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Abstract
Diffusion models have been widely used to obtain information about cognitive processes from the analysis of responses and
response-time data in two-alternative forced-choice tasks. We present an implementation of the seven-parameter diffusion
model, incorporating inter-trial variabilities in drift rate, non-decision time, and relative starting point, in the probabilistic
programming language Stan. Stan is a free, open-source software that gives the user much flexibility in defining model
properties such as the choice of priors and the model structure in a Bayesian framework. We explain the implementation of the
new function and how it is used in Stan. We then evaluate its performance in a simulation study that addresses both parameter
recovery and simulation-based calibration. The recovery study shows generally good recovery of the model parameters in
line with previous findings. The simulation-based calibration study validates the Bayesian algorithm as implemented in Stan.

Keywords Ratcliff diffusion model · Bayesian inference · Stan function · Model fitting

Diffusion models (DMs) are among the most frequently
used model families in modeling two-alternative forced-
choice tasks (see Wagenmakers, 2009, for a review). DMs
allow one to model response times and responses in two-
alternative forced-choice tasks jointly. In this article, we
focus on a seven-parameter version of themodel that includes
inter-trial variability in several of its components (Ratcliff
and Rouder, 1998) as detailed below.

Since its introduction to psychological research, a num-
ber of user-friendly software tools have been developed to
estimate the model parameters (Vandekerckhove & Tuer-
linckx, 2007; Voss & Voss, 2007; Wagenmakers et al.,
2007). Bayesian implementations have been proposed for
use with WinBUGS (Vandekerckhove et al., 2011), JAGS
(Wabersich&Vandekerckhove, 2013), Stan (Carpenter et al.,
2017), and as a Python package called HDDM (Wiecki
et al., 2013). The purpose of this article is to add to the
existing Bayesian implementations, and to overcome lim-
itations of the existing implementations. Specifically, the
just-mentioned WinBUGS, JAGS and Stan implementations
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are limited to a more basic four-parameter version of the DM
without inter-trial variabilities, whereas HDDM is limited in
the choice of priors that users can specify.

Here, we provide an implementation of the seven-parameter
model within the probabilistic programming language Stan
(Carpenter et al., 2017). Stan is a free, open-source software
that gives the user huge flexibility in defining and varying
model properties such as the choice of priors. Stan runs on
all major platforms and interfaces with the most popular data
analysis languages (R, Python, shell,MATLAB, Julia, Stata).

In the following sections, we first briefly introduce the dif-
fusion model. Following this, we provide details on our new
Stan implementation. Finally, we present two sanity checks
for our implementation: a simulation study showing good
recovery on simulated data, and a simulation-based calibra-
tion study analyzing the same simulated data, providing a
more rigorous test of the correctness of our algorithm.

The diffusionmodel

The basic four-parameter DM, first introduced by Ratcliff
(1978), is a sequential sampling model used to explain data
from two-alternative forced-choice tasks. It has been widely
applied to tasks as, for example, the Eriksen flanker task
(Assink et al., 2015; Eriksen & Erisken, 1974; White et al.,
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2010), among many others. In the Eriksen flanker task, par-
ticipants decide whether a central target arrow among a set
of distractor arrows points to the left or to the right (e.g.,
<<<><<<).

In diffusionmodeling, it is assumed that participants accu-
mulate evidence towards either of two response options on a
unidimensional evidence scale on which two boundaries are
placed, one for each response option. The distance between
both boundaries is denoted as boundary separation, a. Par-
ticipants start with a state of evidence placed between the
two boundaries on the evidence scale. This point is denoted
as relative starting point, w. Accommodating the possibility
of prior bias, this starting point needs not to be equidistant
fromboth boundaries. Participants then accumulate decision-
relevant evidence from the environment until a boundary is
reached. The evidence-accumulation rate is denoted as drift
rate, v. The evidence accumulation process is noisy and
is therefore approximated by a diffusion process. When a
boundary ismet, a decision for the associated response option
is made. All time costs for processes that do not belong to the
decision process are summarized in the non-decision time, t0.
Based on those four parameters (for the basic model), a DM
predicts the probability to choose one or the other response
alternative and models the distributions of response times
associated with each alternative.

In Fig. 1, a diffusion process is depicted. Since the evi-
dence accumulation process is influenced by random noise,
the process is drawn as a jagged line. One main advantage of
the diffusion model is that the parameters can be interpreted
in terms of cognitive processes. For example, the bound-
ary separation is higher when the participant is focused on
accuracy, the absolute value of the drift rate is smaller when
stimuli are harder to discriminate, the non-decision time is
higher for a more time-consuming form of response, and the
relative starting point moves towards a decision alternative
for which the participant is rewarded (e.g., Arnold et al.,
2015; Lerche and Voss, 2019; Voss et al., 2004).

