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Abstract
Mouse tracking is an important source of data in cognitive science. Most contemporary mouse tracking studies use binary-
choice tasks and analyze the curvature or velocity of an individualmousemovement during an experimental trial as participants
select from one of the two options. However, there are many types of mouse tracking data available beyond what is produced
in a binary-choice task, including naturalistic data from web users. In order to utilize these data, cognitive scientists need
tools that are robust to the lack of trial-by-trial structure in most normal computer tasks. We use singular value decomposition
(SVD) and detrended fluctuation analysis (DFA) to analyze whole time series of unstructured mouse movement data. We also
introduce a new technique for describing two-dimensional mouse traces as complex-valued time series, which allows SVD
and DFA to be applied in a straightforward way without losing important spatial information. We find that there is useful
information at the level of whole time series, and we use this information to predict performance in an online task. We also
discuss how the implications of these results can advance the use of mouse tracking research in cognitive science.

Keywords Mouse tracking · Movement dynamics · Singular value decomposition · Detrended fluctation analysis · Embodied
cogntion · Complex systems

Introduction

Numerous experiments inmultiple fields have shown that the
body and environment have a profound influence on mental
activity (McBeath, Shaffer,&Kaiser, 1995; Thelen, Schöner,
Scheier,&Smith, 2001;Hotton&Yoshimi, 2011; Silberstein
& Chemero, 2012). Ongoing, continuous exchange of infor-
mation between body, mind, and environment suggests that
measurements of any of these subsystemswill produce infor-
mation about cognition. This in turn predicts that cursor data,
an indirect measurement of the body’s movements, will con-
tain information about cognition.Mouse tracking studies can
capture this data, and have many additional advantages. The
“environment” in a computer task is highly controlled, and
environmental variables can be monitored with high preci-
sion. The mouse, as a sensor for the body, can be measured
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with low latency. Computer tasks using mouse tracking data
are relatively cheap and easy to produce, and data can be
gathered from experiments run remotely over the internet.

Mostmouse tracking research follows a standardparadigm,
a two-choice task in which a participant’s cursor begins at a
predetermined start location, usually at the bottom-middle of
the screen (Hehman, Stolier, & Freeman, 2015; Maldonado,
Dunbar,&Chemla, 2019; Freeman, 2018). For a broad recent
overview of this type of research see (Schoemann, O’Hora,
Dale, & Scherbaum, 2020). The participant is then presented
with a stimulus and asked to make a choice. They might be
shown a picture of an animal and asked to identify that ani-
mal as a fish or a mammal by moving the mouse cursor to
a text box labeled “fish” or “mammal” (See Fig. 1). As the
participant moves their cursor towards the target, the (x, y)
position of the cursor is recorded. The resulting vector of time
stamped positions is a cursor trajectory. These cursor trajec-
tories are then aggregated and analyzed (Hehman, Stolier, &
Freeman, 2015; Stillman, Shen, & Ferguson, 2018).

In one of the most prominent examples of this type
of research, participants are presented with either typical
mammals such as cats, or atypical mammals such as whales.
Participants’ cursor trajectories are found to be more curved
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Fig. 1 Standard mouse tracking task, based on the example in Hehman, Stolier, and Freeman (2015)

during trials with atypical exemplars, suggesting a “graded
competitive process” of categorization, rather than a serial
model (Dale, Kehoe, & Spivey, 2007). Other prominent
examples include: evidence for multiple distinct components
of inhibitory control in Stroop and flanker tasks (Erb, Moher,
Sobel, & Song, 2016), evidence against a dual system of
emotion and reasoning inmoral reasoning (Koop, 2013), evi-
dence that better self-control facilitates quicker resolution of
self-control conflicts shown by earlier changes in curvature
of mouse movement (Gillebaart, Schneider, & De Ridder,
2016), evidence for “partial and parallel activation of stereo-
types”, implying that “perceptual cues of the face” invoke
multiple “simultaneously active stereotypes... and this mix-
ture settles over time onto ultimate judgments” (Freeman &
Ambady, 2009), and “evidence that cursor motion analysis
has the capacity to predict emotional experience of the com-
puter users" (Yamauchi & Xiao, 2018).

Despite its value in the study of continuous output dur-
ing binary decision tasks, this research does have limitations.
First, it is limited to serial taskswith a predetermined start and
end point for eachmousemovement. In addition, because the
data are segmented into many discrete trials, dynamic pro-
cesses which might build over longer timescales are hard
to analyze. Thirdly, as is normal in many psychological
paradigms, participants are required to follow rigid proce-
dures in order to obtain clean data. These constraints make
it difficult to apply standard mouse tracking techniques to
unconstrained mouse tracking data, which is continuous
over time, not segmented into individual movements, and
not necessarily constrained in terms of starting position, end
position, or preferred trajectory.

One way of dealing with the lack of structure in uncon-
strained mouse tracking data is to use machine learning
techniques. Researchers in affective computing often use
machine learning techniques to predict user characteris-
tics (Kolakowska, 2013). However, though this approach
addresses a particular business need, it does not usually
provide results that generalize to other tasks, or provide novel
scientific insights.

