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Abstract
To measure the parallel interactive development of latent ability and processing speed using longitudinal item response accu-
racy (RA) and longitudinal response time (RT) data, we proposed three longitudinal joint modeling approaches from the struc-
tural equation modeling perspective, namely unstructured-covariance-matrix-based longitudinal joint modeling, latent growth 
curve-based longitudinal joint modeling, and autoregressive cross-lagged longitudinal joint modeling. The proposed modeling 
approaches can not only provide the developmental trajectories of latent ability and processing speed individually, but also exploit 
the relationship between the change in latent ability and processing speed through the across-time relationships of these two con-
structs. The results of two empirical studies indicate that (1) all three models are practically applicable and have highly consistent 
conclusions in terms of the changes in ability and speed in the analysis of the same data set, and (2) additional analysis of the RT 
data and acquisition of individual processing speed measurements can reveal the parallel interactive development phenomena 
that are difficult to detect using RA data alone. Furthermore, the results of our simulation study demonstrate that the proposed 
Bayesian Markov chain Monte Carlo estimation algorithm can ensure accurate model parameter recovery for all three proposed 
longitudinal joint models. Finally, the implications of our findings are discussed from the research and practice perspectives.

Keywords  Longitudinal joint modeling · Response times · Latent growth model · Autoregressive cross-lagged model · Item 
response theory · Longitudinal data analysis

In psychological and behavioral science, researchers are often 
interested in studying the developmental changes of a group or 
of multiple groups of individuals, such as changes in their cogni-
tive levels and behavioral patterns over time. Longitudinal stud-
ies are often conducted to investigate these problems, and results 

from these studies can yield convincing arguments pertaining to 
the relationships between variables (e.g., directionality of causal-
ity) by constructing a theoretical or temporal back-and-forth logic 
between said variables (Ferrer & McArdle, 2010; Leszczensky 
& Wolbring, 2022; Toh & Hernán, 2008). The measurement of 
developmental changes relies on longitudinal data collected using 
multiple measures of constructs over time. Typically, these changes 
can be captured with longitudinal latent variable models falling 
into two main categories (McArdle, 2009; Muthén & Muthén, 
2000): (1) longitudinal models that focus on changes in categorical 
latent variables, such as hidden Markov models (or latent transition 
models) (e.g., Bartolucci et al., 2013; Collins et al., 1997; Wang, 
Yang, et al., 2018a), and (2) longitudinal models that focus on 
metrical changes in continuous latent variables, such as the latent 
growth curve models (e.g., Bollen & Curran, 2006; Duncan et al., 
2006) and longitudinal item response theory (IRT) models (e.g., 
Andersen, 1985; von Davier et al., 2011; Wang & Nydick, 2020). 
Most of these longitudinal models use item response accuracy 
(RA) data, such as binary responses indicating whether an answer 
to a multiple-choice question is right or wrong or ordinal responses 
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to Likert-type items, as observed indicators of the measured latent 
construct in psychological studies.

Thanks to advancements in computer- and web-based 
learning, assessment, and experimental systems, many types 
of multimodal data, such as reaction or response times (RTs), 
mouse clicks, action sequences, eye tracking, and brain activa-
tion, are accessible in addition to RA data (Gorin, 2006; Jeon 
et al., 2021; Jiao & Lissitz, 2018; van der Maas & Jansen, 
2003; Zhan et al., 2022). Among these types of data, partici-
pants’ RTs to test item, which is the amount of time spent by an 
individual to consider and solve each task or item, have been 
used to explore behavioral patterns in many psychological 
and behavioral case studies (e.g., Meijering & van Rijn, 2009; 
Siegler, 1989; van der Maas & Jansen, 2003) and to address 
the measurement issues encountered in many methodological 
studies (e.g., Bolsinova & Tijmstra, 2018; Man & Harring, 
2021; van der Linden & Guo, 2008; Zhan et al., 2018). For 
an assessment at a given time point, RA and RT data are col-
lected simultaneously to provide parallel information pertain-
ing to participants’ cognitive processes or behavioral patterns 
for the same task (e.g., it takes 60 s for a participant to respond 
to an item correctly). As a complement to RA data, RT data 
may offer additional information related to the contents of the 
cognitive processes that underlie problem-solving on tasks that 
are difficult to analyze using RA data alone (De Boeck & Jeon, 
2019). A joint analysis of RA and RT data can not only directly 
reveal the relationship between latent ability and processing 
speed, but also improve the accuracy of parameter estimation 
with the measurement models (Bolsinova & Tijmstra, 2018; 
van der Linden, 2007; Zhan et al., 2018).