According to Ratcliff and Rouder (1998), the basic four-
parameter model has problems accounting for the full range
of data in two-alternative forced-choice tasks. For example,
the model predicts identical reaction time distributions for
correct and error responses, if the relative starting point is
centered between the boundaries. However, itmay occur that,
having a centered relative starting point, errors are slower
than correct responses. Slow errors can be modeled with
inter-trial variability in drift rate, because for a large drift
rate, reaction time is short and accuracy is high, whereas
for a small drift rate, reaction time is slower and accuracy
is lower. In sum, given variability in drift rate, the percent-
age of slow responses will increase among errors more than
among correct responses. Another possibility is that errors
are faster than correct responses. This reaction time pattern
of fast errors can be modeled with inter-trial variability in
starting point, because for a starting point near the correct
response boundary, there will be few errors and they will
be slow, whereas for a starting point near the error response
boundary, there will be more errors and they will be fast. In
sum, given variability in starting point, the percentage of fast
responses will increase among errors more than among cor-
rect responses (Forstmann et al., 2016). For such reasons,
Ratcliff and Rouder introduced the seven-parameter DM,
which extends the four-parameter model by adding inter-trial
variabilities in the drift rate, the non-decision time, and the
starting point. Variability in drift rate is assumed to be nor-
mally distributed, and the variabilities in non-decision time
and starting point are assumed to be uniformly distributed.

Another problem regards parameter recovery. For an accu-
rate parameter recovery large trial numbers are required.
Therefore, sometimes participants in a DM study need to
work on many trials (sometimes more than 2,000 trials per
participant and condition; e.g., Ratcliff and Smith, 2004).
This problem can be mitigated by embedding the DM in
a Bayesian hierarchical framework (Vandekerckhove et al.,
2011), which allows one to calculate reliable and accurate

Fig. 1 Realization of a
four-parameter diffusion process
modeling the binary decision
process. Note. The parameters
are the boundary separation a
for two response alternatives,
the relative starting point w, the
drift rate v, and the
non-decision time t0. The
decision process is illustrated as
a jagged line between the two
boundaries. The predicted
distributions of the reaction
times are depicted in blue
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estimates for the parameters of the decision process despite
sparse data at the individual level by combining informa-
tion from both levels, the individual and the group level1.
This partial pooling yields more robust parameter estimates
than does fitting data for each individual separately (Rouder
& Lu, 2005). Furthermore, this approach is helpful in inte-
grating data across studies such that one can synthesize the
evidence for the overall effects and can analyze how effects
changed or did not change across studies (e.g., Pleskac et al.,
2018).

Therefore, the next logical step is to combine the seven-
parameter model with the Bayesian hierarchical framework.
An implementation of the highly efficient Hamiltonian algo-
rithm for Markov chain Monte Carlo estimation (MCMC,
Neal, 2011) in the form of the No-U-Turn Sampler (NUTS,
Hoffman & Gelman, 2014) is given in Stan. Stan is a prob-
abilistic programming language for statistical modeling and
high-performance statistical computation. Stan, named after
one of the pioneers inMonte Carlo methods, Stanislav Ulam,
provides the user with tools for full Bayesian statistical infer-
ence and hierarchical modeling. The MCMC method draws
samples from the joint posterior distribution of the parame-
ters of a Bayesian model, which are used to draw inferences
on the model parameters and the model fit. Stan is free and
open-source, and every user is invited to participate in the
development of new features. Users can add new functions
by specifying the logarithm of a density (log-density) in the
C++ based Stan language (Stan Development Team, 2023a).

The stan function wiener_full_lpdf()

We implemented the log-density of the first-passage time
distribution of the seven-parameter DM to provide the new
function wiener_full_lpdf() for Stan users. Since we
added the function in Stan’s math library (Stan Develop-
ment Team, 2023b), the function can be used with every
interface that supports Stan. The Hamiltonian Monte Carlo
algorithm relies on partial derivatives of the log-likelihood
function to sample the posterior distribution more efficiently
(Neal, 2011). As deriving the derivatives for each model can
be cumbersome, Stan automatically computes these partial
derivatives using reverse-mode automatic differentiation and
numerical approximation (Carpenter et al., 2015). For the
underlying distributions that are used to build a model, it can

1 Vandekerckhove et al. (2011) proposed to implement inter-trial vari-
abilities in a Bayesian framework by using the likelihood function of the
basic (four-parameter) diffusion model and adding hyper-distributions
for starting point, drift rate and non-decision time. In this framework,
the specific parameter values for each trial of an experiment are drawn
from the respective hyper-distributions. While this idea is theoretically
interesting, this procedure led to convergence problems in our applica-
tions and could therefore not be used.

make sense, however, to implement the partial derivatives
manually. In the case of a very complex function with known
partial derivatives, it is much more efficient and accurate
to compute the values of the partial derivatives analytically
instead of approximating them numerically. Therefore, we
used the work by Hartmann and Klauer (2021), who derived
the partial derivatives for the first-passage time distribution
in diffusion models, to implement both the log-density of the
seven-parameter model and its partial derivatives.

