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Abstract
Due to limitations in the resources available for carrying out reaction time (RT) experiments, researchers often have to
choose between testing relatively few participants with relatively many trials each or testing relatively many participants with
relatively few trials each. To compare the experimental power that would be obtained under each of these options, I simulated
virtual experiments using subsets of participants and trials from eight large real RT datasets examining 19 experimental
effects. The simulations compared designs using the first NT trials from NP randomly selected participants, holding constant
the total number of trials across all participants, NP×NT . The [NP , NT ] combination maximizing the power to detect each
effect depended on how the mean and variability of that effect changed with practice. For most effects, power was greater in
designs having many participants with few trials each rather than the reverse, suggesting that researchers should usually try
to recruit large numbers of participants for short experimental sessions. In some cases, power for a fixed total number of trials
across all participants was maximized by having as few as two trials per participant in each condition. Where researchers can
make plausible predictions about how their effects will change over the course of a session, they can use those predictions to
increase their experimental power.

Keywords Reaction times · Statistical power · Within-subjects designs · Sample size · Number of trials · Practice effects

Researchers planning reaction time (RT) studies must
often consider a trade-off between the number of participants
(NP ) and the number of trials per participant in each condi-
tion (NT ). Naturally it is desirable to have as many of each as
possible, but when resources are limited, researchers may be
forced to choose between a large number of participants with
few trials each, a small number of participants with many tri-
als each, or medium numbers of both participants and trials.
These different optionsmight provide distinctly different lev-
els of experimental power (Baker et al., 2021; Brysbaert &
Stevens, 2018; Rouder & Haaf, 2018), so it seems worth-
while to compare the power of different options, especially
in light of the importance of maximizing power for the repro-
ducibility of scientific results (e.g., Button &Munafò, 2017).

For example, assume that a researcher wants to compare
the mean RTs of two conditions with a paired t-test and
has the resources to collect 500 trials per condition. Which
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would have greater statistical power: a study with 10 par-
ticipants and 50 trials per condition (henceforth denoted as
[10P , 50T ]), a study with 25 participants and 20 trials per
condition ([25P , 20T ]), or a study with 50 participants and
10 trials per condition ([50P , 10T ])?

The trade-off between the number of participants NP and
the number of trials NT is particularly salient in the current
research environment because of the increasing popularity of
on-line experiments (e.g., Hilbig, 2016; Kochari, 2019; Rat-
cliff & Hendrickson, 2021; Semmelmann &Weigelt, 2017).
Participants in these experiments are generally paid at a fixed
hourly rate, so the total participant cost is determined by the
total number of trials NP×NT regardless of how the trials are
divided across participants. When trying to maximize statis-
tical power at a fixed cost, the question of how to divide trials
across participants is a very practical one.

The power to detect an effect on RT with a paired t-test
is generally modelled as a function of three properties of the
effect (e.g., Rouder & Haaf, 2018). The first is the effect’s
true size, μ�, which is theoretically the between-condition
difference in mean RTs on average across infinite numbers
of participants and trials. Other things being equal, power
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is larger for larger values of μ�. The second property is
the variability across participants in the effect’s true size,
σP . The idea is that there is some true effect size �p for
each participant p, which could be measured by collecting
an infinite number of trials from that participant. The param-
eter σP is the standard deviation of these �p values across
an infinite number of participants. Power tends to be larger
when there is less of this participant-to-participant varia-
tion (i.e., smaller σP), because more consistent effects are
easier to detect. The third property is the trial-to-trial vari-
ability of an individual participant’s RTs within a condition,
σT , which reflects the pure random noise in the single-trial
RT measurements themselves. This variability could arise
from momentary fluctuations in the participant’s state (i.e.,
cognitive, physiological, etc.), from trial-to-trial variations
in stimulus presentation (e.g., stimulus positions in a visual
search task), and from hardware timing inaccuracies (e.g.,
those associated with video display and keyboard scanning).

Using this basic three-componentmodel,Rouder andHaaf
(2018) showed that the power of paired t-tests is always
greater when NP is larger, for any fixed total number of tri-
als NP × NT , but that the power advantage for larger NP

is relatively small when the trial-to-trial RT variability σT is
much larger than the person-to-person variation in true effect
size σP . In other words, to the extent that the effect is the
same for all participants, it may be possible to show it with
only a few participants provided that there are many trials
from each participant. They argued that the trial-to-trial RT
variability σT would usually be much larger than person-to-
person variation in true effect sizeσP , and they concluded that
researchers could usually test fewer participants with more
trials each—which is generally the more convenient option
for in-lab experiments—without losing much power relative
to designs with more participants tested for fewer trials each.

Although Rouder and Haaf’s (2018) conclusions from the
standard model are suggestive, it is difficult to be certain how
they would apply in any given planned experiment. A major
pragmatic problem is that the sizes of σP and σT are gen-
erally unknown. Since the size of the power advantage for
larger NP values depends on these quantities, it is difficult
to estimate how much power would be sacrificed by using
a larger NT instead. More importantly, the standard model
does not allow for practice effects. It effectively assumes that
none of the effect size and variability parameters (i.e., μ�,
σP , and σT ) change with practice, which need not be the
case. This assumption is important, because differences in
NT necessarily entail differences in the amount of practice.
Conclusions from the standard model must therefore be lim-
ited to paradigms for which this “no changes with practice”
assumption is realistic.

In fact, the sizes of some effects have been shown to
change as participants get more practice in a task (e.g.,

Klapp, 1995; Ruthruff et al., 2001; Shiffrin & Schneider,
1977; Worringham & Stelmach, 1990). This is not surpris-
ing, because some effects may develop only after sufficient
training, and others may diminish as participants learn to
cope better with the more difficult conditions. The variability
parametersσP andσT can also changewith practice.AsSmith
and Little (2018) put it, “Researchers who do small-N [i.e.,
small NP ] studies would agree that … within-observer and
between-observer variability [i.e., σT and σP] both decrease
progressively with increasing time on task” (p. 2,087). To
the extent that there are changes with practice in the values
of the underlying parameters μ�, σP , and σT , these changes
also need to be considered in modelling changes in power
across [NP ,NT ] combinations.

As opposed to a mathematical analysis like that of Rouder
andHaaf (2018), an alternative approach to the NP versus NT

trade-off question is purely empirical: The question can be
investigated by comparing directly the results of different real
studies with many participants and few trials per participant,
or the reverse. If empirical studies of these two types were
compared, then there would be no need for the assumptions
and simplifications required by the mathematical approach,
because the observedRTswould by definition reflect realistic
effect sizes, effect size variability, trial-to-trial RT variability,
practice effects, and so on.