Several recent computer-based longitudinal studies, such 
as dynamic studies focusing on learning development (e.g., 
adaptive learning [Wang, Yang, et al., 2018a] and intelli-
gent tutoring [Woolf, 2009]) and longitudinal behavioral 
experimental studies focusing on child development (e.g., 
Ouyang et al., 2022) have facilitated the simultaneous col-
lection of RA and RT data across multiple time points, and 
we refer to these data as longitudinal RA and longitudinal 
RT. Moreover, these studies have demonstrated the promise 
of using both longitudinal RA and longitudinal RT data to 
study changes in cognitive levels and behavioral patterns. 
Human behavior or cognitive process is a product of multi-
ple constructs that are systematically related to one another. 
Hence, individual constructs are likely to undergo devel-
opmental change not independently but on the basis of the 
influences of their respective developmental changes on each 
other. Such change in constructs that develop separately but 
influence each other is called “parallel interactive develop-
ment” in the present study. Our focus is on the parallel inter-
active development of two latent constructs, namely latent 
ability and processing speed, which are measured using RA 
and RT, respectively, with the aim of advancing our holistic 
understanding of the developmental changes in individuals.

With the availability of longitudinal RA and longitudinal RT 
data, a statistical method must be used to capture the parallel 
interactive development of latent ability and processing speed 
from the data. Joint-hierarchical latent variable modeling is one 
of the most popular approaches for simultaneously analyzing 
RA and RT data (van der Linden, 2007). However, this mode-
ling approach is suitable for cross-sectional data, and it assumes 
a constant continuous ability (reflected by RA) and a constant 
continuous latent speed (reflected by RT) through a test at a 
given point in time. Many variants of this model have been pro-
posed to generalize its assumptions to diverse test scenarios and 
applications, which are nonetheless limited to cross-sectional 
data (e.g., Fox & Marianti, 2016; Klein Entink et al., 2009; Man 
et al., 2019; Man & Harring, 2021; Molenaar et al., 2015, 2016; 
Zhan et al., 2021). Although a few studies have extended this 
joint modeling framework to track changes in speed and ability, 
they have defined latent ability as a categorical latent variable 
and used a cognitive diagnostic model (CDM) (e.g., Junker 
& Sijtsma, 2001) for measuring RA data (Wang et al., 2020; 
Wang, Zhang, et al., 2018b). By contrast, our study focuses on 
detecting the parallel interactive development of two continu-
ous latent variables, namely latent ability and latent processing 
speed. Continuous latent variables and categorical latent vari-
ables represent two different quantitative perspectives on latent 
constructs, and they are used for different purposes. Many latent 
constructs, such as intelligence, are considered continuous, and 
in such a case, we seek a scale on which individuals can be 
located. In other words, continuous variables portray individual 
development more finely than categorical variables, especially 
when the magnitude of change is small (e.g., only quantitative 
but not qualitative change) (e.g., Zhan, 2021).

The objective of our study is to develop novel statistical 
modeling approaches for assessing the parallel interactive 
development of continuous latent ability and processing 
speed using both longitudinal RA and longitudinal RT data. 
The proposed longitudinal joint modeling approaches are 
within the domain of structural equation modeling (SEM) 
(McArdle & Nesselroade, 2014), and we adapt three widely 
used modeling approaches in our setup: unstructured-
covariance-matrix-based modeling, latent (parallel process) 
growth curve modeling, and autoregressive cross-lagged 
modeling. The first modeling approach is often used in lon-
gitudinal IRT models, and the latter two are frequently used 
for analyzing longitudinal data in the field of developmental 
and applied psychology. In addition, the proposed modeling 
approaches can not only provide developmental trajectories 
in terms of changes in latent ability and processing speed 
over time, but also provide additional information about the 
across-time relationships between these two constructs. In 
this sense, these approaches can be viewed as extensions of 
joint-hierarchical latent variable modeling (van der Linden, 
2007) in a longitudinal setup from the SEM perspective.
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In the remaining sections, we first describe the proposed 
longitudinal joint models, including the model formulas, 
model estimation procedure, and differences from a few 
related models. Then, two empirical examples are presented 
to illustrate the applicability of the proposed models, fol-
lowed by a simulation study to explore the psychometric per-
formance of the proposed models under different simulated 
test conditions. Finally, we present our findings and provide 
an outline for future research on this topic.