Another option is to draw on dynamical systems and com-
plex systems approaches to cognition. For example, some
have analyzed hand movements in open ended computer
tasks such as corralling artificial agents in a computer game
(Nalepka, Kallen, Chemero, Saltzman, & Richardson, 2017;
Dotov, Nie, & Chemero, 2010). In tasks like these, where the
movements are fluid and in continuous streams of motion, it
is not clear what constitutes a single movement. Because of
this, researchers in these areas tend not to decompose data
into individual movements or behaviors, focusing instead on
whole time series of behavioral data. One type of behavior
that has been found when studying cognitive systems from
this standpoint is power law relationships across multiple
time scales. For example, several studies have found evi-
dence for a 1/ f power law in spectra characterizing human
behavior when we look at an entire time series of a behavior,
where f is frequency. A time series with a 1/ f power spec-
tral density is one in which the power spectrum is inversely
proportional to the frequency of the signal (for example,
lots of power at low frequencies, but low power at high
frequencies). The relationship is a power law and thus it
forms a straight line when plotted on log-log coordinates.
Time series that are characterized by 1/ f power spectra have
long-range correlations that are thought to indicate an under-
lying interaction-dominant system. It has been found that
much of the variance in psychology experiments exhibits
a 1/ f power spectrum, which suggests that humans are
interaction-dominant systems where cognitive computations
emerge from interactions among components rather than
from inside any of those components (Van Orden, Holden,
& Turvey, 2003). 1/ f noise has since been found in many
different domains from motor systems (Gilden, Thornton, &
Mallon, 1995; Hausdorff et al., 1996) to music (Voss, 1975)
to speech (Kello, Anderson, Holden, & Van Orden, 2008a).
In addition, 1/ f slopes can converge within distinct subsys-
tems (indicating that the systems are coupled), i.e. key press
and timing deviation in a rhythmic tapping task converge,
and heart beat and pupil dilation converge as well, but cen-
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tral and autonomic nervous systems do not cross-converge
within participants (Rigoli, Holman, Spivey, & Kello, 2014).

In this paper, we use two methods to study uncon-
strained mouse tracking data: singular value decomposition
(SVD), and detrended fluctuation analysis (DFA). This pair
of methods enables us to uncover structural and interpretable
characteristics that predict performance in a task. SVD is
an algorithm associated with principle components analysis
(PCA), a standard method for high-dimensional data analy-
sis and visualization used across a broad variety of domains
(Eldén, 2007). Both SVD and PCA yield an ordered list of
values (principal components, or singular values) that are
associated with lower-dimensional subspaces that the data
can be projected onto, in a way that reveals what the dom-
inant characteristics of the data are. The values are ordered
by how much of the variance in the data they explain, so
that as one selects more of these components, they explain
more of the data. The method can be applied directly to high-
dimensional, complex-valuedmouse trace data; ismodel free
(it has no free parameters); reveals the most important com-
ponents in a dataset in rank order; and can be used to develop
interpretable diagnostics. SVD has not, to our knowledge,
been applied to mouse tracking data, despite its advantages,
but it has been usedwidely in cognitive science. For example,
PCA has been used on motor movement data to show that
fewer principal components are needed to explain the data
when participants are engaged in a synchronized task (Riley,
Richardson, Shockley, & Ramenzoni, 2011). PCA has also
been used to discover that 75 percent of the variance between
modalities in academic presentations (speech rate, intensity,
slides changes, and gestural movement, etc) is accounted for
by only 3 components (Alviar, Dale, & Galati, 2019), which
correspond to different ways that presenters tend to speak.
For example, the first component involved a positive rela-
tionship between speech rate, body movement, articulation
rate and intensity, implying that ”speakers who tend to speak
faster also tend to speak louder and move more.”

SVD is highly predictive and powerful, but it can be diffi-
cult to interpret. Thus, we also applied DFA, which has been
independently applied to multi-scale data, and thus provides
a baseline for comparison. With DFA a time series is broken
into windows of decreasing sizes or scales, and within the
windows at each scale, lines are fit to the data. The error in
these lines is generally larger for the larger window sizes.
The average error at each window size is plotted against
window size in log-log, and a line is fitted to this data. The
slope of this line is the Hurst parameter, which is a mea-
sure of fractal dimensionality in the data, which is associated
multi-scale structure. It can be used to describe power law
relationships and the color of noise, and is closely related
to sample entropy. Researchers have used DFA to identify
power law relationships between fluctuations in acceleration
profiles for mouse movements at different time scales, and

then shown that power laws change to reflect how well a
person is “smoothly coping” with their mouse (Dotov et al.,
2010). DFA has also been used on human inter-tap intervals
when participants are attempting to tap along to a chaotic
metronome to show that even though the metronome is
chaotic and thus unpredictable, human inter-tap intervalswill
approximate the same statistical structure as the metronome
(Stephen, Stepp, Dixon, & Turvey, 2008). This suggests that
synchronization occurs not due to an internal tapping model
with some error, but due to a more global process of coor-
dination whereby the participant is becoming entrained with
chaotic metronome.1

Several other researchers have considered techniques that
might be applicable to the study of continuous mouse track-
ing data. For example, (Calcagnì, Lombardi, D’Alessandro,
& Freuli, 2019) use a state-space model to describe mouse
tracking data. Themethod is, however, validated against stan-
dard segmented mouse traces rather than unconstrained data,
for example providing better fits to standard lexical decision
data than other approaches. Others have used mixture mod-
els that treat mouse movements as combinations of simpler
trajectories (Yu et al., 2007). These models have been used to
identify neural correlates of components of motions. Neither
technique has been applied to unconstrained mouse track-
ing data. We suspect SVD has some advantages over these
approaches, in particular in being relatively parsimonious
and straightforward to apply, but it remains to be seen in
future research.

