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Abstract
This manuscript presents a novel geofencing method in behavioral research. Geofencing, built upon geolocation technology, 
constitutes virtual fences around specific locations. Every time a participant crosses the virtual border around the geofenced 
area, an event can be triggered on a smartphone, e.g., the participant may be asked to complete a survey. The geofencing 
method can alleviate the problems of constant location tracking, such as recording sensitive geolocation information and 
battery drain. In scenarios where locations for geofencing are determined by participants (e.g., home, workplace), no loca-
tion data need to be transferred to the researcher, so this method can ensure privacy and anonymity. Given the widespread 
use of smartphones and mobile Internet, geofencing has become a feasible tool in studying human behavior and cognition 
outside of the laboratory. The method can help advance theoretical and applied psychological science at a new frontier of 
context-aware research. At the same time, there is a lack of guidance on how and when geofencing can be applied in research. 
This manuscript aims to fill the gap and ease the adoption of the geofencing method. We describe the current challenges 
and implementations in geofencing and present three empirical studies in which we evaluated the geofencing method using 
the Samply application, a tool for mobile experience sampling research. The studies show that sensitivity and precision of 
geofencing were affected by the type of event, location radius, environment, operating system, and user behavior. Potential 
implications and recommendations for behavioral research are discussed.
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Nowadays, with technological development of the mobile 
Internet, research is no longer limited to the laboratory, desk-
top computers, or bulky laptops, but can be conducted any-
where the Internet can reach via smartphones and other small 
devices. In support of this tendency that goes beyond Web-
based research (e.g., Reips, 2008, 2021), scientific investiga-
tion has been done increasingly via participants’ smartphones 
in recent years (Pinter et al., 2015), and the number of mobile 
health (mHealth) applications is growing (Agarwal et al., 
2016). The expansion of mobile Internet coverage and the fact 
that people carry smartphones everywhere make it possible to 
study people’s experiences across spatial boundaries and in 
the midst of activities (Klein & Reips, 2017). The ability to 
take into account participants’ locations is important because 

many experiences are defined by happening in specific places, 
such as shopping (in a store) or visiting the ill (in a hospital). 
Experiences may be changed or shaped by the location where 
they happen, e.g., singing at a concert hall versus a church. 
Memory has been shown to be prone to biases and distortions 
(Shiffman et al., 2008), therefore an ideal time to survey par-
ticipants is when they are at or have just left a specific loca-
tion, like, e.g., in exit polls during elections.

Geofencing technology enables location-aware research by 
defining a virtual border around a geographic area. A smartphone 
can detect incidents of entering or leaving the geofenced area, and 
each of these events can trigger an action, which depends on the 
application that uses geofencing. As we will demonstrate in this 
article, one such event can be sending a link to a mobile survey, 
where a participant is asked about the current experience. Other 
possible applications of the method include the presentation of 
any study materials that can be put on a website linked to the 
notification: e.g., interventions or experimental tasks.

Geofencing is based on the geotracking functional-
ity that allows a mobile device to determine its location. 
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Historically, the first mobile location-based services devel-
oped in 2000–2007 derived the user’s position from the 
coordinates of the serving base station, i.e., the Cell-ID 
protocol (Willaredt, 2011). The use of this technology was 
limited to point-of-interest (PoI) services, such as finding 
a nearby restaurant. Later, the Global Positioning System 
(GPS) was developed and became a standard feature on most 
smartphones. Some limitations of GPS, such as low signal 
quality indoors or near large buildings, long acquisition time 
to obtain the first position, and high battery consumption, 
have been addressed by the development of hybrid position-
ing systems, which are a combination of GPS, Wi-Fi, and 
Cell-ID positioning. For example, using the Secure User 
Plane (SUPL) protocol, the user’s device first obtains the 
position via Wi-Fi and cell identifiers, and then a more accu-
rate GPS protocol is employed using GPS satellites. Fur-
ther technological advancement enabled background track-
ing, which runs as a background process on a smartphone 
(Küpper et al., 2011). Beyond reliable and valid measures of 
longitude and latitude, Stieger and Reips (2019) showed that 
GPS sensors in smartphones can also provide valid measures 
of altitude.

Geofencing is different from geotracking, which continu-
ously records a user’s absolute geographic location at regular 
intervals, depending on the app’s settings (e.g., Geyer et al., 
2019). The geotracking method has been widely used in 
smartphone-based research, but it entails problems such as 
missing data (Bähr et al., 2020), potential violation of user 
privacy, and users’ concerns about battery drain (Liss et al., 
2018). Location tracking technologies have been criticized 
for their intrusion into private life, sometimes disguised 
under the mask of security (Zuboff, 2019). Compared to 
geotracking, geofencing can be perceived as less intrusive. 
For example, if the location of interest is the participant’s 
home, using geofencing will not expose the home address, 
but researchers can still send notifications and conduct sur-
veys when people leave or enter the home. Geofencing also 
allows the smartphone to apply strategies for energy-efficient 
tracking, as there are algorithms that do not require con-
tinuous geotracking (Nakagawa, 2013). Küpper et al. (2011) 
described possible methods, such as checking the location 
less frequently or using the built-in accelerometer to activate 
tracking only during movements. Finally, the smartphone 
can also use approximate methods, such as Cell-ID protocol, 
as a first step to determine if a more accurate geotracking 
method should be used afterwards.

The geofencing method can trigger an event in a mobile 
application only when some predefined geographical borders 
are crossed. Moreover, when using geofencing, the abso-
lute coordinates of a participant’s location do not need to 
be sent to the server as geofencing can be handled by the 
participant’s smartphone. This is ideal for situations where 
a researcher studies a sensitive topic and must not collect 

location data for privacy reasons. This also offsets the bur-
den of handling sensitive private data for a researcher, such 
as anonymization of location data (Attwood et al., 2017). In 
addition, geofencing eliminates the need to analyze large-
scale multidimensional geotracking data that might consist 
of thousands of timestamps with coordinates and requires 
preprocessing and aggregation.

Previous research using geofencing

Because the technique itself is relatively new, research 
using geofencing has only begun in the last decade. To our 
knowledge, this article is the first systematic description of 
the geofencing method and its evaluation in a behavioral 
research journal. The method has the potential to generate 
novel theoretical perspectives and practical applications.

Geofencing can provide insights for the ecological 
approach that studies the structure of contextualized social 
interactions, the link between knowledge and action, and 
the situated nature of knowledge (Good, 2007). The use of 
geofencing is in line with a theoretical shift from studying 
the psychology of people passively perceiving the environ-
ment to the psychology of people acting in the current situ-
ation. In social and personality psychology, geofencing can 
be a valuable tool for studying person–situation interactions. 
The method can help to characterize individual differences 
in perception of situations (Rauthmann et al., 2014; Ziegler 
et al., 2019) and behavior across different locations (e.g., “if...
then...” situation–behavior relations in Mischel & Shoda, 
1995). Geofencing can benefit research that combines psy-
chological theories with digital movement data. For exam-
ple, surveys conducted at specific locations, such as sports 
events or segregated neighborhoods, can explore the sense 
of identity, group belonging, or perceptions of out-groups 
(for other examples, see Hinds et al., 2022). Such studies 
can inform social identity and intergroup contact theories. 
Researchers can use publicly available databases or maps 
that provide location information to select potential places 
of interest and specify survey questions (e.g., the Atlas of 
Inequality in Moro, 2019).

Previous research underscored that geofencing can 
improve understanding of behavior in context, with an 
emphasis on potential applications. Mair et  al. (2019) 
described the importance of incorporating neighborhood and 
regional contexts into research on alcohol use by combin-
ing risk assessments of exposures within specific locations. 
Risk assessment models can be further updated based on 
real-time data to generate interventions tailored to a user and 
delivered at a time of high risk for a lapse (Forman et al., 
2019). This makes geofencing a viable tool for clinical and 
mobile health research. Mobile health research can benefit 
from including locations in the analysis, as many addictive 
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behaviors, such as alcohol or nicotine consumption, are trig-
gered by specific places. Potential applications for location-
based interventions include a number of health issues, such 
as physical activity, alcohol use, smoking, obesity, and men-
tal illnesses (in Nahum-Shani et al., 2018). Attwood et al. 
(2017) used geofencing as part of an alcohol reduction inter-
vention. The mobile app sent messages when participants 
were at locations where they needed support to regulate 
alcohol consumption. Wray et al. (2019) examined social 
and environmental factors of alcohol use by sending sur-
veys to participants at places associated with heavy drinking. 
About 40% of surveys arrived when participants were not at 
the intended location, indicating that geofencing technology 
is still in development. On the other hand, Naughton et al. 
(2016) concluded that geofencing was reliable and accurate 
in identifying smoking locations. The authors developed a 
context-triggered lapse-prevention system, in which support-
ive messages were sent to smokers who had decided to quit 
when they were entering the areas associated with smoking. 
Besoain et al. (2020) used a co-design approach to develop a 
mobile application UBESAFE that informed users about the 
potential risk of HIV near areas with a high probability of 
sexual encounters. An interesting feature of this app was that 
users could add their own health-promoting messages and 
share the areas with a community. Coral et al. (2020) pro-
posed using geofences around gambling establishments to 

discourage their attendance. The authors developed a mobile 
app that could apply geofencing even if the GPS was turned 
off. Nguyen et al. (2017) showed the usefulness of geofenc-
ing in ascertaining hospitalizations; however the accuracy 
of geofencing validated by medical records was moderate. 
Other geofencing applications include dental clinic promo-
tion (Wright et al., 2021), employment research by geofenc-
ing at job centers (Haas et al., 2020), and using geofencing 
for disaster information systems (Suyama & Inoue, 2016). 
During the COVID-19 pandemic, some mobile applications, 
such as the luca App developed in Germany (culture4life 
GmbH, 2021), used geofencing to automatically check peo-
ple out when they left a location.

Overall, previous research has shown that geofencing 
can be applied for data collection in the field (see the sum-
mary of the existing and potential research applications for 
geofencing in Table 1). However, the geofencing method has 
not been systematically evaluated in terms of its sensitivity 
and precision. With the present manuscript we intend to fill 
this gap: we report three experimental studies in which we 
tested the method. Thus, this manuscript can help research-
ers understand the influence of various factors, such as 
the type of operating system or location radius, and plan 
a geofencing study in their research area. Second, we pro-
vide the implementation of the geofencing method with a 
mobile application that allows researchers to conduct their 

Table 1  Existing and potential applications of geofencing in research

Research area Research topic or application Locations Relevant research or software

Addiction research and risky 
behavior

Alcohol use Local bars, supermarkets Mair et al. (2019)
Attwood et al. (2017)
Wray et al. (2019)

Smoking Areas associated with smoking Naughton et al. (2016)
Sexual behavior Places with a high probability of 

sexual encounter
Besoain et al. (2020)

Gambling Gambling establishments (e.g., 
casino)

Coral et al. (2020)

Industrial and organizational psy-
chology

Employment research Job centers Haas et al. (2020)
Monitoring work hours Work facility (e.g., medical center) Owei et al. (2021)

Public health and public safety Ascertaining hospitalizations Hospitals Nguyen et al. (2017)
Disaster information systems Dangerous areas Suyama & Inoue (2016)
Warning people about crime activity Crime-prone areas Mane et al. (2021)
Contact tracking Places of people gathering (e.g., 

restaurant, party, family meeting)
luca App, culture4life GmbH 

(2021)
New potential applications
Health behavior Dietary behavior Supermarkets, shopping malls, fast-

food courts
Doctor visit Doctor’s office, clinic
Exercise Gym, swimming pool

Animal behavior Dog/cat behavior House and adjacent areas
Urban studies Perception and interaction with the 

environment
Public areas, such as downtown, 

museums, and parks
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own geofencing studies. In the following, we discuss this 
implementation in detail.

Implementation of geofencing in Samply

Geofencing itself is performed by the smartphone’s operat-
ing system. To use geofencing, application developers utilize 
the software libraries provided by LocationManager Class 
in Android (Android, 2023) and Core Location Framework 
in iOS (Apple, 2023). Researchers must either program a 
mobile application from scratch or use one of the available 
applications.

In the example implementations described in this article, 
we will be using the software Samply, which was developed 
in our iScience research group (Shevchenko et al., 2021). 
Other researchers can also freely use Samply, without hav-
ing to program an app or set up a server. Samply supports 
experience-sampling studies on mobile devices and consists 
of the Samply website for researchers (https:// samply. uni- 
konst anz. de) and the Samply Research mobile app for par-
ticipants. Participants can download the app at no cost from 
the respective Apple or Google app stores1. Researchers can 
create and send push notifications containing links to online 
surveys or other websites2. Once the participant taps on the 
notification, the link opens in a mobile web browser. Samply 
provides schedule-based notifications that allow participants 
to be notified at certain predefined or random times or at 
time intervals (Shevchenko & Reips, 2022).

