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Abstract
Real-time magnetic resonance imaging (rtMRI) is a technique that provides high-contrast videographic data of human anatomy 
in motion. Applied to the vocal tract, it is a powerful method for capturing the dynamics of speech and other vocal behaviours 
by imaging structures internal to the mouth and throat. These images provide a means of studying the physiological basis for 
speech, singing, expressions of emotion, and swallowing that are otherwise not accessible for external observation. However, 
taking quantitative measurements from these images is notoriously difficult. We introduce a signal processing pipeline that 
produces outlines of the vocal tract from the lips to the larynx as a quantification of the dynamic morphology of the vocal 
tract. Our approach performs simple tissue classification, but constrained to a researcher-specified region of interest. This 
combination facilitates feature extraction while retaining the domain-specific expertise of a human analyst. We demonstrate 
that this pipeline generalises well across datasets covering behaviours such as speech, vocal size exaggeration, laughter, and 
whistling, as well as producing reliable outcomes across analysts, particularly among users with domain-specific expertise. 
With this article, we make this pipeline available for immediate use by the research community, and further suggest that it 
may contribute to the continued development of fully automated methods based on deep learning algorithms.
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Introduction

Real-time magnetic resonance imaging (rtMRI) is a tech-
nique for producing dynamic videos of the internal struc-
tures of the body (Zhang et al., 2010). It is frequently applied 
by speech scientists to study movements of the internal 
structures of the head that shape speech sounds, which are 
not easily amenable to external observation. The technique 
has been used to study a broad range of behaviours including 
the articulatory movements of speech (Belyk et al., 2019; 
Carey et al., 2017; Carignan et al., 2020; Miller et al., 2014; 
Narayanan et al., 2014; Wiltshire et al., 2021), vocal regis-
ters of singers (Echternach et al., 2010; Lynn et al., 2021), 
and vocal expressions of emotion (Belyk & McGettigan, 
2022), as well as non-speech movements such as swallowing 

(Mills et al., 2020; Olthoff et al., 2014; Zhang et al., 2012) 
and beat-boxing (Proctor et al., 2013). In typical uses of 
the technique, a single mid-sagittal slice through the head 
and neck forms an image that transects the vocal tract (see 
Fig. 1). Repeated measurements taken on the order of mil-
liseconds compose the frames of a videographic record.

Speech scientists use rtMRI to study movements of the 
lips, tongue, velum, and larynx. Together, these structures 
change the shape of the vocal tract, which determines 
which of the broad range of sounds from the human rep-
ertoire a speaker will produce at any particular moment 
(Fant, 1960; Titze, 2008). These structures are highly 
labile, having an extensive range of possible motions and 
configurations, which are executed in rapid and coordi-
nated succession. The study of this system is made tracta-
ble by the fact that it is deterministic: there are systematic 
and quantifiable relationships between the shape of the 
vocal tract, the physical acoustics of the sounds that it pro-
duces, and the perceptions of the people who hear it (Fant, 
1960; Titze, 2008). The principal challenge has been that 
these anatomical structures and their movements are dif-
ficult to observe. However, non-invasive imaging through 
technologies such as rtMRI (Zhang et al., 2010) provide 
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a means of quantifying vocal phenomena that were not 
otherwise easily quantifiable.

A principal difficulty for the use of this technology is in 
deriving anatomically meaningful measurements from the 
complex images produced by rtMRI. The standard use case 
has been to choose a small number of theoretically interesting 
features and measure the sizes and distances between anatomi-
cal structures on a small subset of the images that are collected 
(Echternach et al., 2010, 2011, 2014; Lammert et al., 2011). 
While this approach has yielded several significant insights, it 
also discards vast amounts of potentially informative data that 
are present in the images. It is also extremely laborious, which 
prohibits the use of the larger sample sizes that have become a 
standard of good scientific practice for other disciplines.

A promising avenue for development has come from the 
application of machine learning, and deep learning algo-
rithms in particular (Goodfellow et al., 2016). This is a field 
of statistics that continues to develop rapidly, and several 
implementations have been proposed for applications to 
rtMRI (e.g., Asadiabadi & Erzin, 2020; Bresch & Naray-
anan, 2009; Eslami et al., 2020; Labrunie et al., 2018; van 
Leeuwen et al., 2019; Mannem & Ghosh, 2021; Pandey & 
Sabbir Arif, 2021; Ruthven et al., 2021; Silva & Teixeira, 
2015; Somandepalli et al., 2017; Takemoto et al., 2019; Val-
liappan et al., 2019). Deep-learning-based approaches can 
yield machine-generated traces of the vocal tract which are 
sufficiently accurate to be useful for scientific measurements. 

