 as “unreliable, do not use my data,” 
and 5 as “very reliable, use my data”). For the online part, 
the webcam and audio check were programmed in and 
hosted on Qualtrics (https:// www. qualt rics. com), and the 
eye-tracking part was programmed in PsychoJS and hosted 
on Pavlovia (https:// pavlo via. org/) in which we made use 
of the WebGazer open-source eye-tracking library (Papout-
saki et al., 2016). For the lab part, the entire experiment 
was programmed in Experiment Builder (SR Research Ltd., 
Mississauga, Ontario, Canada). The study was conducted 
in English.

https://www.qualtrics.com
https://pavlovia.org/
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Results

Preregistered analyses

In the online part, we corrected the horizontal midline on 
average for 133 px to either direction (median = 131 px, 
min = 21 px, max = 265 px), and the vertical midline on aver-
age for 134 px to either direction (median = 134 px, min = 48 
px, max = 355 px). Our confirmatory analyses are based 
on the midline corrected data. For a comparison between 
the raw data and the midline corrected data, see our non-
preregistered analyses. Based on our preregistered exclu-
sion criteria, no measurement points were excluded because 
the live webcam feed indicated that the eye-tracker lost the 
participant’s eyes, we excluded 15% of the measurement 
points because they fell outside any of the specified AOIs, 
we excluded 23% of the trials because the corrected midline 
deviated more than 25% of the vertical and more than 37.5% 
of the total screen width from the true midline. Finally, no 
trials were excluded because the standard deviation of the 
corrected midline was larger than 25% of the screen width.

 In the lab part, 1% of the measurement points were 
excluded because they fell outside any of the specified AOIs.

Replication of visual world paradigm online with partici‑
pants’ webcams The participants looked more at the target 
items (52%) than the control items (17%) in the online ver-
sion of the experiment. The proportion of direct fixations on 
the target items was significantly higher than what could be 
expected by chance (25%), t(31) = 6.39, p < .001, d = 1.13, 
95% CI [1.06; ∞]. Additionally, a Bayesian one-sided one-
sample t-test showed that the data were 81 572.97 times 
more likely under the alternative model in which participants 
looked more at the target item than under the null model of 
no difference in viewing proportion.

Comparison between lab data and online data The propor-
tion of fixations on the target item was higher in the lab 

version (71%) than in the online version (52%). This differ-
ence was significant, t(31) = 3.58, p < .001, d = 0.63, 95% CI 
[0.54; ∞]. Also, a Bayesian one-sided paired-samples t-test 
showed that the data were 56.75 times more likely under 
the alternative model (a larger effect size in the lab than in 
the online version) than under the null model (no difference 
between lab and web). A visualization of the effect in both 
the lab version and the web version can be found in Fig. 7.

Non‑preregistered analyses

Midline correction In the raw data, 15% of the measurement 
points fell outside of any of the AOIs. In the midline cor-
rected data, 16% of the measurement points fell outside of 
any of the AOIs. When we reran the analyses without doing 
the midline correction, we found a likelihood of looking at 
the target of 38% (compared to 52% with midline correction). 
This proportion was also significantly higher than the 25% 
chance level, t(32) = 4.11, p < .001, d = 0.72, 95% CI [0.66; 
∞]. A Bayesian one-sided one-sample t-test showed that the 
data were 215.70 times more likely under the alternative 
model than under the null model.

Sensitivity analysis: Can we make the online data more similar 
to the lab data? We examined whether alternative ways of ana-
lyzing the data could converge the online data to the lab data. 
This could give an indication of which choices are most conse-
quential for the results. To do this, we added an extra exclusion 
criterion to the online data making it more strict. We excluded 
participants who indicated that their data were unreliable at 
the end of the experiment. The results can be found in Table 2.

Calibration score Inspired by the paper of Slim and Hart-
suiker (2021), we calculated the proportion of the estimated 
gaze position that fell on the center of the screen during a 
three-second fixation cross immediately after the calibration 
phase. Similar to Slim and Hartsuiker (2021), we found a 
mean calibration score of 41% (SD = 26%, range 7–93%) 

Fig. 6  Schematic overview of the course of a trial of the visual world task
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in the online webcam-based data. This was considerably 
lower than the lab-based data, where the mean calibration 
score was 99% (SD = 4%, range 75–100%). To test whether 
higher calibration scores could lead to larger effect sizes in 
the online webcam-based data, we calculated the Pearson 
correlation between the calibration scores and effect sizes 
of the online webcam-based data. However, this analysis 
showed no relation between the two (r = −0.04, p = .843).