In the current work, we extended the Samply website and 
mobile application code and built a user-friendly geofenc-
ing interface to create and edit geofenced locations on the 
website for researchers and in the mobile application for par-
ticipants. Thus, Samply allows both researchers and partici-
pants to customize locations, which broadens the software’s 
application scope – a benefit for software (Rough & Quigley, 
2020). The events of entering or leaving a location can trig-
ger sending a notification with a web link to the participant. 
For the locations determined by a researcher, the Samply 
website requires entering GPS coordinates and defining the 
radius of the fence. The coordinates, longitude, and latitude 
can be found in publicly available maps, e.g., Google Maps, 

Apple Maps, Microsoft Bing Maps, or OpenStreetMaps. 
Alternatively, locations can be selected through the drag-
and-drop map interface (see Fig. 1a). Researcher-defined 
locations can be the same areas for all participants, such as 
a university or a city center. Participant-defined locations 
are unique to each participant, such as home or workplace. 
Participants use the mobile app interface to select locations 
on the map (see Fig. 1b). The coordinates are stored locally 
on the smartphone and not shared with the Samply website 
or the researcher to protect participants’ privacy. While the 
operating system continuously monitors the location in the 
background, the GPS data is neither stored on the smart-
phone nor shared with the server.

Factors influencing geofencing

A number of factors can affect the accuracy of geofencing: 
radius of the geofence, type of mobile operating system and 
device (Kuhlmann et al., 2020), Wi-Fi access, and type of 
geofencing event. The common shape of the geofenced area 
is a circle that is defined by its radius. Although there are 
possibilities of defining the boundaries in the polygon shape, 
this functionality is not equally supported in iOS and Android 
devices. Regarding the radius, previous research has used dif-
ferent sizes, e.g., 10 to 30 m by Wray et al. (2019) or 100 m by 
Naughton et al. (2016). A radius that is too small can increase 
the number of misses and reduce the accuracy of geofencing.

The way a smartphone responds to geofencing events 
depends on the type of mobile operating system – almost 
all smartphones run either iOS or Android3. The iOS docu-
mentation specifies 10 m as the smallest possible radius4, 
although anecdotal evidence from Internet forums suggests 
that the use of the 10-m radius could be problematic. Since 
iOS14, released in the fall of 2020, there are two types of 
user location available to applications: precise and approxi-
mate. Geofencing requires a precise location and that a user 
grants permission always to access the location. To decrease 
the likelihood of a false alarm, the iOS waits for a user to 
travel a minimum distance over the geofenced area and 
remain on the same side of the geofence for at least 20 s5.

1 The mobile application meets the data security requirements of 
both Android and iOS application stores, and is revised periodically 
to comply with new updates related to data security and confidential-
ity. The data are stored on the server of the University of Konstanz 
in Germany. For more information, please see the Terms of Use and 
Privacy Policy at https:// samply. uni- konst anz. de/.
2 The general documentation is available at the Samply website 
https:// samply. uni- konst anz. de/ docs/ intro and the information on 
geofencing can be found in the Samply tutorial (linked at https:// sam-
ply. uni- konst anz. de/).

3 iOS and Android accounted together for 99.23% of market share 
worldwide in January 2022 according to StatCounter Global Stats 
(retrieved on February 23, 2022) https:// gs. statc ounter. com/ os- 
market- share/ mobile/ world wide. The description of how iOS and 
Android handle geofencing is accurate at the time of writing, but it 
will be subject to change in the future. Researchers should consult the 
latest version of the developer documentation for iOS and Android.
4 Apple developer documentation https:// devel oper. apple. com/ vid-
eos/ play/ wwdc2 020/ 10660/
5 Region monitoring in iOS https:// devel oper. apple. com/ docum entat 
ion/ corel ocati on/ monit oring_ the_ user_s_ proxi mity_ to_ geogr aphic_ 
regio ns

https://samply.uni-konstanz.de
https://samply.uni-konstanz.de
https://samply.uni-konstanz.de/
https://samply.uni-konstanz.de/docs/intro
https://samply.uni-konstanz.de/
https://samply.uni-konstanz.de/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://developer.apple.com/videos/play/wwdc2020/10660/
https://developer.apple.com/videos/play/wwdc2020/10660/
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
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The Android documentation recommends that the mini-
mum geofence radius be between 100 and 150 m for best 
results6. Beginning with Android 12, released in the fall of 
2021, there is also a distinction between precise and approxi-
mate user locations available to an application. With enabled 
Wi-Fi (even if the smartphone is not connected to a Wi-Fi 
network), the minimum radius can be between 20 and 50 
m. If an indoor positioning system is available, the radius 
can be as small as 5 m. When Wi-Fi is disabled, the smart-
phone relies on GPS or the cellular network to determine 
the location7. The lack of reliable network connection or 
the latency of location queries can also affect the accuracy 
of geofencing. An Android smartphone usually requests the 
current location every second minute. If the device has been 
stationary for a significant amount of time, the latency may 
increase up to 6 min.

The way Android and iOS operating systems implement 
geofencing represents different approaches to maximizing 
the efficiency of geofencing without putting too much strain 
on the smartphone battery. In summary, iOS relies more on 
distance measures, while Android reduces the frequency of 
geotracking. These differences may become important for 
real-world applications, therefore the comparison of the two 
operating systems was included in our empirical studies.

With regard to similarities between the operating sys-
tems, geofencing in both systems still works in the back-
ground even when a user closes the mobile application 
that uses geofencing. The system continues to monitor the 
registered regions and launches the application in case of 
an event. Both operating systems impose a limit on the 
number of geofences that a user can create: 20 for iOS 
and 100 for Android. When a user uninstalls the mobile 
application that uses geofencing, the geofencing service 
is stopped. For iOS, a restart of geofencing in the appli-
cation is required if the user has disabled Background 
App Refresh (either for the app or for all apps). For 
Android, a restart is necessary if the user has rebooted the 
smartphone, cleared the app’s data, cleared Google Play 
services data, or disabled Android’s Network Location 

Fig. 1  Geofencing interface on the Samply website for researchers (a) and mobile application for participants (b)

6 Android developer documentation https:// devel oper. andro id. com/ 
train ing/ locat ion/ geofe ncing# choose- the- optim al- radius- for- your- 
geofe nce
7 Beginning with Android 4.3, there is a “Wi-Fi scan only mode” 
that allows users to disable Wi-Fi but still get the network location, 
which is sufficient for geofencing.

https://developer.android.com/training/location/geofencing#choose-the-optimal-radius-for-your-geofence
https://developer.android.com/training/location/geofencing#choose-the-optimal-radius-for-your-geofence
https://developer.android.com/training/location/geofencing#choose-the-optimal-radius-for-your-geofence
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Provider. Researchers should thus provide instructions on 
how to restart geofencing in case participants accidentally 
disable it (e.g., by rebooting the smartphone).

Previous research reported problems with detecting 
geofencing events when Wi-Fi was disabled in iOS (Suy-
ama & Inoue, 2016), so we included a test between smart-
phones with enabled and disabled Wi-Fi in Study 1. In 
addition, Suyama and Inoue (2016) found differences in 
the distance to the fence at which users were notified for 
entering and exiting events in iOS: While the distance for 
enter events was 20 to 30 m, it was 120 to 130 m for exit 
events in their study. This motivated us to systematically 
observe the differences between enter and exit events in 
our studies.

To evaluate the feasibility of the geofencing implemen-
tation, we conducted three empirical studies. By conduct-
ing these empirical studies and with this manuscript we 
aim to address the lack of methodological, technical, and 
practical guidance on geofencing in behavioral research 
and help researchers understand the influence of various 
factors on the results of the method’s application.

General method

To evaluate the geofencing method and its implementation 
in Samply, we analyzed its performance using sensitivity, 
precision, distance, and time measures. Sensitivity and pre-
cision are measures constructed from a confusion matrix 
(see Table 2). Sensitivity is the probability of receiving the 
notification given that its corresponding event has occurred. 
Sensitivity can be calculated as the proportion of correct 
hits to the sum of correct hits and misses. Precision shows 
how accurate was the notification given that the notifica-
tion was sent. Precision can be calculated as the proportion 
of correct hits to the sum of correct hits and false alarms. 
The distance and time measures refer to the absolute dis-
tance and time difference, respectively, between the location 
where the notification was received and the geofenced area.

We used different methods and measures in our three 
empirical studies (see Table 3). The evaluations in Study 1 
and Study 2 were conducted by the first author and research 
assistants, while Study 3 involved naïve participants. In 

Study 1, we recorded the location of geofencing events 
using the smartphone GPS tracker available via the mobile 
Internet browser. The main measures were the geofenc-
ing sensitivity and the distance between the center of the 
geofenced area and the location where the notification was 
received. In Study 2, we replicated and validated the results 
from Study 1 by using an external GPS tracker to record 
the location and timestamp of geofencing events. Study 2 
measured sensitivity, the distance between the fence and 
the location where the notification was received, and the 
time difference between the two. In both Study 2 and Study 
3, sensitivity was modelled as a binary variable (whether 
or not the notification was received given that the evaluator 
was at the location), which allowed us to assess the effect 
of each factor. In Study 3, students at the University of 
Konstanz received notifications with an online survey when 
they entered or left the university. Sensitivity and precision 
were computed based on the number of received notifica-
tions for each participant. The data and analysis scripts are 
available at OSF (https:// osf. io/ mg6f4/).

Study 1

The goal of Study 1 was to assess and calculate sensitivity 
and the distance to the center in different conditions using 
the absolute geolocation of testers as a benchmark.

Method

Participants

We evaluated the geofencing method in a series of empiri-
cal tests, which were performed by the first author and 
research assistants.

Procedure

Four evaluators walked with their smartphones along a 
pre-defined route in three different environments: down-
town, residential area, and forest (see Fig. 2). These three 

Table 2  Confusion matrix for geofencing events

Actual event

The participant has entered/left the 
area

The participant has 
not entered/left the 
area

Detected event Notification was sent Correct hit False alarm
Notification was not sent Miss Correct rejection

https://osf.io/mg6f4/
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environments were selected because they represent areas 
with a wide variety of structures (e.g., buildings, Wi-Fi 
networks) and available Internet connectivity, which might 
affect network connectivity and therefore geofencing. 
The downtown area included locations in the city center 
characterized by a high density of commercial buildings 
such as shops and restaurants. The residential area was 
composed of a mixture of single-family houses and apart-
ment buildings. The forest was a dense collection of trees 
outside the city. Additionally, we systematically varied 
the factors such as the type of geofencing event (enter or 
exit), type of OS (Android, iOS), and Wi-Fi access (turned 
on or off). Therefore, the testers completed a route in each 
environment eight times in a fully crossed 2 x 2 x 2 design 
with two event types, two operating systems, and two 
Wi-Fi conditions. To evaluate the effect of the geofence 
radius, there were 15 locations for each route – five loca-
tions for each radius of 10, 50, and 100 m (see Fig. 2). In 
total, there were 360 tests performed (3 environments x 8 
repetitions x 15 locations).

During the tests, the evaluators walked along the path-
ways that went through predefined geofenced areas. They 
were instructed to carry the smartphone conveniently in their 
dominant hand and not to use it for other purposes (e.g., 
texting or web browsing). By carrying the smartphone in the 
hand, we wanted to minimize the probability of missing the 
notification if the smartphone was in the pocket or the bag 
and the evaluators missed the sound or vibration. When they 
heard the signal of notification arrived or/and felt vibration 
of the smartphone, they stopped moving, attended to their 
smartphone, and clicked on the notification, which opened a 
mobile browser with a one-question survey about the current 
location. At this moment, the absolute geolocation of the 
user was automatically recorded in the smartphone’s mobile 
browser. After answering the survey question, the evaluators 
closed the browser app and continued moving.