However, to our knowledge, none have been demonstrated 
to generalise well to new datasets (i.e., those produced by 
behaviours, imaging hardware, and pulse sequences not 
observed in the training data). Hence, while these advances 
are of intense theoretical interest, they have not yet presented 
a path forward for practising behavioural scientists.

One of the key obstacles towards generalisability is the lim-
ited availability of validated vocal tract traces from which to 
train the algorithms. Indeed, existing implementations have 
sampled from a narrow range of available corpora composed of 
small numbers of speakers and tasks that were recorded from a 
single imaging centre (e.g., Narayanan et al. 2014). While these 
attributes make a corpus fertile testing ground for the develop-
ment of new techniques, they do little to promote the application 
of these techniques to novel datasets. Hence, despite impressive 
advances in the engineering of deep learning architectures as 
applied to rtMRI, they have yet to be widely adopted in practice.

To date there is therefore no deep learning solution that 
practising scientists can confidently apply to new experi-
mental data. While development continues on deep learning 
methods, several research groups have developed idiosyn-
cratic pipelines that facilitate measurement (Belyk et al., 
2019; Carignan et al., 2020; Kim et al., 2014). These meth-
ods use signal processing approaches such as tissue classifi-
cation or edge detection to partially automate measurement, 
supplemented by user input that provides the domain-rele-
vant expertise of the analyst. Ideally such methods should 
strike a balance between precision and labour efficiency—
they should also have a demonstrable capacity to generalise 
effectively to new use cases. However, to date no such dem-
onstration of generalisability has been forthcoming.

Here, we describe a practical signal processing pipeline 
for taking useful scientific measurements from mid-sagittal 
rtMRI images. We provide an overview of the pipeline and 
report validation tests which demonstrate that (1) the method 
can be generalised to new use case, and (2) can be success-
fully applied by users outside of the development team. 
We make this pipeline available for immediate use by the 
research community, and discuss how it may contribute to 
the further development of fully automated methods based 
on deep learning algorithms.

Implementation

This pipeline is implemented as a series of MATLAB scripts 
(with dependencies from the Image Processing Toolbox and 
the Statistics and Machine Learning Toolbox) which execute 
the stages of this processing pipeline (see Fig. 2) in series. 
Each script generates outputs that are useful either for diag-
nosing analysis quality or as the inputs to subsequent stages 
of analysis. Code and documentation can be retrieved from 
the Open Science Framework (https:// osf. io/ hm6zp/).

Fig. 1  Sample frame from one rtMRI run. The greyscale image cov-
ers a mid-sagittal slice from a single time point with soft tissue shown 
as light and air or bone shown as dark pixels. Labile structures of the 
vocal tract are labelled for convenience, and the vocal tract constitutes 
the negative space between them

https://osf.io/hm6zp/
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Overview

Our approach uses simple tissue classification constrained to 
pixels that the analyst has identified are likely to contain the 
vocal tract and surrounding tissue. Gross input provided by 
the analyst on the basis of one frame is used as a seed for the 
analysis of an entire imaging run. This procedure is designed 
to reduce labour-intensiveness, while retaining input from 
domain-specific expertise.

The task that most researchers will wish to accomplish effec-
tively reduces to edge detection—that is, finding the bounda-
ries between tissue and air that outline the vocal tract. A mid-
sagittal slice of the head and neck contains many edges, only 
a minority of which are of interest. However, while the vocal 
tract changes shape, it does not generally change position within 
the MRI scanner, nor do the features of interest to researchers.

The pipeline that we present takes the following steps:

1) Spatially informed tissue masking

a. User manually identifies a region of interest on the 
basis of one frame.

b. Tissue classification proceeds for all frames within 
the same imaging run.

2) Frame selection

a. Time points of interest are identified from user-pro-
vided logfiles.

b. Remaining time points are discarded for computa-
tional and labour efficiency.