Of course it would be impractical to collect new data for
many [10P , 50T ] studies and many [50P , 10T ] studies to
see which [NP , NT ] combination had the higher power in
practice. Fortunately, the equivalent comparison can bemim-
icked almost exactly with virtual experiments constructed by
taking subsamples of participants and trials from published
“mega-studies” having very large numbers of participants
and trials per participant (e.g., Miguel-Abellaetal et al.,
2022). For example, to compare the power of [10P , 50T ] ver-
sus [50P , 10T ] studies to detect a certain effect within a given
dataset, one could look at the power of virtual studies with
randomly sampled subsets of NP = 10 or NP = 50 partici-
pants. For each randomly sampled participant, only the first
NT = 50 or the first NT = 10 trials per condition, respec-
tively, would be included in the analysis tomimic the findings
withmore versus fewer trials per participant. Given that these
are actual observedRTs, the only assumption required by this
procedure is that the RTs in the first NT trials from a given
participant do not depend on the number of additional tri-
als that the participant will perform subsequently within the
study.

Baker et al. (2021) used a similar approach of randomsam-
pling from an existing dataset to study the power of a t-test to
detect an attentional cuing effect with different numbers of
participants and trials. Unfortunately, this was a small dataset
(NP = 38), so they had to sample trials randomly rather than
taking the first NT trials from each participant, thus ignoring
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possible practice effects (e.g., changes in effect size or vari-
ability with changes in NT ). They did not explicitly compare
scenarios with fixed total numbers of trials NP×NT , but they
concluded that adequate power to detect the large attentional
effect could be obtained with approximately NP = 20 and
NT = 10 or NP = 8 and NT = 50. As will be considered in
the General Discussion, Brysbaert and Stevens (2018) also
used a sampling approach to study the relation of power to the
numbers of participants and trials in psycholinguistic studies
analyzed with linear mixed effects (LME)models—a type of
analysis that allows for the presence of two random factors
(i.e., participants and items) and is more complex than the
t-test analyses considered by Rouder and Haaf (2018) and
addressed in the present article.

To obtain a broader picture of the NP versus NT trade-
off, the present simulations examined the power to detect 19
experimental effects within eight different datasets. For each
effect, power was examined across varying [NP , NT ] com-
binations with a constant total number of trials NP ×NT to
seewhich combinations produced the highest power to detect
that effect with the given total number of trials. Only the first
NT trials from each participant in each condition were used
to control for practice effects, and the results showed that
power differences among the different [NP , NT ] combina-
tions depend critically on how the experimental effect under
study changes with practice. In brief, the simulations showed
that for most effects (14/19) power was better with large NP

and small NT than with the reverse. In addition, power was
approximately the same with large NP and small NT as with
the reverse for four of the effects, and it was better with small
NP and large NT than the reverse for only one of the effects.
Thus, to the extent that these available datasets are represen-
tative of RT research in general, the present results suggest
that researchers can most often increase power by opting for
large NP and small NT .

Megastudy of Hutchison et al. (2013)

The Semantic Priming Project (SPP) dataset of Hutchison
et al. (2013) has lexical decision task RTs for visually pre-
sented letter stringswithmore than 500 participants andmore
than 1,500 trials per participant. One effect in their data was
that responses were substantially faster to words than to non-
words, and simulations can reveal howoften this effectwould
be significant using only the first NT trials from randomly
selected subsets of NP participants with various [NP , NT ]
combinations. For these simulations, it is important to choose
[NP , NT ] combinations andα cutoffs that result in power val-
ues across much of the possible 0–1 range. If power values
were all at or very close to the ceiling of 1.0, for example, it
would be difficult to see any power differences between the
different [NP , NT ] combinations.

After some trial and error to choose an [NP , NT ] combi-
nation and α level that would yield only intermediate power
levels with this strong word/nonword effect, for an initial test
I simulated 100,000 virtual studies with a random subset of
NP = 10 participants, including only the first NT = 20 tri-
als from each participant in each condition (i.e., words versus
nonwords) and checking for a statistically significant effect
at α = 0.0001 (two-tailed). In this simulation, 11.5% of
the virtual experiments yielded a significant RT difference
between words and nonwords (i.e., the known real condition
effect was correctly detected). For comparison, I then sim-
ulated 100,000 virtual studies with NP = 20 using the first
NT = 10 trials in each condition for each randomly selected
participant, and 57.8% of these produced significant effects
with the sameα. Thus, the results of these virtual experiments
indicate that—at least under conditions comparable to those
of the SPP study—researchers would havemuchmore power
to detect a word/nonword effect on mean RT with NP = 20
and NT = 10 than with the reverse.

Figure 1a and b trace out analogous power curves using
α = 0.0001 with a range of [NP ,NT ] combinations produc-
ing NP×NT = 200 trials per condition, and also analogous
curves with combinations yielding NP ×NT = 100 or 400.
The curves showing power as a function of NT are essentially
left-to-right reversals of those showing power as a function
of NP , because NP and NT are inversely related to each
other when the total NP×NT is held constant. Despite that,
the figures are not mirror-images of one another because
the horizontal axes have different ranges. Analogous curves
depicting the results with two power-related measures that
are independent of the α level (i.e., confidence interval width
and average Z -score of the attained p level) are shown in the
appendix.

Figure 1a shows that the power to detect theword/nonword
effect increases steadily with NP for all three total trial
numbers. Viewing the same power levels in terms of their
relations to the complementary NT values (Fig. 1b), power
seemsmaximal with smaller numbers of trials per participant
in each condition—because there are correspondingly more
participants—remarkably all the way down to two trials.
Thus, the earlier [10P , 20T ] versus [20P , 10T ] comparison
generalizes across a range of [NP , NT ] combinations.

