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Abstract
With the recent development of easy-to-use tools for Bayesian analysis, psychologists have started to embrace Bayesian 
hierarchical modeling. Bayesian hierarchical models provide an intuitive account of inter- and intraindividual variability and 
are particularly suited for the evaluation of repeated-measures designs. Here, we provide guidance for model specification 
and interpretation in Bayesian hierarchical modeling and describe common pitfalls that can arise in the process of model 
fitting and evaluation. Our introduction gives particular emphasis to prior specification and prior sensitivity, as well as to 
the calculation of Bayes factors for model comparisons. We illustrate the use of state-of-the-art software programs Stan and 
brms. The result is an overview of best practices in Bayesian hierarchical modeling that we hope will aid psychologists in 
making the best use of Bayesian hierarchical modeling.
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Introduction

Imagine a typical scenario in the life of an experimental psychol-
ogy graduate student: You have just collected a large data set, 
either online or in the lab. Each participant has spent one valu-
able hour completing many trials per experimental condition. 
Now it is time to analyze the data, and your supervisor suggests 
that you run a within-subjects analysis of variance (ANOVA). 
This procedure requires you to first aggregate the data by condi-
tion and participant. Doing so reduces your data set from 10,000 
rows to just 400. Reducing the data by aggregation makes you 
a bit queasy. It feels like your efforts in data collection and the 
participants’ time are not valued. You know there needs to be a 
better way. And there is: hierarchical modeling.

Just as in the scenario above, experiments in psychology 
are often implemented in a repeated-measures design where 
participants respond to several items, stimuli, or conditions. 
From a data analysis perspective, such a design implies that 
observations are nested within participants. The statisti-
cal and the psychological literature agree that the optimal 
analysis accounting for such a data structure is hierarchical 

modeling (e.g., Efron & Morris, 1977; Lee, 2011; Rouder & 
Lu, 2005). And yet it is still not the norm to apply hierarchi-
cal modeling to data from psychological experiments. One 
reason for this is that hierarchical modeling is more difficult 
than familiar procedures such as ANOVA.

With the recent developments in software, hierarchical 
modeling has become increasingly accessible. In addition, 
many researchers have argued that hierarchical modeling 
is easier and the interpretation is more intuitive when it is 
done in a Bayesian statistical framework (e.g., Lynch, 2007; 
Rouder et al., 2013; Rouder & Lu, 2005). However, there 
are challenges to the Bayesian way of hierarchical mod-
eling (Rouder & Lu, 2005). These challenges, such as the 
choice of priors, the need for model comparisons of highly 
complex models, and programming skills required to use 
state-of-the-art software solutions, can make research-
ers hesitant to use this approach. We believe that existing 
introductions to Bayesian hierarchical modeling do not 
adequately address these challenges. For example, they use 
outdated software (Rouder et al., 2013), do not cover model 
comparison (Rouder & Lu, 2005), or do not discuss prior 
specification (Shiffrin et al., 2008). This paper aims to make 
Bayesian hierarchical modeling available to a wider public 
by providing:

• a comparison of and guidance for the use of two software 
packages,

• guidance on prior specification, and
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• practical instructions for Bayes factor model comparison.

Our tutorial is directed at researchers who have a basic 
conceptual understanding of Bayesian inference and 
parameter estimation and are planning to perform more 
complex Bayesian analyses of psychological phenomena. 
We hope to achieve a balance of detail and overview—
while we want to provide guidance for a full Bayesian 
workflow, similar to Gelman et al. (2020) and Schad et al. 
(2021, 2022), we don’t shy away from in-depth expla-
nations for the most curious scientists. To ensure that 
a broad audience is able to follow the tutorial, we limit 
and carefully explain equations. However, rudimentary 
knowledge of calculus is advantageous to fully understand 
the Bayesian analyses.

The application of Bayesian hierarchical analysis will 
be illustrated using a digit classification task collected 
by Rouder and Lu (2005). In an experimental task, par-
ticipants repeatedly indicated whether a target digit (i.e., 
2, 3, 4, 6, 7, or 8) was larger or smaller than 5. The par-
ticipants in the task performed multiple trials per con-
dition (i.e., digit). Therefore, observations are nested in 
participants. Our analyses focus on two effects that can 
potentially occur in this digit classification task: the digit 
effect and the side effect. According to the symbolic dis-
tance hypothesis (Moyer & Landauer, 1967), processing 
of numbers is an analog process. If numbers are closer on 
the number line, we may confuse them more, and compar-
ing them is more difficult. In line with this hypothesis, 
the digit effect postulates that response times (RTs) are 
slower when digits are closer to 5. Additionally, we may 
hypothesize that RTs are affected by whether the target 
digit is smaller or larger than 5, yet it is unclear which 
side of 5 would lead to faster or slower RTs. The digit 
classification task is a standard task that usually would be 

analyzed in a 3 (digit, closest to 5, further away from 5, 
furthest away from 5) by 2 (side, greater or smaller than 
5) within-subjects ANOVA. In this tutorial, we show how 
inferences can be improved using a hierarchical Bayesian 
model instead.

Why multilevel modeling?

Before diving into hierarchical modeling, let us consider 
two alternative approaches: Analyzing aggregated data and 
analyzing the data separately for each participant. Analyses 
of aggregated data such as the ANOVA from the scenario 
above examine a general effect that is assumed to be consist-
ent across subjects. For instance, when investigating whether 
there is an effect of digit on RT, the mean RT for each par-
ticipant is computed for each digit-condition, and a repeated-
measures ANOVA is conducted on these aggregated scores. 
Analyses of aggregated data cannot investigate whether a 
trend is consistent across participants. Therefore, when this 
option is applied and individual variability is ignored, the 
general trend can be an inaccurate representation of the true 
general trend (Haaf & Rouder, 2017; Rouder et al., 2013; 
van Doorn et al., 2021).

A pattern where the general trend does not reflect indi-
vidual trends is shown in Panel A of Fig. 1. The slopes of the 
gray lines reflect individual trends, and some of them differ 
considerably from the general trend shown as the slope of 
the blue line. If every participant takes part in each condi-
tion, the variability among persons affects all conditions, 
thus inducing a correlation across conditions. For example, 
participants in a digit classification task repeatedly respond 
to target digits inducing a correlation between the responses 
to the target digits, such as between target digit 3 and tar-
get digit 4. Therefore, analyses on aggregated data do not 
appropriately account for differential experiment effects (van 

Fig. 1  Panel A shows the average response times in seconds for 
two conditions of the digit classification task (i.e., digits 3 and 
4). The gray lines represent the average inter-individual effects, 
and the blue line the aggregated effect over all individuals. 

Panel B shows how individual estimates shrink towards the gen-
eral trend. Sample represents the observed effect per participant 
in seconds, while Model represents the estimated effects per 
participant
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Doorn et al., 2021, 2023). As a result, the type I error rate 
of a test of the effect increases: there is a higher probability 
of concluding that there is an effect when there is no effect 
(Rouder & Lu, 2005).

A second alternative is to conduct an analysis on each 
participant’s data independently. For example, in the digit 
classification task, we would estimate one digit effect per 
person (cf. the gray lines in Fig. 1A), but no overall effect 
(cf. the blue line in Fig. 1A). Therefore, when analyzing 
participant data independently, it is hard to draw any general 
conclusions.

It is clear that neither of the alternative approaches yields 
satisfactory results by itself. Conceptually, a hierarchical 
analysis provides a compromise between the aggregated and 
independent approach by drawing benefits from each method. 
The motivation for hierarchical models, as well as their gen-
eral mathematical structure, has been covered by several (tuto-
rial) articles (e.g., Efron & Morris, 1977; Singmann & Kellen, 
2019; West et al., 2022) as well as textbooks (e.g., Gelman & 
Hill, 2006; Hox et al., 2017; Nicenboim et al., 2023).

In hierarchical analyses, the general or overall effect is 
sometimes called the fixed effect, and the individual-specific 
deviations from this effect are in that case referred to as ran-
dom effects (Rouder & Lu, 2005). We can also estimate indi-
vidual effects, not as deviations from an overarching effect, but 
as effects for each individual, as obtained from a per-partici-
pant analysis. Throughout this tutorial, we will use the terms 
general effect, individual deviation, and individual effect.

If estimated for each participant independently, 
observed individual effects are quite variable because 
they are perturbed by sample noise. In hierarchical mod-
eling, these individual effects are optimally and automati-
cally corrected towards the general trend (Efron & Mor-
ris, 1977). This phenomenon, also called “shrinkage,” is 
illustrated in Panel B of Fig. 1. The rightmost observation 
in the figure in sample is quite large compared to the 
other observed effects. The estimated effect (green point) 
is drastically corrected towards the mean. Conversely, the 
general trend is only influenced slightly by individuals 
showing a highly divergent trend. By adding the indi-
vidual variability to the model, we no longer assume inde-
pendence between observations, but the overall effect in 
the model leaves open the possibility to generalize the 
effect. Therefore, hierarchical analysis can be considered 
a middle ground between an independent analysis and an 
analysis of aggregated data.

The Bayesian framework offers a more intuitive 
approach for hierarchical modeling (Lynch, 2007; Rouder 
& Lu, 2005). The flexibility of the Bayesian approach facil-
itates the implementation of complex hierarchical models 
(Rouder et al., 2013). It also allows for the inclusion of 
prior knowledge into the analysis, as well as the monitoring 
of evidence for specific hypotheses as the data accumulate 

(Wagenmakers et al., 2018). A complete discussion of the 
Bayesian approach is beyond the scope of this manuscript. 
We refer the interested reader to Etz and Vandekerckhove 
(2018) and Wagenmakers et al. (2018).

Model specification

In the following section, we specify two models that can be 
used for our application example: a normal and a log-normal 
model.1 We are aware that many psychologists do not engage 
with equations on a daily basis. In this section, however, we 
try to accessibly summarize the key considerations of model 
specification. We encourage everyone to read on and not skip 
the section. Additionally, we provide a non-technical verbal 
summary.

Throughout the section, we assume that each observation 
Yijk is the response time from participant i in trial k of condi-
tion j. The condition j is the digit presented to the partici-
pant, and can take the values 2, 3, 4, 6, 7, and 8. We further 
assume that the digit side (x) is recorded using effect coding 
where a value of −0.5 indicates that the digit is smaller than 
5, and a value of 0.5 indicates that the digit is larger than 5. 
Additionally, we assume that the digits presented in the trial 
are dummy-coded in the data using four variables (u, v, w, z). 
If digits 2 and 8 were presented, all four variables would be 
zero. The dummy variables represent the digits 3 (u), 4 (v), 
6 (w), and 7 (z), and each take the value 1 if the respective 
digit was presented in the trial, and 0 if it was not (for more 
on contrast coding, we refer to Pinheiro & Bates, 2006; and 
Singmann & Kellen, 2019).

Normal model

In the normal model, the observation Yijk is assumed to come 
from a normal distribution. The mean of this normal distri-
bution is predicted by the person-specific intercept γ, the 
effect of the side (i.e., smaller or larger than 5, β) and the 
effect of the distance from 5 (i.e., symbolic distance effect, 
δs). The variance is represented by σ2. This is captured in 
the following equation:

where
(1)

Yijk ∼ Normal
(

�i + xj�i + uj�7i + vj�6i + wj�4i + zj�3i, �
2
)

,

xj =

{

1

2
j < 5

−
1

2
j > 5,

uj =

{

1 j = 7

0 otherwise,
vj =

{

1 j = 6

0 otherwise,

1 Onlin e Suppl ement  A provides the parameterization for models of 
aggregated and individual data, to illustrate the difference with hier-
archical models.

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/A%20-%20Model%20Parameterization%20/Online-Supplement-A%2D%2D-Model-Parameterization-for-Aggregated-and-Individual-Models.pdf
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The model equation enables us to compute the expected 
response time Yij for a participant i when presented with a 
specific probe. For example, if participant i = 1 is presented 
with digit j = 7, xj takes the value − 1

2
 and uj takes the value 1. 