3) Quality assurance

a. Summary statistics identify spatial locations with 
high rates of suspected classification errors across 
an imaging run.

b. User updates region of interest as needed.

4) Vocal tract outlining

a. Tissue masks are converted to outlines.
b. Connecting lines drawn automatically between vocal 

tract cavities if required.

5) Manual correction

a. User review on a frame-by-frame basis with oppor-
tunities to draw or erase individual features.

b. Perform and repeat as appropriate to balance preci-
sion and labour expenditure.

While each stage must be followed in order (see over-
view in Fig. 2), analysts may choose to forgo later stages 

Fig. 2  Overview of vocal tract morphology pipeline from raw image 
data through processing stages 1–5. Each stage in the sequence produces 
inputs needed for later stages as well as outputs which researchers may 
find useful for further analysis. Depending on the research question being 
addressed, researchers may choose to forgo later processing stages. The 
key on the left-hand side provides a rough index of how necessary each 
stage is for producing useful measurements, and the degree of labour that 
each step requires. Researchers with very large datasets may consider for-
going the more labour-intensive late stages; however, the best outcomes 
will be achieved by completing all processing stages. Note: The example 
shown in stage 5 depicts a different image frame for illustrative purposes. 
*Stage 4 requires little human labour but may be computationally inten-
sive for some datasets
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depending on their research needs. For example, researchers 
with very large datasets may wish to omit the final manual 
correction stage or apply it to only a randomly sampled sub-
set of the data in order to assess measurement error rather 
than correct it exhaustively. These descriptions are intended 
as a conceptual demonstration, and readers are referred to 
the user manual for guidance on executing each step.

Stage 1: Spatially informed tissue masking

The goal of this processing pipeline is to locate image pixels 
that outline the vocal tract. However, the majority of edges 
within a mid-sagittal MR image correspond to non-vocal 
tract structures and tissues, such as the scalp, brain, and 
spinal cord. The pipeline therefore requests user input to 
identify a region of interest that is likely to contain the vocal 
tract and surrounding tissue. This area of interest is specified 
on the basis of a single image and then used to restrict tissue 
classification across all images within a run.

An initial estimate of the region of the space that is 
likely to contain the vocal tract is identified by searching 
for pixels whose intensity values are highly variable across 
the rtMRI run. Pixels with fixed values are likely to con-
tain static structures of little interest (e.g., the skull or air 
outside the vocal tract), while high variance pixels are 
likely to alternate between air and soft tissue; that is, they 
alternate between containing the labile structures that out-
line the vocal tract and the air within the vocal tract itself. 
Assuming that the images are relatively free of time varying 
noise, such a variance map roughly follows the course of the 
vocal tract provides a convenient starting point from which 
to identify a vocal tract region of interest. However, this 
automatic method is likely either to overreach into adjacent 
structures of no interest to speech research (e.g., into the 
vertebrae) or to exclude pixels that contain fixed structures 

that nonetheless form part of the outline of the vocal tract 
(e.g., the palate). A graphical user interface is therefore pro-
vided to manually refine the area of interest. This procedure 
is repeated once for each imaging run to produce a mask of 
candidate pixels that may contain the vocal tract at any time 
point during the run.

Finally, simple tissue classification is performed within 
the area of interest (see Fig. 3). The distribution of pixel 
values within the analyst-specified mask is expected to be 
bimodal, reflecting the underlying source of T1-weighted 
signals from air and soft tissue, respectively. The local den-
sity minimum is identified as a threshold for simple tissue 
classification. Applying this threshold to each frame in the 
rtMRI run results in a binary mask marking pixels that con-
tain the vocal tract.

Stage 2: Frame selection

Depending on the research question, analysts may not 
be equally interested in all time points within a run. 
For example, time points that capture swallowing or the 
inspiratory phase of speech may not be relevant to experi-
ments on speech articulation. This step reads logfiles 
that indicate which frames should be retained for further 
analysis and discards the remainder. A Praat (Boersma & 
Weenink, 2019) script is provided along with the process-
ing pipeline, which produces logfiles from MRI-aligned 
audio recordings if they are available. For each segment 
of interest, these logfiles note the onset frame and offset 
frame, as well as an optional text label. The Praat helper 
script also generates several useful acoustical measure-
ments such as fundamental frequency, duration, and sound 
intensity level, though interpretation of these acoustical 
measures may merit caution depending on the quality of 
in-scanner audio recording.