The results shown in Fig. 1a and b may be specific to the
word/nonword effectwithin the SPPdataset. It is important to
ask whether similar relationships of power to NP and NT are
also found in other situations. Therefore, simulations compa-
rable to those testing for the word/nonword effect were also
run to test for two other effects present in the SPP data—
word length and word frequency effects. These effects were
smaller than the word/nonword effect, so these used themore
lenient α = 0.01 to keep power in an intermediate range.
Adjustment of the α level effectively counteracts changes in
numerical effect size so that power levels are comparable for
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Fig. 1 Power to detect an effect on mean reaction time in virtual stud-
ies with different numbers of participants (NP ) and trials per condition
(NT ) in the dataset of Hutchison et al. (2013). Each line reflects virtual
studies with the same total number of trials per condition (i.e., NP×NT ),

with square and circle symbols used to indicate different total numbers.
a and b Power to detect a word/nonword effect. c and d Power to detect
a word frequency effect. e and f Power to detect a word length effect. g
and h Power to detect a semantic priming effect

testing a numerically larger effect at a smaller α and testing a
numerically smaller effect at a larger α. The results of these
simulations indicate that power also tends to increase with
NP when testing for the word length and word frequency
effects (Fig. 1c–f). Thus, when testing for word/nonword,
word length, or word frequency effects, power is maximized
by spreading the trials over as many participants as possible,
with no sign that power starts to decrease when the number
of trials per participant is too small.

Finally, therewas also a highly significant effect of seman-
tic priming in the SPP dataset, and further simulations were
carried out to examine the power to detect this effect with
various [NP , NT ] combinations. This effect was numerically
much smaller than the other effects, so these simulations used
α = 0.05 and larger total numbers of trials NP ×NT , thus
again adjusting the simulation conditions rather than the RTs
to produce intermediate power levels so that power differ-
ences among the combinations would not be obscured by

floor or ceiling effects. Interestingly, the relation of power to
[NP , NT ] combinations is different for the semantic priming
effect, as shown in Fig. 1g and h. For this effect, power is
fairly stable or increases only slightly as NP increases up to
approximately NP = 50, and then power decreases. View-
ing the same power levels in terms of their relations to the
complementary NT values (Fig. 1h), power seems maximal
at approximately 20 trials per participant in each condition,
with little decrease in power if NT is increased beyond that
point (despite corresponding decreases in NP ).

To understand what causes the difference in power trends
for the semantic priming effect versus the other effects, it
is helpful to look separately at the two quantities which
determine the value of the t-test used in H0 testing (i.e.,
t = �̂/s

�̂
). The t value is larger—and H0 is thus more likely

to be rejected—when the observed mean effect size, �̂, is
larger and when the estimated standard error of this effect
size, s

�̂
, is smaller. Thus, power is affected by changes in

123



2402 Behavior Research Methods (2024) 56:2398–2421

Fig. 2 Mean (�̂) and standard error (σ
�̂
) of the reaction time effect size in ms for the virtual studies shown in Fig. 1

either of these quantities with the amount of practice (i.e.,
NT ). Figure 2 shows how each of them actually changed
with NT within the SPP dataset for the word/nonword, word
length, word frequency, and semantic priming effects.

Figure 2a, c, e, and g show the mean effect sizes, �̂ (in
ms), for each of the different effects as a function of the num-
ber trials used to assess the effect. For example, the �̂ values
with NT = 30 and NT = 50 indicate the mean effect sizes
computed across all of the virtual experiments using just the
first 30 or just the first 50 trials in each condition. Note that
these means do not vary with the total number of participants
(except for the variation associatedwith the randomsampling
of participants) because the averages across 100,000 samples
tend to be close to the population average regardless of sam-
ple size. This is why the lines for the different total numbers
of trials NP ×NT are essentially superimposed. The mean
effect sizes shown in Fig. 2a, c, e, and g reveal differences in
how these four effects change with practice. For example, the
word/nonword effect is by far the largest early in practice,
with the effect reduced to only approximately half of its orig-

inal magnitude after 100 trials. Thus, the power to detect a
word/nonword effect would tend to be especially large when
NT is small, because that is when the effect itself is numeri-
cally the largest. The same is true, albeit to a lesser extent, for
the word frequency and word length effects. In contrast, the
priming effect shown in Fig. 2g increaseswith practice. This
effect is barely above zero when measured with only two tri-
als per condition for each participant, reaching its full size
only when there are at least 10–20 trials. For this effect, then,
powerwill tend to be lowwith small NT and correspondingly
large NP simply because [NP , NT ] combinations with small
NT test for the effect when it is numerically small—exactly
the opposite of the word/nonword, word frequency, andword
length effects1. In sum, the differential changes across prac-
tice in the sizes of the word/nonword, word frequency, word

1 An anonymous reviewer asked why the effect of semantic prim-
ing might increase with practice, in contrast to the decrease seen with
the other effects. One possibility is that the semantic priming effect
is partly driven by strategic factors, as is also suggested by sensitivity
of the priming effect to the overall proportion of semantically-related
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length, and semantic priming effects shown in Fig. 2a, c,
e, and g can explain at least part of the difference between
these effects in howpower changes across different [NP , NT ]
combinations.

Figure 2b, d, f, and h show how the standard error of
each effect, s

�̂
, is related to practice (i.e., NT )2. The effect

of NP can be seen in these plots as the difference between
the lines at each NT value, illustrating the fact that—other
things being equal—the standard error of a mean difference
decreases with increases in the number of participants.

Looking first at the word/nonword effect, Fig. 2b shows a
clear tendency for this effect’s standard error to increase with
the number of trials NT (i.e., with decreasing NP within a
fixed NP × NT ). Since power decreases as standard error
increases, this increase in standard error with practice affects
power in the same way as the decreasing mean effect size
with practice (Fig. 2a)—that is, it also tends to make power
smaller with smaller NP and larger NT . The same is true for
the word frequency and word length effects (Fig. 2d and f),
although to a lesser extent. In contrast, the standard error
of the semantic priming effect does not increase with NT

and may even decrease slightly (Fig. 2h), so the power to
detect this effect would not be reduced by inflation of the
standard error at the larger NT values as seen with the other
effects. In sum, the differential changes across practice in
the variabilities of the word/nonword, word frequency, word
length, and semantic priming effects also appear to contribute
to the difference between effects in their relations of power
to [NP , NT ] combinations.

Whydoes the standard error of the effect size increasewith
NT for the word/nonword, word length, and word frequency
effects but not the semantic priming effect? In theory, the
standard error of an effect is

σ
�̂

=
√

σ 2
P

NP
+ 2σ 2

T

NP · NT
(1)

prime-target pairs in a study (e.g., Den Heyer et al., 1983; De Wit &
Kinoshita, 2015). The influence of relatedness proportion suggests that
participants’ word recognition systems somehowbecome adapted to the
nonrandomness of the stimulus sequence (e.g., successive word pairs
are semantically related more often than would happen by chance).
Such adaptation could allow the systems to take advantage of seman-
tic relatedness to speed responses, but it would need some trials (i.e.,
practice) for the nonrandomness to be detected and for the adaptation
to take place.
2 To obtain the plotted overall s

�̂
values, the standard error of the

estimated effect was computed with the usual formula for each virtual
experiment (i.e., standard deviation of individual-participant difference
scores divided by square root of NP ). The average of the squares of
these standard errorswas then computed across virtual experiments, and
the plotted s

�̂
values are the root mean squares of these values across

experiments. These are estimates of the true standard errors of the effect
sizes for each effect measured with each [NP ,NT ] combination.