We measured the geofencing sensitivity by recording 
whether the notification was sent for every location the 
evaluator visited. We also computed the distance between 
the actual location of the smartphone at the moment 

Table 3  Overview of studies

Study 1 Study 2 Study 3

Participants Evaluators (N = 4) Evaluators (N = 2) Students (N = 58)
Number of tests 360 120 -
Independent variables Event type, OS, radius, area, Wi-Fi Event type, OS, radius, user behavior Event type, OS
Dependent variables Sensitivity (a notification was received 

or not)
Distance to the center

Sensitivity (a notification was received 
or not)

Distance and time difference with the 
fence

Sensitivity (the number of received 
notifications)

Precision

Data collection method Evaluators and the smartphone’s web 
browser recorded locations

Evaluators and an external GPS 
tracker recorded locations and 
timestamps

Students entered the data in an online 
survey

Time 2021, July–November 2022, July–August 2022, November–December

Note. Each of  the three routes contains 15 locations – five locations for each radius of 10, 50, and 100 m  

Fig. 2  Routes with geofenced locations in downtown (a) residential area (b), and forest (c). Note. Each of the three routes contains 15 locations – 
five locations for each radius of 10, 50, and 100 m



 Behavior Research Methods

1 3

of answering the survey question and the center of the 
geofenced area.

Materials

Smartphones The four evaluators used their own smart-
phones: iPhone 11, iPhone 12, Xiaomi Redmi Note 10 Pro, 
and Samsung Galaxy S8 (see Table 4). The Samply Research 
app was installed by downloading the app from the respec-
tive app stores. Then, the testers joined the “Geofencing 
test” study and gave the app permission to access the smart-
phone’s location at any time.

Survey The online survey was created in the lab.js experi-
ment builder (https:// lab. js. org, Henninger et al., 2021) and 
hosted on the Open Lab platform (https:// open- lab. online, 
Shevchenko, 2022). The survey included one multiple-choice 
question about the participant’s current location. The possible 
answers were locations from 1 to 15 (e.g., Location 1, Location 
2) and “Other” with an option to specify details. Additionally, 
we recorded the time and the location coordinates using the 
mobile browser libraries so that locations were recorded on the 
same smartphone that was used for testing. We used the mobile 
browser libraries to access the user’s location, because Samply 
itself does not keep records of absolute geolocation.

Analysis plan

The data recorded in Samply and the survey were matched 
using the message ID, a unique identifier for each notification 
passed via a link and recorded in the survey. We computed the 
sensitivity score and distance to the center of the geofenced 
area for each experimental condition. Based on the distance, 
we later calculated the percentage of the notifications sent at 
different distances. To test the effect of different conditions, we 
used the general linear model approach: logistic regression to 
model the sensitivity as the probability to receive a notifica-
tion and linear regression to model the distance to the center 
(R Core Team, 2021). Although the data were nested within 
evaluators, we did not apply a mixed-effects model approach 
due to the small number of clusters (N = 4). The effect of the 
environment was of primary interest, given that the absence 
of Wi-Fi networks in the forest area might impair the geofenc-
ing. Turned on Wi-Fi access on the device was expected to 

have a higher sensitivity than switched off Wi-Fi. We expected 
a larger distance to the center of the geofenced area for exit 
events than for enter events. The reason for our expectation 
was the setup of the experiment. Given a possible time delay 
between the moment of crossing the fence and notification, 
people entering the area may be closer to the center of the area 
than people walking out of the area. We did not expect to see 
statistically significant differences with regard to the effects of 
the radius and type of operating system.

Results

We conducted the tests with the mobile app Samply Research 
between July and November 2021 and obtained 330 records 
of notifications sent from the server. In 16 of 330 cases, 
although the notification was delivered, no notification infor-
mation could be recorded due to the lack of Internet connec-
tion, so we treated 16 unidentified records as missing data. 
Therefore, we used the remaining 314 records to calculate 
the sensitivity score.

To calculate the distance to the center of the geofenced 
area, we needed to record the location of the testers. In 46 of 
314 cases, it was impossible to record the smartphone loca-
tion due to an unstable Internet connection8. Therefore, we 
used the other 268 records where the location was recorded 
to calculate the distance between the center of the geofenced 
area and the actual position of the smartphone. The sensitiv-
ity score and distance for each of the experimental condi-
tions can be found in Appendix Table 16.

Sensitivity

On average, the notification was received in 82.50% of all 
locations9. To evaluate the effect of each experimental factor 
on sensitivity, we constructed a logistic regression model. 
The dependent variable was binary – whether the notifica-
tion was received or not. As independent variables in the 
model, we entered the type of environment (downtown, 
residential area, and forest), Wi-Fi settings (off, on), type 
of event (enter, exit), operating system of the smartphone 
(Android, iOS), and radius (10, 50, and 100 m). The results 
of the logistic regression model are displayed in Table 5.

The baseline condition in the model denotes the enter 
event in the 10-m area in downtown, on an Android device 

Table 4  Smartphone specification

Tester Phone Model Operating system Version

YS iPhone iPhone 11 Pro iOS 14.3
HH iPhone iPhone 12 Pro iOS 14.3
GO Xiaomi Redmi Note 10 Pro Android 11
NH Samsung Galaxy S8 Android 9

8 The absolute geolocation was recorded inside of the web survey 
accessed through the smartphone’s mobile browser. Because of the 
poor Internet connection, this survey could not be open, and therefore 
the location was not recorded.
9 The percentage was calculated as the proportion of locations where 
a message was received at least once, n = 297. In 17 cases, a noti-
fication for the same location was sent multiple times by the server. 
These repetitions were not included in the analysis.

https://lab.js.org
https://open-lab.online
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with turned off Wi-Fi. The sensitivity in the baseline condi-
tion was 60%. The effects of other conditions are interpreted 
in terms of the odds ratio, increasing (odds ratio > 1) or 
decreasing (odds ratio < 1) the probability to receive the 
notification in comparison with the baseline condition.

Conducting a study in the forest area decreased the prob-
ability to receive the notification, OR = 0.43, 95% CI = 
0.19–0.93, p = 0.035. Smartphone operating system turned 
out to play an important role in sensitivity, with iOS devices 
showing higher sensitivity than Android devices, OR = 7.61, 
95% CI = 3.76–16.59, p < 0.001. Both 50 and 100 m radius 
of geofenced area had a significantly higher sensitivity com-
pared to 10-m radius, OR = 7.58, 95% CI = 3.57–17.33, p 
< 0.001, and OR = 10.94, 95% CI = 4.83–27.73, p < 0.001, 
respectively. Neither the Wi-Fi settings nor the type of event 
significantly affected the probability to receive the notifica-
tion (ps > 0.05).

Distance to the center

The distribution of distances to the center of the geofenced 
area was right-skewed due to some potentially invalid data 
points (see Fig. 3).

For further analysis, we excluded six observations as out-
liers that were above two standard deviations from the mean 
(upper threshold of 882.86 m) and could distort the analysis. 
The average distance in the remaining sample was 153.34 
m (Med = 113.08, SD = 146.18). The majority of excluded 
observations were from the forest area (n = 5), so the unusu-
ally large distances might be related to the lack of Internet 

connection and hence a measurement error in the mobile 
browser in the area. For example, a bad Internet connection10 
could result in a situation where the notification link was 
clicked but not completely opened in the mobile browser 
until the evaluator moved to a place with better Internet 
access (which may be 1000 m away from the location where 
the notification was received). In this case, the measurement 
would not be a valid representation of the distance.

Therefore, we used the remaining 262 records for the 
analysis in the linear regression model. The dependent vari-
able was the distance between the smartphone’s position and 
the center of the geofenced area. As independent variables in 
the model, we entered the type of environment (downtown, 
residential area, and forest), Wi-Fi settings (off, on), type 
of event (enter, exit), operating system of the smartphone 
(Android, iOS), and radius (10, 50, and 100 m). The results 
of the linear regression model are displayed in Table 6.

It is important to note that the distance data represent only 
the cases where there was an Internet connection. Because 
we excluded missing data from locations without an Inter-
net connection, the missing mechanism was not random. 
Therefore, the results should be considered as the results 
only for situations with an Internet connection. This limita-
tion generally applies to Internet-based studies, by definition 
they require an Internet connection.

The baseline condition represents the enter event in the 
10-m area in downtown, on an Android device with turned 
off Wi-Fi. The average distance to the center in the baseline 
condition was 28.13 m (95% CI = -15.09 to 71.36 m). Being 
in the forest area increased the distance between the location of 
receiving a notification and the center of the geofenced area, b 
= 75.64, 95%CI = 38.50–112.78 m, p < 0.001. We detected no 
significant difference between downtown and residential areas, 
b = 27.47, 95%CI = -4.24 to 59.19 m, p = 0.089. Turning on 

Table 5  Model 1. Odds ratios for probability to receive a notification

The odds ratios compare the odds of receiving a notification at the 
absence and at the presence of the predictor. Odds ratios greater 
than 1 indicate that receiving a notification is more likely when the 
predictor is present. Odds ratios less than 1 indicate that receiving a 
notification is less likely when the predictor is present. R2 Tjur is a 
coefficient of discrimination, which represents the difference between 
the averages of fitted values for successes (notifications received) and 
failures (notifications not received) (Tjur, 2009)

Predictors Odds ratios SE 95% CI p value

(Intercept) 0.98 0.41 0.44–2.23 0.96
Forest 0.43 0.40 0.19–0.93 0.035
Residential area 0.71 0.42 0.31–1.60 0.41
Wi-Fi is on 1.17 0.38 0.62–2.21 0.63
Exit event 1.05 0.32 0.56–1.99 0.87
iOS 7.61 0.38 3.76–16.59 < 0.001
50-m radius 7.58 0.40 3.57–17.33 < 0.001
100-m radius 10.94 0.44 4.83–27.73 < 0.001
Observations 360
R2 Tjur 0.26 Fig. 3  The distribution of distances to the center of the geofenced 

area

10 In post hoc assessments of the forest area, we found that sites 106–
111 did not have Internet connectivity, which was indicated by zero 
connection bars in the smartphone menu.
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Wi-Fi decreased the distance, b = -49.72, 95% CI = -77.79 
to -21.66 m, p = 0.001. With regard to operating system dif-
ferences, iOS had a larger distance compared to Android, b = 
85.48, 95% CI = 55.67–115.30 m, p < 0.001. Using the 50-m 
or 100-m radius surprisingly did not affect the distance to the 
center, b = 5.86, 95% CI = -31.25 to 42.96 m, p = 0.76, and 
b = 16.71, 95% CI = -20.61 to 54.02 m, p = 0.38. Notifica-
tions sent on the exit event had a larger distance to the center, 
b = 144.52, 95% CI = 116.39–172.64 m, p < 0.001, which 
was expected as the exit event should be triggered after people 
left the geofenced area. Please see Appendix Table 17 for the 
marginal effects of each experimental condition on sensitivity 
and distance for enter and exit events. We have also calculated 
the statistical power post hoc using a simulation approach (see 
Appendix Table 22).

False alarms

Regarding false alarms, we did not observe any obvious 
cases of notification confusion, such as approaching location 

1 but receiving a notification for location 2. There was a 
technical error at the moment of joining the study in the 
mobile application and enabling notifications for exit events. 
If the user was outside the area, this resulted in a batch of 
notifications (15 notifications) being sent to the user at 
once (as the operating system incorrectly registered the exit 
event). We discarded these notifications and solved this error 
afterwards, which will be explained in Study 2.

The data on distance to the center of the geofenced area 
showed that notifications often arrived outside the geofenced 
area. While this was expected for exit events, notifications 
for enter events sometimes were also sent outside the area. 
Therefore, whether a notification is considered a "false alarm" 
depends on the threshold chosen for when notifications are 
correctly sent and when they are not. For example, if we apply 
a strict threshold of the exact geofencing boundary, then only 
notifications for entering events sent at the boundary or within 
the geofenced area should be considered correct, and all others 
are "false alarms". To investigate the relationship between the 
distance to the center and the number of sent notifications, we 
calculated the percentage of notifications received at different 
distances from the center of the geofenced area (see Fig. 4). 
For example, iOS can potentially generate a higher number 
of false alarms than Android, which corresponds to the fact 
that iOS notifications had a larger distance to the center of the 
geofenced area than Android notifications.