The parameters vj, wj, and zj take the value zero, such that the 
equation for the expected value reduces to: �i +

1

2
�i + �7,i . 

Let us assume that participant 1’s mean response time 
across all items is γ1 = 0.5, they respond generally faster to 
digits to the right of 5, as expressed by β1 = 0.2, and they 
respond slower to digit 7, given by δ7, 1 = 0.25. Then their 
expected response time for the digit 7 can be calculated by 
0.5 − 0.5 × 0.2 + 1 × 0.25.

The intercept γi, the side effect β, and the digit effects δ 
are person-specific. This means that for these parameters, the 
model will produce one estimate for each participant. The 
multilevel model assumes that these individual-level effects 
in turn follow a normal distribution:

The means (μγ, μβ, μδ) of these normal distributions 
represent the general expected effect; for example, μβ rep-
resents the expected effect of digit side across individu-
als. The variances ( �2

�
 , �2

�
 , �2

�
 ) represent the individual 

variation. Therefore, the individual level depends on 
another level, the overall effect level, containing μγ, μβ, 
μδ, �2

�
 , �2

�
 , and �2

�
.

Log‑normal model

A normal model may not be appropriate in the case of more 
complex theories, hypotheses, or data structures. For exam-
ple, the data in the example are response times. Response 
times cannot be negative. The normal model, however, can 
yield negative values. When using the normal model for 
response times, we are assigning probability to negative 
values that are not possible. This could be problematic. 
In addition, RT distributions are right-skewed. A better 
representation of the data at hand is therefore given by a 
log-normal model (Schramm & Rouder, 2019). This means 
that Eq. (1) has to be adjusted:

wj =

{

1 j = 4

0 otherwise,
zj =

{

1 j = 3

0 otherwise.

(2)

�i ∼ Normal

(

�� , �
2
�

)

,

�i ∼ Normal

(

�� , �
2

�

)

,

�7i ∼ Normal

(

��7
, �2

�7

)

,

�6i ∼ Normal

(

��6
, �2

�6

)

,

�4i ∼ Normal

(

��4
, �2

�4

)

,

�3i ∼ Normal

(

��3
, �2

�3

)

.

Note that the only change in the model formulation is the 
change from a normal distribution to a log-normal distribu-
tion. The density function describes the probability model 
that is assumed to underlie the data. When the parameters 
of this probability model are known, the joint probability of 
the data can be inferred from the density function. The log-
normal distribution only assigns probability to positive data 
values, and is, just as the RT distributions, right-skewed. 
Therefore, the log-normal distribution is a better match 
for the RT data. The location parameter of the log-normal 
distribution is described through the same combination of 
parameters as the mean of the normal model. However, it 
has a different interpretation. For example, for a location 
parameter of μ = 0 and a scale parameter of σ2 = 1, the mode 
of the log-normal distribution is 0.368, and the mean is 1.65.

Summary

In summary, the models are placed directly on the raw RT data. 
The only difference between the normal and the log-normal 
models is the probability distribution. The normal model just 
assumes a symmetric normal distribution that can take on any 
value. The log-normal model assumes a log-normal distribu-
tion, which is restricted to positive values and has a right skew.

Both the normal and the log-normal models contain the fol-
lowing parameters: γi corresponds to the participant’s overall 
response time, βi corresponds to the participant’s side effect, 
and the four δ·i correspond to the effects between the digits 
furthest away from 5 (2 or 8) and the other digits. These person-
specific effects all come from parent distributions. This results 
in the hierarchical structure shown in Fig. 2. The figure high-
lights the relationship between the parameters and the data.

Up to now, we have specified models without a cor-
relation between the individual effects. This means, for 
instance, that we do not expect the estimations for the indi-
vidual effects δ7, i and δ3, i to be related. However, in cases 
where we would expect the estimation of individual effects 
to be related, we could estimate the correlation coefficient 
between individual effects. This would add complexity to 
the model. For the sake of the tutorial, we will focus on the 
models without individual effect correlation, but we illus-
trate the estimation of the model with correlation between 
the individual effects in Onlin e Suppl ement  C and D.

In Bayesian modeling, prior distributions are needed 
to complete model specification. In the next section, we 
will take you through the process of setting these priors, 
followed by sections on Bayesian estimation and hypoth-
esis testing for both the normal and log-normal models. 
In every section, we will first explain the normal model, 
followed by an illustration of the log-normal model.

(3)Yijk ∼ LogNormal
(

�i + xj�i + uj�7i + vj�6i + wj�4i + zj�3i, �
2
)

.

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
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Prior settings

Bayesian analysis requires the specification of prior dis-
tributions. Prior distributions are probability distribu-
tions on model parameters that specify beliefs about the 
relative plausibility of parameter values before seeing 
the data (Wagenmakers et al., 2018). These prior beliefs 
can then be updated with the data to obtain the posterior 
beliefs about the model parameters, following Bayes’ rule 
(Jeffreys, 1961).

For our models, priors are needed on the general 
effects (μγ, μβ, μδ) and on the variances ( �2

�
 , �2

�
 , �2

�
 , and 

σ2), as shown in Eq. (2). For each of these parameters, we 
specify our beliefs as a probability distribution. For exam-
ple, if we expect small side effects in the digit classifica-
tion example, the prior distribution on μβ should have its 
peak close to zero. Large values for the variance param-
eters indicate large individual differences, whereas values 
close to zero indicate that effects are similar across indi-
viduals (Haaf & Rouder, 2017). If we expect little varia-
bility of side effects between people, the prior assigned 
to σβ should also have its peak close to zero. The width of 
prior distributions expresses how certain we are about the 
parameters before seeing the data. For example, if we 
want to express that we are certain that the side effect is 
zero, we can formulate a prior that allocates all probabil-
ity mass to a parameter value of zero.

Fear of commitment

In many cases researchers fear committing to prior set-
tings because they are unsure about their choices for the 
type and settings of the distribution. Therefore, they tend 
to choose wide priors to indicate little prior knowledge 
about the parameter values (Aczel et al., 2018). These 
include default priors offered by programming packages, 
such as rstan (Stan Development Team, 2019a; illustrated 
in Onlin e Suppl ement  B) and brms (Bürkner, 2017, 2018). 

Wide priors are priors that allocate (approximately) equal 
probability density to a great range of values, such as a 
uniform distribution without bounds (Gelman, 2006). 
However, wide priors can be problematic. First, since the 
distribution is spread out across a wide range of values, 
the probability density on any specific parameter value is 
very low. Therefore, any effect is unlikely under the prior, 
as a wide range of effects is deemed plausible. This influ-
ences model comparisons: the support for the null hypoth-
esis becomes increasingly large. This is also referred to as 
the Jeffreys–Lindley paradox (Lindley, 1957).

Another important issue is that wide priors are often 
improper probability distributions (Hobert & Casella, 1996). 
A prior is proper if two conditions hold: (1) All values of the 
probability distribution are equal to or greater than zero, and 
(2) the probability distribution sums to 1 for discrete data or 
integrates to 1 for continuous data. An example of a proper 
and an improper probability distribution are provided in 
Fig. 3. The figure shows two hypothetical priors for param-
eter θ. The first condition can be assessed by checking the 
y-values—both priors have only positive values as function 
output (0.1, 0.2, and 0.4). To assess the second condition, we 
need to sum up the function values. Panel A shows a proper 
distribution where the values sum to 1; panel B shows an 
improper distribution where the values sum to 1.2.

A more common example of an improper prior is a uni-
form prior distribution ranging from minus infinity to infin-
ity. In the case of improper priors, it is often impossible to 
obtain correct estimation of general and individual effects 
in hierarchical models because the resulting posteriors will 
again be improper probability distributions. However, even 
proper priors can result in improper posteriors (Hobert & 
Casella, 1996). Although estimation should not be possi-
ble in this situation, statistical software might still provide 
results without notifying the user that the posterior distri-
bution does not exist. If users are not aware of the impro-
priety problem, this can result in misleading conclusions. 
Therefore, it is important to check whether (a) the priors are 

Fig. 2  Hierarchical structure of the normal and log-normal models 
for the digit classification task

Fig. 3  Two hypothetical priors for a discrete parameter θ. A A proper 
probability distribution that sums to 1. B An improper probability 
distribution that sums to 1.2

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/B%20-%20Default%20Priors%20Rstan/Online-Supplement-B%2D%2D-Default-Priors-Rstan.pdf
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proper and (b) the priors result in proper posteriors. Unfor-
tunately, there is no fail-safe method that guarantees proper 
posteriors for hierarchical models. The best approach is to 
choose well-reasoned informative priors for the model, for 
instance, by using the proposed four-step procedure below. 
Priors that are proper and not too diffuse will in most cases 
lead to proper posteriors.

Procedure

We propose four steps for choosing suitable priors for Bayes-
ian hierarchical models (see Fig. 4). We first present the 
steps and then apply them to choose suitable priors for the 
parameters μγ, μβ, μδ, �2

�
 , �2

�
 , �2

�
, and σ2 in our example.

Step 1: Distribution family

The first step in specifying a prior distribution is to find a 
suitable distribution family. For instance, the prior plau-
sibility of parameter values can be expressed through a 
normal, an inverse gamma, or a Student t-distribution. 
These distributional families have different shapes and 
a different support, as illustrated in Fig. 5. For example, 
the inverse gamma distribution is limited to non-negative 
parameter values and has a positive skew. The normal and 
Student t-distribution both have support over the real line; 
however, the Student t-distribution has wider tails, that 
is, it assigns a higher plausibility to values that are on the 
extremes of the distribution.

The support of the prior distribution should cover all 
theoretically possible parameter values. For example, if a 
parameter cannot have negative values, such as a standard 
deviation, the inverse gamma distribution would be a suit-
able choice. Conversely, if a parameter can take positive 
and negative values, the normal and Student t-distribution 
would be suitable.

Note that although distributions within a distributional 
family share the same functional form, they can differ con-
siderably in their shape and location. The exact appearance of 
a prior distribution is controlled by a set of hyperparameters, 
for example, the mean and variance for the location and scale 
of a normal prior. In the next section, we will give some guid-
ance for specifying these hyperparameters.

Step 2: Set hyperparameters

The location, scale, and sometimes shape of the selected distri-
bution can be adjusted by choosing adequate hyperparameters. 
The goal is to adjust the prior to reflect which parameter values 
we deem most plausible and how much uncertainty there is. For 
instance, panel A of Fig. 5 illustrates that increasing the mean 
in the normal distribution leads to a shift of location: higher 
parameter values are deemed more plausible according to the 
pink distribution than the green distribution. Panel B shows 
how uncertainty can be specified, for example by decreasing 
the shape of the inverse gamma distribution while keeping the 
scale constant: the orange distribution assigns probability to a 
wider range of values than the green distribution.

For this step, it is important to consider the scale on which 
variables are measured. For instance, RTs could be measured 
in seconds or in milliseconds. This means that if a researcher 
expects a response time of one second, they will formulate a 
prior distribution with a mean of 1 if RT is measured in sec-
onds, or formulate a prior distribution with a mean of 1000 if 
RT is measured in milliseconds. Similarly, the measurement 
scale will also affect the width of the specified prior.

Step 3: Prior predictions

A key advantage of model specification with priors is that we 
can obtain predictions on what the data generated from the 
model would look like (Etz et al., 2018; Lee & Vanpaemel, 
2018). These prior predictions allow us to make the implica-
tions of our specified priors more concrete. Researchers can 
look at relevant statistics that summarize the simulated data 
and decide whether they correspond to reasonable observa-
tions for their specific research context. If the simulated data 
are in line with the researchers’ expectations, the priors can 
be used for the analysis. If the simulated data do not match 
the expectations, the priors have to be adjusted (step 4).