(e.g., Baker et al., 2021; Rouder & Haaf, 2018)3. This value
increases with the amount of participant-to-participant vari-
ability in the individual participants’ true effects, σP , and
with the amount of trial-to-trial variability in each individ-
ual’s RTs within a condition, σT . It decreases with increases
in both NP and NT . As Rouder and Haaf (2018) emphasized,
the influence of NP is stronger than that of NT , because both
variances are divided by NP but only σ 2

T is divided by NT . If
σP is small relative to σT , though, this difference between NP

and NT is not very important. In the limit of σP = 0, the stan-
dard error decreases with the product NP×NT regardless of
how this product is formed by a particular [NP ,NT ] combina-
tion. Thus, the relatively flat lines in Fig. 2h suggest that σP is
small relative to σT for the semantic priming effect—that is,
the effect is about the same size for all participants—whereas
the increases seen in Fig. 2b, d, and f imply that σP is larger
than σT for the other three effects.

Overall, the results shown in Figs. 1 and 2 suggest a pre-
liminary generalization about the best way to divide a fixed
total number of trials NP×NT across participants versus tri-
als when testing for a condition effect on mean RT. It appears
that larger numbers of participants are generally preferable,
especially when the number of trials per condition is at least
NT = 20 or so. Larger numbers of participants seem espe-
cially important when the effect gets smaller ormore variable
with practice. To investigate the generality of this conclusion
further, I conducted analogous virtual experiments using the
data from several other large studies with additional tasks
and condition effects.

Megastudy of Goh et al. (2020)

The lexical decision task megastudy of Goh et al. (2020)
provides another rich dataset for examining the trade-
off between the numbers of participants and trials. These
researchers collected approximately 4,000 RTs from each
of more than 400 participants. The study differed from that
of Hutchison et al. (2013) in that it used auditory rather
than visual stimulus presentation. The results showed large
(50–100 ms) effects of word familiarity, number of sylla-
bles, number of phonemes, age of acquisition,word/nonword
status, and word frequency. I simulated virtual experiments
examining the power to detect each of these effects with dif-
ferent [NP , NT ] combinations, using α = 0.0001 to avoid
the power ceiling because these effects were all large.

3 In practice it is more complicated than this because both σT and
NT might vary across participants and conditions—the latter especially
if researchers eliminate errors or trials with RTs identified as outliers.
Detailed consideration of the effects of such further variation on power
are beyond the scope of the present analysis.
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Fig. 3 Power to detect an effect on mean reaction time in virtual stud-
ies with different numbers of participants (NP ) and trials per condition
(NT ) in the dataset of Goh et al. (2020). Each line reflects virtual studies
with the same total number of trials per condition (i.e., NP×NT ). a and
b Power to detect a word familiarity effect. c and d Power to detect an

effect of the number of syllables. e and f Power to detect an effect of
the number of phonemes. g and h Power to detect an effect of age of
acquisition (acq.). i and j Power to detect a word/nonword effect. k and
l Power to detect a word frequency effect

Figure 3 shows the results of these virtual experiments, and
their consistency across effects is striking. For each effect,
power increases essentially monotonically with NP , show-
ing massive power gains from approximately NP = 10 to
NP = 30 in nearly all cases. Thus, the virtual experiments
conducted using the data fromGoh et al. (2020) reinforce the
preliminary suggestion that power tends to be optimized by
dividing a fixed total number of trials NP×NT across a large
number of participants even if that means only a small num-
ber of trials per participant can be collected due to resource
limitations.

There was one interesting anomaly in the virtual exper-
iments conducted with the dataset of Goh et al. (2020).
Surprisingly, Fig. 3i shows that the power curves for detect-
ing the word/nonword effect are virtually superimposed for
300, 500, or 800 total trials per condition. With NP = 10
participants, for example, power does not seem to depend on

whether there are 30, 50, or 80 trials per condition for each
participant. How is this possible, given that averaging more
trials necessarily produces statistically more stable results?

To understand the causes of this anomaly, it is useful to
again look separately at the two quantities �̂ and s

�̂
that

determine the value of the t-tests. Figure 4 shows how each
of these two measures changes as a function of practice (i.e.,
NT ). Critically, Fig. 4i shows that the word/nonword effect
is noticeably larger when it is measured using the first 30 tri-
als, somewhat smaller when it is measured using the first
50 trials, and smaller still when it is measured using the
first 80 trials. This is the same decrease in word/nonword
effect size seen with the SPP dataset (Fig. 2a), and it would
again work against the power increase that would normally
be expected as NT increases from 30 to 80 with a constant
NP = 10. This same argument explains the lack of NT

effect throughout the NP range of Fig. 4i where power values
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Fig. 4 Mean (�̂) and standard error (σ
�̂
) of the reaction time effect size in ms for the virtual studies shown in Fig. 3

are intermediate between floor and ceiling (i.e., approxi-
mately NP = 10–20), because these NP values correspond
to NT = 15–80 trials and the word/nonword effect size
decreases throughout this NT range (Fig. 4i). Although the
effect size also decreases at the lowest levels of practice
(NT = 2–10), this decrease is not visible in the power val-
ues of Fig. 3i because there are so many participants with
these NP ×NT values (i.e., NP ≥ 30) that power is at ceil-
ing. As is evident in Fig. 4a, c, e, g, and k, however, other
effects also decrease with practice over this range, albeit
less so. Thus, the especially large decrease in word/nonword
effect size with practice may only partially explain the
anomaly.

The curves in the panels on the right side of Fig. 4 show
the estimated standard errors of the effect sizes, s

�̂
. As

was the case in the SPP dataset, the standard error of the
word/nonword effect size (Fig. 4j) increases with the num-
ber of trials used to measure it. Since power decreases as

standard error increases, this trend works against the power
increase expectedwithmore trials and thus also contributes to
the anomaly seen in Fig. 3i. In contrast, the standard errors of
the other effects vary little with the number of trials (Fig. 4b,
d, f, h, and l). As was discussed earlier in connection with
Eq. 1 and the SPP dataset, the different patterns of s

�̂
versus

NT in Fig. 4 suggest that the size of the word/nonword effect
varies somewhat across participants (i.e., large σ

�̂
) but that

the sizes of the other effects are fairly stable across partici-
pants (i.e., small σ

�̂
).