Longitudinal joint‑hierarchical latent 
variable modeling

Consider N students participating in a longitudinal assess-
ment that integrates learning components across P time 
points. Let Ip be the index of the number of items admin-
istered at time point p (p = 1, …, P) and the entire assess-
ment consists of I =

∑P

p=1
Ip items. Two types of longitu-

dinal data can be collected from these items at each time 
point: longitudinal RA and longitudinal RT. Let Ynip and 
Tnip be the n (n = 1, …, N)-th student’s RA and RT for 
item i (i = 1, …, Ip) at time point p, respectively. Follow-
ing the SEM framework, the proposed longitudinal joint 
models consist of two components: a measurement model 
that describes the associations between the observed 
variables and latent variables at a given time point and a 
structural model that describes the changes in and rela-
tionships among the latent variables over time. Our focus 
is on presenting three types of structural models that can 
be used to describe the mechanisms of change in latent 
ability and processing speed over time. The following sec-
tions describe the measurement model component and the 
proposed structural models.

Measurement model

At a given time point p, we assume that RA data follow the 
two-parameter logistic IRT model (Birnbaum, 1968), which 
can be expressed as follows:

where θnp denotes the latent ability of student n at time point 
p, and aip and bip denote the discrimination and difficulty of 
item i at time point p, respectively. Equation (1) represents a 
two-parameter extension of Andersen’s (1985) longitudinal 
Rasch model with an additional item-discrimination param-
eter (see also von Davier et al., 2011).

(1)Prob
(
Ynip = 1|θnp, aip, bip

)
=

exp
(
aipθnp − bip

)

1 + exp
(
aipθnp − bip

) ,

In addition, at a given time point p, we assume that RT 
data follow the lognormal RT model (van der Linden, 2006) 
with an additional time-discrimination parameter (Klein 
Entink et al., 2009), which can be expressed as follows:

where τnp denotes the latent processing speed of student n at 
time point p, and ξip, φip, and ωip denote the time-intensity, 
time-discrimination, and time-precision of item i at time 
point p, respectively.

Note that the dichotomous RA data are considered only 
as an example to illustrate the conceptualization of the pro-
posed modeling approaches. Different IRT models can be 
applied to ordinal or nominal response data with more than 
two categories (Bock, 1972; Samejima, 1969). A few stud-
ies have explored the joint analysis of ordinal response and 
RT data in cross-sectional personality tests based on rating 
scales (e.g., Ranger, 2013).

Structural model

Unstructured‑covariance‑matrix‑based structural model

To describe the relationship between θnp and τnp across P 
time points, one of the most straightforward methods is 
to construct an unstructured covariance matrix (e.g., von 
Davier et al., 2011; Zhan et al., 2019), as illustrated in Fig. 1. 
The structural model component of the proposed joint model 
based on an unstructured covariance matrix, denoted by 
COV, is as follows:

(2)log Tnip = ξip − ϕipτnp + εnip, εnip ∼ N
(
0,ω−2

ip

)
,

θn1 θn2 θn3

τn1 τn2 τn3

Tn11 TnI1... Tn12 TnI2... Tn13 TnI3...

Yn11 YnI1... Yn12 YnI2... Yn13 YnI3...

Fig. 1   Graphical representation of unstructured-covariance-matrix-
based longitudinal joint models (three time points)
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where θn = (θn1, …, θnP)′ denotes the latent ability vector 
consisting of P elements, τn = (τn1, …, τnP)′ denotes the 
latent processing speed vector consisting of P elements. The 
vectors μθ = (μθ1, …, μθP)′ and μτ = (μτ1, …, μτP)′ are the 
population mean vector of latent abilities and population 
mean vector of latent processing speeds, respectively. Σ is a 
variance-covariance matrix, in which σ2

θp
 is the variance of 

θp, σ2
τp

 is the variance of τp, σθpθp� is the covariance of θp and 
θp′, στpτp� is the covariance of τp and τp′, and σθpτp is the covari-
ance of θp and τp.