Summarizing: existing methods for analyzing mouse
traces are focused almost entirely on segmented data (sin-
glemousemovements), while behavioral analysis techniques
that can be applied to continuous movement have not, for
the most part, been applied to unconstrained mouse data. A
summary of these approaches to mouse tracking data, their
standard use-cases, and their limitations relative to uncon-
strained mouse tracking data, is given in Table 1.

In this paper we study unconstrained mouse tracking data
in a simple clicking game similar to Whac-A-Mole. We
used SVD and DFA to predict performance based on the
mouse tracking data alone. Our results indicate that mean-
ingful information exists at the level of an entire stream
of mouse tracking data. In addition, we developed several
novel approaches to analyzing mouse tracking data. First,
we fit the mouse tracking coordinates to the complex plane.
This allowed us to use information from both the x and y
dimension simultaneously, rather than being constrained to
one dimension, as is often done in mouse tracking studies.
Second, we use SVD to define a diagnostic, η, which says

1 DFA and other measures of complexity mentioned above are closely
related. In the case of Diffusion Entropy analysis, for example, the
output of both it and DFA bear the same inverse relationship to the
scaling parameter of a Levy flight (Mariani et al., 2020).
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Table 1 Summary of existing methods for studying mouse traces, their typical uses, and their limitations relative to unconstrained mouse tracking
data

Approach Uses Limitations

Curvature-based measures such as aver-
age deviation, AUC, and x-flips (Kieslich,
Henninger, Wulff, Haslbeck, & Schulte-
Mecklenbeck, 2019)

Measures straightness of movements,
which is sometimes associated with deci-
sion conflict

Only applies to single movements

Sample entropy (Dale et al., 2007) Predictability of the next sample after a set
of samples

Does not capture multi-scale patterns

Measures of reaction time (Sternberg,
1969; Kieslich et al., 2019)

Associated with a variety of phenomena:
attention, health, task demands, etc

Only applies to single movements

Derivative-based measures such as max
velocity, average velocity, average accel-
eration, average jerk, etc. (Kieslich et al.,
2019)

For examining fine-grained temporal
dynamics of movements

Requires precise measurements, because
taking the derivative of a time series ampli-
fies its noise

Machine learning methods (Kolakowska,
2013)

Classifying and clustering types of trajec-
tories

Hard to interpret or generalize from

Complex dynamical systems methods
(1/ f noise, DFA, max entropy, etc)

Measures global and multi-scale structure Not applied to mouse tracking data thus far

Mixture methods (Yu et al., 2007) Applies in principle to continuous move-
ment and allows decomposition into con-
stituent trajectories

Not applied to unconstrained mouse track-
ing data thus far

State space modeling (Calcagnì et al.,
2019)

Provides good fits to data. Applies in prin-
ciple to continuous movements

Not applied to unconstrained mouse track-
ing data thus far

howwell players fit to an accuracy space defined by the prin-
cipal components of the most accurate players. The quantity
η is continuously varying, explains more variance than DFA
does, and can be used to predict a player’s accuracy in a way
that is more interpretable than DFA.

Methods

Task

We designed a Whac-A-Mole game where several empty
mole hills initially appear on the screen. Cartoon moles then
appear and disappear in the mole hills in a pre-determined
sequence (since this was an exploratory study, we wanted to
minimize potential sources of variation). The player’s objec-
tive is to click the mole before it disappears and reappears in
a different mole hill. A mole appears in a molehill for 650
ms before it disappears. If the mole is clicked, it changes to a
cartoon picture of an unconscious mole for 350 ms. In both
cases a mole then re-appears in another mole-hill. We pre-
generated the random sequence of mole appearances so that
every participant would experience the same pseudo-random
sequence. The game ends after the participant has seen 120
moles (2-3min). Upon completion of the game participants
also filled out a short demographics form, and then were
thanked and debriefed.

The game was built in javascript and played through the
browser at a website.2 During the game we continuously
collected participants’ cursor data, every 8 − 12 ms (the
maximum polling rate for javascript). We also collected par-
ticipant’s click locations and recorded their accuracy in the
game task.

Participants

The experiment was deployed on Amazon Mechanical Turk
(MTurk). We required that the MTurk workers have over a
95 percent approval rating, have not participated in one of
our studies before, and be in the United States. We collected
data from 600 participants in two samples. The first sample
was collected on January 14, 2020 and had 300 participants.
The second sample was collected on February 19, 2020 and
had 300 participants. All participants were paid 35 cents for
completing the 2-3min study.

Three additional criteria were used to filter the data. First,
we focused on mouse tracking data only, and thus removed
those who did not report using a mouse (a question asked
them what type of device they were using: mouse, trackpad,
or other). This removed 83 people from the first sample and
102 people from the second sample. We did not require that
they use a mouse explicitly to prevent participants from sim-
ply lying and saying they were using one when they were

2 The game is available here: cogsci.us/TM/clickdamole.
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not. Second, we removed people who did not register suf-
ficient cursor movement. Since javascript only polls mouse
locations when the cursor is moving, if a participant sim-
ply let the mouse idle while the game ran or only tried to
move the mouse a few times, the participant would not log
many datapoints. We removed 2 participants from sample 1
and no participants from sample 2 for having less than 300
cursor locations reported. This also filtered participants who
reported that theywere using amouse but were in fact using a
touch screen or some other input device. Third, we included
two catch questions in our demographics form: “how many
letters are in the english alphabet” and “if you are reading
this select the answer 17”. This eliminated 12 participants
from sample 1 and 19 participants from sample 2. In all we
removed 105 participants from sample 1 and 131 participants
from sample 2 before analysis.