The new function wiener_full_lpdf() returns the
logarithm of the first-passage time density function for a
diffusionmodelwith up to seven parameters for upper bound-
ary responses. The same function can be used to obtain the
log-density for the lower boundary as well (see below). Any
combination of fixed and estimated parameters can be spec-
ified. In other words, with this implementation it is not only
possible to estimate parameters of the full seven-parameter
model, but also to estimate restrictedmodels such as the basic
four-parameter model, or a five- or six-parameter model, or
even a one-parameter model when fixing the other six param-
eters. For example, it is possible to permit variability in just
one or two parameters and to fix the other variabilities to 0, or
even to estimate a three-parameter model, when fixing more
parameters (e.g., fixing the relative starting point at 0.5).

It is assumed that the reaction time data y are distributed
according to wiener_full():

y ∼ wiener_full(a, t0, w, v, sv, sw, st0). (1)

Mathematically, the function consists of the reaction
times, y, and the seven parameters, boundary separation, a,
(lower bound of the) non-decision time, t0, relative starting
point, w, drift rate, v, inter-trial variability of the drift rate,
sv , inter-trial variability of the relative starting point, sw, and
inter-trial variability of the non-decision time, st0 . It can be
stated in the following terms:

log
[
p(y | a, t0, w, v, sv, sw, st0 )

] =

log
[ 1

st0

∫ t0+st0

t0

1

sw

∫ w+ 1
2 sw

w− 1
2 sw

∫ ∞

−∞
p3(y − τ0 | a, ν, ω)

× 1
√
2π(sv)2

exp
(
− (ν − v)2

2(sv)2

)
dν dω dτ0

] =

log
[ 1

st0
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t0

1

sw

∫ w+ 1
2 sw

w− 1
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M × p3(y − τ0 | a, ν, ω) dω dτ0
]
,

(2)

where p() denotes the density function, and M and p3()
are defined, by using t := y − τ0, as

M := 1
√
1 + s2v t

exp
(
avω + v2t

2
+ s2va

2ω2 − 2avω − v2t

2(1 + s2v t)

)
and (3)

p3(t | a, v, w) := 1

a2
exp

(
−avw − v2t

2

)
f (

t

a2
| 0, 1, w), (4)
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where f (t∗ = t
a2

| 0, 1, w) can be specified in two ways:

fl(t
∗ | 0, 1, w) =

∞∑

k=1

kπ exp
(
− k2π2t∗

2

)
sin(kπw) and (5)

fs(t
∗ | 0, 1, w) =

∞∑

k=−∞

1
√
2π(t∗)3

(w + 2k) exp
(
− (w + 2k)2

2t∗
)
. (6)

Which of these is used in the computations depends onwhich
expression requires the smaller number of components k
to guarantee a pre-specified precision (Blurton et al., 2017;
Gondan et al., 2014; Hartmann and Klauer, 2021; Navarro &
Fuss, 2009).

How to use the function in Stan

After the mathematical formulation of the seven-parameter
diffusion model, we now present a hands-on description of

how to use the new function. In the declaration of a Stan
model, wiener_full can be called in two different ways

y ∼ wiener_full(a,t0,w,v,sv,sw,st0);

or

target + = wiener_full_lpdf(y|a,t0,w,v,

sv,sw,st0);
Since the function is not vectorized, it is called for each

experimental trial in a for-loop for the reaction time and
response observed in the trial with parameters appropriate to
the condition (see Fig. 2 for a template). Note that the func-
tion always returns the value for the upper response boundary.
To compute the value for the lower response boundary the

Fig. 2 Minimal example of a
Stan script for a non-hierarchical
seven-parameter DM. Note. See
text for an explanation of the
different components of this
script
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function has to be called with −v instead of v, and 1 − w

instead of w. The model block shown in Fig. 2 provides a
template for calling the function for both, the upper and the
lower response boundary.

As pointed out above, wiener_full_lpdf() also
allows one to compute restricted models involving one, two,
three, four, five, or six parameters by setting parameters to
zero or fixing parameters to other given values. For example,
sv , sw, and/or st0 can be set to zero, indicating, in order, no
inter-trial variability inv, no inter-trial variability inw, and/or
no inter-trial variability in t0, respectively. Often it might also
be useful to set the relative starting point to 0.5 (e.g., when
assuming an unbiased decision maker). For example, if no
inter-trial variabilities for the relative starting point and for
the non-decision time are needed, the function call might
look as follows:

target += wiener_full_lpdf(y|a,t0,w,v,
sv,0,0);
For a very parsimonious three-parametermodel, assuming

no inter-trial variabilities at all and fixing the relative staring
point at 0.5, the function call might look as follows:

target += wiener_full_lpdf(y|a,t0,0.5,
v,0,0,0);
It is also possible to control the precision in the compu-

tation of the DM partial derivatives2 by calling the function
wiener_full_prec_lpdf(), analogously:

target += wiener_full_prec_lpdf(y|a,t0
,w,v,sv,sw,st0,precision);

The usage and behavior of the two functions are the same
except for the added control over the precision parameter.