This structural model directly outputs estimates of the 
latent ability and processing speed at each time point. 
Therefore, �̂n and �̂n , respectively, can be used to directly 
describe the estimated developmental trajectories of the 
latent ability and processing speeds of individuals. In 
other words, θ̂n(p+1) − θ̂np and τ̂n(p+1) − τ̂np can be used to 
describe the estimated degrees of changes in individuals' 
latent abilities and processing speeds. The estimate of the 
population-level average changes in ability and speed at two 
adjacent time points can then be denoted by μ̂θ(p+1) − μ̂θp 
and μ̂τ(p+1) − μ̂τp , respectively. Furthermore, the estimate of 
the population-level scale changes in ability and speed at 
two adjacent time points can be described by σ̂θ(p+1)∕σ̂θp and 
σ̂τ(p+1)∕σ̂τp , respectively (Paek et al., 2014).

The unstructured covariance matrix in COV makes it pos-
sible to consider various relationships between the latent con-
structs across all time points. However, when the number of time 
points is large, the computational cost increases dramatically, 
and the nonconvergent estimation issue may be encountered.

Latent growth curve‑based structural model

The second structural model is based on the latent growth 
curve (e.g., Curtis, 2010; Wang & Nydick, 2020), and we 
denote the joint model based on it as the latent growth curve 
longitudinal joint model (LGC). This model is illustrated in 
Fig. 2 and is expressed as follows:

(3)�
�n
�n

�
∼ MVN

��
�θ

�τ

�
,�

�
,� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ2
θ1

⋯ σθ1θP
⋮ ⋱ ⋮

σθPθ1 ⋯ σ2
θP

σθ1τ1 ⋯ σθ1τP
⋮ ⋱ ⋮

σθPτ1 ⋯ σθPτP
στ1θ1 ⋯ στ1θP
⋮ ⋱ ⋮

στPθ1 ⋯ στPθP

σ2
τ1

⋯ στ1τP
⋮ ⋱ ⋮

στPτ1 ⋯ σ2
τP

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)θnp = πn0 + πn1(p − 1) + εθnp , εθnp ∼ N
(
0, σ2

θp

)
,

(5)τnp = δn0 + δn1(p − 1) + ετnp , ετnp ∼ N
(
0, σ2

τp

)
,

where πn0 and πn1 are the individual growth intercept and 
growth slope parameters for latent ability, respectively, and 
δn0 and δn1 are the individual growth intercept and growth 
slope parameters for processing speed, respectively. In addi-
tion, μπ0 and μπ1 denote the population mean and population 
average developmental change in latent ability, respectively, 
and μδ0and μδ1 denote the population mean and population 
average developmental change in processing speed, respec-
tively. Furthermore, εθnp and ετnp are the residual terms of 
latent ability and processing speed, respectively.1

Unlike the COV, which directly estimates the values 
of θnp and τnp at each time point, this model estimates the 
growth factors (i.e., πn0, πn1, δn0, and δn1) of each individual. 
Accordingly, π̂n1 and δ̂n1 can be used to describe the esti-
mated amounts of change in latent ability and processing 
speed, respectively, of each individual between adjacent 
time points, and μ̂π1 and μ̂δ1 can be used to describe the esti-
mated amounts of change in latent ability and processing 
speed, respectively, of the corresponding population means 
between adjacent time points.

As expressed in Eq. (6), growth factors are assumed to 
follow a multivariate normal distribution, indicating that the 
starting values (i.e., πn0 and δn0) of and the amounts of devel-
opmental change (i.e., πn1 and δn1) in the latent constructs 
mutually influence each other. In such cases, for example, 
ρπ0δ0 =

σδ0π0

/
σδ0

σπ0
 can be used to describe the correlation 

between latent ability and processing speed at the starting 
point, and ρπ0π1 =

σπ0π1

/
σπ0

σπ1
 and ρδ0δ1 =

σδ0δ1

/
σδ0

σδ1
 can be 

used to describe the correlation between the starting values 
of and amounts of developmental change in two latent con-
structs, respectively. If these values are significantly greater 

(6)

⎛
⎜⎜⎜⎝

πn0
πn1
δn0
δn1

⎞
⎟⎟⎟⎠
∼ MVN

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

μπ0
μπ1
μδ0
μδ1

⎞
⎟⎟⎟⎟⎠
,

⎛⎜⎜⎝

σ2
π0

⋯ σπ0δ1
⋮ ⋱ ⋮

σδ1π0 ⋯ σ2
δ1

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
,

1  Notably, a few studies do not include the residual term in the latent 
growth curve model or fix σ2

θp
= σ2

τp
= 0 (e.g., Curtis, 2010; Fox & 

Marianti, 2016), resulting in perfectly linear growth of the individu-
als' latent constructs over time.
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than 0, it follows that the higher the starting level, the faster 
is the individual’s development, and vice versa.