Exploratory analysis

To investigate further the differences between operating 
systems, we examined how Android and iOS systems 
performed with different radii (see Appendix Table 18 
for descriptive statistics). We repeated the main analysis 
with additional interactions between the type of operat-
ing system and radius in the subgroups of enter and exit 
events. Regarding sensitivity, the interactions between the 

Table 6  Model 2. Regression coefficients for the distance to the 
center

Predictors Estimates SE 95% CI p value

(Intercept) 28.13 21.95 -15.09 to 71.36 0.20
Forest 75.64 18.86 38.50–112.78 < 0.001
Residential area 27.47 16.10  -4.24 to 59.19 0.089
Wi-Fi is on  -49.72 14.25  -77.79 to -21.66 0.001
Exit event 144.52 14.28 116.39–172.64 < 0.001
iOS 85.48 15.14 55.67–115.30 < 0.001
50-m radius 5.86 18.84  -31.25 to 42.96 0.76
100-m radius 16.71 18.95  -20.61 to 54.02 0.38
Observations 262
R2 / R2 adjusted 0.41/0.39

Fig. 4  Percentage of sent notifications for different distances to 
the center of the geofenced area. Note: On the X-axis, the distances 
between the location where the notification was received and the 

center of the fenced area are shown. For each distance, we calculated 
the percentage of notifications (between 0 and 100%, on the Y-axis) 
that had arrived at that or smaller distance
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operating system and radius were not statistically signifi-
cant (ps > 0.05). Concerning the distance to the center of 
the geofenced area, the interaction effect between the type 
of operating system and 100-m radius was not statistically 
significant for enter events (b = -78.84, SE = 45.49, p = 
0.09), but reached the level of statistical significance for 
exit events (b = -166.06, SE = 76.22, p = 0.032). Android 
showed higher differentiation between the radii of differ-
ent sizes, while iOS demonstrated little differentiation 
between the radii (see Fig. 5). That means, notifications 
for exit events on Android devices were sent closer to the 
border of the geofenced area than on iOS devices.

Discussion

The goal of Study 1 was to test the geofencing method 
under various conditions, such as the type of environment, 
geofencing radius, Wi-Fi settings, the type of event, and 
operating system. Study 1 demonstrated a moderately high 
geofencing sensitivity, defined as the probability of receiving 
a notification at a location, of 82.50%. The average distance 
between the actual location of receiving a notification and 
the center of the geofenced area was 87 m for enter and 
234 m for exit events. Importantly, both sensitivity and the 
distance were affected by several factors, such as location 

radius, operating system, environment, Wi-Fi settings, and 
the type of event.

Using a 10-m radius for geofencing notifications resulted 
in missed notifications on Android or notifications delivered 
at a larger distance on iOS (see Table 15 in General discus-
sion for recommendations on using geofencing). In general, 
iOS outperformed Android in sensitivity, but Android noti-
fications were sent closer to the border. No substantial differ-
ences were found between residential and downtown areas, 
but geofencing in forest areas encountered problems due 
to a lack of mobile Internet connection. Turned-off Wi-Fi 
increased the distance for exit events, but did not affect 
sensitivity. The type of geofencing event (enter or exit) did 
not influence the probability of receiving the notification, 
whereas exit events had a larger distance than enter events.

Study limitations

Study 1 had some limitations that could have biased the 
results. First, we used the GPS tracker of the smartphone to 
measure its absolute geolocation in Study 1. This measure 
might not be independent, as the same smartphone’s GPS 
system was used to trigger notifications. In Study 2, there-
fore we used an independent external GPS tracker to record 
the position of the evaluator.

Fig. 5  Effect of operating system and radius on sensitivity and dis-
tance to the center. Note. 95% CI is shown. The probability of receiv-
ing a notification indicates the sensitivity of geofencing. The distance 

to the center of the geofenced area is displayed in meters. The radius 
in the legend presents the radii of the geofenced area: 10, 50, and 100 
m
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Additionally, the distance between the location of receiv-
ing a notification and the center of the geofenced area may 
not be an ideal measure of geofencing precision. If the noti-
fication is triggered by the event of crossing the geofencing 
border when entering or leaving the area, a more precise 
measure would be the distance between the location of the 
fence crossing and the location where a notification was 
received. In Study 1, we could not calculate that distance 
because we measured the actual location of the smartphone 
only at the moment of opening a web survey after receiving 
the notification. In Study 2, we thus recorded the evaluator’s 
complete path with an external GPS tracker. This allowed us 
to calculate where and when the geofenced area was crossed. 
Because of this, we could further calculate the distance and 
time difference between the location and time of crossing the 
fence and the location and time of receiving the notification.

In Study 1, the testers moved through a geofenced area 
without stopping or taking a break. The testers were free to 
choose their own speed, there were no specific instructions 
regarding the time or speed. However, in a real case scenario 
people might stay for some time inside of a geofenced area 
(e.g., visiting a shop, staying in the office). Therefore, we 
added a staying inside condition in Study 2. In this con-
dition, we investigated a more realistic protocol that rep-
resented the situation in which people are not just going 
through the geofenced locations, but stay inside of them for 
some time11. From the perspective of geofencing technology, 
it might make a difference, as staying inside of a geofenced 
area for a longer time can increase the likelihood that an 
enter event will be triggered.

Study 2

Method

Participants

All the tests were performed by the first author together with 
a research assistant to ensure following the same protocol.

Procedure

The procedure was identical to Study 1, except we introduced 
some changes to improve the methodology. First, an external 
GPS tracker was used to record evaluators’ timestamps and 
positions during the whole test at the rate of one recording 
per second. Second, we added a new condition, where evalu-
ators stayed for 5 min in the center of each location.

As Study 1 had clearly demonstrated the disadvantage 
of geofencing in the forest environment, where there was 
a lack of Internet, we excluded the forest from the tests. 
Additionally, as Study 1 did not find any differences between 
downtown and residential areas, we conducted all tests in the 
downtown area. We also left out the condition with turned 
off Wi-Fi settings, as there were no substantial differences 
found for each condition in Study 1, and participants usually 
have their Wi-Fi turned on.

We systematically varied the factors type of geofencing 
event (enter or exit), type of OS (Android, iOS), and user 
behavior (walking through or staying in the center for 5 
min). Therefore, the route in the downtown environment was 
completed eight times in a fully crossed design with two 
event types, two operating systems, and two user behavior 
conditions (2 x 2 x 2). To evaluate the effect of the geofence 
radius, there were 15 locations for each route – five locations 
for each radius of 10, 50, and 100 m (see Fig. 2A). In total, 
120 tests were performed (1 environment x 8 repetitions x 
15 locations).

During the tests, both evaluators walked along the path-
way in the downtown area that went through predefined 
geofenced areas (see Fig. 2A). The smartphone was carried 
in the right hand, and the evaluator was not to use it for 
other purposes (e.g., texting or web browsing). The Garmin 
Watch (model Venu Sq), an external GPS tracker, was car-
ried on the left hand. When the evaluator heard the signal of 
notification arrived or/and felt vibration of the smartphone, 
he stopped moving, and registered the event on the Garmin 
Watch by starting a new lap. Then the evaluator noted the 
time of receiving the notification and the lap number in the 
Garmin Watch on a protocol sheet. The notification was 
then removed from the screen by swiping it away.

We measured the geofencing sensitivity by recording 
whether the notification was sent for every location the 
evaluator visited. We also computed the distance and time 
difference between the actual location of the evaluator at the 
moment of receiving the notification and the point of cross-
ing the area fence. False-alarm rates were later calculated 
based on the distance data.

Materials

Smartphones The evaluators used their own smartphones: 
iPhone 11 and Nokia (see Table 7).

External GPS tracker We used a Garmin Watch (model Venu 
Sq) as an external GPS tracker. The log files recorded by 
the watch were available for downloading in the Garmin 
Connect software. The log files were opened and examined 
with the Google Earth program. Each event of a notification 
was recorded as the start of a new lap, which was shown in 

11 We thank an anonymous reviewer who suggested to include the 
condition of staying inside the fenced area and record the time of 
notification.
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the logs with a timestamp and geolocation. The time and 
location of crossing the virtual fence were also calculated 
from the logs.

Preventing false alarms for exit events

To prevent the batch notification problem observed in Study 
1, we implemented the “vicinity zone” algorithm in the Sam-
ply Research mobile app. In general, for each triggered noti-
fication in the mobile app, the operating system provides 
additional information about whether the user is inside or 
outside the geofenced area. While this prevents a false alarm 
for enter events (by not sending a notification if the user is 
outside), for exit events the condition that the user is outside 
is quite loose and can be met if the user is, for example, 100 
m or 100 km away. As a remedy and to provide an addi-
tional control mechanism, we programmed the app to check 
the user’s current location when an exit event is triggered. 
Only when the user is in the immediate vicinity of the fence 
(i.e., up to 200 m) can the application proceed and send a 
notification. The exact threshold of 200 m was based on the 
results of Study 1 in the areas with good Internet connectiv-
ity (downtown and residential area). The idea behind this is 
that if the user has actually left the area, the user should still 
be somewhere nearby. If this is not the case, a false alarm is 
very likely, and the notification should not be sent.

Analysis plan

The data recorded in Samply and the Garmin Watch were 
matched using the time and the lap numbers recorded dur-
ing the tests. We computed sensitivity, distance, and time 
difference for each radius condition. The distance and time 
difference to the fence were calculated with respect to the 
location and time at which the fence was crossed. Posi-
tive values on the distance and time scales mean that the 
notification was triggered after the participants had crossed 
the fence and negative values mean that the notification 
was triggered before they had crossed the fence. Analy-
sis was similar to the analysis in Study 1. In general, we 
expected to replicate the results of Study 1. With respect 
to the new staying inside condition, we expected to record 
higher sensitivity.

Results

We conducted the tests in July and August 2022 and obtained 
84 records of notifications sent from the server. One notifi-
cation was sent twice, we only used the first notification in 
the analysis. The final dataset thus consisted of 83 records. 
For each of the notifications, we recorded the absolute posi-
tion of the smartphone, and calculated the distance and time 
difference with the location where the fence was crossed. 
The sensitivity score, distance, and time difference for each 
of the experimental conditions can be found in Appendix 
Table 19.

Sensitivity

On average, the notification was received in 69% of all loca-
tions. To evaluate the effect of each experimental factor on 
sensitivity, we constructed a logistic regression model. The 
dependent variable was binary – whether the notification was 
received or not. As independent variables in the model, we 
entered the type of user behavior (no waiting, 5 min wait-
ing), the type of event (enter, exit), operating system of the 
smartphone (Android, iOS), and radius (10, 50, and 100 m). 
The results of the logistic regression model are displayed in 
Table 8.

Waiting 5 min in the center of the geofenced location 
increased the probability to receive the notification, OR 
= 9.23, 95% CI = 3.08–32.78, p < 0.001. The iOS device 
received more notifications than the Android device, OR = 
18.15, 95% CI = 5.69–72.43, p < 0.001. Notifications for exit 
events arrived less often than for enter events, OR = 0.18, 
95% CI = 0.05–0.51, p = 0.002. Finally, both 50-m and 100-m 
radius of geofenced area triggered more notifications than the 

Table 7  Smartphone specification in Study 2

Evaluator Phone Model Operating system Version

HH iPhone iPhone 11 Pro iOS 14.3
YS Nokia Nokia 7.1 (TA-

1095)
Android 9

Table 8  Model 1. Odds ratios for probability to receive a notification

The odds ratios compare the odds of receiving a notification at the 
absence versus the presence of the predictor. Odds ratios greater 
than 1 indicate that receiving a notification is more likely when the 
predictor is present. Odds ratios less than 1 indicate that receiving a 
notification is less likely when the predictor is present. R2 Tjur is a 
coefficient of discrimination, which represents the difference between 
the averages of fitted values for successes (notifications received) and 
failures (notifications not received) (Tjur, 2009)

Predictors Odds ratios SE 95% CI p value

(Intercept) 0.18 0.12 0.05–0.61 0.009
Waiting 5 min 9.23 5.51 3.08–32.78 < 0.001
iOS 18.15 11.64 5.69–72.43 < 0.001
Exit event 0.18 0.10 0.05–0.51 0.002
50-m radius 4.26 2.71 1.28–15.88 0.023
100-m radius 13.00 9.52 3.39–61.95 < 0.001
Observations 120
R2 Tjur 0.47
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10 m radius, OR = 4.26, 95% CI = 1.28–15.88, p = 0.023, and 
OR = 13.00, 95% CI = 3.39–61.95, p < 0.001, respectively.

Distance to the fence

The average distance between the location where the fence 
was crossed and the location where the notification was 
received was -6.76 m for enter events (range -137.79 to 
109.47, Med = 8.76, SD = 71.13) and 132.00 m for exit 
events (range -56.58 to 217.56, Med = 140.75, SD = 53.99). 
In the regression model analysis, the dependent variable 
was the distance between the smartphone’s position and the 
fence. As independent variables in the model, we entered the 
type of user behavior (no waiting, waiting 5 min), the type 
of event (enter, exit), operating system of the smartphone 
(Android, iOS), and radius (10, 50, and 100 m). The results 
of the linear regression model are displayed in Table 9.