Fig. 3  Spatially constrained tissue classification. A The search area 
for the vocal tract and surrounding tissue (pink) is identified with user 
input. B The distribution of T1-weighted pixel values in the search area 
is bimodal. The local density minimum is identified as a threshold for 

simple tissue classification (vertical line). C Pixels with T1 intensity 
values above the classification threshold are classified as tissue (green), 
while pixels below the threshold are classified as air (magenta). Clas-
sification is applied iteratively across all frames within an rtMRI run
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Stage 3: Quality assurance

User input from the initial tissue classification stage may pro-
duce errors if the area of interest extends outside of the con-
tiguous oropharyngeal vocal tract cavity. In this stage, a map 
of the proportion of images in which each pixel was classified 
as vocal tract is overlaid onto a reference image. Pixels are 
tinted pink on a scale ranging from translucent (pixel is never 
classified as vocal tract) to opaque (pixel is always classified 
as vocal tract); the resulting map provides an easy means of 
identifying pockets of space that are occasionally misclassified. 
Such pixels are highlighted as islands of pink among an ocean 
of anatomical grey (see Fig. 4). Analysts are shown one quality 
assurance map for each imaging run, and can use a graphical 
user interface to manually exclude pixels from further analysis.

Stage 4: Vocal tract outlining

Depending on the researcher’s data analysis plans, the binary 
masks produced by the steps described above may be suffi-
cient. However, in many cases the researcher may require an 
outline of the vocal tract that captures the outer boundaries 
of its shape rather than a mask of its internal area.

In many instances the vocal tract may be bisected into multi-
ple discontinuous cavities by the action of the articulators (e.g., 

stop consonants which are articulated by complete obstruction 
of the vocal tract). Indeed, these articulations are frequently of 
primary interest to the researcher, and a meaningful analysis 
will require a connecting line to be drawn between vocal tract 
cavities following a biologically plausible path (see Fig. 5).

“A*” is an algorithm for machine navigation that finds 
the shortest available path through a maze of valid loca-
tions and possibly weighted to prefer some paths over others 
(Hart et al., 1968). This step configures A* to walk from the 
larynx to the lips, weighting each pixel with the inverse of 
the T1-weighted signal at its location. Hence, the algorithm 
seeks a parsimonious path through the vocal tract by follow-
ing the dim, if not altogether dark, pixels at sites of constric-
tion. This path acts as a connection between vocal tract cavi-
ties so that the vocal tract may be modelled as a whole rather 
than as discrete cavities. In most cases these connectors will 
be biologically sound, but this is not guaranteed, and care 
should be taken to verify that outputs are as expected.

Stage 5: Manual correction

Several stages in this pipeline have provided opportunities 
for input from an informed analyst. These procedures are 
an important part of the pipeline which help to ensure the 

Fig. 4  Quality assurance. Users inspect a map depicting the propor-
tion of frames in which each pixel was classified as vocal tract (pink). 
Domain- and project-specific knowledge is used to further exclude pix-
els that are routinely misclassified relative to the needs of the project. A 

Vocal tract map including a cluster of pixels above the velum that were 
not deemed relevant by the analyst (indicated by the yellow curly brace). 
B The same map with the error-prone pixels excluded. This exclusion is 
specified once per run and extrapolated to all frames within it



2628 Behavior Research Methods (2024) 56:2623–2635

1 3

quality of the measurements and their appropriateness to 
individual research questions. At this final stage, the analyst 
can review vocal tract outlines frame-by-frame, draw, erase, 
and retrace as needed (see Fig. 6).