The proposed LGC is a linear growth model. A more 
complex nonlinear growth process can be considered by 
adding quadratic terms (e.g., πn2(p − 1)2 and δn2(p − 1)2, 
where πn2 and δn2 are the quadratic growth parameters of 
latent ability and processing speed, respectively) to Eqs. 
(4) and (5), respectively. This nonlinear LGC was also 
fitted to two data sets presented in the empirical exam-
ples section. However, its relative model–data fit, includ-
ing the model complexity penalty, was worse than that 
of the linear LGC in empirical example 1 and marginally 
better than that of the linear LGC in empirical example 
2 (Tables S8 and S9 in the online appendix present the 
relative and absolute model–data fits, respectively). For 
this reason, we choose to not present this model in this 
study.

Autoregressive cross‑lagged structural model

The last approach we consider for describing the develop-
mental changes in θnp and τnp over time is autoregressive 

cross-lagged modeling (e.g., Bentler, 1980; Mayer, 1986; 
McArdle, 2009), as depicted in Fig. 3. We express the struc-
tural model of the autoregressive cross-lagged longitudinal 
joint model (denoted as ACL) as follows:

where β0p and λ0p are the intercepts of latent ability and 
processing speed at time point p, respectively. Moreover, β1p 
and λ1p denote the autoregressive effects of latent ability and 
processing speed at time point p, respectively, and they 
describe the stability of the latent constructs from one time 
point to the next. β2p and λ2p denote the cross-lagged effects 
of latent ability and processing speed at time point p, respec-
tively, and they describe the effect of one construct on 
another measured at a later time point. In addition, εθnp and 
ετnp are the residual terms of latent ability and processing 
speed, respectively. In contrast to the residual terms in the 
LGC, the residual terms in the ACL are assumed to follow 
a bivariate normal distribution for describing the correlation 
between the unexplained parts of latent ability and process-
ing speed.

Compared to the COV (Fig. 1), the ACL strictly limits 
the directionality of the influence between variables (i.e., 

(7)θnp = β0p + β1pθn(p−1) + β2pτn(p−1) + εθnp ,

(8)τnp = λ0p + λ1pτn(p−1) + λ2pθn(p−1) + ετnp ,

(9)

(
εθnp
ετnp

)
∼ MVN

((
0

0

)
,

(
σ2
εθp

σεθpετp
σετpεθp σ2

ετp

))
,

τn1 τn2 τn3

Tn11 TnI1... Tn12 TnI2... Tn13 TnI3...

δn0 δn1

1 1 1 1 2

θn1 θn2 θn3

Yn11 YnI1... Yn12 YnI2... Yn13 YnI3...

πn0 πn1

1 1 1 1
2

Fig. 2   Graphical representation of latent growth curve longitudinal 
joint models (three time points)

θn1 θn2 θn3

τn1 τn2 τn3

β11 β12

λ11 λ12

λ21

β21

λ22

β22

Tn11 TnI1... Tn12 TnI2... Tn13 TnI3...

Yn11 YnI1... Yn12 YnI2... Yn13 YnI3...

Fig. 3   Graphical representation of autoregressive cross-lagged longi-
tudinal joint model (three time points)
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prediction). Under strict experimental design, the ACL can 
be used to reveal causal relationships between variables if 
irrelevant variables are controlled (Bentler, 1980), while the 
COV cannot. In addition, similar to the COV, θ̂n(p+1) − θ̂np 
and τ̂n(p+1) − τ̂np can be used to estimate the degrees of 
change in individuals’ latent ability and processing speed, 
respectively. However, the calculations of the degrees of 
change in the population means of latent ability and pro-
cessing speed at adjacent time points are complex. For ease 
of understanding, an example is summarized in Table 1.