After filtering, demographics were as follows. For sample
1: 111 male, 84 female, mean age 40.11 (σ = 21.35), and
approximately uniformly distributed experience with video
games.3 For sample 2: 86 male, 83 female, mean age 40.22
(σ = 13.17), and also approximately uniformly distributed
experience with video games.4

Data collection and preprocessing

For each participant, the cursor position was collected
throughout the task every 8 − 12 ms, producing roughly
6000-component vectors of x and y coordinates, which is
the mouse trace for that participant. An example of a mouse
trace is shown in Fig. 2.

Most methods for analyzing time series assume one-
dimensional data. However, mouse tracking data is inher-
ently two-dimensional since it is samples the x− and
y−coordinates of the mouse position at discrete times.
To accommodate this, researchers typically use only one
dimension of their mouse trace data e.g., either the x− or
y−coordinate over time.However, this restriction potentially
leads to information loss, especially if one does not have
insight into which dimension is likely to carry themost infor-
mation. As an alternative, we introduce a complex-valued
time series zn where

zn = xn + iyn, n = 0, 1, 2, · · · , N ,

3 In response to the question “How much did you play video games
growing up?”, with response bins of 0, < 1, 1 − 2, 2 − 4, 4 − 8, and
> 8, counts were 34, 13, 39, 29, 34, 46. In response to the question
“How many hours of video games do you play each week?” with the
same response bins, counts were 30, 42, 30, 31, 27, and 35.
4 In response to the question “How much did you play video games
growing up?”, with response bins of 0, < 1, 1 − 2, 2 − 4, 4 − 8, and
> 8, counts were 26, 17, 23, 38, 23, 42. In response to the question
“How many hours of video games do you play each week?” with the
same response bins, counts were 28, 34, 28, 33, 21, 25.

Fig. 2 A sample mouse trace for one participant. Red dots correspond
to mouse clicks

with xn denoting the x-coordinate, yn denoting y-coordinate
both at time level n, and i = √−1 denoting the imagi-
nary constant. To isolate the x−coordinate, we evaluate the
real part of zn and to isolate the y−coordinate, we evalu-
ate the imaginary part of zn . Thus, we can retain the full
information available in the mouse trace by representing the
two-dimensionalmouse tracking data as a function of a single
complex variable.

Mouse tracking through a browser has some inher-
ent temporal variability as different computers and dif-
ferent browsers can poll at different speeds. To accom-
modate this we linearly interpolated all data using the
pandas.resample method to make sure that all data
points were exactly 20 ms apart and then trimmed all time
series to the length of the shortest time series in the data
set across both samples. (Several other resampling methods
were tried to confirm that they did not impact themain results;
since none did, we used the default method).

Since the mouse tracking data are resampled to be uni-
form in sampling rate and length across participants, we
are able to compute, analyze, and compare their Fourier
spectra. To perform this spectral analysis, we computed the
discrete Fourier transform of the complex time series using
numpy.fft.fft, to produce a spectrum Zn for each par-
ticipant satisfying the relation

z(t j ) ≈
N/2−1∑

n=−N/2

Zne
i2π fn t j , j = 1, · · · , N ,

with fn = n/(N�t) denoting the discrete frequencies and
�t denoting the constant sampling rate.
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One possible next step would be to compute derivatives of
the time series in order to analyze velocity, acceleration, jerk,
etc., which is common in mouse tracking research (Kies-
lich & Henninger, 2017).5 However, taking derivatives of
mouse tracking data is inherently problematic for several
reasons. First, computing derivatives of time series ampli-
fies noise. Additionally, mouse tracking data is driven by an
inherently discontinuous sampling process, which is exac-
erbated in online environments due to the browser (mouse
positions are polled faster by the computer than they are by
the browser) and network latency. These discontinuities lead
to infinite derivatives. These issues can be dealt with if the
number of samples is sufficient and appropriate filters are
used (Nazir et al., 2008). Regardless, we show in our results
below thatwe are able to recover valuable insight about infor-
mation contained in mouse tracking data without needing to
compute derivatives.

Analysis and results

We start with a high-level sketch of how we applied SVD
and DFA to our data. First, we pre-processed the data in the
following steps:

• Import the data, which has already been filtered and con-
verted into data frames (this is the publicly available
data).

• Linearly interpolate the (x, y) coordinates for each indi-
vidual person to ensure same-length time series and
points equidistant in time.

• Create complex-valued coordinates from the (x, y) coor-
dinates.

• Perform a Fourier transform on the complex-valued time
series for each person.

We now have Fourier transforms for the complex-valued,
interpolated time series for each participant.We then perform
our SVD analysis, using the following steps:

• Split the data into high and low performance groups for
Sample 1 and Sample 2.

• Compute the SVD of the Fourier transforms of the high
performers in Sample 1.

• Create a space from a selection of the sample singular
vectors from the high performers in Sample 1, using the
most important vectors, accounting for about 50% of the
variability in the data.

5 With complex values, the kth derivative of a complex-
valued time series has a convenient form: z(k)(t j ) ≈
∑N/2−1

n=−N/2(i2π fn)k Znei2π fn t j , j = 1, · · · , N .