General discussion

Can we validly run eye-tracking studies with participants’ 
own webcams? We replicated three robust eye-tracking 
studies (the cascade effect, the novelty preference, and 
the visual world paradigm) online with the participant’s 
webcam as eye-tracker. All three studies were replicated 
successfully, and the research was conducted considerably 

Fig. 7  The proportion of time participants looked at the target versus distractors in the online version (top) versus the lab version (bottom) of the 
experiment. The 400 ms time interval on which we based our analyses is shown in yellow

Table 2  Non-preregistered sensitivity analysis

The table displays the statistical results from the one-sided one-sample (Bayesian) t-test for the confirmatory analyses, and when the exclusion 
criterium unreliable data is added

N Proportion direct gaze
lab

Proportion direct gaze
online

p Cohen’s d [95% CI] BF

Confirmatory analyses 32 71% 52% <.001 0.63 [0.54; ∞] 56.75
+ Unreliable data 31 72% 52% <.001 0.63 [0.53, ∞] 47.52
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faster, easier, and cheaper than comparable studies con-
ducted in the lab. To illustrate, data collection for studies 
1 and 2 was completed within 1 day, and participants from 
14 to 28 different countries took part. Moreover, contrary 
to previous online webcam-based eye-tracking studies, we 
could retain most of our sample (64–92%). This indicates 
the potential of an online webcam-based eye-tracking 
procedure that captures gaze directed to left\right or four 
quadrants of the screen. However, even though the overall 
effects were replicated, the effect sizes of all three studies 
shrank by 20–27% as compared to lab-based eye-tracking.

Smaller effect sizes

There are several reasons that could explain why the effect 
sizes of the online webcam-based studies were smaller 
than those of lab-based eye-tracking studies. For exam-
ple, it is possible that webcam-based eye-tracking leads 
to an underestimation of the true effect size. This could 
be due to smaller numerators (i.e., if the mean differences 
between the test values of online webcam-based eye-track-
ing are smaller) or larger denominators (i.e., if the stand-
ard deviations of online webcam-based eye-tracking are 
larger). The third study of the current paper revealed both 
that the numerator of online webcam-based eye-tracking 
was 41% smaller than that of lab-based eye-tracking, and 
that the denominator was 32% larger.

At the same time, original effect sizes often overestimate 
the true effect sizes. It has been shown that the effect sizes 
of replications are typically 50% smaller than the effect sizes 
of original studies (Camerer et al., 2018). It is argued that 
this is caused by exaggerated effect size estimates in the 
existing literature due to a combination of publication bias 
and questionable research practices (e.g., Simmons et al., 
2011; Sterling, 1959). In the third study of the current paper, 
we found the effect size of the lab-based replication indeed 
to be lower than that of the original study. However, the 
effect size of the online webcam-based replication was even 
lower than that of the lab-based replication, so replication 
per se could not fully account for the effect size shrinkage in 
online webcam-based eye-tracking. This indicates that the 
decreased effect sizes of online webcam-based eye-tracking 
are probably caused by a combination of both factors.

As in other conceptual replications (i.e., replications 
where there are changes to the original procedures), the 
decrease in effect size could also be related to several meth-
odological differences between the original studies and our 
replications (Zwaan et al., 2018). First, while all original 
studies were conducted in the lab, which is a very controlled 
environment, all webcam-based replications were done 
online. Second, as we did not have the original materials for 
studies 1 and 2, we intuitively reconstructed them ourselves. 

Third, we used different measurement tools. The original 
studies used standard laboratory eye-trackers; we used web-
cams. It is possible that we did not measure the exact same 
construct as the original studies because of these changes, 
which could result in different effect sizes.