The baseline condition represents the enter event without 
waiting in the 10-m area, on an Android device. The average 
distance to the fence in the baseline condition was -8.97 m, 
so the notification was on average triggered before crossing 
the fence (95% CI = -49.21 to 31.27 m). Waiting 5 min in 
the center of the geofenced area did not affect the distance, 
b = 0.32, 95% CI = 27.10 to 27.75 m, p = 0.98. iOS trig-
gered notifications at a greater distance before crossing the 
fence compared to the baseline with an Android device, b = 
-41.80, 95% CI = -70.06 to -13.53 m, p = 0.004. Notifica-
tions sent on the exit event had a larger distance to the fence 
after crossing than notifications sent on the enter event, b = 
135.40, 95% CI = 108.88–161.93 m, p < 0.001. The 50-m or 
100-m radius increased the distance after crossing the fence 
compared to the 10-m radius in the baseline condition, b = 
41.12, 95% CI = 6.66–75.57 m, p = 0.02, and b = 38.15, 
95% CI = 3.80–72.50 m, p = 0.03.

Time difference with the fence crossing

For the analysis, we had to exclude two observations, because 
of unusually large time difference values, which were not 
related to the experiment (i.e., taking a break during the test). 

The average time difference between the time when the fence 
was crossed and the time when the notification was received 
was 21.68 s for enter events (range -172 to 684, Med = 20.0, 
SD = 147.88) and 177.82 s for exit events (range -59 to 560, 
Med = 176.50, SD = 109.85). In general, the linear regres-
sion analysis of time differences confirmed some of the pat-
terns that we had found in the analysis of the distance to the 
fence above. The average time difference with the fence in 
the baseline condition was 46.09 s, so the notification was on 
average triggered after crossing the fence (95% CI = -33.61 
to 125.79 s). iOS had triggered notifications before crossing 
a fence compared to Android, b = -122.35, 95% CI = -178.81 
to -65.89 s, p < 0.001 (see Table 10). Notifications sent on 
the exit event had a larger time difference after crossing the 
fence than notifications sent on the enter event, b = 160.49, 
95% CI = 107.45–213.52 s, p < 0.001. There were no differ-
ences in the time between 50- or 100-m radius compared to 
the 10-m radius (although it took longer for both radii). Wait-
ing 5 min in the center of the geofenced area did not affect the 
time difference as well, in comparison with the condition of 
going through the geofenced area without stopping. Please 
see Appendix Table 20 for the marginal effects of the condi-
tions and Appendix Table 22 for statistical power estimates.

False alarms

Regarding false alarms, one notification was sent twice 
with an interval of 1 min 33 s. It was triggered by an exit 
event on Android device at the location of 100-m radius 
in the condition when the tester moved through the loca-
tion without stopping in the center. As in Study 1, the data 
on the distance to the fence showed that notifications often 
arrived before the smartphone crossed the fence. Whether to 
consider these notifications as false alarms depends on the 
threshold a researcher selects. To investigate the relationship 
between the distance to the fence and the false alarm rate, we 
calculated the percentage of notifications received at each 
distance (see Fig. 6).

Table 9  Model 2. Regression coefficients for the distance to the fence

Predictors Estimates SE 95% CI p value

(Intercept)  -8.97 20.21  -49.21 to 31.27 0.66
Waiting 5 min 0.32 13.77  -27.10 to 27.75 0.98
iOS  -41.80 14.20  -70.06 to -13.53 0.004
Exit event 135.40 13.32 108.88–161.93 < 0.001
50-m radius 41.12 17.30 6.66–75.57 0.02
100-m radius 38.15 17.25 3.80–72.50 0.03
Observations 83
R2/R2 adjusted 0.63/0.60

Table 10  Model 3. Regression coefficients for the time difference 
with the fence crossing

Estimates are given in seconds

Predictors Estimates SE 95% CI p value

(Intercept) 46.09 40.01  -33.61 to 125.79 0.25
Waiting 5 min 31.88 27.27  -22.44 to 86.19 0.25
iOS – 122.35 28.34  -178.81 to -65.89 < 0.001
Exit event 160.49 26.62 107.45–213.52 < 0.001
50-m radius 62.33 34.36  -6.11 to 130.78 0.07
100-m radius 28.18 33.94  -39.44 to 95.80 0.41
Observations 81
R2/R2 adjusted 0.46/0.42
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Exploratory analysis

When comparing distances and time differences for enter 
events, the average distance was negative, but the average 
time difference was positive. This counterintuitive outcome 
could be due to averaging across different operating systems. 
A clearer picture arises if we consider the effects separately 
for iOS and Android operating systems (see Fig. 7).

We repeated the main analysis with additional inter-
actions between the operating system and event. The 
interaction was statistically significant both for the dis-
tance, b = 120.76, SE = 23.98, p < 0.001, and for the 
time difference, b = 168.72, SE = 52.12, p = 0.002. With 
regard to enter events, iOS sent notifications on average 
before the fence was crossed, as shown by the negative 
distance to the fence  (MiOS = -43.90,  SDiOS = 60.25) and 
time difference  (MiOS = -55.34,  SDiOS = 66.93). Android 
sent notifications on average after the fence was crossed, 
as indicated by the positive distance  (MAndroid = 53.07, 
 SDAndroid = 39.57) and time difference  (MAndroid = 145.78, 
 SDAndroid = 159.27).

Discussion

The goal of Study 2 was to confirm the findings of Study 1 
using an external GPS tracker, and in addition systematically 
test the difference between walking through the geofenced area 
or staying for 5 min in the center of the location. Study 2 rep-
licated the differences in sensitivity between iOS and Android 
operating systems, with iOS having a higher sensitivity than 
Android. A larger radius and waiting 5 min increased sensitiv-
ity, while exit events generally had a lower sensitivity level. 
Study 2 also provided more accurate measurements of distance 
and confirmed that iOS triggered enter notifications before 
crossing the fence, whereas Android sent enter notifications 
after crossing the fence. Possible explanations and recommen-
dations are discussed in the General discussion section.

Study 3

In Studies 1 and 2, we only tested a limited selection of 
smartphones with trained testers who paid extensive atten-
tion to receiving notifications. However, in many studies 

Fig. 6  Percentage of received notifications for different distances to 
the fence. Note. On the X-axis, the distances between the location 
where the notification was received and the fence are shown. For each 

distance, we calculated the percentage of notifications (between 0 and 
100%, on the Y-axis) that had arrived at that or smaller distance

Fig. 7  Sensitivity, distance, and time difference for iOS and android operating systems for enter and exit events. Note. 95% CI is shown
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researchers might encounter a higher variation of partici-
pant devices, operation system versions, and mobile Inter-
net providers. The question is whether and to which extent 
geofencing will still be accurate under those conditions. 
To evaluate the geofencing method, we conducted a study 
with participants, who were naïve to the research materials 
and hypotheses. The participants, students of the Univer-
sity of Konstanz, used their own smartphones.

Method

Participants

Fifty-eight participants (54 women, four men, mean age 21, 
SD = 4, range 18–42) completed the baseline survey and 
registered in the mobile app “Samply Research”. Regarding 
the type of operating system, 40 participants used iOS, 17 
participants used Android, and one participant used EMUI 
(an Android-based system developed by Huawei). From the 
perspective of the system sending notifications, at least one 
geofencing notification was sent to 53 participants, and the 
average number of notifications sent per participant was 
15.83, Med = 14, SD = 13.05, range 1–71. As for respond-
ing to the notification by entering the data in the geofencing 
survey, 49 participants responded at least once, and the aver-
age number of completed geofencing surveys per participant 
was 12.31, Med = 12, SD = 7.25, range 1–39.

Procedure1

After completing the baseline survey, participants installed the 
Samply Research mobile application and joined the study in 
the app. From that point on, participants received a notification 
linked to the geofencing survey when they entered or left the 
area of interest, i.e., the University of Konstanz. The radius was 
set up to 200 m. In addition, participants received a notifica-
tion at 9:00 pm each evening with a link to the daily survey. 
The study lasted 2 weeks for each participant, and participants 
could begin the study between November 28 and December 7, 
2022. At the end of the study (on day 15) participants received 
a notification with a link to the debriefing survey.

Materials

All surveys were programmed in the lab.js experiment 
builder (https:// lab. js. org, Henninger et  al., 2021) and 
hosted on the Open Lab platform (https:// open- lab. online, 
Shevchenko, 2022).

Baseline survey The purpose of the baseline survey was to 
introduce participants to the study and to collect basic socio-
demographic (gender, age) and smartphone-related technical 
information (smartphone model, operating system, mobile 

Internet provider). The perceived quality of mobile Inter-
net connectivity was measured on a five-point Likert scale 
ranging from “very poor” to “excellent”. The survey also 
explained the goal and content of the study to participants, 
provided the informed consent form, and instructed them on 
how to install and use the mobile application.

Geofencing survey The survey consisted of two questions 
about the participant’s location when the notification was 
received. The first question asked whether the participant 
was at the university or not. The second question was 
whether the participant was entering, leaving, or neither 
entering nor leaving the university.

Daily survey The daily survey aimed to ask participants 
whether they were at the university during the day. The 
options were “Yes”, “No”, and “Don’t want to answer”. The 
notification to fill in the daily survey was sent out at 9:00 
pm on each study day.

Debriefing survey In the debriefing survey, participants 
were informed about the study’s aim and thanked for their 
contribution. Participants were asked whether there were 
any technical problems during the study and whether they 
had any comments about the study for researchers. The sur-
vey also included instructions on how to disable geofencing, 
leave the study, and delete the app.

Analysis plan

The data recorded in Samply and online surveys were matched 
using the anonymous participant ID. We computed the con-
fusion matrix for enter and exit events based on notification 
logs and participants’ survey answers. Hits and false alarms 
were calculated from the answers that participants provided 
in the geofencing surveys, i.e., whether they were entering/
leaving the university at the moment of receiving the notifica-
tion. Misses and correct rejections were computed from the 
answers that participants provided in the daily surveys, i.e., 
whether they were at the university during the day. Sensitivity 
and precision statistics were calculated for each participant 
(see Appendix Table 21) and for each phone model. We used 
a t test to analyze the effect of the type of operating system on 
the sensitivity and precision of enter and exit events.

Results

Sensitivity

To compute sensitivity, we calculated the number of correct 
hits and misses based on the answers to the daily survey (see 
Table 11). For enter events, the sensitivity was 70%, and for 
exit events, the sensitivity was 18%.

https://lab.js.org
https://open-lab.online
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Precision

To compute precision, we calculated the number of correct 
hits and false alarms based on the answers to the geofencing 
survey (see Table 12). The precision for enter events was 
70% and for exit events 89%.

It could be that some participants received multiple enter 
notifications even though they had been at the university for 
some time, so they did not select the “Entering the univer-
sity” option. Analysis of responses to the second question in 
the geofencing survey about the current position confirmed 
that participants were at the university 97% of the time when 
enter notifications were sent (see Table 13). Thus, the false 
alarms for enter events were not related to misidentification 
of location (as participants were at the university), but were 
related to either timing (e.g., a notification was delayed) or 
the repetition of a notification when participants had been in 
the university for some time or had moved on campus. For 
exit events, 91% of participants reported being at the univer-
sity at the time they received the notification. The boundaries 

between the university and outside the university were not 
clearly defined in the study, so participants who were leaving 
the university could still have considered that they were in 
the university campus area.

Smartphone models

To explore the variability in precision and sensitivity 
between smartphones, we calculated both scores for each 
smartphone model for enter and exit events (see Fig. 8).