Megastudy of Adelman et al. (2014)

The present analyseswere also applied to data from the ortho-
graphic priming study of Adelman et al. (2014), which had
also been used in the LME-based simulations of Brysbaert
and Stevens (2018). In each trial of this study, participants
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Fig. 5 Power to detect an effect on mean reaction time in virtual stud-
ies with different numbers of participants (NP ) and trials per condition
(NT ) in the dataset of Adelman et al. (2014). Each line reflects vir-
tual studies with the same total number of trials per condition (i.e.,
NP×NT ). a and b Power to detect an orthographic priming effect based

on the two-category distinction of Brysbaert and Stevens (2018). c and
d Power to detect an orthographic priming effect based on the three-
category distinction of Brysbaert and Stevens (2018). e and f Power to
detect an effect of response repetition (rep.). g and h Power to detect a
word/nonword effect

saw a prime stimulus of lower-case letters followed by a tar-
get stimulus of upper-case letters, and they were required to
give a lexical decision response to the target. Adelman et
al. (2014) compared 28 different prime types based on the
patterns of matching versus mismatching letter positions of
the prime and target, and they obtained approximately 800
RTs from each of approximately 1,000 participants. Follow-
ingBrysbaert and Stevens (2018), I looked at a two-condition
priming effectwithword targets comparing the fastest 14 ver-
sus the slowest 14 prime types, and a priming effect based
on three conditions which compared the fastest and slowest
prime types while excluding prime types with intermediate
mean RTs4. Both priming effects were small, so the vir-

4 The word-trial RTs and priming classifications for these simulations
were those in the datasets of Brysbaert and Stevens (2018) at https://
osf.io/fhrc6.

tual experiments used reasonably large numbers of trials and
α = 0.05. As shown in Fig. 5a–d, the power to detect these
effects was not much affected by the [NP , NT ] combination,
just as Brysbaert and Stevens (2018) found with the LME
analysis, although of course it was affected by the total num-
ber of trials NP×NT .

Two further experimental effects can be seen in the full
dataset of Adelman et al. (2014)5. One is a very small
response repetition effect, with faster RTs when a response
is the same as that given in the previous trial than when it
is different. The other is a very large word versus nonword
effect,with faster responses towords. Fig. 5e–h showhow the

5 This is the dataset of Adelman et al. (2014) at https://files.warwick.
ac.uk/jadelman2/browse#FPP, which includes both word and nonword
trials. All participantswere included in the analysis, regardless of the list
counterbalancing used to select participants for analysis in the original
study.
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Fig. 6 Mean (�̂) and standard error (σ
�̂
) of the reaction time effect size in ms for the virtual studies shown in Fig. 5

power to detect these effects (withα = 0.05 andα = 0.0001,
respectively) depend on the [NP , NT ] combination. In con-
trast to the priming effects in this dataset, power to detect
the response repetition and word/nonword effects both differ
substantially across [NP , NT ] combinations, but in opposite
directions. Tofind the response repetition effect, power is bet-
ter with a smaller number of participants tested extensively
(at least 100 trials in both the repetition and nonrepetition
conditions). When looking for the word/nonword effect, in
contrast, it seems that only about five trials per participant
are needed in each condition, with increases in the number of
participants being much more helpful for increasing power.

Figure 6 shows how �̂ and s
�̂
change as a function of

practice (i.e., NT ) for all four of the effects, again providing
clues as to the reasons for the different patterns of power in
Fig. 5. As shown in Fig. 6a–d, both the means and standard
errors of the priming effects are rather constant across NT ,
consistent with the small changes in power across [NP , NT ]
combinations. In contrast, themean response repetition effect
(Fig. 6e) depends strongly on NT . This effect is virtually

absent unless participants are tested with at least 100 trials
per condition, so there is little power to detect it with large
NP and small NT . The word/nonword effect also grows over
the first 30–40 trials (Fig. 6g), but it is nonetheless large
enough in the initial trials to be detectedwith small NT , partly
because its standard error is smallest in that case (Fig. 6h).

Additional Datasets

Figure 7 shows power curves obtained in virtual experiments
with additional datasets chosen to expand the range of tasks
being examined as widely as possible, and Fig. 8 shows
the corresponding mean effect sizes and standard errors.
Figure 7a and b used data from the Spanish verb reading
megastudy reported byMiguel-Abella et al. (2022). The par-
ticipants’ task was simply to read aloud a visually presented
verb as quickly as possible, and RT was measured from the
onset of the word to the onset of the vocalization. Responses
were approximately 35 ms faster to shorter words than to
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Fig. 7 Power to detect an effect on mean reaction time in virtual stud-
ies with different numbers of participants (NP ) and trials per condition
(NT ). Each line reflects virtual studies with the same total number of
trials per condition (i.e., NP×NT ), with square and circle symbols used
to indicate different total numbers. a andbPower to detect aword length
effect in the dataset of Miguel-Abella et al. (2022). c and d Power to

detect a difference between concrete and abstract words in the dataset
of Pexman et al. (2017). e and f Power to detect a concealed information
(info.) effect in the dataset of Lubczyk et al. (2022). g and h Power to
detect an effect of stimulus onset asynchrony (SOA) in the dataset of
Bazilinskyy and De Winter (2018). i and j Power to detect an effect of
redundancy in the dataset of Wales (2014)

longer ones (i.e., 1–7 versus 9+ characters), and the present
simulations looked at the power of virtual studies to detect
this word length effect with α = 0.001 and total numbers of
trials adjusted to avoid ceiling effects on power. Power gen-
erally increases with the number of participants, although it
then decreases slightly when the number of trials per con-
dition dips below five, despite the large NP values in these
cases (i.e., NP ≈ 100–500 for the three NP×NT values in the
graph). As with the similar dip seen with the semantic prim-
ing effect (Fig. 1g and h), this could be because the length
effect is slightly smaller very early in practice (Fig. 8a).