• Compare the high and low performing groups from Sam-
ple 2 to the space created from the singular vectors of the
high performing group from Sample 1.

Note that we can use the space derived from Sample 1 to sep-
arate high and low performers in Sample 2, which implies a
difference in behaviors that can be generalized across sam-
ples. We then investigated multi-scale structure in the data,
using the following steps:

• Convert the spectrum to a power spectral density (PSD),
and plot in log-log coordinates.

• Observe difference in the slopes of the PSD of the high
and low performers.

• Apply DFA directly to participant mouse-traces.
• Use Hurst exponents of DFA to predict performance.

Singular value decomposition to analyze
performance

Let P denote the number of participants and Zp denote
the vector of length N containing the values of the discrete
Fourier spectrum for participant p.We form the N×P matrix
A of complex numbers defined according to

A = [
Z1 · · · ZP

]
.

In other words, the pth column of A corresponds to the
discrete Fourier spectrum of the mouse tracking data for par-
ticipant p. In what follows, we assume that P < N since
the number of participants in each study is smaller than the
number of discrete Fourier frequencies.

The singular value decomposition (SVD) of the matrix
A (Demmel, 1997; Trefethen & Bau III, 1997; Ramsay &
Silverman, 2005) is

A = U�V ∗.

Here, the superscript ∗ denotes the complex conjugate trans-
pose of the matrix. The columns of the N × N matrix U
form an orthonormal basis for CN , the space of all complex
vectors of length N . The columns of the P × P matrix V
form an orthonormal basis for CP , the space of all complex
vectors of length P . The N × P matrix � has non-negative
entries along its diagonal called the singular values, which
we denote by σp for p = 1, · · · , P . The non-diagonal entries
of � are zero identically.

In fact, computing the SVD of the matrix A is the same as
performing principal component analysis (PCA). We focus
on the linear algebra interpretation of the SVD to study the
discrete Fourier spectra of mouse tracking data. In particular
weuse concepts such as projections onto subspaces.Bydoing
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so we develop model-free methods that make use of any
underlying algebraic structures in these data.

All matrices possess a singular value decomposition and
the singular values are unique. The singular values are
ordered by size,

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σP .

Let un denote the nth column of U and vp denote the pth
column of V . We can rewrite the SVD of A as

A = σ1u1v∗
1 + σ2u2v∗

2 + · · · + σPuPv∗
P .

By writing A as this sum, we see that the singular values
give a relative rank of the importance of the corresponding
columns of U and V in the data – the first term gives the
largest contribution, the second term gives the next largest,
and so on. Additionally, we can consider approximations by
truncating the sum above after some specified amount of
terms. This approximation corresponds to the projection onto
the subspace spanned by the vectors included in it.

Suppose we only use the first k singular values. Let Ũ
denote the N ×k matrix formed by taking the first k columns
of U and removing the rest. The columns of Ũ form an
orthogonal basis for a subspace of A, which we denote by
Ũ. Now consider an individual participant’s discrete Fourier
spectrum, Zp. The projection of Zp onto Ũ is given by
ŨŨ∗Zp. The length of this resulting vector is ‖ŨŨ∗Zp‖
with ‖ · ‖ denoting the Euclidean norm. When we compute

η = ‖ŨŨ∗Zp‖
‖Zp‖ ,

the value 0 ≤ η ≤ 1 gives the fractional amount of Zp lying
in the subspace Ũ. When η = 1, Zp lies entirely in Ũ. When
η = 0, none of Zp lies in Ũ. We explain below how we use
η to study performance.

To analyze performance we first operationalized perfor-
mance as accuracy in the game – the higher the percentage
of moles clicked, the higher the accuracy and the better the
performance. To investigate performance operationalized as
accuracy, we first partitioned our data into “accurate” and
“inaccurate” groups, where “accurate” participants scored
above 50.5 percent, and “inaccurate” participants scored
below 12 percent. These numbers were chosen to keep the
group sizes about the same across the two samples. For sam-
ple 1 this resulted in 44 in the high accuracy group and 32 in
the low accuracy group. For sample 2 high accuracy had 33
and low accuracy had 36. To address the worry that demo-
graphic differences in these splits accounts for our results,
we regressed the demographic variables both on performance
and on our predictor of performance, η. There was no mean-

ingful relationship between any of the demographic variables
and either performance or η.

We collect the discrete Fourier spectra of accurate players
from Sample 1 and form the matrix A with them. Upon com-
puting theSVDof A, we determine howmany singular values
are important in explaining the data. The singular values σp

for p = 1, · · · , P are proportional to the square root of the
variance accounted for by the corresponding column of U .
Thus, the cumulative sum of squares of the singular values is
the cumulative sum of variance explained. This cumulative
sum is shown in Fig. 3 and we determine from these results
that k = 9 explains 50 percent of the variance. We call the
resulting subspace Ũ by considering the first 9 columns of
U the accuracy subspace. By computing η, we determine
the fractional amount a given discrete Fourier spectrum lies
in the accuracy subspace. Consequently, η is a measure of
fitness to high performing players.