Operating systems

We conducted t tests to analyze whether there were differences 
in precision and sensitivity between the iOS and Android oper-
ating systems. The precision for enter events and the sensitivity 
for exit events were higher for iOS devices than for Android 
devices, t (df = 21.11) = – 2.35, p = 0.028, and t (df = 40.90) 
= – 2.57, p = 0.014 (see Table 14 and Appendix Table 22 
for statistical power estimates). Precision for exit events and 

Table 11  Geofencing notifications and participants’ responses to the daily surveys

Participant’s response

Was at the university during 
the day

Was not at the university dur-
ing the day

Total

Enter events
At least one enter notification was sent during the day 215

(40.0%)
4
(0.7%)

219 (40.7%)

No enter notification was sent during the day 93
(17.3%)

226
(42.0%)

319
(59.3%)

Total 308
(57.3%)

230
(42.7%)

538 (100%)

Exit events
At least one exit notification was sent during the day 54

(10.0%)
0
(0%)

54
(10%)

No exit notification was sent during the day 254
(47.2%)

230
(42.8%)

484
(90%)

Total 308
(57.2%)

230
(42.8%)

538 (100%)

Table 12  Geofencing notifications and participants’ responses about their current movement in the geofencing surveys

Participant’s response

Entering the university Leaving the university Neither entering 
nor leaving

Do not know Total

An enter notification was sent 272 (56.9%) 23
(4.8%)

81 (16.9%) 13
(2.7%)

389 (81.3%)

An exit notification was sent 6
(1.3%)

79 (16.5%) 3
(0.7%)

1
(0.2%)

89 (18.7%)

Total 278
(58.2%)

102
(21.3%)

84
(17.6%)

14
(2.9%)

478
(100%)
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sensitivity for enter events did not differ statistically signifi-
cantly between operating systems, t (df = 17.07) = 1.00, 
p = 0.33, and t (df = 25.11) = – 1.27, p = 0.21. The per-
ceived quality of the mobile Internet connection or the type 
of mobile Internet provider had no effect on precision and 
sensitivity (ps > 0.05).

Discussion

The goal of Study 3 was to investigate the feasibility of the 
geofencing method, which was implemented via Samply, 
in a study with naïve subjects. At the same time, because 
the participants used their own smartphones, we tested the 
app’s functionality on different devices, operating systems, 

and mobile Internet providers. The general results indicate a 
moderate level of sensitivity and precision for enter events, 
70% for both. For exit events, while precision was high at 
89%, sensitivity was low at 18%. As in Studies 1 and 2, iOS 
performed better than Android. The iOS operating system 
demonstrated higher precision for enter events and higher 
sensitivity for exit events than Android.

General discussion

Our three empirical studies showed that implementing 
geofencing technology yielded sensitivity and precision 
scores comparable to those of previous studies (Nguyen 

Table 13  Geofencing notifications and participants’ responses about their current location in the geofencing surveys

Participant’s response

At the university Not at the university Do not know Total

An enter notification was sent 379 9 1 389
(79.2%) (1.9%) (0.2%) (81.3%)

An exit notification was sent 81 7 1 89
(17.0%) (1.5%) (0.2%) (18.7%)

Total 460 16 2 478
(96.2%) (3.4%) (0.4%) (100%)

Fig. 8  Precision and sensitivity for enter and exit events. Note. The 
smartphone model names are shown next to the data points. iPhone 
models are abbreviated with “i-”. Question marks in the name of a 

phone model (e.g., “Xiaomi-?”) mean that the participant has not pro-
vided information about the specific model of the phone
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et al., 2017; Suyama & Inoue, 2016; Wray et al., 2019). 
The scores were not ideal, suggesting that there is room for 
improvement in both the technology and its use by research-
ers. We identified several limitations and provided recom-
mendations for geofencing research (see Table 15).

Location radius

Using a 10-m radius for sending notifications may be prob-
lematic, as some of the notifications for this radius were not 
delivered on Android or were delivered earlier than expected 
on iOS. A 50-m radius improves sensitivity on Android, but 
iOS still sends notifications earlier than expected. The differ-
ences between operating systems can be attributed to the oper-
ating systems’ underlying strategies for optimized geofencing. 
As Android requests the current location every second minute, 
locations with a 10-m radius could be missed because the 
smartphone had a higher chance of being removed from the 
zone before the notification is triggered. Regarding the iOS 
performance, Apple documentation points out that certain 
conditions should be met to deliver a notification: “The user’s 
location must cross the region boundary, move away from the 
boundary by a minimal distance, and remain at that minimum 
distance for at least 20 s”12. However, the documentation does 
not explain why notifications are delivered before crossing 
the region boundary. It might be that iOS uses a radius of 100 
m for all radii below 100 m. This would explain the results 
of Studies 1 and 2, where iOS did not differentiate between 
radii below 100 m. If this is true, then iOS can reach a higher 
sensitivity even for smaller radii, such as a 10-m radius, by 
giving up on precision.

This implies that researchers who want to use geofencing 
for very specific and small locations, e.g., a smoking area 
next to an office building, should be aware of the possibility 
of misses (in particular, for Android smartphones) or false 
alarms (in particular, for iOS smartphones). Both sensitiv-
ity and distance measures were acceptable for a radius of 
100 m or above, which leads us to recommend 100 m as a 

minimum radius for studies. We expect a further increase 
in radius should not significantly affect the results, although this 
has to be tested in further research. Many locations can be set up 
with a radius of 100 m and higher, such as public areas, offices, 
apartments, stores, etc. Whether the precision can be improved in 
the future is an open question, as it is not only a matter of technical 
affordances, but also an ethical decision regarding user privacy.

Operating system

All three studies reported here demonstrated that iOS cur-
rently has an advantage over the Android system in using 
geofencing for research. These differences between operating 
systems were mainly present for a 10-m radius in the con-
trolled tests and were also replicated in a study with naïve 
participants. As discussed above, the differences can be 
explained by the fact that iOS relies more on distance meas-
ures to optimize the geofencing, whereas Android reduces the 
frequency of tracking (to every second minute or every sixth 
minute, if the device has not been active) and may apply addi-
tional optimization techniques that interfere with geofencing. 
Android’s doze mode might contribute to misses, although the 
documentation specifies that the system exits the doze mode 
when the user moves the device13. Moreover, some Android 
devices optimize battery performance by shutting down or 
delaying background tasks, such as geofencing. In these cases, 
researchers may prepare troubleshooting instructions for par-
ticipants to adjust the settings14.

Environment

We did not find any substantial differences in geofencing sen-
sitivity and distance between residential and downtown areas. 
Although there were more public Wi-Fi spots in downtown 
due to stores and restaurants, this did not significantly improve 
sensitivity and the distance compared to the residential area 
with fewer public Wi-Fi spots. On the other hand, we dis-
covered that geofencing in the forest area might encounter a 
number of problems. First, the sensitivity was lower, and the 
distance was measured as larger in the forest area. Second, 
in our tests in the forest area, there was also an area without 
cellular Internet connection, which further reduced connectiv-
ity. While the notifications arrived even in the area without 
Internet connection, the lack of connection prevented the data 
from being sent from the smartphone to the server and the 
geolocation from being recorded correctly. Therefore, it is 
recommended that studies be conducted in an area that has a 
cellular Internet connection (at least at the poor signal level 

Table 14  Sensitivity and precision for iOS and android operating sys-
tems

Event Measure Android, M (SD) iOS, M (SD)

Enter Precision 0.55 (0.29) 0.77 (0.28)
Enter Sensitivity 0.58 (0.39) 0.72 (0.34)
Exit Precision 0.97 (0.08) 0.92 (0.17)
Exit Sensitivity 0.07 (0.15) 0.21 (0.22)

12 https:// devel oper. apple. com/ libra ry/ archi ve/ docum entat ion/ UserE 
xperi ence/ Conce ptual/ Locat ionAw arene ssPG/ Regio nMoni toring/ 
Regio nMoni toring. html#// apple_ ref/ doc/ uid/ TP400 09497- CH9- SW11

13 The documentation on the doze mode in Android: https:// devel 
oper. andro id. com/ train ing/ monit oring- device- state/ doze- stand by
14 Recommendations for adjusting settings on Android devices to 
ensure that geofencing remains functional: https:// dontk illmy app. com/

https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW11
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW11
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//apple_ref/doc/uid/TP40009497-CH9-SW11
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/training/monitoring-device-state/doze-standby
https://dontkillmyapp.com/
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indicated by at least one bar or dot of signal strength in the 
smartphone menu).

Because Internet connectivity can affect geofencing tech-
nology, it is important to understand what can affect the 
connection. The signal can be blocked by building materials 
such as steel, concrete, brick, wood, or fiberglass insulation. 
Therefore, we recommend setting up a geofencing bound-
ary in an open area. For example, setting up the boundary 
inside a building would not be a good idea. If researchers 
are interested in a particular building (e.g., a school, a hos-
pital, a store), the boundary should be set up around the 
building, including the open space next to the building. In 
addition, in densely populated areas, cell towers may reach 
their capacity limit. When many people use the bandwidth 
of the same network and cell tower, connectivity decreases. 
This means that geofencing studies could be problematic at 
events or high-traffic locations (e.g., concerts, conferences, 
shopping malls) unless Wi-Fi networks compensate for cel-
lular network congestion.

Wi‑Fi settings

Although the previous studies and operating system docu-
mentation pointed to possible adverse effects of turned-off 
Wi-Fi signals, we could only confirm the negative impact 

of turned-off Wi-Fi on the distance to the center of the 
geofenced area in exit events. This factor may not be as prob-
lematic for geofencing studies because most people usually 
leave their Wi-Fi on by default. Researchers may remind 
participants to keep their Wi-Fi on during the study.

Enter vs. exit event

While the type of geofencing event (enter or exit) did not 
influence the probability of receiving the notification, 
it did affect where the geofencing event was triggered. 
Exit events had a larger distance from the center of the 
geofenced location than enter events. Given the time 
delay by the operating system, people leaving the area 
moved further away from the border with each additional 
minute. This means that exit notifications can generate 
a higher variability of responses than enter notifica-
tions. When an exit notification arrives, people may be 
in different locations and at different distances from the 
geofenced area depending on the mode of transportation 
(e.g., walking or driving).

By combining enter and exit events, researchers can 
design studies that measure the time participants spend at 
a location. To record events without sending notifications, 
researchers can activate the invisible mode for each type of 
event in Samply.

Table 15  Limitations and recommendations for geofencing research

Factor Limitations Recommendations

Radius A 10-m radius can be problematic, leading to missed 
notifications on Android and false alarms on iOS

Use a radius of 100 m or higher

Operating system Some Android devices may interfere with sending 
notifications, which can reduce sensitivity

Record the operating system and device type.
Prepare troubleshooting instructions for participants.
Pre-register operating systems and device types that are 

accepted in providing data for a study
Environment Missing Internet connection, network congestion, or 

blocked GPS signal may delay notifications
Avoid areas without a mobile Internet connection or 

with network congestion.
Set up the geofencing border in an open area

Wi-Fi settings Turned off Wi-Fi may delay notifications for exit 
events

Ask participants to keep their Wi-Fi on

The type of event (enter, exit) Exit notifications have a longer delay than enter noti-
fications

Take into account that exit notifications may result in a 
higher variability of responses than enter notifications

User behavior Passing through the location may decrease sensitivity, 
specifically for Android

Apply geofencing to areas where participants would 
stay for at least 5 min

General False alarms Avoid overlapping of geofencing areas.
Use a minimum time window in Samply, e.g., 8 h.
Customize the vicinity zone for exit notifications in 

Samply, e.g., 500 m.
Ask control questions, e.g., "Are you at the location 

now?"
Misses Ask control questions in a survey at the end of the day, 

e.g., "Have you been at the location during the day?"
Potential violation of participant privacy Provide a study consent form
Operating systems limit the number of locations Use fewer than 20 locations per participant/device
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User behavior

Waiting 5 min in the center of the geofenced area improved 
sensitivity because smartphones had more time to detect 
entering or leaving the area. This means that researchers using 
geofencing should consider how much time participants might 
spend at the location: The more time a participant spends 
at the location, the higher the sensitivity likely will be. If a 
participant only passes through the location, iOS devices will 
tend to have a higher sensitivity than Android devices.

General recommendations

There are two general strategies for conducting geofencing 
research. The researcher can use prepared devices (e.g., smart-
phones) or utilize participants’ smartphones. In the case of the 
first strategy, the choice of operating system and smartphone 
model is important. Our results show that iOS has an advan-
tage over the Android system but comes with higher costs. An 
Android device could also be an option, as long as a minimum 
50-m radius is used and the smartphone is configured to allow 
geofencing background tasks to run without being optimized 
by the operating system. With a predetermined smartphone 
model, researchers can pre-test the phone’s functionality. If 
researchers choose to use participants’ smartphones, it is rec-
ommended to record the type of device and assist participants 
in adjusting smartphone settings if needed.

False alarms and misses are currently unavoidable in 
geofencing research. To control for false alarms, researchers 
can include a question in a geofencing survey that confirms that 
the participant is in the intended location. To control for misses, 
researchers can use Samply’s interval-based notifications func-
tionality (as we did in Study 3) to ask participants to report 
whether they were at the intended location during the day. In 
Samply, we have implemented two customizable features to 
decrease the number of false alarms. These are the minimum 
time window between notifications and the size of the vicinity 
zone for exit notifications. The first feature allows researchers to 
set a minimum time window between geofencing notifications. 
When the notification is triggered, an algorithm checks the time 
of the previous notification and prevents sending the notifica-
tion if the time that has passed since is too short. The second 
feature allows users to customize the size of the vicinity zone 
for exit notifications. Only when a participant is in the vicinity 
zone (i.e., up to 500 m) could the app proceed and send an exit 
notification. This enables researchers to control the trade-off 
between precision and sensitivity for exit events.