Figure 7c and d used data from the megastudy of Pex-
man et al. (2017). The stimuli were single visually-presented
words, and participants made speeded judgments of whether
each word referred to something concrete versus abstract,
with averageRT approximately 80ms less for concretewords
than for abstract ones. Simulations assessed the power to

detect this concrete/abstract effect with various [NP ,NT ]
combinations and α = 0.001, and power again increased
with the number of participants, despite the fact that the effect
was smallest—though still large in absolute terms—in the
initial trials (Fig. 8c). To some extent this may have been
due to the fact that the standard error of the effect was small-
est in the initial trials (Fig. 8d). In any case, the high levels
of power with very small NT values seen in this simulation
may be somewhat deceptive on procedural grounds. Partic-
ipants in this study were given 24 practice trials before the
start of data collection, so the NT RTs shown on the abscissa
of Fig. 7d did not come from the very first NT trials per
condition—only the first NT trials recorded after this initial
practice.

Figure 7e and f are based on data from the concealed infor-
mation test (CIT) study of Lubczyk et al. (2022). For each
participant, an item (i.e., a surname or date) that the partici-
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Fig. 8 Mean (�̂) and standard error (σ
�̂
) of the reaction time effect size in ms for the virtual studies shown in Fig. 7

pant regarded as familiar was selected as the target item. For
the CIT test, participants were asked to make one response
to that item and to some filler words referring to familiar or
self-related concepts (e.g., “MINE”) but to make an alter-
native response to nontarget items including words relating
to unfamiliar and other-related concepts (e.g., “OTHER”)6.
The key CIT comparison was between “irrelevant” nontar-
get items selected to be unfamiliar to the participant versus
a special “probe” nontarget item selected to be familiar (i.e.,
the participant’s own surname or birth date). Responses to
the probe nontarget were approximately 75 ms slower than
responses to the irrelevant nontargets, presumably because
the probe’s specific familiarity to the participant interfered
with its categorization with other unfamiliar items. Figure 7e
and f show the power to detect this probe–irrelevant dif-
ference with various [NP ,NT ] combinations (α = 0.001).
Power seems optimal with approximately five trials per par-

6 The CIT test data analyzed here were collected following three
practice blocks included to make sure that participants correctly dis-
criminated familiar versus unfamiliar items.

ticipant in each condition after the initial training phase. This
seems to be the number of trials at which the effect reaches its
maximum size (Fig. 8e), and the standard error of the effect
increases for larger NT values (Fig. 8f).

Figure 7g and h illustrate power curves obtained in vir-
tual experiments using a dataset of simple RTs collected
by Bazilinskyy and De Winter (2018). Participants were
required to react as quickly as possible to the onset of any
visual or auditory stimulus, and the main manipulation of
interest was the stimulus onset asynchrony (SOA) between
redundant stimuli presented on both modalities. On average,
responses were 53 ms faster to redundant stimuli with short
SOAs (SOA<100) as compared with long ones (SOA>100),
and the present virtual experiments examined the power to
detect this effect (α = 0.01). Due to the limited number
of trials per participant, it was not possible to produce the
indicated total trial numbers with the smaller NP values
used with other datasets. The remarkable result with this
dataset is that for a fixed NP×NT power depends very little
on the [NP ,NT ] combination relative to the power fluctua-
tions seen with other datasets. Power seems maximal with
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approximately 5–20 trials per participant in each condition
and correspondingly approximately 20–100 participants, but
the advantage for combinations in this range is quite small.
Based on this effect’s small fluctuations across NT in effect
size and standard error (Fig. 8g and h), it seems likely that the
power to detect this effect is so stable across [NP ,NT ] com-
binations because the effect is quite consistent across both
practice levels and participants.

Finally, Fig. 7i and j used data from a large, unpublished
study conducted in my own lab (Wales, 2014). Participants
in this study made simple RT responses to the onset of any
visual stimulus, and stimuli were bright squares that could
appear on the left of fixation, on the right of fixation, or
redundantly on both sides. Responses were approximately
20 ms faster to redundant than single stimuli, and the sim-
ulations assessed the power to detect this redundancy gain
(α = 0.001). For detecting the redundancy effect in this sim-
ple task, power again increased dramatically with the number
of participants over the range of approximately 10–25. This
can be attributed partly to the effect’s decrease with increas-
ing practice (Fig. 8i).

General Discussion

Across several large datasets with different RT tasks and
experimental effects, the results of these virtual experiments
indicate that in the majority of these cases experimental
power to detect differences in mean RT with paired t-tests
was greater with a relatively large number of participants,
NP , and a relatively small number of trials per participant
in each condition, NT , as compared with the reverse com-
bination of a small NP and a large NT . Of the 19 effects
examined in Figs. 1, 3, 5, and 7, power increased strongly
with NP in 14 cases, and power was not strongly affected by
NP in four cases (priming effects in Figs. 1g, 5a, c and SOA
effect in Fig. 7g). There was only one case in which power
was clearly better with a small-NP , large-NT combination
(i.e., the response repetition effect in Fig. 5e). Judging from
the current effects, then, the odds of increasing rather than
decreasing power by using large NP rather than large NT

appear to be approximately 14:1. These results thus suggest
that—in the absence of indications to the contrary from pre-
vious research with similar paradigms—researchers wanting
tomaximize power should tend to place a greater emphasis on
maximizing the number of participants rather than on getting
a large number of trials per participant. For most of the real
effects examined here, it appeared that 5–10 trials per par-
ticipant in each condition were sufficient to obtain or closely
approach maximum power for a given total number of tri-
als NP×NT , so it was advantageous to increase the number
of participants rather than the number of trials per partici-
pant beyond this point. A natural corollary to this conclusion

is that it will often be most efficient to provide participants
with only a small number of warm-up or practice trials before
starting data collection for tasks that are easy to learn.

A limitation of the present virtual experiments is that
they used data from a relatively restricted subset of the
many extant RT paradigms and effects. The data came
primarily from psycholinguistic studies, where especially
large datasets are most common. It is uncertain how widely
the conclusions based on these studies can be generalized,
because the [NP , NT ] trade-off could be different with other
paradigms and effects. In fact, the diversity of [NP , NT ]
trade-offs found even across the limited set of different effects
examined heremakes it clear that no simple recommendation
for choosing an [NP , NT ] combination will optimize power
for detecting all effects in all paradigms. But the tendency
for power to increase somewhat consistently with NP across
this subset of examples suggests that designs with a large NP

would generally be a good place to start.
Even within the limited subset of paradigms considered

here, there were striking exceptions to the general pattern of
power increasing with NP . Specifically, the present analy-
ses show that the optimal [NP , NT ] combination depends on
changes in effect size over the course of practicewith the task.
Figures 2, 4, 6, and 8 show that some of the effects studied
here tended to increase with practice (i.e., with increasing
NT ), some decreased, and some first increased and then
decreased, with most of these practice effects being statis-
tically reliable7. Such practice-related changes in effect size
have substantial effects on the optimal [NP , NT ] combi-
nation. In particular, for some of the experimental effects
examined here, part of the power advantage for [NP , NT ]
combinations with relatively small NT values arose because
the effects tended to be largest early in practice. In those
cases, averaging across larger numbers of trials per partic-
ipant actually decreased the size of the effect under study,
which tended to reduce power. Such patterns highlight the
importance of considering possible practice-related changes
in effect size when estimating the power of an experimental
design with any planned [NP , NT ] combination. Similarly,
the patterns show that practice effects cannot safely be
neglected in simulations comparing the power of different
[NP , NT ] combinations.