We consider results of Sample 2 to test howwell the accu-
racy subspace from Sample 1 generalized to new, out-of
sample participants. We identified accurate and inaccurate
players in Sample 2 using the same criteria that we used to
determine accurate and inaccurate players for Sample 1. To
test out-of-sample performance, we computed η for accurate
and inaccurate players in Sample 2. The results of this com-
putation are shown in Fig. 4. These results show that the two
groups, accurate and inaccurate, are almost completely sepa-
rable. They are shown to be significantly different according
to a Welch’s t-test (p < 0.0001). These results demonstrate
the existence of structural features in the discrete Fourier
spectra of accurate players that is not shared by less accurate
players. The accuracy subspace contains algebraic structures
inherent in accurate players that are not shared by less accu-
rate players. Therefore, testing the extent to which a player’s
discrete Fourier spectrum aligns with the accuracy subspace
provides a diagnostic method for performance. Moreover,

Fig. 3 The cumulative variance accounted for by each component in
the accuracy space. Notice that the first 8 components account for about
50% of the variance
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Fig. 4 Projection of accurate and inaccurate participants in sample 2
to the accurate space from sample 1. Blue dots correspond to accurate
players; orange dots to inaccurate players. The accurate players fit the
space of accurate players from the earlier sample better with higher η

(which corresponds to how well a participant fits to a space). The two
groups are also significantly different (p < 0.0001). This shows that
accurate and inaccurate players are separable using SVD

these results suggest that these structural differences persist
across different samples.

Next, we computed η for all players in Sample 2. In doing
so, we found that there was a significant relationship (p <

0.01) between accuracy and the value of η (see Fig. 5) with
R2 = 0.61. Accuracy and fit both range from 0 to 1, and the
unstandardized β coefficient for fit regressed on accuracy
was β = 0.3 with standard error of .02, which means that
as accuracy increases fit increases. These results show that
the relationship does not just separate two groups of accurate
and inaccurate players in the sample, but explains degrees of
accuracy throughout the sample.

Fig. 5 Performance regressed on fit to accuracy space. The relation-
ship between accuracy and fit to the accurate space of sample 1 for
participants from sample 2. Accuracy ranges from 0 (no mole hits) to
1 (every mole was hit). We can see that accuracy is related to fit to the
accuracy space. The unstandardized β is 0.30 with standard error 0.02.
R2 = 0.61 and p < 0.01

Representing our mouse traces using a single complex
variable opens access and opportunity for novel methods
of analysis. For example, we have been able to perform
SVD/PCA directly on the discrete Fourier spectra of the
full mouse tracking data. In doing so, we have been able to
identify structural differences in the discrete Fourier spectra
between accurate and less accurate players. We have found
that these structural differences are statistically significant
and persist in out-of-sample results.

DFA analysis of performance

To investigate the accuracy subspace Ũ further, we con-
sider the power spectrum of the columns of Ũ corresponding
to the absolute value squared of each entry of a column of
Ũ . We then examine the shape of the power spectrum on a
log-log scale. We have performed this analysis on the first
8 columns of Ũ . Figure6 shows the power spectrum for the
first column of Ũ plotted in log-log scale. Over the first 8
columns of Ũ , we observe a consistent linear structure to
the power spectra. A linear trend for frequencies plotted in
log-log can indicate a power law, which can in turn imply
long-range correlations in a complex system. To investigate
possible long-range correlations, we use DFA (Peng, Havlin,
Stanley, & Goldberger, 1995).

DFA is a measure of the relationship between variance
within windows of a time series and the size of those win-
dows which, in turn, provides a measure of the amount of
long-range correlation in time series (Stergiou & Decker,
2011). DFA has been applied in several areas of cognitive
science (and extensively in other fields) as a tool to measure
complexity in a time series. For example, Dotov et al use
DFA to identify a change in the complexity of motor move-
ments corresponding to a change from smoothly using an
interface to cases of “breakdown”, where the user interface

Fig. 6 The most important component used for creating the accurate
player space, plotted in log-log scale
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is perturbed so that it no longer behaves as the user expects
it to Dotov et al., (2010).

To compute DFA we start with our complex time series:

z1, z2, · · · , zN .

We center the data by subtracting the mean

ξn = zn − z̄, n = 1, · · · , N ,

and then compute the cumulative sum,

Cn =
n∑

j=1

ξ j n = 1, · · · , N .

We then partition the time series Cn into windows of size
4 ≤ s ≤ N . Using the smallest possible value, s = 2, is
often not advised (Bryce & Sprague, 2012), so we set s = 4
as the minimum window size. For a fixed window of width
s starting at n, we compute a least-squares regression model
satisfying,

Pd(tn+ j−1) ≈ Cn+ j−1, j = 1, · · · , s,

and then calculate the residuals,

r j = Cn+ j−1 − Pd(tn+ j−1), j = 1, · · · , s.

Here Pd(z) denotes the fitted polynomial of degree d (Shao,
Gu, Jiang, Zhou, & Sornette, 2012). Linear fits are usually
used so that in most applications (including ours), d = 1.

We compute the root mean square of the residual for each
window size s, to obtain the fluctuation value (Shao et al.,
2012),

Fs =
(
1

N

N∑

t=1

|rn|2
)1/2

Note that we are squaring the absolute values of the resid-
uals, |rn| rather than the residuals themselves, since we are
working with complex-valued time series.