Researchers can set up either shared or participant-spe-
cific locations. In Study 3, we tested a single location shared 
among all participants. For those interested in participant-
specific locations, the Samply mobile app interface allows 
participants to enter their locations in the app. The location 
coordinates are not shared with the researcher. This allows 

for various research designs, such as notifying participants 
when they enter their office, place of study, home, etc. How-
ever, if the geofenced areas are close to each other, the prob-
ability of false alarms is higher. Due to the limited number 
of locations a user can create (20 locations for iOS, 100 
locations for Android), we recommend focusing on the most 
important locations.

Participant privacy is an essential aspect of a geofencing 
study. Researchers should be explicit and specific about any 
information they collect in the study, as required by the EU 
GDPR (Voigt & dem Bussche, 2017). To support this, the 
Samply user interface prompts researchers to provide a study 
consent form and a rationale for geofencing as two separate 
information inputs to make it explicit for participants.

Validation method

To validate the accuracy of geofencing in Samply, we com-
bined controlled repeated tests from Study 1 and Study 2 with 
real-world tests in Study 3. Controlled tests allowed us to 
systematically examine the combination of different factors, 
such as radius or operating system. We recommend apply-
ing an external source of validation, such as an external GPS 
tracker in Study 2, to verify an app’s functionality. Although 
the smartphone can provide various measurements, such 
as GPS position from the mobile browser, an external data 
source guarantees the independence of those measurements.

With real-world tests, on the other hand, we estimated the 
plausibility of applying geofencing given the heterogeneity 
of devices and user behavior. This approach of combining 
controlled and real-world tests has been used before with 
other smartphone apps (e.g., Geyer et al., 2022). However, 
in our studies, we found that the statistical power of real-
world tests in Study 3 was lower than that of controlled tests 
in other studies (see Appendix Table 22). This difference 
may be due to the use of aggregated proportions as meas-
ures of sensitivity and precision for each participant. While 
aggregated per-participant data is a common way to measure 
accuracy, further studies may consider recruiting a larger 
sample size to increase the statistical power.

Limitations and further research

The required Internet connectivity is a general limitation of 
the geofencing approach implemented in Samply. However, 
given technological developments and the widespread use 
of smartphones, it is reasonable to assume that more people 
will own smartphones and have access to mobile Internet. 
At the same time, we expect the geofencing technology to 
evolve both quantitatively (by improving sensitivity and 
precision) and qualitatively, by developing new forms of 
geofencing (e.g., vertical geofencing in Stieger & Reips, 
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2019) or combining it with other device information such 
as spatial orientation (Kuhlmann et al., 2020).

Given our findings and the speed of technological develop-
ment, further research will be required to amend our findings 
and test new technological solutions and implementations. At 
the same time, we are confident that as technology advances, 
researchers will adopt geofencing (e.g., by using the Samply 
software) to develop and test new questions that complement 
laboratory research with inquiries into everyday life.

Conclusion

Technically, geofencing and geotracking technology have 
already achieved impressive results and are being used in 
many domains outside of research, e.g., logistics, retail, car 
navigation, and business (e.g., Uber, Airbnb). Behavioral 

science research has yet to take advantage of this rapidly 
evolving technology to explore new applications. User privacy 
is of great importance, so a technology such as geofencing 
could be more attractive to users because it does not record 
absolute geolocation and does not share the data with others. 
However, although geofencing has this advantage, it needs 
to be explained to the end user to establish a trustworthy and 
transparent relationship between the researcher and the par-
ticipant. People differ in terms of their preferences regarding 
the level of privacy (Joinson et al., 2006; Paine et al., 2007), 
so all participants’ privacy should be treated with care.

This manuscript shows advantages, conditions, and limita-
tions of geofencing methodology. As an application ready to be 
used, Samply provides a research infrastructure for geofencing, 
and researchers are welcome to use the software, run bench-
mark tests, and use the tool in their studies. Documentation with 
information on geofencing and step-by-step tutorials can be 
found on the Samply website https:// samply. uni- konst anz. de/.

Appendix

Table 16  Sensitivity and distance to the center in Study 1

Environment Wi-Fi Event OS Radius (m) Sensitivity 
(mean)

Sensitivity (SD) Distance (mean) Distance (SD)

1 Downtown On Enter Android 10 0.80 0.45 22.46 7.45
2 Downtown On Enter Android 50 0.80 0.45 34.30 33.39
3 Downtown On Enter Android 100 1.00 0.00 28.76 25.23
4 Downtown On Enter iOS 10 1.00 0.00 119.13 85.88
5 Downtown On Enter iOS 50 1.00 0.00 115.27 145.80
6 Downtown On Enter iOS 100 1.00 0.00 85.25 36.14
7 Downtown On Exit Android 10 0.00 0.00 NA NA
8 Downtown On Exit Android 50 1.00 0.00 82.88 24.80
9 Downtown On Exit Android 100 1.00 0.00 145.10 18.08
10 Downtown On Exit iOS 10 1.00 0.00 127.03 86.24
11 Downtown On Exit iOS 50 1.00 0.00 213.92 54.41
12 Downtown On Exit iOS 100 1.00 0.00 183.15 33.17
13 Downtown Off Enter Android 10 0.60 0.55 20.04 11.14
14 Downtown Off Enter Android 50 1.00 0.00 28.26 17.83
15 Downtown Off Enter Android 100 1.00 0.00 46.81 32.23
16 Downtown Off Enter iOS 10 1.00 0.00 74.80 47.75
17 Downtown Off Enter iOS 50 1.00 0.00 44.73 56.65
18 Downtown Off Enter iOS 100 1.00 0.00 95.78 28.67
19 Downtown Off Exit Android 10 0.40 0.55 10.52 NA
20 Downtown Off Exit Android 50 0.80 0.45 117.45 60.33
21 Downtown Off Exit Android 100 0.80 0.45 188.61 48.79
22 Downtown Off Exit iOS 10 0.60 0.55 404.69 28.01
23 Downtown Off Exit iOS 50 1.00 0.00 293.18 80.14
24 Downtown Off Exit iOS 100 1.00 0.00 252.79 98.64
25 Forest On Enter Android 10 0.00 0.00 NA NA
26 Forest On Enter Android 50 0.60 0.55 119.18 152.36

https://samply.uni-konstanz.de/
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Table 16  (continued)

Environment Wi-Fi Event OS Radius (m) Sensitivity 
(mean)

Sensitivity (SD) Distance (mean) Distance (SD)

27 Forest On Enter Android 100 0.80 0.45 30.68 33.48
28 Forest On Enter iOS 10 1.00 0.00 81.45 60.90
29 Forest On Enter iOS 50 1.00 0.00 76.27 48.59
30 Forest On Enter iOS 100 1.00 0.00 82.05 68.14
31 Forest On Exit Android 10 1.00 0.00 NA NA
32 Forest On Exit Android 50 1.00 0.00 332.64 NA
33 Forest On Exit Android 100 1.00 0.00 456.77 NA
34 Forest On Exit iOS 10 0.40 0.55 344.01 148.10
35 Forest On Exit iOS 50 0.80 0.45 245.04 83.05
36 Forest On Exit iOS 100 0.80 0.45 256.92 173.18
37 Forest Off Enter Android 10 0.40 0.55 8.83 NA
38 Forest Off Enter Android 50 0.40 0.55 254.17 NA
39 Forest Off Enter Android 100 0.40 0.55 521.32 131.36
40 Forest Off Enter iOS 10 1.00 0.00 98.88 64.12
41 Forest Off Enter iOS 50 1.00 0.00 103.67 93.36
42 Forest Off Enter iOS 100 1.00 0.00 100.50 47.43
43 Forest Off Exit Android 10 1.00 0.00 NA NA
44 Forest Off Exit Android 50 1.00 0.00 NA NA
45 Forest Off Exit Android 100 1.00 0.00 585.55 NA
46 Forest Off Exit iOS 10 0.40 0.55 321.24 109.97
47 Forest Off Exit iOS 50 0.80 0.45 397.59 289.25
48 Forest Off Exit iOS 100 0.80 0.45 438.21 122.04
49 Residential On Enter Android 10 0.00 0.00 NA NA

50 Residential On Enter Android 50 1.00 0.00 25.53 18.10
51 Residential On Enter Android 100 1.00 0.00 54.31 9.86
52 Residential On Enter iOS 10 1.00 0.00 182.70 136.11
53 Residential On Enter iOS 50 1.00 0.00 165.30 130.85
54 Residential On Enter iOS 100 1.00 0.00 104.97 94.49
55 Residential On Exit Android 10 0.20 0.45 34.89 NA
56 Residential On Exit Android 50 0.80 0.45 102.50 28.46
57 Residential On Exit Android 100 1.00 0.00 144.68 45.40
58 Residential On Exit iOS 10 1.00 0.00 192.37 48.24
59 Residential On Exit iOS 50 1.00 0.00 199.12 67.81
60 Residential On Exit iOS 100 1.00 0.00 219.44 117.48
61 Residential Off Enter Android 10 0.00 0.00 NA NA
62 Residential Off Enter Android 50 1.00 0.00 24.70 21.05
63 Residential Off Enter Android 100 0.80 0.45 50.57 26.00
64 Residential Off Enter iOS 10 1.00 0.00 136.70 45.81
65 Residential Off Enter iOS 50 1.00 0.00 130.07 104.73
66 Residential Off Enter iOS 100 1.00 0.00 61.61 39.61
67 Residential Off Exit Android 10 0.40 0.55 90.36 56.42
68 Residential Off Exit Android 50 0.80 0.45 107.29 14.73
69 Residential Off Exit Android 100 1.00 0.00 165.28 38.59
70 Residential Off Exit iOS 10 1.00 0.00 392.06 88.58
71 Residential Off Exit iOS 50 1.00 0.00 533.01 223.36
72 Residential Off Exit iOS 100 1.00 0.00 523.96 400.38

Each radius was repeated five times. The overall number of tests was 360 (3 areas x 2 Wi-Fi conditions x 2 types of events x 2 OS x 3 radii x 5 
locations per radius). Sensitivity is defined as the probability of receiving a notification at a geofenced location (between 0 and 1). Distance is 
provided in meters between the location of the smartphone at the moment of receiving the notification and the center of the geofenced area
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Table 17  Marginal effects of each experimental condition on sensitivity and distance to the center of the geofenced area in Study 1

Mean (SD). As the enter and exit events represent substantially different experimental conditions affecting the geofencing, the marginal effects 
are presented separately for enter and exit events

Enter Exit

Sensitivity Distance Sensitivity Distance

Radius 10 m 0.65 (0.48) 96.44 (85.54) 0.62 (0.49) 231.00 (146.23)
50 m 0.90 (0.30) 81.79 (98.91) 0.92 (0.28) 227.72 (168.33)
100 m 0.92 (0.28) 95.71 (99.97) 0.95 (9.22) 242.49 (152.09)

Environment Forest 0.72 (0.45) 114.83 (129.16) 0.83 (0.38) 350.28 (168.98)
Residential area 0.82 (0.39) 92.61 (91.90) 0.85 (0.36) 222.00 (170.45)
Downtown 0.93 (0.25) 70.65 (75.75) 0.80 (0.40) 190.69 (102.35)

Wi-Fi Off 0.81 (0.39) 85.75 (100.87) 0.82 (0.38) 293.25 (191.31)
On 0.83 (0.37) 88.02 (91.90) 0.83 (0.37) 186.17 (98.98)

Operating system Android 0.64 (0.48) 58.22 (104.04) 0.79 (0.41) 147.77 (103.46)
iOS 1.00 (0.00) 104.31(86.20) 0.87 (0.34) 283.86 (160.62)

Table 18  Marginal effects of operating system and radius on sensitivity and distance to the center of the geofenced area in Study 1

Mean (SD)