Declaration of the Stanmodel

To declare a Stan model the user should specify three blocks:
the data block, the parameters block, and the model block.
In the following, the blocks will be described in some detail
(see Fig. 2 for an example of a model declaration for a seven-
parameter DM).

The data block

The data should consist of at least three variables:

2 The precision value controls the accuracy in the computation of the
partial derivatives. The default value for the precision is 10−4. The user
can provide smaller values for increased precision. Note that this preci-
sion value only changes the precision in the computation of the partial
derivatives, but not of the DM density itself. The precision value for the
density is internally fixed to 10−6 and cannot be changed by the user.
The partial derivatives determine the directions in which the parame-
ter space is explored in MCMC sampling. Requesting more accurately
computed derivatives may thereby help to increase the efficiency of the
exploration of the parameter space, but it trades off against a time cost
for computing more accurate derivatives. The validity of the algorithm
as such is not influenced by this parameter.

1. The number of trials N ,
2. the response, coded as 0 = “lower bound” and1 = “upper

bound” (in Fig. 2), and
3. the reaction times in seconds (not milliseconds).

Note that two different ways of coding responses are
commonly used: First, in response coding, the boundaries
correspond to the two response alternatives. Second, in accu-
racy coding, the boundaries correspond to correct (upper
bound) and wrong (lower bound) responses.

Depending on the experimental design, one would typi-
cally also provide the number of conditions and the condition
associatedwith each trial as a vector. In a hierarchical setting,
the data block would also specify the number of participants
and the participant associated with each trial as a vector. It is
also possible to hand over a precision value in the data block.

The parameters block

The model arguments of the wiener_full_lpdf() func-
tion that are not fixed to a certain value are defined as
parameters in the parameters block. In this block, it is also
possible to insert restrictions on the parameters. Note that the
MCMC algorithm iteratively searches for the next parame-
ter set. If the suggested sample falls outside the internally
defined parameter ranges, the program will throw an error,
which causes the algorithm to restart the current iteration.
Since this slows down the sampling process, it is advisable
to include the parameter ranges in the definition of the param-
eters in the parameters block to improve the sampling process
(seeTable 1 for the parameter ranges) as exemplified inFig. 2.
In addition, the parameter space is further constrained by the
following conditions:

1. The non-decision time has to be smaller or equal to the
RT: t0 ≤ y.

2. The varying relative starting point has to be in the interval
(0, 1) and thus,

w + sw
2

< 1, and

0 < w − sw
2

.
(7)

Table 1 Parameter Ranges

Parameter Range Parameter Range

a (0,∞) ya (0,∞)

v (−∞,∞) sv [0,∞)

w (0, 1) sw [0, 1)
t0 [0,∞) st0 [0,∞)

a The reaction time, y, is not a parameter
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Themodel block

In the model block, the priors are defined and the likelihood
is called for the upper and the lower response boundary. Dif-
ferent kinds of priors can be specified here. When no prior is
specified for a parameter, Stan uses default priors with speci-
fications uniform(-infinity, infinity). For fur-
ther information see the Stan Development Team (2022b).
Generally, mildly informative priors might help to get the
full benefit of a Bayesian analysis.

In the second part of the model block, the likelihood func-
tion is applied to all responses. As explained above, this has
to be done in a for-loop, and drift rate and relative starting
point have to bemirrored for responses at the lower boundary.

Validating the new function

In this section, we report results from two sanity checks:
First, we present a simulation study to test whether our imple-
mentation of the full diffusion model is able to recover given
parameters and, second, we perform a simulation-based cali-
bration study (Talts et al., 2018) analyzing the same simulated
data to test the adequacy of the resulting posterior distri-
butions. For these studies, we chose prior distributions for
all parameters as recommended in the literature, sampled
different sets of parameters from these distributions, then
simulated data from these parameters and ran the model on

Fig. 3 Graphical model representation in the simulation study. Note.
Each data point xtc (vector of reaction time and response) within trial t
and condition c depends on the seven diffusion parameters, from which
only the drift rate varies between conditions. This results in eight param-
eters to estimate

the data with the same distributions for the priors in order to
analyze the results in two different ways.

Simulation study

We conducted a simulation study to test, on the one hand, the
precision of parameter recovery (recovery study), and, on
the other hand, whether the new implementation is correct
(simulation-based calibration study). For this purpose, we
simulated data once and then analyzed these datawith respect
to both aspects. Simulated datasets comprise trials from two
conditions, representing two different stimulus types, where
forCondition 1 and 2 positive and negative drift rates, respec-
tively, are assumed. All other parameters are shared across
conditions as depicted in the graphical model representation
in Fig. 3. This is a common design in many reaction time
experiments (e.g., see Arnold et al., 2015; Johnson et al.,
2020; Ratcliff and Smith, 2004; Voss et al., 2004).