Lower data quality

In the context of eye movement experiments, data qual-
ity refers to the extent to which the collected eye-tracking 
data accurately and reliably reflect the participants’ visual 
behavior (Holmqvist et al., 2012). To ensure data quality 
in eye-tracking experiments, researchers typically employ 
various strategies such as calibration and validation proce-
dures, adherence to standardized guidelines for the setup 
of the eye-tracker and environment, consistent monitoring 
during data collection, and preprocessing techniques (e.g., 
noise reduction, outlier removal; Holmqvist et al., 2011). 
Many of these strategies are not evident for online webcam-
based eye-tracking due to the less controlled environment 
of online testing. Moreover, the quality of webcam hard-
ware is known to be lower than cameras used in standard 
eye-trackers. Because of these reasons, the data quality of 
online webcam-based eye-tracking is expected to be lower 
than that of lab-based eye-tracking. We tested whether this 
quality could be improved in two ways: midline correction 
and stricter exclusion criteria.

Midline correction

The use of validation trials is a common method of correct-
ing for deterioration of gaze estimation accuracy. Although 
effective, they can take up large proportions of the experi-
mental duration, and it has been debated how much vali-
dation is required to ensure high gaze estimation accuracy 
(e.g., Semmelmann & Weigelt, 2018). For example, in 
previous studies that used online eye-tracking, the valida-
tion phase took up to 40–50% of the experimental duration 
(Semmelmann & Weigelt, 2018; Yang & Krajbich, 2021). 
Moreover, only 27– 39% passed the initial validation phase 
in the studies of Slim and Hartsuiker (2021) and Yang and 
Krajbich (2021). In the current study, we tested an alter-
native approach that involves manipulating the data after 
they have been collected, rather than monitoring the offset 
throughout the experiment and excluding participants based 
on this offset (Hornof & Halverson, 2002). This approach 
has some important benefits such as cutting back on com-
putational demands and experimental duration, and losing 
fewer participants during the validation phase. Based on the 
systematic measurement error estimates from the fixation 
period preceding each trial, we shifted the midline and AOI 
bounds to the respective direction. Our non-preregistered 
analyses showed that the effect sizes of the midline corrected 
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data were higher than those of the raw data, suggesting a 
successful improvement in data quality.

Stricter exclusion criteria

It has been argued that exclusion criteria and attention 
checks can greatly improve the quality of the data. In our 
non-preregistered analyses, we tested whether applying 
stricter exclusion criteria could improve data quality and 
decrease the differences between online webcam-based 
eye-tracking and lab-based eye-tracking. However, atten-
tion checks did not seem to make large differences in our 
study. Participants were largely attentive, which led to few 
or no exclusions based on the criteria. This is in line with 
the literature indicating online participants to be of similar 
quality to those acquired via university pools (e.g., Good-
man & Paolacci, 2017; Gould et al., 2015). However, our 
exclusion criteria were merely focused on inattention and 
the live webcam feed (indicating that the eye-tracker lost the 
participant’s eyes). Checks for poor environmental circum-
stances (e.g., too much light, too little light, poor webcam 
quality, slow internet) might have been more successful in 
improving data quality.

In sum, in all three studies, we were able to slightly 
improve the data quality. However, in all three studies, the 
conclusions remained exactly the same with or without mid-
line correction, and with or without stricter exclusion crite-
ria. Furthermore, higher calibration scores did not seem to 
predict higher effect sizes. This shows that extensive valida-
tion phases, data manipulation, and extreme exclusion crite-
ria might not be necessary to reach valid results. Excluding 
more participants and measurement points might improve 
the estimated effect size, but might also lead to higher costs 
and a longer process. Furthermore, hard-to-reach samples 
are likely excluded in lab-based experiments. The ideal 
trade-off between data quality and data exclusion/manipu-
lation probably depends on the specific study characteristics 
and study goal.

Practical considerations for online webcam‑based 
eye‑tracking

Determining the suitability of an eye-tracking study for 
online webcam-based data collection depends on several 
factors. For instance, studies that involve eye-tracking 
effects that are known to be stable and robust, such as the 
replication studies presented in the current paper, are strong 
candidates for web-based eye-tracking. Additionally, new 
experiments that are expected to have large effects and a 
limited number of large areas of interest could be effectively 
conducted using web-based eye-tracking methodologies. 
This way, webcam-based eye-tracking could be used for 
both original and replication studies. For example, studies 

exploring attentional orienting, such as investigations into 
the spatial cueing effect, research on social attention like 
face perception studies, or research on memory and visual 
attention such as change detection studies, could potentially 
benefit from online webcam-based eye-tracking. These stud-
ies often involve a limited number of large areas of interest 
and global gaze measures, which aligns well with the capa-
bilities of the webcam-based setup.