The simulation proceeds as follows: First, one random 
draw from each prior distribution is taken. This is plugged 
into the individual effect distributions [Eq. (2)]. Then, the 
probability of the model, such as specified in Eqs. (1) and 
(3), is used to simulate observations per condition. This 
means that for n participants, n random values for the model 
parameters are generated based on the priors, which will 
result in the k observations per j conditions. This process Fig. 4  Prior specification steps
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is repeated m times, where m is the number of simulations 
drawn. Note that the greater the number of simulations 
conducted, the closer one gets to the full picture because 
a greater number of samples are available from the prior 
distribution. Finally, we can visualize the simulated data. 
Figure 6 shows prior predictions for the key effects from 
the digit classification task. For this task, we mainly care 
about the side effect and digit effects corresponding to the 
βs and the δs from the model. Here, the prior predictions 
for the average side effect and the average digit effect across 
participants are depicted.

For step 3, the intention is not to compare the actual data 
of interest to the data predicted by the priors. Instead, the 
researchers’ expectations of plausible data are compared to 
the prior predictions. Therefore, prior predictive checks are 
conducted before looking at the actual data. If the prior pre-
dictions match the expectations, the priors can be used for 
the analysis. If they do not match the expectations, the priors 
need to be adjusted.

Step 4: Adjust

Based on the results of the prior predictions, it might be 
necessary to adjust the priors. Typically, the focus of adjust-
ments will be on finding adequate parameter values for the 
prior distribution, that is, on repeating step 2 and the follow-
ing steps of the prior specification process.

In the following two sections, we will provide a walk-
through of all four steps of prior specification for our two 
models of the symbolic distance effect.

Normal model

In the symbolic distance model, we have to specify priors 
for the parameters μγ, μβ, μδ, �2

�
 , �2

�
 , and �2

�
 . The parameters 

μγ, μβ, and μδ can be positive or negative. All variance terms 
( �2

�
 , �2

�
 , �2

�
 , and σ2) are constrained to be positive. If there is 

no information from previous studies, researchers might be 
inclined to use the default priors of software packages, often 
reasonably uninformative priors, as a starting point.

We take the reasonably uninformative priors as a starting point 
as well as specifying priors on different types of parameters. These 
priors were previously used as default priors in brms (Bürkner, 
2017). The prior on the group-level regression weights (μβ, μδ) is 
a normal distribution with a mean of 0 and a standard deviation 
of 1. The prior on the intercept μγ is a scaled and shifted Student 
t-distribution with three degrees of freedom, a location parameter 
of 1, and a scale parameter of 10. brms specifies priors on standard 
deviations ( 

√

�2 ) instead of variances. For the normal model, this 
means that priors are set on σγ, σβ, σδ, and σ, instead of on �2

�
 , �2

�
 , 

�2
�
, and σ2. The prior on the standard deviations is a central, scaled 

Student’s t-distribution with three degrees of freedom and a scale 
parameter of 10 that is truncated at zero. To summarize, the start-
ing priors would be set the following way:

The prior distributions specified on the standard devia-
tions can be transformed to prior distributions on variances 
(var). Prior distributions on variances have a smaller scale 

(4)
�� ∼ Student

�

s t(3, 1, 10),

�� ,�� ∼ Normal(0, 1),

�, �� , �� , �� ∼ Truncated − Student
�
s t

+(3, 0, 10).

Fig. 5  Common probability density distributions that may be used 
as priors. Panel A shows normal distributions varying in mean and 
standard deviation. Panel B shows inverse gamma distributions that 

differ in the shape and scale parameter. Panel C shows Student’s t-dis-
tributions that differ in the location and scale parameter. For all three 
t-distributions, the degrees of freedom are set to 3



 Behavior Research Methods

1 3

than priors on standard deviation (sd). Note, however, that the 
transformation of the prior distributions is not as simple as 
the transformation of the parameter itself. If we formulate a 
prior on standard deviations, there is always an implied prior 
on the variances as well. If we think of the distribution as f(x), 
x can either be defined as 

√

(var) , if we formulated the prior 
on the standard deviation, or x can be defined as sd2 if we 
formulated the prior on the variance. From this, we can derive 
the implied distribution f(var) or f(sd). Notably, this is not the 
same as calculating 

√

(f (x)) or f(x)2. To transform the priors on 
standard deviations to variances, we try to find the parameters 
that match the prior distribution to the implied distribution. In 
Onlin e Suppl ement  J, we provide R code with a numeric solu-
tion to the transformation. For the brms priors, we obtain the 
following implied prior distributions on variances:

The priors are visualized on the right side of Fig. 7. 
Note that these prior distributions are on the group-level 

(5)�2
�
, �2

�
, �2

�
, �2

∼ Student
�

s t(3, 0, 1.48).

parameters and represent the uncertainty about the general 
effect. The uncertainty about individual effects is represented 
by the marginal prior distribution on the left. This distribu-
tion takes the prior variability of the mean and variance as 
well as the implied individual variability into account.

We will continue with step 3 of the prior specification 
process and check what the expected data would look like 
according to the selected priors. The results of the prior pre-
diction for the symbolic distance effect with the priors from 
Eq. (4) with the number of participants n = 10, the number 
of trials per condition k = 60, and the number of simulations 
m = 1000 are shown in panel A of Fig. 6. Code for the simu-
lations can be found in Onlin e Suppl ement  J.

The figure shows the difference in RTs between digits for 
every repetition averaged across subjects (i.e., 1000 gray 
dots per effect). The blue dots represent the mean effect. 
Using the reasonably uninformative priors, the mean effects 
are expected to be around zero, with a mean effect of zero. 
However, the range around this mean is very wide, ranging 

Fig. 6  Side and digit effects from predicted data. Violins represent the 
distribution of predicted effects across 1000 simulation runs. The blue 
points are the average effects across simulations. Panel A shows the 
prior predictions for the normal model based on the start priors. Panel B 

shows the prior predictions for the normal model based on the selected 
priors. Panel C shows the prior predictions for the log-normal model 
based on the priors chosen for the normal model. Panel D shows the 
prior predictions for the log-normal model based on the selected priors

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/J%20-%20R%20code/Prior%20transformation
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/J%20-%20R%20code/Figures
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from −10 to 10 second effects. Most of the trials are in a 
smaller range of −5 to 5 second effects. This means that 
according to our priors, we would expect the effects to 
fall in this range. For this task, where participants have 
to respond as fast as possible, such large RT effects are 
unlikely. Therefore, it seems reasonable to adjust the priors.

The normal distribution on μβ and μδ seems reasonable if 
we assume that a two-sided hypothesis about the symbolic dis-
tance effect is tested. However, we expect less variance around 
this mean. Therefore, we decrease the setting for the variation. 
The wide tails of the Student t-distribution could be one of the 
reasons for the high range in variation. We change the prior for 
μγ to a normal distribution that has more narrow tails. As RTs 
cannot be negative, we adjust the prior to be positive only by 
truncating the normal distribution using a lower bound of zero. 
Finally, we would like to use a more common conjugate prior 
for the variances to ensure that we obtain a proper posterior 
distribution.2 3 Therefore, we choose an inverse gamma distri-
bution. We can also be more specific about the expected RTs. 
Based on our knowledge of these types of tasks (e.g., Haaf & 

Rouder, 2017), it seems highly plausible that participants will 
respond within a second or two. We would expect effects in the 
range of 10 milliseconds to 100 milliseconds. We adjust our 
priors using these new distribution types and settings, evaluate 
the prior predictions (shown in panel B of Fig. 6), and arrive 
at the following priors:4

Setting equivalent prior distributions on the standard devia-
tions instead of on the variances results in the following priors:

(6)

�� ∼ Truncated − Normal
+(0.5, 1),

�� ∼ Normal(0, 0.09),

�� ∼ Normal(0, 0.09),

�2
∼ Inverse − Gamma(3, 0.7),

�2
�
∼ Inverse − Gamma(3, 0.7),

�2

�
∼ Inverse − Gamma(3, 0.5),

�2

�
∼ Inverse − Gamma(3, 0.5).

Fig. 7  Visualization of starting prior settings for the normal model. On the right, the prior distributions on general effects parameters are shown. 
On the left, the implied distribution of the individual effects for every parameter based on these priors are presented

2 Conjugate priors result in posterior distributions that belong to the 
same distribution family as the prior distribution (Fink, 1997a). For a 
normal model, these are the normal distribution for the mean and the 
inverse gamma distribution for the variance.
3 However, in rstan, non-conjugate priors are commonly applied 
(e.g., Gelman, 2006).

4 Because response times cannot be negative, the prior for the overall 
baseline μγ is a truncated normal with a lower bound of zero.

(7)

�� ∼ Truncated − Normal
+(0.5, 1),

�� ∼ Normal(0, 0.3),

�� ∼ Normal(0, 0.3),

� ∼ Inverse − Gamma(13.8, 6.3),

�� ∼ Inverse − Gamma(13.8, 6.3),

�� ∼ Inverse − Gamma(13.8, 5.3),

�� ∼ Inverse − Gamma(13.8, 5.3).
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The adjusted priors are visualized in Fig. 8. The figure 
shows that the adjusted priors assign their highest probabil-
ity density to a smaller range of values and are, therefore, 
more specific than starting priors presented in Fig. 7. In 
addition, the shape of the distribution is different for the 
individual variation, resulting in a higher probability for val-
ues closer to zero. Panel B of Fig. 6 shows the predictions 
of the normal model with adjusted prior distributions. Most 
effects now range between −0.5 and 0.5 seconds. This aligns 
better with our expectations based on existing literature, but 
still allows for a considerable uncertainty about the true size 
of the effects.

Log‑normal model

We follow the same procedure for prior specification in 
the log-normal model. As before, we prefer to apply con-
jugate priors. The conjugate priors that we applied to the 
normal model are also conjugate priors for the log-normal 
model (Fink, 1997b). For instance, with a normal distri-
bution as prior for the mean of the log-normal model, we 
assume that the mean of the parameter can be negative, 
zero, or positive, and assign a higher probability to values 
closer to zero. If the mean of the log-normal distribu-
tion is smaller than zero, this means that the peak of the 
log-normal distribution moves closer to zero, i.e., that 
response times are quicker but still larger than zero. When 
applying the normal distribution as prior, the posterior of 
the mean in the log-normal model will result in a normal 
distribution as well. As a starting point, we can use the 
adjusted priors of the normal model and perform a prior 
prediction, shown in panel C of Fig. 6. These priors result 
in a slightly higher variance in RTs than we would expect, 
and, importantly, the mean response time differences are 
not centered around zero in all conditions. This pattern 
is inconsistent with our expectations, which means that 
prior distributions for the log-normal model need to be 
adjusted.

The transformation of the prior distributions is not 
as simple as the transformation of the parameter itself. 
Panel C shows that with the same priors as for the normal 
model, we obtain different data for the log-normal model 
compared to the normal model (panel B). Therefore, we 
adjusted the priors until the simulated data matched our 
expectations and looked like panel B. This yields the fol-
lowing priors that result in the prior prediction shown in 
panel D of Fig. 6:5

Setting the same prior distribution on the standard devia-
tions instead of on the variances yields the following priors:

Prior sensitivity

In the previous sections, we decided on one set of prior distri-
butions for each of the proposed models. However, research-
ers may find it difficult to settle on a single set of prior distri-
butions in practice. This raises the question: What happens if 
you cannot decide on one prior? If several possibilities seem 
plausible, it is possible to use them all separately for the analy-
sis and investigate their influence on the analysis results. This 
is called a prior sensitivity analysis (Roos et al., 2015). Gen-
erally, when it comes to prior specification, it is important to 
be transparent and to provide a justification for the selected 
prior distributions (Stefan et al., 2022). Prior distributions are 
rarely inadmissible. However, as we demonstrated earlier, 
their usefulness in constraining model predictions can vary. 
Therefore, providing a justification of prior distributions in a 
paper can help readers gauge the generative quality of a pre-
sented model. When multiple justifiable prior distributions are 
applied to the same analysis, it is important to be transparent 
about this to avoid the impression of cherry-picking priors. If 
priors are chosen for their best fit to the data, this can lead to 
overfitting and spurious results. Prior sensitivity analyses, and 
transparency about the prior specification process more gener-
ally, can therefore help to increase trust in the research results.