The data were fitted with the full diffusion model, com-
prising a total of eight parameters (because of the two drift
rates). Separatemodelswerefitted for each simulated dataset.

Ground truth and priors

The parameters for the simulation, denoted as the ground
truth, are randomly drawn from the prior distributions used
in the model. This is a natural choice for informative pri-
ors in the case that the generating model is known, and a
prerequisite for the simulation-based calibration.

The parameters are drawn from the distributions shown in
Table 2, whereN denotes the normal distribution, B the beta
distribution, and T[., .] denotes a truncation. At the same
time, these distributions serve as priors in the Stan model.
The prior distributions for a, w, and sv are based on Wiecki
et al. (2013, Fig. 1 in the Supplements), the distributions for
t0 and st0 are based on Matzke and Wagenmakers (2009,
Table 3) and the distributions for v and sw are the ones used

Table 2 Priors for simulation study

Parameter Prior distribution

a N (1, 1) T[0.5, 3]
v N (2, 3) T[0, 5]
w N (0.5, 0.1) T[0.3, 0.7]
t0 N (0.435, 0.12) T[0.2, 1]
sv N (1, 3) T[0, 3]
sw B(1, 3)

st0 N (0.183, 0.09) T[0, 0.5]
Note.N = normal distribution;B = beta distribution; T[., .] = truncation
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Table 3 Parameter recovery study: Evaluation criteria (Correlations,
Coverage, mMCSE), for parameters estimated from 100, and 500 sim-
ulated trials, respectively

Par. r 50%a 95%a mMCSEb

— 100 Trials —

a .96 51 95 0.00486

v1 .91 48 95 0.01796

v2 .91 50 95 0.01821

t0 .98 49 94 0.00063

w .87 50 95 0.00120

sv .68 48 94 0.01964

sw .40 51 95 0.00564

st0 .83 47 96 0.00133

— 500 Trials —

a .99 49 94 0.00280

v1 .97 49 95 0.01170

v2 .97 49 94 0.01170

t0 .99 49 94 0.00037

w .97 50 94 0.00063

sv .84 50 94 0.01486

sw .62 50 95 0.00543

st0 .95 49 95 0.00071

Note. Par.=Parameters; r=Correlations (between true parameter values
and posterior medians)
a Percent of simulated datasets with true value in the HDI of this per-
centage
b Mean of Monte Carlo standard error (mMCSE) across simulated
datasets

inWiecki et al. (2013). To simulate the above-mentioned two
conditions, v is drawn twice, and the second value is multi-
plied with the factor −1, such that in the first condition, v is
directed to the upper boundary and in the second condition,
v is directed to the lower boundary.

Datasets

For the choice of the number of datasetswe follow the settings
used in previous recovery analyses and simulation-based cal-
ibration analyses (using between N = 500 and N = 10.000
simulated datasets, see Hartmann et al., 2020; Heck et al.,
2018; Klauer and Kellen, 2018; Lerche et al., 2017; Talts
et al., 2018; Wabersich & Vandekerckhove, 2013), and con-
sider computational time. Hence, we drew 2000 ground
truths from the prior distributions shown in Table 2 and
simulated two datasets for each ground truth, resulting in
2 × N = 2 × 2000 datasets.

The first 2000 datasets each consist of 100 simulated trials
(50 per condition), and the second 2000 datasets each con-
sist of 500 simulated trials (250 per condition). Many more

trials seem to be unrealistic in reaction time tasks and are
very costly in terms of computation time. Many fewer trials
are assumed to be too few for the successful estimation of
inter-trial variabilities (Boehm et al., 2018). Therefore, using
500 trials seemed to be a good compromise, and 100 trials
are chosen to see whether the method still performs reason-
ably well with fewer trials. Data were simulated with the
rdiffusion()-function of the R-package rtdists (R
Core Team, 2021; Singmann et al., 2022) with a precision of
4 and the fastdm-method (Voss & Voss, 2007).

Method configuration

Analyses were run on the bwUniCluster within the frame-
work program bwHPC with parallelization only in the
Stan-model via thereduce_sum() routine.We chose to run
four chains (as recommended by Vehtari et al., 2021, page 4).
All chains were computed sequentially. In calibration studies
we found that reducing the maximum treedepth to 5 speeds
up the sampling process, while still resulting in good conver-
gence and no divergent transitions.

We started computations with 150 warmup and 500 sam-
pling iterationsperchainandrepeated computations up to seven
times with increased warmup iterations for those datasets for
which the model did not converge satisfactorily. For all other
method parameters, the Stan default values were taken.