Validation

Alpha test: Generalisability to new datasets

Procedure

We tested the generalisability of the pipeline by having 
a single analyst (MB) apply the pipeline to eight sets 

of sample data covering a range of behaviours that may 
interest speech scientists. These were selected on the basis 
of availability and to sample across a breadth of avail-
able hardware, software, and wetware—the biological 
component that is being imaged. Hence, one imaging 
run from one participant was analysed from each data-
set. These samples were composed of 500–3216 sagittal 
slices per run, of which 113–2808 were analysed after 
discarding time points that were unlikely to be of interest 
(i.e., retaining time points in which audible sound was 
produced by the participant as identified by synchronised 
audio data). These samples covered a range of speech and 
non-speech behaviours across a range of research disci-
plines (see Table 1), including spoken monosyllables in 

Fig. 5  Vocal tract outlines. A The binary mask identifying pixels 
as belonging to the vocal tract. B The mask is navigated by the A* 
method, which finds a parsimonious path from larynx to lips. C This 

path is drawn as a connector between otherwise isolated vocal tract 
cavities. D A single continuous outline of the vocal tract can then be 
drawn to capture the morphology of the vocal tract

Fig. 6  Manual correction. A In this example an undesirable feature is identified near the tongue root (highlighted by yellow curly brace). B A 
simple graphical user interface allows the analyst to erase and C redraw segments of the outline



2629Behavior Research Methods (2024) 56:2623–2635 

1 3

British English, connected speech in German (Carignan 
et al., 2020), French (Isaieva et al., 2021), American Eng-
lish as spoken by a native (L1) speaker (Narayanan et al., 
2014), and American English spoken by a non-native 
speaker (Lim et al., 2021), as well as non-speech vocal 
behaviours including vocal size exaggeration (Belyk et al., 
2022), laughter (Belyk & McGettigan, 2022), and whis-
tling (Belyk et al., 2019). This sample reflects the natural 
variation in imaging parameters, and correspondingly in 
image quality, that analysts may face in practical applica-
tion (see Fig. 7).

Outcome

We demonstrate that data covering a range of scanning 
sites, behaviours, and imaging parameters were well tol-
erated by the analysis pipeline. Sample traces from each 
dataset are presented in Fig. 7. The most substantive obsta-
cle was variation in the degree to which data were affected 
by intensity inhomogeneity. T1-weighted MRI images are 
prone to contamination by intensity gradients such that the 
same category of tissue may appear brighter in one part of 
the image than in others (Sled & Pike, 1998). In processing 
the raw images, intensity inhomogeneity strongly interfered 
with tissue segmentation in Stage 1 of this pipeline. How-
ever, it was found that pre-processing the raw images to 
minimise intensity inhomogeneity mitigated these issues. 
Such pre-processing steps are a standard item of consid-
eration in other disciplines that make use of T1-weighted 
MRI, for example cortical thickness measurements in brain 
imaging (Haast et al., 2018). Supplementary methods for 
implementing inhomogeneity correction are also included 
in the distribution package. We note that whether any, and 
if so which, pre-processing steps may be beneficial should 
be considered on a per-dataset basis.

Beta test: Generalisability to new users

Procedure

In light of the signal processing pipeline’s reliance on user 
input, we tested how strongly outcomes varied between ana-
lysts. Seven analysts processed a single run from the vocal 
size exaggeration dataset (Belyk et al., 2022; Waters et al., 
2021). Three analysts were vocal tract experts with extensive 
familiarity with mid-sagittal views of the vocal tract (authors 
MB, CC, CM), and of these only one had previous experi-
ence using the pipeline (MB). Four were speech and voice 
researchers familiar with the biomechanics of speech but 
with limited experience in vocal tract imaging. All analysts 
were provided with a work package including data, scripts, 
and documentation, but were not given further instructions.

Dice scores were computed as a measure of similarity 
between each pair of analysts (Dice, 1945). Dice scores are 
calculated as twice the number of features (i.e., pixels clas-
sified as vocal tract) that are shared by two sets of analyses 
divided by the sum of the number of features in each set (see 
Eq. 1). These calculations were carried out on the basis of 
outputs from Stages 1–3 (quality assurance), as Dice scores 
are more suitable to analyses of areas, which are outputted 
by these early stages, rather than the outlines which are pro-
duced by the later stages. In particular, Dice scores are based 
on the number of identical items, and hence would treat large 
disagreements in vocal tract outlines as equally problematic 
to small disagreements.