Bayesian parameter estimation

In Bayesian statistics, parameter estimates are obtained from 
the posterior distribution. The posterior distribution captures 
the uncertainty regarding the parameter after seeing the data, 

(8)

�� ∼ Normal(−0.5, 1),

�� ∼ Normal(0, 0.005),

�� ∼ Normal(0, 0.005),

�2
∼ Inverse − Gamma(3, 0.3),

�2
�
∼ Inverse − Gamma(3, 0.3),

�2

�
∼ Inverse − Gamma(3, 0.01),

�2

�
∼ Inverse − Gamma(3, 0.01).

(9)

�� ∼ Normal(−0.5, 1),

�� ∼ Normal(0, 0.07),

�� ∼ Normal(0, 0.07),

� ∼ Inverse − Gamma(13.8, 4.1),

�� ∼ Inverse − Gamma(13.8, 4.1),

�� ∼ Inverse − Gamma(13.8, 0.7),

�� ∼ Inverse − Gamma(13.8, 0.7).

5 For the overall baseline μγ we adjusted the prior based on our expecta-
tion of the expected overall response times. A mean parameter of −0.5 
for the log-normal distribution corresponds to a mean response time of 1.
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Y. The mean of this distribution can be used as a point estimate 
for the parameter. The posterior distribution is calculated by 
updating the prior distribution using Bayes’ rule. For the sym-
bolic distance effect, we have a model with many parameters, 
so the posterior distribution is also multidimensional. Instead 
of writing out all the parameters, we replace all the model 
parameters with the vector θ, resulting in the joint posterior:

Typically, we are not interested in the distribution of all 
parameters together, but in the posterior of one parameter inde-
pendent of all the others. This posterior distribution is called 
the marginal posterior, and it is computed by integrating out all 
other parameters of the joint posterior. The marginal posterior 
distribution for the side effect μβ, for instance, is:

where θ now represents all parameters except for μβ. With 
an increasing number of parameters and an increasingly 

(10)
P(�|�)
⏟⏟⏟
Puposterior

= P(�)
⏟⏟⏟
Prior

×
P(�|�)

P(�)
⏟⏟⏟

Updating factor

.

(11)P
(

μ
β
|�

)

= ∫ P
(

�|μ
β
, �
)

P
(

μ
β

)

P(�)��

complex model structure, it is no longer possible to find ana-
lytical solutions for the multidimensional integrals involved 
in the posterior distributions. A solution to this issue is to 
sample from the joint posterior distribution using algorithms 
such as Markov chain Monte Carlo sampling (MCMC; for an 
introduction see van Ravenzwaaij et al., 2018), Gibbs sam-
pling (Chib, 1995), or Hamiltonian Monte Carlo sampling 
(Betancourt & Girolami, 2015). It is beyond the scope of 
this paper to go into detail on the algorithms, but we refer 
the interested reader to a tutorial paper on MCMC by van 
Ravenzwaaij et al. (2018), a conceptual introduction to Ham-
iltonian Monte Carlo by Betancourt (2018), and a summary 
of samplers by Green et al. (2015).

An approximation for the marginal posterior distribution 
can be obtained by assessing the empirical distribution of 
MCMC samples for the parameter of interest, disregarding 
the other parameters. Since the frequency of combinations of 
samples in the joint posterior is determined by their posterior 
plausibility, this procedure is equivalent to a multidimen-
sional integration across all other parameters.

Every sampling algorithm requires the specification of the 
number of samples (also called iterations) that are drawn from 
the posterior distribution. Furthermore, all MCMC sampling 

Fig. 8  Visualization of the adjusted prior settings for the normal model. On the right, the prior distributions on general effects parameters are 
shown. On the left, the implied distribution of the individual effects for every parameter based on these priors is presented
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methods have in common that results depend (somewhat) on cho-
sen starting values, that is, initial parameter values that are fed to 
the sampler in the first iteration. This dependence can be assessed 
if the sampling algorithm is repeated several times (i.e., chains) 
with different starting values. Since the first few iterations of a 
chain—often called warm-up or burn-in—are somewhat depend-
ent on the starting value, these samples are typically discarded.

Before interpreting the estimation results, one has to check 
whether the posterior distribution of the parameters has con-
verged, meaning that a stationary posterior distribution has been 
reached (Vehtari et al., 2021). We will explain these conver-
gence checks in more detail in the “Model diagnostics” section.

Software

There are many different programs available to fit Bayesian 
hierarchical models, that is, to obtain samples from the joint 
posterior distribution of parameters. In this tutorial, we focus 
on two of the most commonly used R packages, rstan (Stan 
Development Team, 2019a) and brms (Bürkner, 2017, 2018). 
We assume that readers are somewhat familiar with R. The 
package rstan provides the most modern algorithms and flex-
ibility in model setup. The package brms was created as an 
overlay to rstan and is based on the well-known lme4 syntax 

(Bates et al., 2015). The goal of brms is to ease the transition 
to Bayesian hierarchical modeling for novice users of Bayesian 
statistics. The packages work similarly for the normal and log-
normal models. In this section, we explain how a model can be 
fitted in each package using code snippets. In addition, we offer 
separate R Markdown files for each package in Onlin e Suppl 
ement s C–F that explain in more depth how to analyze the 
full symbolic distance effect model with the specific package.

rstan

 rstan allows the application of Stan (Carpenter et al., 2017), 
a probabilistic programming language, in R. The package 
uses a version of the Hamiltonian Monte Carlo (HMC) 
algorithm, No-U-Turn Sampler (NUTS; Hoffman & Gel-
man, 2014), for sampling. rstan requires two files: a .stan file 
containing the model specification and an R script contain-
ing the code for the model fitting. In the .stan file, the param-
eters, priors, and the probability distribution of the data are 
specified. An example .stan file of a simple, non-hierarchical 
normal model, where the variance is already known and the 
mean has to be estimated, is shown below (adapted example 
from Nicenboim et al., 2021, Chapter 10). The file is divided 
into three sections: data, parameters, and model.

data {

  int<lower = 1> N;             // Total number of trials 

  vector[N] y;                  // Score in each trial 

  real<lower = 0> sigma;        // The variance of the normal distribution 

}

parameters {

  real mu; 

}

model {

  // Priors: 

  target += normal_lpdf(mu | 0, 20);

  // Probability model: 

for(i in 1:N)

    target += normal_lpdf(y[i] | mu, sigma);

}

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment


Behavior Research Methods 

1 3

 The data section specifies the variables in the data 
set, as well as constant values in the model. For the 
symbolic distance effect model, the data section con-
tains the total number of observations, the partici-
pant index variable, the response time variable in the 
data set, the condition for every response time [side 
of the digit and the digit indicator, i.e., variables xj, 
uj, vj, wj, and zj from (1)], and the prior specification 
according to Eqs. (6) and (8). The parameters section 
specifies all parameters that are estimated. These are 
the general and individual effects. The last section, 
model, contains the probability function and priors, as 
specified earlier in this article. Instead of using y[i] ~ 
normal(mu, sigma) to estimate parameters, such as the 
mean from the example, we used the target specifica-
tion (for an in-depth explanation see Nicenboim et al., 

2021, Chapter 10). Both methods indicate in this case 
that y[i] is normally distributed with the mean mu and 
the variance sigma. However, the target method saves 
constant terms that are required for model comparison 
(Gronau et al., 2020) The .stan file for the symbolic 
distance effect, including explanations, can be found 
in Onlin e Suppl ement  K.

In the corresponding R file, the model is fitted to the data 
using the stan function, as shown below. In this function, it 
is possible to specify the number of iterations, chains, and 
warm-up samples in the Monte Carlo sampling procedure. 
Next to these specifications, the function requires a directory 
path to the .stan file and an R object of type list containing 
the data (here called myData_list). Every element of the data 
section in the .stan file needs to be specified with the same 
name in the data object.

model_fit <- stan(file = "./myModel.stan",  # Stan file with model  

data = myData_list,       # List with observed data and constants

iter = 4000,              # Number (Nr.) of iterations per chain

chains = 4,               # Nr. of chains 

warmup = 1000)            # Nr. iterations for warmup per chain

 The package rstan offers considerable flexibility. It is pos-
sible to specify the probability model and priors exactly as 
wished. However, this comes with the price of some technical 
knowledge. The commented code for fitting the full symbolic 
distance effect model using rstan can be found in Onlin e 
Suppl ement  C: Bayesian Hierarchical Modeling in rstan.

brms

The R package brms also allows for fitting Bayesian models 
using Stan. However, model specification and model fitting 
can be achieved using a much simplified R script alone. Model 
specification is based on a formula syntax that is similar to the 
notation in the popular lme4 package for frequentist hierarchi-
cal modeling (Bates et al., 2015). The formula is an object that 
specifies the dependent variable as a function of the independ-
ent variables. The ~ (tilde) separates the dependent variable 

(rt) on the left side from the independent variables on the 
right side. The formula distinguishes between general effects 
and individual deviations. The first part of the equation on the 
predictor side of the formula shown below (i.e., 1 + side + 
dif1 + dif2 + dif3 + dif4) represents the general effects. The 1 
represents the intercept, in the case of the symbolic distance 
effect μγ, and side and dif1 to dif4 represent the general effects 
of side and distance (μβ and μδ). Within the round brackets 
individual deviations and grouping variables are specified. In 
this case the grouping variable (ind) indicates that each par-
ticipant has an individual effect. In other cases effects might 
vary per item, block, or even the combination of participant 
and item. The double bar (||) indicates that the correlation 
between the parameters should not be modeled. When using 
a single bar (|), then correlations across all individual effects 
(intercept, side, and distance) are modeled. This approach, 
however, is a bit more difficult to interpret and would also not 
correspond to the implemented Stan model.

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/K%20-%20R%20objects/rstan
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/C%20-%20Tutorial%20Normal%20Model%20Rstan
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/C%20-%20Tutorial%20Normal%20Model%20Rstan
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6 In our example of the digit classification task we are applying a 
truncated normal prior distribution for only one parameter. This 
requires a slightly different brms formula and prior specification, 
explained in the Online Supplement.

formula <- rt ~ 1 + side + dif1 + dif2 + dif3 + dif4 +   # General effects 

          (1 + side + dif1 + dif2 + dif3 + dif4 || ind)  # Individual effects 

model_fit <- brm(formula = formula,                      # Model formula 

data = myData_dataframe,                # Dataset (parameters, observations) 

family = gaussian(),                    # Family, distribution dependent 

variable 

prior = priorsmodel,                    # Specification of the priors

warmup = 1000,                          # Nr. iterations for warmup (per 

chain)

iter = 4000,                            # Nr. iterations (per chain)

chains = 4,                             # Nr. chains 

core = 4)                               # Nr. of cores for parallel estimation

The brm function requires a data frame (here called 
myData_dataframe) that contains all variables mentioned in 
the formula. The argument family in the brm function speci-
fies the exponential family of distributions according to which 
the dependent variable is assumed to be distributed. For the 
normal model, this argument takes the value gaussian; for 
the log-normal model, it needs to be specified as lognormal.