Recovery study

Convergence and diagnostics The Stan developers recom-
mend that some diagnostics need to fulfill certain criteria
before going deeper into the analysis (e.g., Vehtari et al.,
2021). Among these diagnostics are the rank-normalized
effective sample size, Neff, the convergence parameter, R̂,
and the number of divergent transitions.

First, the effective sample size captures how many inde-
pendent draws contain the same amount of information as
the dependent draws obtained by the MCMC algorithm. It
is recommended to check that the rank-normalized effec-
tive sample size is greater than 400, Neff > 400 (Vehtari
et al., 2021). A useful heuristic is to ensure that the rel-
ative effective sample size is large enough: Neff/Nsamp >

0.1, where Nsamp is the number of samples drawn and
retained from the posterior distribution (Stan Development
Team, 2022a).

Second, the R̂ value is a measure of convergence. This
is recommended to be smaller than 1.01, R̂ < 1.01 (Vehtari
et al., 2021), due to experience of the authors in practical use.
This threshold is much tighter than the value of R̂ < 1.1 first
recommended by Brooks and Gelman (1998).
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Third, there should not be divergent transitions in the sam-
pling process. Divergent transitions can bias the obtained
estimates and are an indicator of convergence problems
(Vehtari et al., 2021).

Therefore, we checked these diagnostics (Neff/Nsamp >

0.1, R̂ < 1.01, and divergent transitions), and reanalyzed
datasets with insufficient diagnostics withmore warmup iter-
ations to ensure the chains have converged at the start of
sampling. We started analyses with 150 warmup iterations
per chain. As this quickly turned out to be too low to reach the
strict convergence criteria, we continued the analyses with
higher warmup and sampling iterations per chain. In the end,
most of the datasets met the criteria with 1000 warmup and
1000 sampling iterations per chain (about 99%). There were
only a few datasets that needed up to 3000 warmup and 1000
sampling iterations (about 1%).

For the retained 4000 MCMC samples, all effective sam-
ple sizes are above 400, all relative effective sample sizes are
greater than 0.1, nearly all R̂ values are smaller than 1.01
(2 out of 32000 R̂ were bigger than 1.01) and no divergent

transitions occurred. There is one dataset for which the R̂
equals 1.012 for the a parameter and R̂ equals 1.013 for the
sv parameter. But, as these values are still below 1.05 we
stopped reanalyzing and included this dataset into further
analyses.

Recovery Next, we compute some typical measures to test
recovery in the Bayesian context. We present correlations
between the true values and the posterior medians, coverage
via the percentage of times across the datasets that the true
value lies in the 50% and 95% highest density interval (HDI),
respectively, as another measure of recovery, and themean of
theMonte Carlo standard errors (mMCSE) as a quantitative
suggestion of how big the estimation noise in Markov chains
is. The MCSE indicates the estimated SD of the posterior
mean in the chain, where SD is the standard deviation of
the posterior samples, and is interpreted on the scale of the
parameter value (Kruschke, 2015; Vehtari et al., 2021). The
MCSE is basically defined as SD/

√
Neff. Results are shown

in Table 3. Furthermore, we display the bias in terms of the

Fig. 4 Violin plots of bias
between posterior median and
true value for 100 trials
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Fig. 5 Violin plots of bias
between posterior median and
true value for 500 trials
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difference between the posterior median and the true value
in violin plots in Fig. 4 and in Fig. 5 for the datasets with
100 and 500 trials, respectively. Note the different scaling of
the y-axes in the two figures. In Appendix A, we present a
runtime analysis.

The correlations show a similar pattern as already found
in literature (e.g., Boehm et al., 2018): the three inter-trial
variabilities show smaller correlations with the true values
than the othermodel parameters.Nonetheless, in the analyses
with 500 trials, correlations of .62 for sw, .84 for sv , and even
.95 for st0 were obtained.

The coverage values meet the expectations in this setup
with values between 49% and 50% for 500 trials in 50%HDI
and between 94% and 95% for 500 trials in 95% HDI. The
MCSE values show that the parameters are estimated with
small standard errors that decrease with the number of trials.

MCSE quantifies the variability of parameter estimates
calculated from the sample of the posterior distribution,
whereas bias assesses systematic deviationof such estimates

from the ground truth. The violin plots for 500 trials (Fig. 5)
show smaller biases than the violin plots for 100 trials
(Fig. 4). All plots except the plot for sw have most of their
mass at 0 and are quite symmetric, meaning that there is no
sign of systematic over- or underestimation. The plots for sw
show small overestimation and a non-symmetric distribution
of bias. This may reflect the non-symmetric prior distribu-
tion for sw. The plots for v1, v2, and sv show a relatively wide
spread, whereas the plots for w, t0, and st0 suggest that these
parameters can be recovered with small absolute biases.