A separate measure of inter-user disagreement was also 
examined at the level of individual sites along the outline of 
the vocal tract in order to provide a more nuanced view of the 

(1)DiceScore =
2|X ∩ Y|

|X| + |Y|

Table 1  Data sources and basic image dimensions for alpha test datasets

We note that the pulse sequences underlying image acquisition also vary between scanning sites and refer readers to the original sources for fur-
ther details. The behaviours sampled represent a range from monosyllabic words to connected speech in a range of languages (German, French, 
British English, American English) at varied language proficiencies (L1, L2) as well as non-speech vocal behaviour (whistling, laughter, size 
exaggeration). Datasets #1–7 are re-analyses of published data. Dataset #8 is pilot data collected by the authors. FPS: frames per second as a 
metric of temporal resolution; mm: spatial resolution in millimetres within the sagittal plane (y, z) and slice thickness (x), respectively.

# Site Behaviour MRI hardware FPS mm Matrix Size

1 A Vocal size exaggeration Siemens 3T TIM Trio 8 2.5 x 2.5 x 10 112 x 90
2 A Laughter Siemens 3T TIM Trio 8 2.5 x 2.5 x 10 112 x 90
3 B Whistling Siemens 3T Magnetom Prisma Fit 16.67 2 x 2 x 8 128 x 128
4 C German Siemens 3T Magnetom Prisma Fit 50 1.41 x 1.41 x 8 136 x 136
5 D French Siemens 3T Magnetom Prisma 50 1.6 x 1.6 x 8 136 x 136
6 E American English (L1) GE 1.5T Signa Excite HD 23.18 2.9 x 2.9 x 5 68 x 68
7 E American English (L2) GE 1.5T Signa Excite HD 83.28 2.4 x 2.4 x 6 84 x 84
8 F British Monosyllables Siemens 3T Magnetom Prisma 33 2 x 2 x 8 128 x 128
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locations of potential disagreement based on the final output of 
the pipeline (i.e., after all opportunities for manual correction). 
The outlines of the vocal tract produced by each participant 
were modelled as continuous functions using the techniques of 
functional data analysis (Ramsay et al., 2009, 2017). Contour 
functions began at the upper margin of the aperture of the lips 
and proceeded clockwise around the vocal tract back to the 
point of origin. The y (anterior-posterior) and z (ventral-dorsal) 
coordinates were sampled at a set of equally spaced points 
along the vocal tract surface. In order to support statistical 
analysis of agreement measures across users, all contour func-
tions were upsampled to match the number of data points in 
the largest vocal tract outline (153 data points in this dataset).

At each site, the disagreement among analysts was cal-
culated as the mean Euclidean distance between the coor-
dinates reported by each analyst and the group mean. This 
measure was calculated separately at each measurement site 
along the vocal tract outline, and was computed separately 
for experienced and inexperienced rtMRI users.

Outcome

Dice scores indicated agreement between users ranging from 
0.81 to 0.97 (where 1 indicates complete agreement and 0 
complete disagreement), with a tendency for agreement to 
be higher among users with greater experience with rtMRI 
data. While this range indicates considerable potential for 
between-user variation, a closer examination reveals that 
large disagreements did not reflect random variation, but 
rather diverging but legitimate analytical choices. In par-
ticular, disagreements were primarily driven by differences 
in how fixed structures were handled, while there was broad 
agreement on the boundaries of dynamic structures that are 
of primary interest to researchers, such as the tongue, velum, 
pharynx, and larynx (see Fig. 8).

The alveolar ridge is a structure posterior to the upper 
teeth that yields poor T1-weighted signal contrast with 
the boundaries of the vocal tract. Users adopted diverg-
ing strategies towards including/excluding pixels in this 

Fig. 7  Representative sample traces (pink) from each of the four 
datasets on which the pipeline was tested. Variation in T1-signal 
intensity (green) reflects image quality differences between the 
underlying datasets. Image quality varies considerably between 
datasets, which may influence signal processing outcomes. In 

some instances, the imaging data were enhanced by project-spe-
cific data pre-processing, which is standard procedure in other dis-
ciplines that make use of MRI. These traces are prior to manual 
correction, such that further improvements could be achieved as 
and when needed
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region, but were nonetheless internally consistent. Another 
case of diverging strategy was observed at the laryngeal 
vestibules. These comprise a space above the vocal folds 
of the larynx and below the epiglottis that may, or may not, 
be meaningful to include in the vocal tract depending on 
the research question. The relevance of this feature may 
also be conditional on the configuration of the tongue and 
the position of the larynx. For example, when the tongue 
is in a back position and the larynx raised, this space can 
become discontinuous with the remainder of the vocal 
tract. These issues highlight the importance of inform-
ing analyses with domain-specific knowledge of vocal 
anatomy, as well as the value of explicitly pre-specifying 
strategies to avoid cases of ambiguity.