Finally, we specify the priors. In brms, priors can be 
set on the general effects represented by class = b and on 
the individual variation represented by class = sd. It is 
important to note that priors can only be set on the specific 
parameters that are part of the brms model specification. 
For example, brms only allows setting priors on standard 

deviations and not on variances. Therefore, for the normal 
model of the symbolic distance effect, we will use the pri-
ors for standard deviations specified in Eq. (7). To set the 
priors, we use the set_prior function, as shown below. In 
this function, first, the distribution is specified, using the 
Stan programming language. Then, the type of parameter 
to which the prior applies is defined by class. The param-
eter to which this prior applies is specified by coef. For the 
priors on the individual effects, an additional element has 
to be specified, namely, the grouping variable (i.e., group). 
For example, the prior distributions on the general side 
effect, μβ, and on its variability between individuals, σβ, 
can be specified as follows:

set_prior("normal(0,0.3)", class = "b", coef="side")  # general effect 

set_prior("inv_gamma(13.8, 5.3)", class = "sd",       # individual variation 

          coef="side", group = "ind") 

 If you do not specify a prior for a certain parameter, 
the default prior as explained in the prior section will 
be applied. It is possible to save all priors in an R data.
frame and provide these in the brm function. This and the 
full code with explanation for fitting the full symbolic 

distance effect model using brms are shown in our Onlin e 
Suppl ement  D:  Bayes ian Hiera rchic al Model ing in brms.6

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/D%20-%20Tutorial%20Normal%20Model%20brms/Online-Supplement-D%2D%2D-Bayesian-Hierarchical-Modeling-in-brms.pdf
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/D%20-%20Tutorial%20Normal%20Model%20brms/Online-Supplement-D%2D%2D-Bayesian-Hierarchical-Modeling-in-brms.pdf
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Estimation of the digit classification task

Data

For our example, we will use the data set by Rouder et al. 
(2005). The data are available under a free license on 
GitHub:  https:// github. com/ Perce ption Cogni tionL ab/ data0/ 
tree/ master/ lexDec- dist5. The data set contains observations 
from 54 participants who took part in a digit classification 
task. Each participant performed 360 trials in six blocks. 
For the analysis, only the correct responses are included. 
To account for practice effects, the first 25 trials of the first 
block are removed from the analysis. The trials after the 
breaks between the blocks are also removed from the analy-
sis to correct for lack of concentration. In addition, trials 
with very fast RTs (< 250 ms) and very slow RTs (> 2000 
ms) are excluded. Two participants were excluded because 
they did not respond properly to the task. Similar criteria 
were applied by Haaf and Rouder (2019). This results in 
52 participants and a total of 17,031 observations. In the 
following two sections we will describe the model fitting 
and parameter estimation procedure for the normal and log-
normal models, respectively.

Normal model

Model fitting

The model is fitted using the packages rstan and brms. We 
used different settings for rstan and brms due to the difference 
between the models for these packages. Although we tried to 
make the models as similar as possible, the models are not 
identical. This is partly due to differences in prior specifica-
tion (i.e., specifying prior on the variances versus standard 
deviations). For rstan, four chains are run with 4000 iterations 
per chain, of which 1000 serve as warm-up. This results in a 
total of 12,000 samples from the joint posterior distribution. 
For brms, four chains are run with 6000 iterations per chain, 
of which 1000 serve as warm-up. This results in a total of 
20,000 draws from the joint posterior distribution.

Model diagnostics

Before we can interpret the results, we have to evaluate 
whether they are reliable. Specifically, we have to check 
whether the sampling chains of the parameters have con-
verged, meaning that a stationary posterior distribution has 
been reached (Vehtari et al., 2021). If convergence is not 
achieved, the posterior estimates may change substantially 
if the sampling algorithm was run with more iterations or 
different starting values. The most common convergence 
measures are trace plots and the R̂ statistic. We will also 

discuss an additional check provided by rstan and brms, 
namely, the number of effective samples. For a critical eval-
uation of currently used convergence statistics, we recom-
mend that the interested reader consult Vehtari et al. (2021).

Trace plot Trace plots show the sampled parameter value at 
each iteration. If the distributions have converged, the plot 
should look like a hairy caterpillar (Lee & Wagenmakers, 2013, 
p. 99): the iterations move up and down, but have much overlap 
in the middle. If multiple chains are used, iterations are shown 
per chain. In this case, the chains should overlap. If the posterior 
distribution did not converge, one chain could, for instance, be 
found on top of the figure while all other chains are on the bot-
tom (for an illustration see Vehtari et al., 2021). Or, perhaps the 
first half of the chain is on the top of the graph and the second 
half on the bottom. The trace plot does not include burn-in 
samples, since these will not be used for parameter estimation.

When inspecting the trace plots of the symbolic distance 
effect parameters in the normal model, the posterior distri-
butions of the parameters appear to have converged as the 
iterations come together and look similar to a caterpillar. 
The trace plot of one of the parameters, δ6, i, is shown in 
panel A for rstan and panel B for brms of Fig. 9. The trace 
plot in panel B shows less overlap in the middle, indicating 
that brms had a bit more dependence within chains. This 
might be a sign of slight issues, but not enough to be too 
concerned. Trace plots for other parameters can be found in 
Onlin e Suppl ement  G.

Next to a visual inspection of convergence, a numerical 
inspection is usually performed as well. A common approach 
is to check R̂ , also called the Gelman–Rubin diagnostic 
(Gelman & Rubin, 1992). R̂ is the ratio of between-chain 
variance and within-chain variance (Sorensen & Vasishth, 
2015). If the chains diverge, the between-chain variance 
will be higher than the within-chain variance, resulting in 
an R̂ greater than 1. This indicates that the chains have not 
converged. The currently used criteria are that R̂ should not 
exceed 1.01 (Vehtari et al., 2021). There are different types 
of R̂ , such as the split- and rank-based R̂ (Gelman et al., 
2013; Vehtari et al., 2021). Even though researchers tend 
to trust convergence statistics more than visual inspection, 
these statistics are also not foolproof. For instance, in hier-
archical modeling, with many parameters, it is more likely 
that parameters will exceed the threshold while there are no 
issues with the parameter estimation. It is, therefore, advis-
able to evaluate parameters carefully. The development of 
better convergence statistics is a current topic in Bayesian 
analysis methods.

The R̂ values for all individual and general symbolic 
distance effect parameters computed by rstan and brms are 

R̂

https://github.com/PerceptionCognitionLab/data0/tree/master/lexDec-dist5
https://github.com/PerceptionCognitionLab/data0/tree/master/lexDec-dist5
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/G%20-%20Trace%20Plots%20
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shown in panel C of Fig. 9. The figure shows that R̂ s are not 
substantially greater than 1.01. Therefore, it seems that the 
distributions have converged.

Number of effective samples Another popular conver-
gence statistic is the number of effective samples (ESS). 
This statistic is concerned with the dependence of poste-
rior samples. In MCMC algorithms, the samples are to 
some degree dependent on one another: the parameter 
values at iteration i are similar to the parameter values at 
iteration i − 1. The number of effective samples represents 
the estimated total number of independent draws from the 
posterior for every model parameter (Stan Development 
Team, 2018a, sec. 15.4). If the number of effective sam-
ples is low, this indicates a high dependence of iterations 
in the sampling procedure. Therefore, the number of effec-
tive samples can be seen as a measure of the amount of 
new information about the posterior distribution that is 
provided by the total number of samples drawn from the 
posterior. A common rule for interpretation is that the 
number of effective samples should equal at least 100 per 
chain (Vehtari et al., 2021). In the case of four chains, this 

would mean a value of 400 or higher—the higher the value 
the better. To get a better understanding of convergence, 
Vehtari and colleagues (2021) recommended evaluating 
different quantities of the posterior distribution instead, 
using so-called bulk- and tail-ESS. Bulk-ESS evaluates 
the center of the posterior distribution, while tail-ESS 
evaluates the tails of the posterior distribution. For this 
tutorial, we focus on the basic calculation of the number 
of effective samples suggested by Gelman et al. (2013) and 
improved by Vehtari et al. (2021).

For the symbolic distance effect, the estimated number 
of effective samples is provided in panel D of Fig. 9. For the 
package rstan the number is generally high, much higher 
than the actual number of samples depicted by the green 
dashed line. The brms package shows much more variation. 
The lowest effective sample sizes can be found for the inter-
cept parameters. Table 1 also displays the number of effec-
tive samples for the general effects parameters in the rstan 
model. If the number of effective samples is too low, brms 
and rstan will return a warning. Here, this was not case, and 
all other diagnostics were good, so we continue with the 
interpretation of the estimates. The difference between the 

Fig. 9  Panels A and B show the trace plot of the digit parame-
ter ��6

 for both packages. Panel C shows the estimated R̂ for all 
individual effects per parameter group. The stars represent the 
R̂ of the general effects. Panel D illustrates the variation in the 

estimated number of effective samples per parameter group. The 
dashed lines represent the total number of iterations for each 
package. The stars represent the number of effective samples of 
the general effects
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model diagnostics of rstan and brms can be partly explained 
by the difference in model parametrization, such as the dif-
ference in the prior specification (i.e., specifying priors on 
variances versus priors on standard deviations). We equated 
the models where sensible, which resulted in models that are 
fairly comparable.

Estimation results

Considering acceptable to good convergence diagnostics, we 
can now interpret the estimation results. First, we present the 
general effects, then we visualize the individual variability 
of these effects.

General effects For the symbolic distance effect, there are 
two main questions we want to answer. First, we want to 
know whether there is a digit effect and, second, we want 
to know whether there is a side effect. Therefore, the key 
model parameters for general effects are μβ, ��3

 , ��4
 , ��6

 , and 
��7

 . In the following section, we will focus our reporting on 
these parameters.

The posterior distributions for the focal parameters in 
the normal model are presented in Fig. 10. The posterior 
means estimated by rstan and brms can be found in Onlin e 
Suppl ement  H. The credible interval displayed in the figure 
is the Bayesian version of a confidence interval and pro-
vides a measure of uncertainty about the parameter value 
(Wagenmakers et al., 2018). In contrast to the confidence 
interval, the credible interval provides the probability that a 
parameter lies within a certain range. However, the credible 
interval does not provide evidence to conclude whether an 
effect is zero (Wagenmakers et al., 2020).

The parameter estimates produced by the two packages 
look very similar. The brms estimates seem to be slightly 
higher with slightly narrower posterior distributions com-
pared to rstan. All parameters are presented on a scale of 
seconds. As expected, the effects are small. For instance, ��7

 
has a posterior mean of 0.012, corresponding to a 12-mil-
lisecond effect.

For the digit effects, positive parameter estimates indicate 
that the response is slower for the non-baseline digits, that 
is, digits that are closer to 5. The parameters ��6

 and ��4
 are 

distributed around higher values. Note that this result is con-
sistent with the symbolic distance hypothesis that the digits 
4 and 6 have the highest response times because they are 
closest to 5, the comparison value. The posterior distribution 
of the side effect μβ is centered around zero with a posterior 
mean of −0.007 and a 95% credible interval ranging from 
−0.046 to 0.031. Note that the credible interval overlaps 
with zero. Commonly, this is misinterpreted as an absence 
of an effect. However, credible intervals should only be used 
for parameter estimation. In cases where the credible over-
laps with zero, the effect is likely small, but can be nonzero.

Individual effects Thanks to the hierarchical structure of the 
model, we can investigate whether the general effects hold 
for all the individuals by inspecting the individual variation 
and the individual parameter estimates. The individual vari-
ation is represented by the variance or standard deviation 
parameters in the model. The summaries of the posterior 
distributions of the variance parameters as estimated by 
rstan are shown in Table 1. The estimates for the standard 
deviations by brms are smaller than those for rstan and can 
be found in Onlin e Suppl ement s D and H.

Posterior means of the variances for the digit and side 
effects are all very close to 0.020, which corresponds to a 
standard deviation of 0.141 seconds, that is, 141 millisec-
onds. Additionally, the 95% credible intervals do not contain 
zero. If we consider the effect of digit 7 with an 12-millisec-
ond general effect, this is a substantial amount of individual 
variation. Therefore, we conclude that there are individual 
differences in the symbolic distance effect.

Figure 11 shows the posterior means and 95% credible 
intervals for the individual effects of all 52 participants. Esti-
mates are shown in increasing order, from lowest to highest. 
Pink intervals indicate that the 95% credible interval con-
tains zero, while blue intervals are either entirely above or 
below zero. A corresponding figure with individual effect 
estimates for brms can be found in Onlin e Suppl ement  D.