In summary, the results of the recovery study are in line
with findings in the literature (e.g., Boehm et al., 2018).
Specifically, the estimation of the inter-trial variability in
relative starting point seems to be tricky in this setup. Never-
theless, results suggest that the new implementation is able
to recover the parameters of the seven-parameter diffusion
model. As expected, the parameter recoveries based on 500
trials are better than those based on 100 trials, that is, corre-
lations are higher, coverage is better, and mean MCSEs and
biases are smaller.
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Simulation-based calibration study

Recovery studies in Bayesian contexts are limited by the
facts that it is difficult to conclude that a Bayesian algorithm
is validly implemented from successful recovery and con-
versely that it is difficult to conclude that it is invalid from
the occurrence of systematic bias (Talts et al., 2018). This is
not true for simulation-based calibration (SBC, Talts et al.,
2018), which tests whether the algorithm satisfies a consis-
tency condition that a valid algorithm must respect. SBC can
therefore reveal conclusive evidence for the invalidity of an
invalid algorithm. To further illustrate the correct functioning
of the new implementation of the seven-parameter diffusion
model, we therefore performed a simulation-based calibra-
tion study.

SBC is a method to validate inferences from Bayesian
algorithms that generate posterior samples. Themethod iden-
tifies inaccurate computations and inconsistencies in the
implementationof themodel.According toTalts et al. (2018),
the only assumption for SBC is that there exists a generative
model for the data. The procedure is to repeatedly sample

parameters from the prior distributions, simulate data from
these parameters, and fit the model to these datasets using the
same priors from which the parameters were sampled. The
analysis, if implemented correctly, must satisfy the following
self-consistency condition:

π(θ) =
∫ ∫

π(θ | ỹ)π(ỹ | θ̃ )π(θ̃) d ỹ d θ̃ , (8)

where θ̃ ∼ π(θ) are the parameters - denoted as the ground
truth - sampled from the prior distribution, ỹ ∼ π(y | θ̃ ) are
the data generated from themodel using the ground truth, and
θ ∼ π(θ | ỹ) the posterior samples. This condition implies
that the prior sample θ̃ and the posterior sample θ follow the
same distribution. Modrak et al. (2022) proposed an exten-
sion of the SBC check such that the implication not only
holds for the parameter space but also includes the data space.
From this extension follows that the rank statistic rtotal of
the prior sample relative to the posterior sample, defined for
any one-dimensional random variable with domain parame-
ter and data space, f : � × Y → R,

Fig. 6 Histograms of the rank statistic for 100 trials. Note. The histograms indicate no issues as the empirical rank statistics (red) are consistent
with the variation expected of a uniform histogram (gray)
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Fig. 7 Histograms of the rank statistic for 500 trials. Note. The histograms indicate no issues as the empirical rank statistics (red) are consistent
with the variation expected of a uniform histogram (gray)

rless ({ f (θ1, y), . . . , f (θL , y)}) :=
L∑

l=1

I

[
f (θl , y) < f (θ̃ , y)

]
∈ [0, L]

requals ({ f (θ1, y), . . . , f (θL , y)}) :=
L∑

l=1

I

[
f (θl , y) = f (θ̃ , y)

]
∈ [0, L]

K ∼ uniform(0, requals)

rtotal := rless + K ,

(9)

should be uniformly distributed over the natural numbers in
[0, L], where L is the number of samples of the posterior
distribution, and I is the indicator function taking the value
1 if the condition in the parentheses holds and the value 0
otherwise.

Our simulation study was designed to allow us to test
this expectation. That is, given a correct implementation
of the function wiener_full_lpdf(), the SBC should
result in uniformly distributed rank values. Specifically, for
each model parameter and for the log-density, we compute
the rank statistic of the ground truth in the posterior sam-
ple, and the histogram of rank statistics as proposed by
Modrak et al. (2022). The histogram should reveal a uniform

distribution of the rank statistic if the algorithm is valid,
whereas systematic deviations from the uniform distribution
allow one to diagnose specific problems of the algorithm
(Talts et al., 2018).

Since the MCMC-algorithm used in Stan produces auto-
correlated samples, we have to thin our posterior samples
to obtain (a smaller number of) independent draws from the
posterior distribution. As mentioned above, we ensured that
all effective sample sizes are above 400. Therefore, we uni-
formly thin the posterior samples to L = 399 high-quality
draws according to Algorithm 2 by Talts et al. (2018), and
compute the rank statistic as defined in Eq. 9 for each of the N
datasets and analyze the resulting histogram for uniformity.
For the histograms, we set the number of bins to 100, so that
across the 2000 simulated datasets, there are 20 observations
expected per bin. In Figs. 6 and 7, we add a gray band to the
histogram that covers 99% of the variation expected for each
frequency in a histogram of a uniform distribution. Specifi-
cally, the band covers the interval from the 0.005 percentile to
the 0.995 percentile of the Binomial(N ; 100−1) distribution.