A separate analysis of user disagreement across the 
outline of the vocal tract (see Fig. 9) demonstrated that 
disagreement among experienced users ranged from 0.4 to 
1.5 pixels (1.0–3.5 mm), while disagreement among inex-
perienced users ranged from 0.7 to 2.7 pixels (1.75–6.75 
mm). The larger of these figures is driven by differences 
in laryngeal vestibule strategies noted above. However, 

among experts, this disagreement rate constitutes, on aver-
age, a translation of one pixel, or the minimal observable 
disagreement for these data. It is noted that rates of small 
disagreements (i.e., those likely related to analysis varia-
bility rather than analytical strategy) occur most frequently 
at the surface of the tongue (see Fig. 9) where movements 
are largest.

Discussion

We have tested a novel pipeline for processing dynamic 
images of the vocal tract as captured by rtMRI. Previous 
methodologies have implemented greater automation by 
leveraging deep learning techniques. However, these rely 
on training data sourced from a relatively narrow sample 
of behaviours, imaging centres, and pulse sequences (e.g., 
Asadiabadi & Erzin, 2020; Bresch & Narayanan, 2009; 
Eslami et al., 2020; Labrunie et al., 2018; van Leeuwen 
et al., 2019; Mannem & Ghosh, 2021; Pandey & Sabbir 
Arif, 2021; Ruthven et al., 2021; Silva & Teixeira, 2015; 

Fig. 8  A Similarity matrix depicting Dice scores for each pair of 
users (E1–3 are experienced users, I1–4 are inexperienced). High 
values indicate greater similarity. The individual instances of the 
smallest disagreement (B) and the largest disagreement (C) as 
indicated by these comparisons. The central image of each mon-
tage depicts the area of agreement between vocal tract masks from 

the two users (black) as well as the areas of disagreement (pink/
green). The flanking images depict the raw vocal tract for each user 
overlaid on the raw image for anatomical context. Even in images 
where large errors occurred, these were restricted to fixed struc-
tures, with broader agreement across the dynamic surface of the 
tongue, pharynx, and velum
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Somandepalli et al., 2017; Takemoto et al., 2019; Valliappan 
et al., 2019). While our pipeline is more labour-intensive, we 
have demonstrated that it generalises beyond the dataset for 
which it was designed (see Belyk et al., 2022). Furthermore, 
we quantified the rates of disagreement between users, 
demonstrating that agreement was high among users with 
domain-relevant expertise.

In all cases but one (MB), analysts were using this pipeline 
for the first time, with minimal guidance beyond the written 
documentation, and with no opportunity to communicate or 
collaborate. Interestingly, the largest errors were observed at 
two points in the vocal tract where there is legitimate scope 
for disagreement in how appropriate it is to classify pixels as 
vocal tract. These were (1) the area between the tongue and 
the lower lip, where T1-weighted images have poor ability to 
distinguish the teeth and gingiva from air, and (2) a space just 
above and anterior to the larynx identified as the laryngeal 
vestibule, whose inclusion or exclusion should be dictated by 
the individual research question. A sound theoretically moti-
vated and internally consistent strategy for handling these 
areas is expected to improve reliability.

Limitations of the imaging modality

Real-time MRI constructs videos from T1-weighted images. 
The principal advantages of this approach are that (i) MRI 
can generate images in the midline of the vocal tract with 
little interference from surrounding tissue, (ii) T1-weighted 
images provide excellent tissue contrast between air and 
the soft tissue that surrounds the vocal tract, and (iii) the 
absence of ionising radiation makes the method safe for 

repeated use (Huettel et al., 2009). However, this imaging 
modality also has several limitations, some of which can 
be mitigated by supplementary pre-processing, and others 
which must moderate the interpretation of results.