The largest variation across participants can be seen for 
the intercept parameter. This means that participants vary 
considerably in their baseline response times. There is also 
considerable individual variation in the digit effects (δs). 
However, most of the intervals contain zero, which implies 
that the effects might be small. The variability is most pro-
nounced for the effect parameters of the digits close to 5. For 
these digits, there are also more intervals that do not contain 
zero, indicating that an effect might be present on the subject 
level. The posterior mean of the individual side effect (βi) var-
ies between −0.05 and 0.05. Again, all but four 95% credible 
intervals include zero, indicating uncertainty about the exist-
ence of an effect for anyone. The credible intervals of the side 

Table 1  Posterior variance, lower and upper bound of the 95% cred-
ible interval, number of effective samples, and R̂ of the variance 
parameters as estimated by rstan 

Parameters Mean Lower bound Upper bound neff R̂

�2
�

0.034 0.024 0.049 17,556.041 1.000
�2

�
0.020 0.014 0.029 20,115.358 1.000

�2

�7
0.020 0.014 0.029 20,340.216 1.000

�2

�6
0.020 0.014 0.029 19,716.061 1.000

�2

�4
0.020 0.014 0.029 18,989.012 1.000

�2

�3
0.020 0.014 0.029 18,357.620 1.000

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/H%20-%20Posterior%20Distributions%20Tables
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/H%20-%20Posterior%20Distributions%20Tables
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/D%20-%20Tutorial%20Normal%20Model%20brms/Online-Supplement-D%2D%2D-Bayesian-Hierarchical-Modeling-in-brms.pdf
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effect and digit effects δ7 and δ3 indicate that different subjects 
may show opposite effects (Haaf & Rouder, 2019).

The individual variation can also be visualized differ-
ently, for example by connecting individual estimates for 
each parameter. This type of variation can reveal correlations 
between individual parameter estimates; for example, partici-
pants scoring high on one digit parameter may also score high 
on another digit parameter. Figure 12 shows the relationship 
between individuals’ digit effects.7 The posterior means of 
individual effects are represented by the dots. The right side of 
each plot represents the distribution of the individual estimates. 
Note that this distribution is not the posterior distribution of the 
general effect. It rather corresponds to the left side of Fig. 7.

Log‑normal model

Model estimation

The model is fitted using the packages rstan and brms. For 
rstan, we use the priors as specified in Eq. (8). For brms, we 
use the priors in Eq. (9). The rest of the settings are equivalent 
for both packages. We ran four chains with 4000 iterations 
per chain, including 1000 warm-up iterations. This results 
in a total of 12,000 samples from the posterior distribution.

Model diagnostics

Before interpreting the results, we have to check whether the 
posterior distributions of the parameters have converged. The 

trace plot of ��6
 is shown in panels A and B of Fig. 13 for rstan 

and brms, respectively. Trace plots for all other parameters can 
be found in Onlin e Suppl ement  G. All plots look like a hairy 
caterpillar. Therefore, they indicate that the posterior distri-
butions of the parameters have converged. R̂ values shown in 
Fig. 13C for all parameters are close to 1, and in most cases, 
the number of effective samples shown in Fig. 13D exceeds the 
total number of iterations. The number of effective samples for 
the general effects is comparatively low but still sufficient. Con-
sidering these in combination with the other diagnostics, we 
conclude that the posterior distributions of the parameters have 
converged and we proceed with the interpretation of the results.

Results

General effects We inspect the posterior distributions for the 
general effect parameters presented in Fig. 14.

We note that the values of the parameter estimates for the log-
normal model cannot be interpreted in the same way as in the 
normal model. This is because the mean parameter of the log-
normal distribution does not correspond to its expected value. 
To better understand the size of an effect that corresponds to the 
parameter values, some calculations are required. For instance, if 
we would like to know the median difference in response times 
for digits 3 and 2, we calculate the difference between the expo-
nential of the RT estimate for the condition digit = 3 and the 
exponential of the RT estimate for the condition digit = 2:

(12)
e

(

��+xj��+wj��3

)

− e(��+xj��)

= e(−.56+.5×(−.01)+1×0.03) − e(−.56+.5×(−.01))

= 0.017

Fig. 10  Panel A shows the empirical mean RTs per digit. The stand-
ard error is represented by bars around the dots. Panels B and C show 
the posterior distributions for the general effects estimated by the two 

packages. The middle line within the distributions represents the pos-
terior mean. The shaded area within the distributions represents 95% 
credible intervals.

7 The design and code for this figure are by van Langen (2020).

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/tree/main/G%20-%20Trace%20Plots%20
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This value corresponds to the median estimate of ��3
 from 

the normal model. Calculating the mean estimate of ��3
 would 

be similar, but more complicated, as the mean of a log-normal 
distribution also depends on its variance. This approach can 
also be used iteratively. This means that the approach above is 

applied to every iteration in the chain. This results in a posterior 
distribution of the effect quantifying the posterior uncertainty.

One property of these parameter estimates we can imme-
diately interpret is their sign (i.e., positive, negative, or zero). 
A positive estimate indicates that the RT increases, whereas 
a negative effect indicates a decrease. When inspecting the 
general digit effect parameters, they all appear to positively 
influence the RT. This is in line with our expectations, since 
the baseline RT in the model is set equal to the RT for the 
digits furthest away from 5, and the symbolic distance effect 
postulates that RT should increase as the digits become 
closer to 5. The side effect is close to zero, with a posterior 
mean of −0.008 and a 95% credible interval from −0.022 to 
0.007. This indicates that the general effect of side is small.

Individual effects Next, we inspect the individual deviations 
from the general effects. Table 2 presents the estimates of the 
variance parameters by rstan. Results for brms can be found 
in Onlin e Suppl ement  H.

The estimated parameter values for the variance terms are 
very small, but different from zero. This indicates that indi-
viduals may vary slightly with respect to the general effect 

Fig. 11  The posterior means for individual effect parameters with 95% credible intervals as estimated by rstan, shown in increasing order. The 
dashed line represents the general posterior mean. Pink intervals contain zero; blue intervals do not contain zero

Fig. 12  Model estimates for digit effect parameters in rstan. The 
points represent the mean parameter estimates for each individual. 
The violin plots on the right side show the variance in the individual 
parameter estimates.

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment/blob/main/H%20-%20Posterior%20Distributions%20Tables/Online-Supplement-H%2D%2D-Tables-with-Information-on-Posterior-Distributions.pdf
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parameters. The estimates for the standard deviations by brms 
are similar to the estimates by rstan, but slightly smaller. The 
exact estimates by brms can be found in Onlin e Suppl ement s 
F and H.

Figure 15 shows the individual estimates for the digit and 
side effects. The pink lines indicate that the 95% credible 
interval of the individual effect contains zero. The estimated 
general effect is represented by the dashed line. For β, δ7, 
and δ3, most 95% credible intervals contain zero. For δ6 and 
δ4, most credible intervals are entirely larger than zero, indi-
cating an increase in RT for most participants.

We can further inspect the individual estimates for the 
digit effects in Fig. 16. The figure shows the individual esti-
mates for the digit effects with the distribution of the vari-
ability in the individual estimates (not the posterior distribu-
tion of the general effect). The figure illustrates that there is 
considerable variance in the point estimates of the individual 
digit effects. However, compared to the normal model there 
is considerably more hierarchical shrinkage. This means 
that in the log-normal model, the individual effects are cor-
rected more towards the group mean, compared to the normal 

model. Or, the group mean in the log-normal model is not 
affected as much by individuals showing a divergent trend 
compared to the normal model. Whether we should prefer 
a model with more shrinkage depends on the theoretical 
considerations. If more individual variation is expected, less 
shrinkage would be preferred. However, the advantage of 
more shrinkage is that outliers do not influence the estimation 
of the effect as much.

Model comparison

The symbolic distance effect postulates that response times 
(RTs) are slower when digits are closer to 5 (digit effects), 
and that RTs may be influenced by whether the target digit 
is smaller or larger than 5 (side effect). Using Bayesian 
estimation, we are not able to directly test these hypoth-
eses. Credible intervals often contain zero, but they always 
also contain many other values that have a chance of being 
the “true” parameter value, making them unsuitable for 

Fig. 13  Panel A and B show the trace plot of the digit parameter μ
δ6

 in 
the log-normal model for both packages. Panel C shows the estimated 
R̂ for all individual effects per parameter group. The stars represent the 
R̂ of the general effects. Panel D illustrates the variation in the esti-

mated number of effective samples per parameter group. The dashed 
lines represent the total number of iterations for each package. The 
stars represent the number of effective samples of the general effects.

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
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testing hypotheses. Therefore, our goal for the follow-
ing section is to set up a Bayesian hypothesis test for the 
parameters of interest in our model. Specifically, we will 
achieve this by comparing the predictive accuracy of a null 
model where we set one or some parameters to zero, and 
effects models where these parameters are unconstrained. 
This approach is called Bayes factor model comparison.

Bayes factor

Rather than submerging us in technical details or provid-
ing a formal justification of the Bayesian approach, we 
provide an intuition of Bayesian model comparison. A for-
mal justification of Bayes factors is provided by Jeffreys 
(1961), Kass and Raftery (1995), and Rouder and Morey 
(2018). The Bayes factor (BF) is a measure of how well 
one model predicts the data compared to another.

Bayesian analysis allows for predictions of data from any 
model because models are fully specified with a probability 
distribution for the data and priors for all parameters. Let the 
vector of all parameters of a model be θ. With the prior distri-
butions of these parameters, f(θ), the prediction for data from 
the model can be computed by integrating over all parameters:

Note that ∫Θ refers to a multidimensional integral over 
the entire parameter space. As our models consist of many 
parameters, computing these predictions for any one model 
becomes somewhat difficult. Once the integral is computed, 
the resulting probability distribution of the data, p(Y|M), is 
no longer a function of the model parameters. This marginal 
probability distribution is therefore also referred to as the 

(13)p(Y|M) = ∫
�

p(Y|M, �)f (�)d�.

marginal likelihood. Before observing the data, the marginal 
likelihood serves as prediction for possible data; once the 
data are observed, the function tells us how well these spe-
cific observations were predicted by the model. The Bayes 
factor then is the ratio of marginal likelihoods of two models, 
or the relative predictive accuracy of M1 over M2:

There is a second popular interpretation of the Bayes 
factor as the relative evidence of two competing models. 
One of the key insights from Bayes’ rule is that these two 
things, the relative predictive accuracy of two models for 
the data and the relative evidence from the data for the two 
models, are one and the same (Rouder & Morey, 2018).

Bayes factors have a few very convenient characteristics. 
One of them is that Bayes factors are transitive; that is, evi-
dence for the full model over the null model can be obtained 
by flipping the numerator and denominator in the equation 
above. For a full overview of the advantages of Bayesian 
inference with Bayes factor, see Wagenmakers et al. (2018).

Imagine that  BF1, 2 = 100. This means that the data are 100 
times as likely under the normal model as under the log-normal 
model, clear evidence in favor of the normal model. But how 
do we know whether a Bayes factor of 100-to-1, or 10-to-1 or 
3-to-1 is big enough? As a reminder, Bayes factors are the rela-
tive predictive accuracy of two models for the observed data. 
Therefore, Bayes factors are odds or ratios. Odds themselves 
are directly interpretable without the need for decisions or cut-
offs. For example, if a presidential candidate is favored 10-to-1 
over another one, then these are just the odds, and it is beside 
the point whether these are large or not. According to this line 
of thought, Rouder et al. (2018) argue that researchers should 

(14)BF1,2 =
P
(

Y|M1

)

P
(

Y|M2

) .

Fig. 14  The posterior distributions for the general effects in the log-normal model estimated by the two packages. The middle line within the dis-
tributions represents the posterior mean. The shaded area within the distributions represent 95% credible intervals
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take a similar approach when interpreting and reporting Bayes 
factors. While there exist rules of thumb to categorize Bayes 
factors verbally, we suggest researchers use their research con-
text to form substantive conclusions based on Bayes factors, 
not arbitrary rules of thumb.