On the other hand, studies requiring high precision 
and accuracy, such as those involving small or intricate 
areas of interest, demanding fine-grained temporal meas-
urements, or investigating subtle eye movements such as 
blinks, saccade trajectories, fixation durations, or pupil 
dilatations, may still necessitate traditional laboratory-
based eye-tracking systems. For example, studies focus-
ing on psycholinguistics and language processing, such 
as investigations of sentence reading or word recognition, 
may be less suitable for webcam-based eye-tracking. It 
is crucial for researchers to evaluate the specific require-
ments of their study, considering the precision and level of 
detail needed, to determine the appropriateness of online 
webcam-based eye-tracking.

When opting for online webcam-based eye-tracking, 
researchers should consider several best practices. First, 
determining an appropriate sample size and conducting a 
power analysis remain crucial steps in ensuring statistical 
robustness. However, as the effect sizes of online webcam-
based eye-tracking are relatively small with large variability 
among participants, sample sizes will need to be larger than 
in traditional studies. We suggest anticipating a 20–30% 
reduction in the expected effect size in the power calcula-
tion. Second, it is important to provide detailed instructions 
to the participant regarding the ideal experimental setting, 
and where possible valid ways to check adherence to the 
instructions. This includes guidelines such as avoiding 
head movements and indicating a suitable distance from 
the screen and luminance in the room. These instructions 
could help compensate for the less controlled environment 
of online testing. Third, researchers will need to establish 
clear criteria for participant and data exclusion to maximize 
data quality. For shorter experiments, calibration and valida-
tion procedures can be used, while for longer experiments, 
midline correction may be a more reasonable alternative. 
Additionally, conducting pilot and exploratory preliminary 
studies can help identify effective checks to facilitate the 
exclusion of uncooperative participants or participants with 
environments unsuitable for eye-tracking.

To end on a positive note, webcams, cameras, and pro-
cessing systems are rapidly improving. Over time, the 
described limitations of online webcam-based eye-tracking 
will become less significant, the method will become feasi-
ble for a greater number of studies, and fewer requirements 
will have to be met to still obtain high-quality data.
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Limitations of the current study and moving 
forward

The experiments in the current paper were quite simple; they 
only took 5–7 min and only had 2–4 AOIs. It would be interest-
ing to investigate how far the effects could be pushed and how 
many distinct AOIs could be effectively used online. Based on 
WebGazer’s spatial precision, Yang and Krajbich (2021) sug-
gested that up to six AOIs could be used without any degrada-
tion in data quality. Their study took 30 min and with several 
re-calibrations they were able to maintain appropriate data qual-
ity. For longer studies or studies having more than six AOIs, we 
hypothesize that more re-calibrations might be needed.

Once the groundwork has been established, conceiv-
able applications of online webcam-based eye-tracking 
are numerous. Among other benefits, the possibility to 
reach difficult-to-access populations is a major advantage 
for online versus lab-based research. For instance, eye-
tracking has been found valuable for predicting the onset 
of Alzheimer’s disease (Bourgin et al., 2018; Crawford 
et al., 2015; Crutcher et al., 2009). Potentially conducting 
this or similar assessments from the comfort of one’s home 
not only would save resources and reduce interpersonal 
contact, but would enable thousands of (at-risk) patients to 
be reached, broaden the availability of eye-tracking meth-
odology (even during pandemic lockdowns), and change 
the way we conduct eye-tracking research in general.

Conclusions

Our study provides evidence for the applicability of online 
webcam-based eye-tracking. In three replications of robust 
eye-tracking studies, we demonstrated that similar findings 
could be obtained when doing the study online with the 
participant’s webcam as eye-tracker. While the conclusions 
are limited by the simplicity of our tasks, these replications 
collaboratively serve to inform gold standards for the appli-
cation of online webcam-based eye-tracking. Although the 
data quality was considerably lower, the speed and conveni-
ence of online research could be worth the switch for studies 
with large effect sizes and relatively few AOIs. Moreover, 
with the ever-improving quality of computer webcams, the 
future of online eye-tracking looks promising.
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