To further illuminate the importance of practice effects,
additional illustrative simulationswere carried out withmod-
ified versions of the word/nonword and semantic priming
datasets shown in Fig. 1a and g. These two datasets were cho-
sen for these simulations because they show opposite effects
of practice: the word/nonword effect decreased with practice

7 For each effect in each of the full datasets, an ANOVAwas conducted
to check for an interaction of the effect with practice. These ANOVAs
yielded interactions with p < 0.001 for five of the effects, 0.001 < p <

0.05 for six of them, 0.05 < p < 0.1 for three, and p > 0.1 for five.
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(Fig. 2a) and the semantic priming effect increasedwith prac-
tice (Fig. 2g). The modified versions of both datasets were
created by reversing the order of trials so that the practice
effectswould be reversed. Specifically, for theword/nonword
effect, the modification was to reverse the order of the first
100 trials for each participant in each condition (i.e., the new
trial 1 in each condition was the original trial 100 in that
condition, the new trial 2 was the original trial 99, etc.). For
the semantic priming effect, the first 200 trials per condition
were reversed. Simulations parallel to those shown in Fig. 1
were then carried out with these modified datasets, and the
results are shown in Fig. 9. As expected, once the trial orders
are reversed, theword/nonword effect increaseswith practice
(Fig. 9a) and the semantic priming effect decreases (Fig. 9b).
More crucially, the relation of power to the [NP , NT ] com-
bination changes markedly when the practice effects are
reversed, as can be seen by comparing Fig. 9c and d with the
corresponding Fig. 1a and g. Once the word/nonword effect
increases with practice after reversal, the power to detect this
effect no longer increases dramatically with larger numbers
of participants as it did with the original dataset. Conversely,
once the semantic priming effect decreaseswith practice after
reversal, the power to detect it increases steadily with the
number of participants, contrary to what was found with the
original dataset. Thus, these simulations reinforce the point

that it is especially important to increase NP relative to NT

when the effect under study decreases with practice but not
when it increases with practice.

The present conclusion that it is often especially important
to increase NP rather than NT differs from that of Rouder
and Haaf (2018), who argued that little power would be lost
using [NP , NT ] combinations with smaller NP values under
typical experimental conditions (see also, Smith & Little,
2018). For many of the real effects considered here, how-
ever, power was dramatically lower with NP = 10 than with
NP = 20 or NP = 50, holding constant the total number of
trials NP×NT . It is not completely clear which discrepancies
between Rouder and Haaf’s assumptions and the present real
data are responsible for the differing conclusions about the
power of different [NP , NT ] combinations, but the changes
with practice shown in Figs. 2, 4, 6, and 8 provide important
clues. First, most of the present effects changedwith practice,
though such practice effects were not included in Rouder and
Haaf’s analysis. Second, for some effects the standard error
of the effect size, s

�̂
, clearly increased with larger values of

NT . This is to be expected when the true effect size variabil-
ity across participants, σP , is large relative to the variability
of RT within a participant and condition, σT—a situation in
which Rouder and Haaf (2018) acknowledged that large NP

would be especially helpful. For both of these reasons, it is

Fig. 9 Results of simulations
with modified versions of the
dataset of Hutchison et al.
(2013). a Mean size (�̂) of the
word/nonword effect after
reversing the order of the first
100 trials in each condition. b
Mean size (�̂) of the semantic
priming effect after reversing
the order of the first 200 trials. c
Power to detect the
word/nonword effect after
reversing the order of the first
100 trials. d Power to detect the
semantic priming effect after
reversing the order of the first
200 trials. Each line reflects
virtual studies with the same
total number of trials per
condition (i.e., NP×NT ), with
square and circle symbols used
to indicate different total
numbers
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important for future researchers to consider practice-related
changes when undertaking power calculations.

As was mentioned in the introduction, Brysbaert and
Stevens (2018) used a similar approach to see how the power
of more complex LME analyses depends on the numbers of
participants and trials in psycholinguistic studies with both
participants and items as random factors. With LMEmodels,
power depends on the variance between items as well as that
between participants (e.g., Westfall et al., 2014). Brysbaert
and Stevens (2018) used simulations to examine the power
of the LME model to detect orthographic priming effects
with different numbers of participants and trials—for exam-
ple, within the dataset of Adelman et al. (2014). They varied
both NP and NT and sought to determine what values were
needed to achieve adequate power (i.e., 80%) to detect the
small priming effect (16 ms effect) that was present in the
full dataset. Rather than using the first NT trials from each
participant, however, they used a random selection of NT

trial from each participant like Baker et al. (2021), thus also
ignoring any practice effects that might have been present8.
As expected, they found that power increased with both NP

and NT—holding the other one constant—and that a total of
approximately 1,600 RTs per condition were needed to have
adequate power. Interestingly, power was not much influ-
enced by the particular [NP , NT ] combination used to obtain
that total number of trials.

Thepresentsimulationswere intended to inform researchers
planning RT experiments whose analyses include a single
random participants factor (e.g., t-tests), which is a simpler
situation than the one considered by Brysbaert and Stevens
(2018).With t-tests, participants are considered to be the only
random factor, and all trial-to-trial RT variation is attributed
to pure random variability rather than item effects. Unfortu-
nately, only a few large datasets without item effects could be
found for the present simulations, becausemost existing large
datasets come from psycholinguistic studies in which item
effects are present. Thus, the present t-test-based simula-
tions with these psycholinguistic datasets essentially ignored
item effects and treated all trial-to-trial RT variability as ran-
dom. It should be emphasized that this simplification was a
purely heuristic maneuver made in the interests of conduct-
ing simulations with large real RT datasets having realistic
variation among participants, realistic practice effects, and
so on. The present simulations of t-tests with psycholinguis-
tic datasets are not meant as a suggestion that item effects
can be ignored—a practice which has long been known to be
statistically inappropriate (e.g., Clark, 1973).