As in the case of the posterior distribution, Bayes factors 
can rarely be computed analytically. The difficulty in comput-
ing Bayes factors is one of the major drawbacks of Bayesian 
inference. However, several algorithms are available to estimate 

the Bayes factor from posterior samples. In the following sec-
tion we will present two methods to obtain Bayes factors for the 
symbolic distance effect. The first method that we discuss, the 
Savage–Dickey density ratio, tests the general effect while disre-
garding individual variation (similar to type III sums of squares 
in ANOVA models). This means that the compared models dif-
fer in only a single parameter, that is, the general effect param-
eter, and individual effects are present in both models. The Sav-
age–Dickey density ratio is computationally efficient, but can 
only be used for tests of a single parameter value as described 
earlier. This is why we additionally introduce a second approach, 
bridge sampling, that is less computationally efficient but more 
versatile. In this manuscript, we will use bridge sampling to test 
the general effects and individual variation together, as well as to 
compare the predictive accuracy of the normal and log-normal 
model. There have been discussions on which method should 
be preferred, without consensus (van Doorn et al., 2021, 2023; 
Rouder et al., 2023; Singmann et al., 2023). Therefore, we illus-
trate the use of the two approaches and discuss their potential.

Savage–Dickey density ratio One method for computing 
Bayes factors is the Savage–Dickey density ratio (SDD-ratio; 

Table 2  Posterior variance, lower and upper bound of the 95% cred-
ible interval, the number of effective samples, and the R̂ of the vari-
ance parameters as estimated by rstan 

Parameters Mean Lower bound Upper bound neff R̂

�2
�

0.030 0.021 0.043 15,617.383 1.000
�2

�
0.001 0.001 0.002 7,815.681 1.000

�2

�7
0.001 0.001 0.002 6,805.297 1.000

�2

�6
0.001 0.001 0.002 7,325.299 1.000

�2

�4
0.001 0.001 0.002 6,237.497 1.000

�2

�3
0.001 0.001 0.002 6,841.198 1.001

Fig. 15  The posterior means for individual effect parameters in the log-normal model with 95% credible intervals as estimated by rstan, shown 
in increasing order. The dashed line represents the general posterior mean. Pink intervals contain zero; blue interval do not contain zero
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Dickey & Lientz, 1970; Morey et al., 2011; Wagenmakers 
et al., 2010). This approach can be readily used to estimate the 
Bayes factor between two nested models that differ in only one 
parameter. A prime example for such a case is comparing an 
effect model with a null model. For example, we may compare 
a model with an overall side effect (effect model) to a model 
with no overall side effect (null model). In this case, the Bayes 
factor in favor of the side effect can be approximated by the 

ratio of the posterior density of the side effect and the prior 
density of the side effect at the point zero. More generally, 
the Savage Dickey approach works whenever one model fixes 
a parameter to a constant and another model assigns a prior 
distribution to the same parameter.

Figure 17 shows a visualization of the SDD-ratio for the 
side parameter in the normal model of the symbolic distance 
effect. The posterior distribution is depicted in orange, the 
prior in green. The Bayes factor can be computed as a ratio 
of the posterior and prior density at the parameter value 
of zero, as depicted by the dashed line connecting the two 
points on the density functions.

With rstan, the SDD-ratio can be computed by fitting a 
density function to the posterior distribution obtained from 
the MCMC samples, and comparing the value of this den-
sity function at μβ = 0 to the value of the prior distribution 
at μβ = 0. This is illustrated in the code block below. First, 
we extract the posterior samples for the parameter μβ, the 
general effect of side. We apply the logspline function (Koo-
perberg, 2019) to the samples to obtain an estimate of the 
log-density of the posterior distribution. The density at zero 
is calculated with the dlogspline function. Finally, we com-
pare the estimated density of the posterior to the density of 
the prior. This process is explained in further detail by van 
Ravenzwaaij and Etz (2021).

Fig. 16  Model estimates for digit effect parameters in the log-normal 
model in rstan. The points represent the mean parameter estimates for 
each individual. The violin plots on the right side show the variance 
in the individual parameter estimates

library(logspline)

# Get posterior samples for the side parameter mu2

samples_side <- rstan::extract(model_fit)$mu2   

log.posterior <- logspline(samples_side)                 # estimate of log-density post. distr. 

posterior_at_zero <- dlogspline(0, log.posterior)        # compute posterior density 

prior_at_zero <- dnorm(0, 0, 0.3)                        # computer prior density 

BF01 <- posterior_at_zero/prior_at_zero                  # compare estimated density posterior 

to prior at point 0 

 In brms, the SDD-ratio can be computed using the built-in 
hypothesis function, as shown in the code snippet below. The 

resulting Bayes factor, also depicted in Fig. 17, is BF01 = 18.28, 
indicating evidence for the null model and against a side effect.

# We will use the model fit from before, specified as model_fit

hypothesis_fit <- hypothesis(model_fit,    # Object containing model fit 

"mu2 = 0")   # The parameter we want to test with the null 

hypothesis 
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 The Savage–Dickey approach has a number of drawbacks 
(see, for example, Heck, 2019). First, one issue is the qual-
ity of approximation for the SSD-ratio. If either the prior 
or, even more problematically, the posterior has a very low 
density at the test value (in this case zero), it becomes dif-
ficult to estimate the SSD-ratio from the samples. This issue 
often occurs when the effect is large, moving the posterior 
distribution away from zero. In many cases there might be no 
samples around zero, which means that the density estimate 
will be very inaccurate. Therefore, we would recommend 
using the SSD-ratio only if you are confident that enough 
posterior samples are available from the tails of the distribu-
tion. One way of ensuring that is to drastically increase the 
number of drawn samples.

Second, the Savage–Dickey approach only applies for a 
limited set of to-be-compared models. In the example used 
here, we compared a model where the overall side effect is 
allowed to vary with a model where it is zero. Both mod-
els, however, still allow for individual variability in the side 
effect. For the null model, individual variability implies that 
some individuals are expected to have an effect favoring 
larger numbers and other individuals are expected to have 
an effect favoring smaller numbers, but, on average, both 
groups perfectly balance out at zero. To us, this model seems 
nonsensical and, more importantly, it is not what researchers 
have in mind if they want to test a model without side effect. 
We would prefer to use a null model where none of the par-
ticipants have a side effect. However, the Savage–Dickey 

density ratio is not available for such a model compared to 
the effects model.

Bridge sampling

Bridge sampling offers a more flexible way to obtain Bayes 
factors (Kass & Raftery, 1995). It allows the computa-
tion of Bayes factors for comparing models that differ in 
more than one parameter. Specifically, bridge sampling is a 
sampling-based algorithmic method to obtain the marginal 
likelihood of the data under a given model from the poste-
rior samples (Gronau et al., 2017; Meng & Wong, 1996).

Using bridge sampling we are able to estimate Bayes 
factors between any models of interest for the classifica-
tion task data. We identify four models of interest:

1. Full model: This is the model we have been using 
throughout this paper. It states that there is an effect of 
side and an effect of digits for all participants.

2. Side model: This model specifies that participants show 
a side effect but no digit effect. All digit parameters δ3 
to δ7 are set to zero.

3. Digit model: This model states that there are no side 
effects but that participants exhibit digits effects. All 
side parameters β are set to zero.

4. Null model: In this model, there is no side or digit effect 
on the RT. The digit parameters δ3 to δ7 and side param-
eters β are set to zero.

Note that models 2–4 are nested in the most complex 
full model, and the null model is nested in models 2 
and 3, but models 2 and 3 are not nested. Additionally, 
the models differ by several parameters. For example, 
compared to the full model, the digit model restricts the 
side parameter for all participants to zero. Using bridge 
sampling, we can estimate the marginal likelihood for 
each model separately, and then compute Bayes factors 
as their ratios [Eq. (14)].

To obtain the marginal likelihood for a specific model 
in rstan with bridge sampling (Gronau et al., 2017), the 
bridgesampling package can be used (Gronau et al., 2020). 
To obtain the Bayes factor comparing the side model and 
the full model, we first have to fit both models. Then, we 
use the bridge_sampler function from the bridgesampling 
package to obtain the marginal likelihood of the data under 
each of the models. Finally, the models are compared 
using the bf function from the bridgesampling package.

Fig. 17  The prior and posterior distribution of the side parameter 
estimated by the brms package. The dots represent the height of the 
distributions at zero. The ratio of these dots indicates the Savage–
Dickey density ratio. The Bayes factor represents the evidence for the 
hypothesis that the effect equals zero. A Bayes factor above 1 indi-
cates that the evidence favors the null hypothesis.



Behavior Research Methods 

1 3

 In the brms package, Bayes factors based on bridge 
sampling can be obtained with the function bayes_factor 
as shown in the code snippet below. The function takes two 

fitted models as input. Therefore, both models first have to 
be fitted as explained in the “Model estimation” section of 
this manuscript.

 Even though bridge sampling is a flexible method for 
obtaining Bayes factors, it is still an estimation method based 
on posterior samples. Therefore, as with any Bayes factor 
estimation method, we advise taking two precautions with 
bridge sampling. First, it is always wise to increase the num-
ber of iterations when performing model comparison. This is 
because convergence of estimation of posterior distributions 
and convergence of estimation of the marginal likelihood can 
differ. Therefore, a rule of thumb is to use ten times the num-
ber of iterations that we would usually use for estimation. 
The second precaution is to conduct a stability analysis. Both 
the posterior samples from the model estimation procedure 
and the estimate of the marginal likelihood from the bridge 
sampling can be variable. Therefore, stability may be best 
assessed by repeating the entire process of fitting each model 
and applying the bridge sampling function several times.

We assess the stability of the obtained Bayes factor by 
repeating the estimation process ten times with rstan and 
brms, respectively. The results are shown in Fig. 18. The 
figure shows the evidence in favor of the null, digit, and side 
model against the full model. All Bayes factors are larger 
than 1. Therefore, it can be concluded that the data are more 
likely under less complex models. There is almost no varia-
tion in the computed Bayes factors per model, indicating that 
the Bayes factor estimate is stable. However, the Bayes fac-
tor estimates in rstan generally show stronger evidence than 

Bayes factor estimates based on brms. It is important to note 
that this difference is not due to the bridge sampling function 
(i.e., there is little to no variation in Bayes factor estimates 
within packages), but a result of a difference in parametri-
zation. The models for rstan and brms are similar but not 
identical, partly due to the difference in prior specification 
(i.e., variances versus standard deviations). However, for both 
packages, the conclusion is the same: the data are least likely 
to have occurred under the full model. If the estimates are 
unstable, further increasing the number of posterior samples 
is recommended.

Finally, it is time to answer our research question: Is 
there a symbolic distance effect? When considering all 
Bayes factor estimates from Figs. 17 and 18, the null model 
 (BFmax = 232 ×  10105 for rstan) performs best compared to the 
side model  (BFmax = 458 ×  1068 for rstan) and the digit model 
 (BFmax = 269 ×  1031 for rstan). Therefore, the data from Rouder 
et al. (2005) show evidence against the symbolic distance effect.

Sensitivity analysis

The full model including the side and digit effects performs 
worst of all models in the Bayes factor model comparison. 
However, we did find nonzero digit effects in the model esti-
mation. How is this possible?

# We will use the model fit of both models (called sidemodel and fullmodel)

# (how to perform this is illustrated in the model estimation section)

# Bridge sampling 

library(bridgesampling)

ML_Hside <- bridge_sampler(sidemodel)  # compute the marginal likelihood under the side model 

ML_Hfull <- bridge_sampler(fullmodel)  # compute the marginal likelihood under the full model 

# Obtain Bayes factor (in this way evidence in favor of the side hypothesis)

bridgesampling::bf(ML_Hside, ML_Hfull)

bayes_factor(fitsidemodel, fitfullmodel)$bf
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A possible explanation is a lack of individual variability 
in the digit and side effects. The full model assumes that 
participants vary in the digit and side effect, and we speci-
fied our expectations about this size of the variability in the 
prior. However, if there is a lack of individual variability in 
the effects, the full model is punished for the complexity 
added by the individual variation (illustrated by Rouder & 
Haaf, 2021). To investigate this idea, we can reformulate the 
prior distributions on the variance parameters to indicate a 
smaller individual variation or, even more extreme, remove 
these individual effects from the model entirely. Then we can 
calculate the posterior model probabilities for all specified 
models. Typically, sensitivity analyses assess the sensitivity 
of the Bayes factor by the width of the prior on effect sizes 
(e.g., van Doorn et al., 2021). However, in our case the prior 
distributions on the variance parameters are key to under-
standing sensitivity.