Additionally, we calculate the χ2-statistic for the dif-
ferences between observed and expected frequencies of
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observations per bin for each parameter and for the log-
density with expected frequencies given by the expected
uniform distribution (i.e., 20 per bin). In this way, it is
possible to check whether the SBC assumption is signif-
icantly violated, which would indicate that the posterior
distributions are flawed. For each parameter, the observed
χ2 value is compared to the critical χ2 value of 123.23,
for p = .95 with d f = 99 (number of bins minus 1).
In sum, we calculate 18 χ2-statistics, 9 for the 100 tri-
als study and 9 for the 500 trials study. In order to check
whether the aggregate of the individual χ2-tests follows the
hypothesis of uniformity, we also aggregated the resulting
18 p-values by means of Fisher’s combined probability test
(Fisher, 1950)3.

Results and Discussion The results of the SBC study for 100
trials are displayed in Fig. 6 and for 500 trials in Fig. 7. Visual
inspection suggests that none of the histograms shows sys-
tematic deviation from the uniform distribution. This means
that there is no clear pattern in the histograms that indicates
some kind of bias as described in Modrak et al. (2022) and
Talts et al. (2018).

Furthermore, the χ2-statistic testing for uniformity is sig-
nificant at the 5% level for only one out of 18 calculated
statistics: the χ2 value for sw in the simulation with 500 tri-
als was χ2(99) = 128.6 with p = .024. Note that with 18
tests at the 5% level, one significant result is well within the
range of expectations. This is confirmed by Fisher’s com-
bined probability test. Across all 18 p-values, the combined
test yielded a χ2(36) of 34.65 with p = .467, indicating
that the set of p-values is consistent with the composite
hypothesis that all histograms follow a uniform distribution.
Taken together, we conclude that there is little indication
in these analyses that our DM algorithm is implemented
incorrectly.

General discussion

The purpose of this paper was to introduce a new implemen-
tation of the seven-parameter diffusion model in a Bayesian
framework – the probabilistic programming language Stan.

3 Thus, we test whether the test statistic −2
∑18

i=1 log(pi ) indicates a
violation of the composite hypothesis that the p-values themselves stem
from a uniform distribution as they should under the H0 of uniformly
distributed histograms. Under the H0, the test statistic should follow a
χ2-distribution with 36 degrees of freedom.

As mentioned in the introduction, this implementation
overcomes a number of shortcomings of previous imple-
mentations of the DM. Unlike previous implementations
in WinBUGS, JAGS, and Stan, the current implementa-
tion enables users to incorporate the variability parameters
that define the seven-parameter version of the DM. Unlike
the implementation via HDDM, the Stan framework pro-
vides the user with great flexibility in choosing priors and
in implementing complex hierarchically structured models.
Additionally, the new implementation within the Stan frame-
work allows users to benefit from all resources that are
available for this platform, including libraries for model
comparison (e.g., using loo), or (graphical) analyses of
MCMC convergence. In the present paper, we described
how to use the newly implemented Stan function and pre-
sented simulation studies that examined the recovery of
the parameters and a correctness check of the implemented
algorithm.

In summary, the results of the recovery study are in line
with findings in the literature. We found satisfactory to good
parameter recovery in terms of correlations, bias and cov-
erage, with better recovery for the basic model parameters
than for the variability parameters as previously observed
(e.g., Boehm et al., 2018). Specifically, recovery of the inter-
trial variability in relative starting point seems to be tricky in
this setup. Nevertheless, simulation-based calibration does
not show any systematic errors, suggesting that the imple-
mentation is correct and that bias in the estimation reflects
the influence of the chosen prior. Furthermore, the results of
the simulation-based calibration study suggest that the new
algorithm is implemented correctly, and Stan is suitable for
fitting DMs with its Hamiltonian MCMC algorithm.

The design of our simulation studies was constrained by
the goals that we pursued in this brief article, namely to
implement a number of validity checks of our algorithm. For
this reason, the scope of this simulation study is limited to
the case with informative priors in a simple non-hierarchical
model with data that were generated from the DM model
without contaminants as occur in real data. It is thus up to
future research to examine the performance of the new Stan
implementation in other settings; for example,with less infor-
mative or even uninformative priors, with real data, with a
hierarchical approach, or in comparison to other methods
(Figs. 8 and 9).

In conclusion, the implementation offers new opportuni-
ties to simultaneously examine response time and responses.
We hope that it will prove to be a useful enrichment to the
current modeling landscape.
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Appendix A

Runtime analysis

Fig. 8 Histograms of runtimes
for 100 trials. Note. Analyses
were parallelized on 32, and 80
threads per chain, respectively.
Mean runtime on 32 threads per
chain is 6.7 minutes. Mean
runtime on 80 threads per chain
is 6.2 minutes
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Fig. 9 Histograms of runtimes
for 500 trials. Note. Analyses
were parallelized on 40, and 80
threads per chain, respectively.
Mean runtime on 40 threads per
chain is 44 minutes. Mean
runtime on 80 threads per chain
is 20 minutes
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