We then fit a line to the relationship between the log-scaled
Fs and the log-scaled s (Shao et al., 2012). The slope of this
line is α, which is taken to approximate the Hurst parameter
H . The Hurst parameter is a measure of fractal dimension in
a time series. If H < 0.5 the process is considered to be anti-
correlated in time such that high values tend to be followed
by low values and vice versa. If H = 0.5 the process is not
correlated in time, and if 1 > H > 0.5 then the process is
said to be positively correlated in time (Ihlen, 2012; Nolds
module—0.5.2Documentation, n.d.). However, ifα > 1 the
process is non-stationary and can be modeled as fractional

Brownian motion where the Hurst parameter of the systems
is approximated by H = α−1 instead of H = α (Hardstone
et al., 2012; Nolds module — 0.5.2 Documentation, n.d.).
That is, for a non-stationary process, when 1 > α > 1.5 the
process is anti-correlated in time, if α = 1.5 the process is
not correlated in time, and if 2 > α > 1 then the process is
positively correlated in time.

DFA is a frequently used to analyze complex systems to
determine the amount of long-range correlation in the data,
which some contend is indicative of the degree of fractal
structure in the system. The Hurst parameters provided by
DFA were significantly predictive of accuracy (p < .01),
as shown in Fig. 7. However, it was a much less powerful
model with R2 = .08 (vs. R2 = 0.61 for SVD). Virtually all
participants’ Hurst Parameters indicated some degree of non-
stationairity in their fractal structure, as all participants were
α > 1. The negative relationship β =−.75 implies that lower
performing participants actually have more long range pos-
itive correlation in time than high performing participants,
and high performers’ mouse movements are somewhat anti-
correlated in time. This might seem strange at first, given that
previous literature suggests that long-range correlations are
positively related to performance. However, given that the
moles’ next position is pseudorandom, it could also mean
that participants whose Hurst parameters are below 1.5 are
actually better approximating the target. In a similar fashion,
expert Tetris players have been shown to rely heavily on the
rotate button, allowing them to offload some of their cogni-
tion (Kirsh & Maglio, 1994). High-performing participants
in this task appear to develop a pattern of interfacing with
their environment that is substantially different from how the
low-performing participants are interfacing with their envi-
ronment. By exhibiting a lower fractal dimensionality in their
time series, these high-performing participants are using up
less of the “real estate” in the two-dimensional playing field
and generating more efficient mouse traces that can be char-
acterized in fewer fractal dimensions.

Discussion

We designed a simple Whac-A-Mole like video game which
participants played for a few minutes, during which mouse
positiondatawere captured.Wedidnot knowwhatmight pre-
dict performance in this data, but were able to systematically
explore it and find quantitative structures that were highly
predictive of performance. Our results show that accurate
players play differently than inaccurate players and that this
difference is detectable in the mouse tracking data. Over-
all our efforts provide a good case study of how to explore
and analyze unconstrained mouse tracking data. Even if
a performance measure like accuracy were not available
for a computer mouse task, these results show that those
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Fig. 7 The parameterα regressed on performance. The negative slopeβ

=−.75 implies that the fractal dimension of the time series is decreasing
as performance goes up. This in turn suggests that the time series are
more likely to be anti-correlated as performance improves

metrics could nicely be approximated by the mouse move-
ments alone using principal components fromknownexperts.

The SVD was substantially more predictive of accuracy
than DFA (R2 = 0.61 vs. R2 = .08), suggesting it is more
powerful as ameans of predicting accuracy and other features
of behavior. However, the DFA analysis is important because
it has an interpretation in terms of cognitive science. DFA
indicates the presence of multi-scale structure. In fact, the
degree to which SVD outperforms DFA suggests that there
is more going on for accuracy than just multi-scale structure.

Unconstrained mouse traces are difficult to analyze using
standard technique such as reaction times (Table 1) because
they lack well-defined beginnings and ends relative to indi-
vidual mouse movements. This is representative of many
real tasks outside of scripted psychology experiments. For
example, in our data, mouse clicks can’t be interpreted as
reactions to particular stimuli because we don’t know which
stimulus participants are attending to. In some cases they
may be attending to the currently visible mole when click-
ing, which is a straightforward reaction time. However, in
other cases theymight be predictingwhere amolewill appear
next, adopting a strategy like “click in one place repeatedly
to guarantee some hits”, or reacting to (and missing) a mole
that is replaced by a newmole before clicking. In these cases
the time interval between a mole’s initial appearance and the
next mouse click is something other than a reaction time.

These methods and results provide two contributions to
mouse tracking research and in particular to the analy-
sis of unconstrained mouse traces. First, to our knowledge
the only methods that have been used to analyze uncon-
strainedmouse trackingdata aremachine learning techniques
(Kolakowska, 2013; Liu, Fernando, & Rajapakse, 2018),
which do not, however, provide interpretable results or gener-
alizable insight into themousemovements of the participants.
As summarized inTable 1, other techniques could in principle

be applied to this data, but this has not yet been done, to
our knowledge. We have provided an initial guide to analyz-
ing uninterrupted streams of mouse movements, in contexts
where there are no clearly demarcated individual movements
with determinate beginnings or endings.We have shown how
to study unconstrained mouse tracking data in a way that
is systematic, and can produce interpretable results. To be
clear, the method we describe is not intended as a replace-
ment for existing mouse tracking methods, which work well
for single-movement data. Existing approaches to analyzing
segmented mouse traces are clear, easy to interpret, and have
an established track record.

Second, mouse tracking data naturally lies on a two-
dimensional plane, but most time series analyses require a
one-dimensional time series. The problem is usually solved
by taking a time series of one dimension, such as the x dimen-
sion (Schulte-Mecklenbeck, Kuehberger, & Johnson, 2019).
This solution works for binary forced choice tasks, where
participants are making single movements and most of the
information exists along one axis. However, even in these
situations the one-dimensional analysis ends up neglecting
potentially meaningful information in the other dimension,
or in the combination of the dimensions. To address this we
instead embed the data in the complex plane, which allows us
to take two-dimensional coordinates and express them using
a single complex variable. We are then able to convert our
time series directly into the frequency domain. To our knowl-
edge converting mouse coordinates to the complex plane has
not been done before.