Specifically, we will compare models from three scenar-
ios: scenario 1 specifies large individual differences equiva-
lent to Eq. (6). For the models in scenario 2, we adjust the 
priors on �2

�
 and �2

�
 in the following way:

The smaller value for the scale parameter of the inverse 
gamma distribution (i.e., 0.05 instead of 0.5) results in a 
shift of the peak of the prior towards smaller values for the 
individual variance. This means that the variation of the 
individual effects is expected to be much smaller than before.

In scenario 3, we remove individual variability from the 
side, digit, and full model. This results in the following full 
model, from which the side and digit model follow logically:

Note that the null model is the same in all three scenarios.

(15)
�2

�
∼ Inverse − Gamma(3, 0.05),

�2

�
∼ Inverse − Gamma(3, 0.05).

(16)
Yijk ∼ Normal

(

�i + xj�� + uj��7 + vj��6 + wj��4 + zj��3, �
2
)

.

To obtain the posterior model probability for each model in 
every scenario, we first compute the Bayes factor of every model 
against the null model. This includes the trivial Bayes factor 
of the null model against the null model. This setup results in 
10 models and, therefore, 10 Bayes factors. We assume that all 
models are equally likely, resulting in a prior model probability 
for each model of 1/10. Next, we calculate the sum of all these 
Bayes factors and divide each Bayes factor by this sum. This 
results in the posterior model probabilities shown in Table 3.8 
All posterior model probabilities from the table and the posterior 
probability of the null model (see table note) sum to 1.

The table shows that the digit model without individual 
digit effects from scenario 3 has the highest posterior model 
probability, followed by the full model without individual 
digit and side effects (scenario 3). This means that the data 
are most likely under these models than the other eight mod-
els included in the comparison. In addition, the models with 
smaller prior expectations for individual differences (scenario 
2) have higher posterior model probabilities than the models 
in scenario 1. Thus, decreasing the variability in the size of 
the individual digit and side effects (scenario 2), or completely 
removing the variance (scenario 3), results in higher posterior 
model probabilities. Together with Fig. 11, showing the small 
differences in individual effects (also illustrated by Haaf et al., 
2019), this result supports the notion that side and digit effects 
are small and there is a lack of individual variability.

Log‑normal model

We can take a similar approach for the log-normal model to 
compare the hierarchical models on varying complexity. We 
evaluate their performance in two scenarios that correspond 
to scenario 1 and 3 for the normal model. This means that 
in scenario 1 for the log-normal model, we estimated a null, 
digit, side, and full model based on the prior specified in 
Eq. 8, specifying large individual differences. For scenario 
2, we remove individual variability from the side, digit, and 
full model. This resulted in the posterior model probabilities 
shown in Table 4.

The table shows that the digit model without individual digit 
effects from scenario 2 has the highest posterior model prob-
ability. This is in line with our findings for the normal model. 
Finally, we can compare the normal model with the highest 
marginal likelihood to the log-normal with the highest marginal 
likelihood, that is, the normal digit model from scenario 3 to 

Fig. 18  The BF estimates of the other models (0; null, side, and digit 
model) against the full model (1). The green triangles represent the 
estimates using rstan. The orange dots represent the brms esti-
mates. The dashed line represents a  BF01 of 1

8 Note that it would be possible to calculate the posterior model 
probabilities directly from the marginal likelihoods. However, mar-
ginal likelihoods are often not computed explicitly in the model fit-
ting process (e.g., when using the bayes_factor function in the brms 
package), so we believe that readers might find it easier to compute 
posterior model probabilities from Bayes factors.
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the log-normal digit model from scenario 2. The log marginal 
likelihood for the normal digit model without individual dif-
ferences was 6441.04, while the log marginal likelihood for 
the log-normal digit model without individual differences was 
10,637.45. This indicates that the Bayes factor strongly favors 
the log-normal digit model over the normal digit model.

The examples illustrate the benefits of comparing hierar-
chical models of varying complexity. While individual dif-
ferences are a common phenomenon in psychology, there are 
instances where general effects are sufficient to adequately 
describe the data, or where only a random intercept but no 
random slopes are necessary. As shown in Tables 3 and 4, 
Bayesian model comparisons can help researchers to identify 
the model that best describes the data.

Discussion

In this tutorial, we described model and prior specification, 
estimation, and model comparison for hierarchical models 
in the Bayesian framework. In the following, we want to 
present several key recommendations.

As prior distributions influence model estimation and 
model comparison, it is important to choose suitable priors. 
We believe that simulating data based on the chosen priors 
is an intuitive tool for finding reasonable prior settings that 
take the existing knowledge in the specific model application 
context into account. We showed that it can be problematic to 
use default priors without checking their suitability. Therefore, 

we recommend performing prior predictive checks with the 
priors that will be applied before running the analysis.

We illustrated different methods for obtaining Bayes factors. 
We want to emphasize the importance of checking the vari-
ability of the Bayes factor estimate and the Bayes factor sensi-
tivity to prior distributions, and ensuring that the Bayes factor 
estimate is based on a sufficient number of posterior samples.

This tutorial showed the application of two R packages: 
rstan and brms. Which package to use depends mostly on the 
complexity of the model and your technical background. For 
the non-technical user, we recommend using brms because 
of its intuitive model specification. However, the default 
prior setup can be unsuitable for a specific research context 
and (virtually) always needs to be adapted. Additionally, 
users are limited to predefined parametrizations. rstan offers 
the greatest flexibility in model and prior specification. This 
flexibility comes with a cost: if the prior or the model is not 
well defined, results can be misleading.

Further recommendations

With this tutorial, we attempted to cover the most relevant 
topics that researchers encounter when starting with Bayes-
ian hierarchical modeling. However, there are still many 
remaining issues and recommendations that we could not 
discuss. Here, we would like to point to further references 
in the literature if researchers want to continue mastering 
Bayesian hierarchical modeling.

First, we kept the discussion of the software packages 
and code fairly brief. We provide further code examples for 
the digit classification task in the Onlin e Suppl ement. For 
different models, it may be useful to study additional tutori-
als and books. For rstan, we recommend the Stan manual 
(Stan Development Team, 2018a, 2018b). For brms there 
are several useful tutorials (Bürkner, 2017, 2018; Bürkner & 
Vuorre, 2019). There are also several resources for Bayesian 
estimation with other samplers (Lee & Wagenmakers, 2013; 
Rouder et al., 2013). Two other useful tutorials for Bayesian 
modeling are Schad et al. (2021) and Schad et al. (2022). 
There are also other R software packages for Bayesian mul-
tilevel modeling besides brms and rstan, such as BayesFac-
tor (Morey & Rouder, 2018) and rstanarm (Goodrich et al., 
2020), that we did not illustrate in this tutorial. However, 
most of these other R software packages are more limited, 
for instance, in model specification and prior settings.

Second, we did not discuss study planning. When plan-
ning an experiment, researchers may want to determine the 
number of participants required to gain conclusive results. 
Bayesian analysis has the advantage that an optional stop-
ping paradigm may be employed (Rouder, 2014; Schönbrodt 
et al., 2017). Schönbrodt and Wagenmakers et al. (2018) and 
Stefan et al. (2019) introduced Bayes factor design analysis 
for fixed and sequential designs. However, these approaches 

Table 3  Posterior model probabilities normal model

Note. Scenario 1: large individual differences. Scenario 2: small indi-
vidual differences. Scenario 3: no individual differences. The poste-
rior probability of the null model is the same in every scenario and 
equals 0.50 ×  10−107 .

Scenario 1 Scenario 2 Scenario 3

Digit model 0.87 ×  10−126 0.29 ×  10−46 0.95
Side model 0.20 ×  10−88 0.18 ×  10−66 0.77 ×  10−53

Full model 0.43 ×  10−158 0.47 ×  10−61 0.05

Table 4  Posterior model probabilities log-normal model

Note. Scenario 1: large individual differences. Scenario 2: no indi-
vidual differences. The posterior probability of the null model is the 
same in every scenario and equals 0.86 ×  10−51 .

Scenario 1 Scenario 2

Digit model 26.61 ×  109 48.55 ×  1015

Side model 0.25 ×  10−49 0.50 ×  10−52

Full model 11.02 ×  107 96.84 ×  1014

https://github.com/MyrtheV/Bayesian-Hierarchical-Modelling-An-Introduction-and-Reassessment
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to study planning have not yet been fully extended to a 
hierarchical setup (but see recent efforts by Vasishth et al., 
2023). The extension to nested designs is not entirely trivial 
because, in addition to planning the number of participants, 
we also need to consider the number of trials (Rouder & 
Haaf, 2018). While we think there remain some open ques-
tions on the topic, the tutorial by Stefan et al. (2019) is a 
good place to start for applied researchers.

Technical possibilities are endless

One key advantage of Bayesian over frequentist hierarchical mod-
eling is that complex modeling leads to fewer convergence issues 
in the Bayesian framework. This advantage, however, does not 
imply that there are no technical issues in the Bayesian framework. 
One possible technical issue is with the choice of priors when 
using Stan for estimation. The Stan algorithm is most efficient 
with specific prior distributions. For example, it may be beneficial 
to use a truncated t-distribution on standard deviation parameters 
instead of an inverse gamma distribution on variances (Gelman, 
2006). Using priors not recommended by the Stan team may lead 
to more issues with convergence. In this tutorial, we highlight that 
choosing priors based on their predictions on data is beneficial. 
We still think this is the best path for substantive researchers. If 
one wants more flexibility in choices of priors or has continuous 
issues with convergence with their chosen prior distributions, then 
it might be worth considering using JAGS instead of Stan. JAGS 
(Plummer, 2003) has a similar functionality and syntax as Stan. 
While Stan tends to be more efficient in the sampling phase, espe-
cially in the case of correlated parameters (Hecht et al., 2021), the 
JAGS algorithm could be more flexible and less affected by the 
choice of priors.

Another technical issue may arise with the estimation of 
Bayes factors. Here, we highlighted two approaches, the Sav-
age–Dickey density ratio (Wagenmakers et al., 2010) and bridge 
sampling (Gronau et al., 2017). We have already highlighted 
the drawbacks of the SD density ratio. Bayes factor estimates 
can also be biased (i.e., display a consistent deviation from the 
true Bayes factor value). However, bridge sampling has been 
shown to be relatively unbiased (Sarafoglou et al., 2021). Yet, 
bridge sampling may also fail in some cases. Failures of the 
bridge sampling algorithm are identified by unstable Bayes fac-
tors across repeated sampling runs. There are improvements to 
the algorithm that are specifically developed for hierarchical 
models (Gronau et al., 2019). Nevertheless, assessing the stabil-
ity of Bayes factor estimates remains crucial.

Living with uncertainty

Let us reconsider our scenario from the introduction. The 
graduate student may have read our tutorial and gone back to 
their supervisor to propose a Bayesian hierarchical analysis 

of their data. Compared to the initially considered ANOVA, 
there are many small decisions to be made for this more 
extensive analysis. These small decisions tend to make 
researchers uncomfortable. What prior is the right one? Are 
there enough posterior samples?

In Bayesian modeling, we have to learn to live with these 
uncertainties. In fact, we recommend embracing them as 
these small decisions. First, we at the very least are mak-
ing these decisions deliberately. Second, we can check their 
impact on the results. Throughout the tutorial we high-
lighted several potential robustness checks, from prior pre-
dictions over convergence assessment, to sensitivity analy-
sis for Bayes factors. These checks may help researchers 
to understand how robust their results are and when they 
break. Therefore, we hope the checks will support switching 
from simple procedures to Bayesian hierarchical modeling. 
Because, ultimately, the results from such an analysis are 
much richer.

In summary, by offering a comparison of software 
packages, guidance on prior selection and default priors, 
and assessment of the Bayes factor as model comparison 
method, we hope that Bayesian hierarchical models will 
become available to a wider psychology public.
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