Enter Exit

Operating system Radius Sensitivity Distance Sensitivity Distance

Android 10 m 0.30 (0.47) 19.85 (8.97) 0.50 (0.51) 56.53 (51.83)
50 m 0.80 (0.41) 46.46 (65.99) 0.90 (0.31) 114.22 (64.11)
100 m 0.83 (0.38) 81.78 (140.43) 0.97 (0.18) 193.91 (116.91)

iOS 10 m 1.00 (0.00) 117.57 (85.14) 0.73 (0.45) 265.89 (133.31)
50 m 1.00 (0.00) 106.86 (111.10) 0.93 (0.25) 298.16 (175.03)
100 m 1.00 (0.00) 88.85 (51.02) 0.93 (0.25) 281.72 (167.46)
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Table 19  Sensitivity, distance, and time difference with the fence in Study 2

Each radius was repeated five times. The overall number of tests was 120 (2 types of events x 2 OS x 3 radii x 2 types of user behavior x 5 loca-
tions per radius). Sensitivity is defined as the probability of receiving a notification at a geofenced location (between 0 and 1). Distance is pro-
vided in meters between the location where the fence was crossed and the location of the smartphone at the moment of receiving the notification. 
Time difference is provided in seconds between the moment of crossing the fence and receiving a notification

Event OS Radius (m) Waiting 5 
minutes in the 
center

Sensi-
tivity 
(mean)

Sensitivity (SD) Distance to the 
fence (mean)

Distance to 
the fence 
(SD)

Time differ-
ence (mean)

Time 
difference 
(SD)

1 Enter Android 10 No 0.00 0.00 NA NA NA NA
2 Enter Android 10 Yes 0.80 0.45 14.52 15.12 81.00 56.08
3 Enter Android 50 No 0.20 0.45 99.14 NA 116.00 NA
4 Enter Android 50 Yes 1.00 0.00 40.46 17.76 242.20 268.00
5 Enter Android 100 No 0.60 0.55 105.20 4.15 113.33 21.39
6 Enter Android 100 Yes 1.00 0.00 56.03 43.54 126.60 126.95
7 Enter Apple 10 No 1.00 0.00  -114.87 17.38  -119.20 29.75
8 Enter Apple 10 Yes 1.00 0.00  -86.61 10.44  -103.80 14.60
9 Enter Apple 50 No 1.00 0.00  -32.13 38.52  -35.80 38.07
10 Enter Apple 50 Yes 1.00 0.00  -34.33 46.16  -56.20 64.64
11 Enter Apple 100 No 0.80 0.45 40.67 38.26 35.75 27.84
12 Enter Apple 100 Yes 1.00 0.00  -19.23 59.26  -34.60 81.86
13 Exit Android 10 No 0.20 0.45 85.34 NA 97.00 NA
14 Exit Android 10 Yes 0.00 0.00 NA NA NA NA
15 Exit Android 50 No 0.00 0.00 NA NA NA NA
16 Exit Android 50 Yes 0.60 0.55 126.95 38.51 193.67 128.06
17 Exit Android 100 No 0.40 0.55 77.13 189.08 81.50 198.70
18 Exit Android 100 Yes 1.00 0.00 128.78 44.41 264.40 191.28
19 Exit Apple 10 No 0.40 0.55 175.68 13.21 187.00 49.50
20 Exit Apple 10 Yes 0.60 0.55 174.20 27.21 250.67 79.73
21 Exit Apple 50 No 1.00 0.00 140.91 31.36 165.40 66.82
22 Exit Apple 50 Yes 0.80 0.45 169.76 30.63 226.00 35.19
23 Exit Apple 100 No 0.80 0.45 93.50 46.89 107.50 49.70
24 Exit Apple 100 Yes 1.00 0.00 109.81 33.75 119.20 47.47

Table 20  Marginal effects of each experimental condition on sensitivity, distance, and time difference with the fence in Study 2

Mean (SD). As the enter and exit events represent substantially different experimental conditions affecting the geofencing, the marginal 
effects are presented separately for enter and exit events. Sensitivity is defined as the probability of receiving a notification at a geofenced 
location (between 0 and 1). Distance is provided in meters between the location where the fence was crossed and the location of the smart-
phone at the moment of receiving the notification. Time difference is provided in seconds between the moment of crossing the fence and 
receiving a notification

Enter Exit

Sensitivity Distance Time difference Sensitivity Distance Time difference

Radius 10 m 0.70 (0.47)  -67.81 (57.03)  -56.50 (96.20) 0.30 (0.47) 159.89 (40.81) 203.83 (82.13)
50 m 0.80 (0.41)  -1.93 (54.61) 54.19 (198.63) 0.60 (0.50) 147.22 (35.65) 192.67 (75.40)
100 m 0.85 (0.37) 38.96 (60.01) 55.47 (103.67) 0.80 (0.41) 107.58 (63.09) 156.94 (138.63)

Operating system Android 0.60 (0.498) 53.07 (39.57) 145.78 (159.27) 0.37 (0.49) 115.94 (69.64) 196.64 (166.75)
iOS 0.97 (0.18)  -43.90 (60.25)  -55.34 (66.93) 0.77 (0.43) 139.60 (43.83) 168.83 (72.11)

User behavior No waiting 0.60 (0.50)  -8.75 (87.77)  -9.78 (92.49) 0.47 (0.51) 119.25 (69.35) 135.07 (82.01)
Waiting 0.97 (0.18)  -5.53 (60.25) 41.21 (172.34) 0.67 (0.48) 139.64 (41.36) 207.75 (118.61)
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Table 21  Sensitivity and precision in Study 3

Phone model OS OS Version Mobile Internet 
Provider

Perceived 
mobile Internet 
quality

Enter 
event 
precision

Enter 
event sen-
sitivity

Exit event 
precision

Exit event 
sensitivity

1 iPhone X iOS 16.1.1 Blau 4 NA NA NA NA
2 iPhone 13 mini iOS 16.1.2 Telecom 3 0.80 1.00 NA 0.00
3 iPhone 11 Pro iOS 16.0.2 Vodafone 3 0.81 1.00 0.75 0.80
4 Huawei P30 Pro Android 12 Vodafone 3 0.13 0.60 1.00 0.20
5 iPhone 13 iOS 16.0.3 Vodafone 4 1.00 1.00 1.00 0.44
6 Samsung 8 FE Android 13 Aldi Talk 3 1.00 0.38 NA 0.00
7 iPhone ? iOS 16 Do not know 4 0.92 1.00 0.60 0.40
8 iPhone 11 iOS 16.1.2 Medionmedion 4 NA 0.00 NA 0.29
9 iPhone se iOS 14.6 Vodafone 4 1.00 1.00 0.63 0.57
10 iPhone 13 Pro iOS 16.1.1 Vodafone 4 0.87 1.00 1.00 0.50
11 iPhone 7 iOS Medion 3 1.00 0.25 1.00 0.00
12 iPhone 12 iOS 15.6.1 Do not know 5 0.82 1.00 1.00 0.33
13 iPhone 6s iOS 15.7.1 Vodafone 3 1.00 1.00 1.00 0.00
14 Huawei Mate 20 lite Android 12 Vodafone 4 NA 0.00 NA 0.00
15 iPhone 11 iOS 16 Sim.de 4 1.00 0.67 1.00 0.33
16 SE2020 iOS 14.6 Medion 4 0.56 0.67 1.00 0.33
17 iPhone 11 Pro iOS 16.0.3 o2 5 0.83 1.00 1.00 0.67
18 iPhone 7 iOS 15.7.1 Medion 4 1.00 0.88 1.00 0.25
19 iPhone 8 iOS 15.6.1 Medion 3 1.00 0.33 NA 0.00
20 iPhone 12 iOS 16.0.1 Telecom 4 NA NA NA NA
21 iPhone 12 iOS 15.1 Telecom 4 0.00 1.00 NA 0.00
22 Oppo A16 Android 11 Mobile Com Debitel 3 0.30 0.78 1.00 0.11
23 Samsung Galaxy A50 Android Blau 4 NA NA NA NA
24 iPhone 11 iOS 16.1.1 Vodafone 5 0.83 0.57 1.00 0.29
25 Huawei P30 Pro Android 12 o2 5 0.91 1.00 NA 0.00
26 Galaxy A70 Android 11 Do not know 3 0.86 0.89 NA 0.00
27 Huawei P40 Emui 12 Telecom 5 NA NA NA NA
28 iPhone 8 iOS 15.6 o2 4 0.25 0.38 NA 0.00
29 iPhone 11 iOS 16 Do not know 3 1.00 0.50 1.00 0.00
30 Android Android Telecom 4 NA 0.00 NA 0.00
31 iPhone 8 Plus iOS 14.7.1 Medion 2 0.82 1.00 1.00 0.11
32 iPhone 12 iOS 16.1.1 o2 4 1.00 0.83 1.00 0.17
33 Samsung A52s Android 12 Telecom 5 NA 0.00 NA 0.00
34 Xiaomi ? Android 12 Vodafone 4 0.64 0.86 0.80 0.57
35 iPhone 11 Pro iOS 16.0.2 Vodafone 4 NA 0.00 NA 0.33
36 Samsung Galaxy A51 Android 12 1 & 1 3 0.45 1.00 1.00 0.17
37 iPhone XR iOS 15.6.1 Congstar 4 0.00 0.14 NA 0.00
38 Xiaomi Redmi Note 

10S
Android 12 Medion 4 0.22 0.89 NA 0.00

39 Huawei P20 Android 12 Medion 3 0.43 0.33 1.00 0.00
40 iPhone 7 iOS 15.6.1 AldiTalk 4 NA 0.88 NA 0.00
41 iPhone 8 iOS 16.1.1 Medion 4 0.47 0.78 1.00 0.22
42 Redmi Note 8T Android 11 Vodafone 4 0.50 0.10 NA 0.00
43 iPhone 11 iOS 16.1 o2 4 0.60 0.90 1.00 0.30
44 iPhone 12 iOS 16.1.1 o2 4 1.00 0.00 NA 0.00
45 Doogee V20 Android 11 o2 4 0.77 1.00 1.00 0.14
46 iPhone 11 iOS 16.1.1 Medion 3 0.67 0.50 NA 0.00
47 iPhone 12 iOS 16 Vodafone 3 0.67 0.50 1.00 0.00
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Table 21  (continued)

Phone model OS OS Version Mobile Internet 
Provider

Perceived 
mobile Internet 
quality

Enter 
event 
precision

Enter 
event sen-
sitivity

Exit event 
precision

Exit event 
sensitivity

48 iPhone 11 iOS 16.0.2 o2 5 1.00 0.86 NA 0.00
49 iPhone 11 iOS 16.1.1 Medion 3 0.80 1.00 1.00 0.50
50 iPhone 11 iOS 16.1.1 Vodafone 3 0.33 1.00 NA 0.00
51 iPhone 13 iOS 16.1 Vodafone 3 0.94 1.00 1.00 0.29
52 Xiaomi 11t Android 12 Medion 4 0.25 0.56 NA 0.00
53 iPhone 8 iOS 16.0.3 Medion 4 0.50 0.25 NA 0.00
54 iPhone SE iOS 16.1.1 Vodafone 4 1.00 1.00 1.00 0.25
55 Galaxy A52 Android 12 Telecom 3 0.71 0.83 NA 0.00
56 iPhone X iOS 16.1.1 Do not know 5 0.83 0.50 0.50 0.00
57 iPhone 12 mini iOS 16.0.2 Freenet 4 0.89 1.00 1.00 0.40
58 iPhone XR iOS 16.1.1 Medion 3 0.67 0.88 0.50 0.13

The perceived quality of mobile Internet connectivity was measured on a five-point Likert scale ranging from “very poor” (1) to “excellent” (5). 
Question marks in the name of a phone model (e.g., "Xiaomi ?") mean that the participant has not provided information about the specific model 
of the phone

Table 22  Statistical power estimates

We used a simulation approach in which model parameters were used to simulate the outcome variable (with 1000 repetitions). After that, a 
model was fit into the simulated data, and the effects were estimated. The percentage indicates the number of cases in which the effect turned out 
to be statistically significant (below the alpha level of 0.05).

Sensitivity Distance to the 
center

Distance to 
the fence

Time difference 
with the fence

Precision

Study 1 Study 2 Study 3 Study 1 Study 2 Study 2 Study 3

Forest (vs. downtown) 53% - - 92% - - -
Residential area (vs. downtown) 26% - - 42% - - -
Wi-Fi is on (vs. off) 18% - - 86% - - -
Exit event (vs. enter) 17% 79% 100% 100% 100% 100% 51%
iOS (vs. Android) 100% 97% 19% 99% 77% 95% 18%
50 50-m radius (vs. 10 m) 99% 57% - 19% 62% 47% -
100 100-m radius (vs. 10 m) 99% 89% - 26% 59% 23% -
Waiting 5 min (vs. no waiting) - 93% - - 18% 32% -
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