8 Figure 6a–d suggest that these practice effects were small, and in fact
theywere not significant in theANOVAsmentioned in footnote 7. Thus,
the results of Brysbaert and Stevens (2018) were probably not affected
much by ignoring these effects.

Because the psycholinguistic datasets used in most of the
present simulations also included a random “items” factor—
that is, they included trial-to-trial RT variation that could be
systematically attributed to differences among items—it is
important to consider the likely effect of this variance on
the present conclusions. With respect to t-test analyses, this
item variance would artificially inflate the apparent trial-to-
trial RT variability, σT . Thus, it is reasonable to consider
how the NP versus NT trade-off observed in simulations
with these psycholinguistic datasets would have been differ-
ent if the datasets had had smaller σT values without such
item variance. The answer can be seen in Equation 1. As
σT gets smaller, NT has a smaller influence on σ

�̂
; in the

extreme with σT = 0, for example, NT has no effect at all.
Thus, as σT gets smaller, it becomes more important to have
a large NP rather than a large NT . Without item differences
inflating trial-to-trial RT variance in the present simulations,
then, it is likely that optimal [NP , NT ] combinations would
involve even larger NP values and correspondingly smaller
NT values than those suggested by the present simulations
with the psycholinguistic datasets. In short, the power advan-
tage associated with large NP will tend to be stronger in RT
paradigms lacking item variance.

The current simulation approach could also be used to
study the optimal [NP , NT ] combinations for detecting myr-
iad other types of effects as well as the difference between
two condition mean RTs examined here. For example, RT
researchers might look for mean RT differences among three
ormore conditions, for linear trends across the levels of some
independent variable, for two-factor (or higher) interactions,
or for condition effects on parameter estimates within a par-
ticular RT model. Practice-related changes in any of these
types of effects would surely influence the optimal [NP , NT ]
trade-off point, and such practice-related changes could
be assessed within analogous simulations using suitable
datasets. Of course, it would probably not be cost-effective
to collect massive datasets solely to study practice-related
changes in any of these other types of effects. Nonethe-
less, the present results suggest that practice-related changes
in observed effect sizes—or the lack thereof—should rou-
tinely be described to facilitate the planning of high-powered
follow-up studies.

Finally, in some situations constraints imposed by the
research questions or setting may dictate the choices of NP

and NT , in which case power considerations are moot. For
example, Mazor and Fleming (2022) sought to examine the
presence of a certain effect early in practice. This study nec-
essarily used a small NT , because only the initial trials from
each participant were relevant to the researchers’ questions,
and this implied that a large NP would be needed to get stable
results. Alternatively, researchers might be interested in an
effect size at asymptotic practice levels, in which case a large
NT would be essential. A large NT would also be needed in
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studies of effects that take some time to develop and can
therefore only be assessed after a certain amount of practice
(e.g., probability or learning effects). In the absence of such
design-based constraints or other indications that the effects
under study differ importantly from the effects in the present
real datasets, though, the suggestion from these analyses of
real datasets is that power is more likely to be maximized
with a large number of participants than with a large number
of trials per participant.

Appendix

Additional Results of Virtual Experiments

This appendix presents figures depicting additional results
of the simulated virtual experiments for which power, effect
size, and effect variability values are displayed in the figures
of the main text.

Figures 10, 11, 12, and 13 show the average confidence
interval widths (ω̄) for the effects considered in Figs. 1, 3,
5, and 7, respectively. These were obtained by computing
the width, ω, of a 95% t confidence interval for the size of
the experimental effect in each simulated virtual experiment.
These width values were then averaged across experiments
to obtain the plotted values of ω̄. Smaller values of ω̄ indicate
greater power to detect an effect of a given size, and these
interval widths are less subject to ceiling effects than power
and would thus allow comparisons among [NP ,NT ] combi-
nations even with essentially perfect power. The strongest
trend across these figures is that mean confidence interval
widths generally decrease with increases in the number of
participants, consistent with the trends in power. This trend
was even present with the semantic priming effect (Fig. 10g),
the response repetition effect (Fig. 12e), and the irrelevant
versus probe nontarget effect (Fig. 13e), despite the fact that
power had dropped for the largest values of NP in these

Fig. 10 Mean width of confidence intervals for effect size (ω̄) for the virtual studies shown in Fig. 1
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Fig. 11 Mean width of confidence intervals for effect size (ω̄) for the virtual studies shown in Fig. 3

cases (Figs. 1g and 7e). As mentioned in the main text, those
power losses at large NP seemed to be due at least partly to
the small effect sizes early in practice (Figs. 2g, 6e, and 8e),
but—unlike power—confidence interval widths are indepen-
dent of effect size.

Figures 14, 15, 16, and 17 show an additional power-
relatedmeasure computed for the virtual studies summarized
in Figs. 1, 3, 5, and 7, respectively. This measure, Z p, is the
average across virtual experiments of Z p = �−1(1 − p/2),
where � is the cumulative distribution function of the stan-
dard normal distribution (e.g., Z p = 1.96 for a virtual
experiment yielding an observed p = 0.05). Thus, larger

values of Z p indicate stronger effects and thus suggest greater
power. Like confidence interval widths, Z p values are not
subject to ceiling effects, because Z p values can continue
increasing beyond the critical p level, and these values would
also allowmore fine-grained comparisons of conditions with
essentially perfect power. Unlike confidence interval widths,
Z p is sensitive to effect size as well as variability and is
therefore more directly related to power for measuring actual
effects than is ω̄. The main message of Figs. 14, 15, 16,
and 17 is that the Z p values track the power values rather
well, with little or no sign that any sensitivity changes have
been obscured by ceiling effects within the power analyses.
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Fig. 12 Mean width of confidence intervals for effect size (ω̄) for the virtual studies shown in Fig. 5
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Fig. 13 Mean width of confidence intervals for effect size (ω̄) for the virtual studies shown in Fig. 7
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Fig. 14 Mean Z p for an effect on mean reaction time (RT) for the virtual studies shown in Fig. 1
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Fig. 15 Mean Z p for an effect on mean reaction time (RT) for the virtual studies shown in Fig. 3
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Fig. 16 Mean Z p for an effect on mean reaction time (RT) for the virtual studies shown in Fig. 5
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Fig. 17 Mean Z p for an effect on mean reaction time (RT) for the virtual studies shown in Fig. 7
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