Intensity inhomogeneity

MRI data acquisition depends on producing a uniform 
magnetic field. However, placing objects within the bore 
of the scanner, even those with only weak magnetic proper-
ties such as human tissue, can introduce distortions. While 
many pulse sequences used for MRI data acquisition include 
corrective mechanisms such as magnetic shims, these cor-
rections may remain imperfect (Gruetter & Boesch, 1992; 
Koch et al., 2009). The resulting inhomogeneity in the mag-
netic field can lead to inhomogeneity in the intensity of the 
resulting images. While local tissue contrasts remain sound, 
the same tissue type may produce a stronger signal at some 
points in space than others. Naturally, this poses an obstacle 
to tissue classification. Supplementary scripts are provided 
alongside this pipeline to implement inhomogeneity correc-
tions, and analysts should consider carefully whether these 
may be necessary before further processing.

Partial volume effects

This may be exacerbated by the hidden third dimension of 
the rtMRI image. The pixels in this modality are in fact three-
dimensional voxels with a depth through the mid-sagittal 
plane usually on the order of several times the pixel width. 
This deeper sampling through the sagittal plane increases 

Fig. 9  Disagreement in the coordinates of sites along the vocal tract 
outline among novices and among experts. Measurements are depicted 
at 153 equally spaced sites mapped onto the mean shape of the vocal 
tract. The mean absolute disagreement among analysts is depicted 

heuristically from cool (high disagreement) to warm (low disagree-
ment) colours. The same information is depicted spatially as cross-
hatching so that readers may more intuitively judge the extent to which 
between-user disagreement meaningfully impacts these measurements.
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the volume over which the T1-signal is averaged, with corre-
sponding benefits to the signal-to-noise ratio (SNR). However, 
there is also increased risk of inducing partial volume effects 
if the slice depth does not sample tissue uniformly. Pixels that 
span multiple tissue types or which contain air/tissue bounda-
ries appear blurred (González Ballester et al., 2002). In some 
cases, these partial volume effects may present an obstacle to 
tissue classification as the distribution of intensity values in 
soft tissue, hard tissue, and air become less easily separable.

Hard tissue is hard to image

T1-weighted images provide poor contrast between bone and 
air. This occurs because the T1-signal is proportional to the 
local abundance of hydrogen, which is abundant in soft tis-
sue and sparse in both bone and air. Hence, while the teeth 
are certainly relevant structures to speech scientists, they are 
notably absent from these images. Likewise, the hard pal-
ate and the alveolar ridge are composed of a thin surface of 
soft tissue over a larger volume of bone and are not reliably 
identifiable in some datasets.

Scalability

While this signal processing pipeline provides a consider-
able labour savings relative to a more manual approach, a 
careful analysis will still require some investment of time 
and expertise. However, the final stage of reviewing and vali-
dating individual images may become particularly tedious 
with very large samples. We note that such opportunities 
for manual correction are not common practice with exist-
ing methods (Kim et al., 2014), and researchers using our 
pipeline should choose to make pragmatic decisions about 
how extensively this is implemented.

While semi-automation through signal-processing 
undoubtedly increases the practical limits of dataset size, 
very large datasets may yet remain impractical. The authors 
have utilised this pipeline to analyse a moderately large data-
set that included all frames in which 52 speakers produced 
audible vocal sound across multiple imaging runs (Belyk 
et al., 2022). In total, this dataset constituted more than 
150,000 images and was found to be tractable for a single 
analyst. However, further developments that improve tempo-
ral resolution at data acquisition (e.g., Fu et al., 2015, 2017) 
may pose an increasing challenge to scalability.

Future development

The development of fully automated rtMRI pipelines 
based on deep learning methods remains of considerable 
interest. However, practical deep learning solutions will 
require extensive training data far beyond that which is cur-
rently available. We suggest that the pipeline that we have 

presented could be used to generate human-validated train-
ing data on a sufficiently large scale to support the further 
advancement of deep learning models.

Conclusions

We present a novel processing pipeline that provides a practical 
approach to taking quantitative measurements of dynamic move-
ments of vocal tract underlying speech, singing, and expressions 
of emotion. We have demonstrated that the pipeline successfully 
generalises across datasets and produces consistent results across 
analysts, particularly if they have domain-relevant expertise. The 
latter is particularly important, as the method relies on providing 
knowledgeable analysts with iterative opportunities for manual 
intervention, correction, and validation of otherwise automated 
processes. This pipeline is openly available for immediate use 
by the scientific community. It is also envisioned that meas-
urements produced by this pipeline could be used to provide 
a broader scope of training data to support the development of 
fully automated methods based on deep learning.
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