Outside of advancing methods in mouse tracking, we
believe that our results help to characterize how high per-
formers use their mouse. Our results indicate that behaviors
associated with accurate game play produce long-range anti-
correlations in the mouse movements. This result contrasts
with some existing literature, which has found examples
where long-range correlations are indicative of health or per-
formance in human systems (Voytek et al., 2015; Hausdorff,
2007; Diniz et al., 2011). However, we could interpret accu-
rate play in our task as attempting to synchronize spatially
with a pseudo-random target, which does not have these
long-range correlations. This is similar to the way partici-
pants attempting to synchronize with a chaotic metronome
approximate its global multi-scale structure (Stephen et al.,
2008). In the current experiment, rather than produce the
long-range correlations they normally would in a repetitive
task like walking or saying the same word repeatedly (Kello,
Anderson, Holden, & Van Orden, 2008b), participants adapt
themselves to the structure of the task. Additional hypothesis
testing is needed to confirm this.

We believe this analysis could serve as a foundation for
future research. In most natural settings user data cannot be
precisely segmented into individual movements, and so tra-
ditional approaches to studying mouse movements cannot
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be applied. But there is often a desire to be able to gather
data about such phenomena as affective states or engage-
ment. These phenomena typically unfold at temporal scales
much longer than individual mouse movements. For exam-
ple, consider an immersive video game such as a first person
shooter in a three-dimensional environment, which involves
extended periods of play during which players provide con-
tinuous input to the game. Developers often want to know
if changes they make to the game improve the experience
of players, which is difficult to obtain via direct reporting.
Methods like these could be used to study how players’
dynamics change in response to changes in the game, which
could be indicative of player performance, engagement, team
compatibility, ease of use, sentiment, etc. Any sufficiently
large subset of mouse tracking data with some known char-
acteristic could be used to define a space analogous to the
accuracy space we used here. For example, data from play-
ers who report strong vs. weak team compatibility could be
used to define a team compatibility space, which could then
be used to identify new players for a team.An examplewhere
this type of approach is applied to measuring task engage-
ment is Meyer (2022).

Future work extending this approach could also involve
the development of an AI simulation that plays the Whac-
A-Mole game. Different parameters and strategies could be
programmed into the simulation and our approach could be
tested for its ability to detect the presence or absence of those
particular parameter settings and strategies.

This research could also provide insight into other compo-
nents of cognition, such as response conflict, uncertainty, the
time course of perception vs. cognition in tasks, etc., which
have traditionally been a focus of mouse tracking research in
cognitive science and psychology. To some extent, there is
a paradigm difference between these approaches and ours.
From our “embodied mind” and dynamical systems per-
spective (Dotov & Chemero, 2014; Kelso, 1995; Schmidt,
Carello,&Turvey, 1990), we are revealing how spatiotempo-
ral structures in behavior canbe related to performance, based
on complex profiles of long-term and short-term correlations.
We are not looking for specific components of cognition in
the data or “component-dominant dynamics” (Van Orden
et al., 2003). Rather, we are looking at dynamic interac-
tive patterns in the movement space, and making minimal
assumptions about cognitive modules that may or may not be
involved (Spivey, 2023).We are not ideologically opposed to
componential studies, and could see future work integrating
insights from both approaches. Our SVD approach allows an
arbitrary data stream to be studied for its general character-
istics, but this could then be used alongside more traditional
studies, in the spirit of pluralism in cognitive science (Dale,
Dietrich, & Chemero, 2009; Yoshimi, 2023).

Broadly speaking, the approach is more data driven than
task or theory driven. The method is meant to identify com-
plex patterns in a data set, and then to use these structures
for analysis and prediction. The details will vary from task
to task, and the results might not correspond directly to
any existing theoretical constructs. But even if the approach
is data driven, the methods are generalizable. The analysis
pipeline we developed can be applied to any unconstrained
behavioral task, and used to identify and interpret behaviors
even when they are difficult to put into words. Consider soc-
cer, basketball, or any team sport. Many features of these
behaviors are the result of extremely complex interactions
that have no pre-existing name or designation. Yet there is
consensus among good players about best practices. As a
result, a soccer teacher might just say “kick like this.” These
methods can be used to identify such behaviors in time series
data and to associate them with a space describing to what
degree a person performs the behavior. Especially in online
settings where such behaviors are common and the data rela-
tively easy to gather, we expect these methods to be valuable.

Conclusion

Using a simple online game we studied what information is
available in unconstrained mouse traces. We used SVD to
analyze the data, which allowed us to systematically explore
it, while maintaining interpretability and building toward
concrete hypotheses for future experiments. We found that
the time series of mouse movements can reveal that accu-
rate players play systematically differently than non-accurate
players. In addition, the components of our SVD matrix fac-
torization revealed that components which best-described
accurate players had a power law structure. We then applied
DFAand found that the behavior of accurate players is indeed
characterized by a Hurst parameter that differs from that of
inaccurate players. These findings also confirm the existence
of high level information in mouse trace data. Thus there
could be value in associating this type of data with more
subjective and subtle states, such as levels of engagement,
motivation, or affect.6
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