Summary and comparison between three 
longitudinal joint models

In summary, we presented three types of joint models for 
longitudinal RA and RT data with differences in the formu-
lations of the structural models, denoted by COV, LGC, and 
ACL. Table 1 presents a comparison between individual 
level and population mean level among the three structural 
models at three time points. First, at the starting point (i.e., 
p = 1), the three models are equivalent, though different 
notations for parameters related to ability and speed are used 
given their own model formulations. Second, the three mod-
els have different assumptions for describing the develop-
mental changes in ability and speed. Specifically, the COV 
has the most lenient assumption, and it directly estimates the 
latent ability and processing speed at each time point. The 
LGC assumes a linear growth and estimates the coefficients 
of the growth curves (i.e., growth factors) of ability and 
speed over time. The ACL further models the influence of 
constructs on themselves and the relationships between con-
structs at two adjacent time points. Third, both the LGC and 
the ACL can be treated as special cases of the COV by repar-
ametrizing the mean and the variance of the distributions of 
the latent variables in the COV. For example, in the LGC, 
�np ∼ N

(
��0

+ ��1
(p − 1), �2

�0
+ �2

�1
(p − 1)2 + 2(p − 1)COV

(
�0,�1

)
+ σ2

θp

) . In 

addition, to our understanding, ACL and LGC develop inde-
pendently, and there is no theoretical nested relationship 
between them. Fourth, when P ≥ 3, all three models can be 
used. When P = 2, the COV and the ACL are recommended 
because two time points do not satisfy the identifiability 
requirement of LGC (Bollen & Curran, 2006).2 When P = 
1, all three models are reduced to the joint-hierarchical item 
response model for cross-sectional data (Klein Entink et al., 
2009; van der Linden, 2007).

Related models

A limited number of models have been proposed for ana-
lyzing longitudinal RA and RT data simultaneously. One 
area of research is within the ambit of the dynamic CDM 
framework (Chen & Culpepper, 2020; Wang et al., 2020; 
Wang, Zhang, et al., 2018b). The aforementioned models 
use the CDM model and the lognormal RT model for meas-
uring RA and RTs, respectively, at a given time point and 
then model the transition of a discrete latent ability variable 
based on different assumptions of the latent ability variable 
and latent speed. The proposed models differ from these 
joint models mainly in terms of modeling the change in a 
continuous latent ability instead of the discrete latent ability. 
In addition, our proposed models allow different possibili-
ties of changes in both abilities and speed, which are more 
realistic in terms of the application in diverse longitudinal 
assessment scenarios.

Another branch of research that is closely related to this 
study is joint modeling of RA and RT data in cross-sec-
tional scenarios. For example, Zhan et al. (2021) proposed 

Table 1   Comparison of individual level and population mean level among the three models at three time points

COV unstructured covariance matrix-based longitudinal joint model, LGC latent growth curve longitudinal joint model, ACL autoregressive 
cross-lagged longitudinal joint model, p time point, θ latent ability, τ latent speed

Model Construct Individual Population mean

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

COV Ability θn1 θn2 θn3 μθ1 μθ2 μθ3

Speed τn1 τn2 τn3 μτ1 μτ2 μτ3

LGC Ability π0n+εθnp π0n+π1n+εθnp π0n+2π1n+εθnp μπ0 μπ0+μπ1 μπ0+2μπ1

Speed δ0n+ετnp δ0n+δ1n+ετnp δ0n+2δ1n+ετnp μδ0 μδ0+μδ1 μδ0+2μδ1

ACL Ability θn1=β01+εθnp θn2=β02+β12θn1+β22τn1+εθnp β03+β13θn2+β23τn2+εθnp θ1=β01 θ2 = β02+β12β01+β22λ01 β03+β13θ2
+β23τ2

Speed τn1=λ01+ετnp τn2=λ02+λ12τn1+λ22θn1+ετnp λ03+λ13τn2+λ23θn2+ετnp τ1=λ01 τ2 = λ02+λ12λ01+λ22β01 λ03+λ13τ2
+λ23θ2

2  The LGC can be identified at two time points by impos-
ing some constraints. For example, for latent abil-
ity, by constraining Cov(π0, π1) = 0 and σ2

θ1
= σ2

θ2
 , we get 
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a multidimensional joint model for RA and RT data, which 
can be used to analyze the multidimensionality of ability and 
speed in cross-sectional assessments. In fact, the COV pro-
posed in this study can be considered an application of the 
multidimensional joint model to the analysis of longitudinal 
bimodal data (RA and RTs), similar to the application of 
multidimensional IRT models to the analysis of longitudinal 
RA data (von Davier et al., 2011). In addition, to address 
the within-person relationship between ability and speed in 
cross-sectional assessments, Fox and Marianti (2016) pro-
posed a joint model of RA and RT and modeled the relation-
ship between latent ability and speed using a latent growth 
curve model. In contrast to their assumption that an individ-
ual has constant ability but variable speed across items, our 
LGC assumes that both ability and speed change over time 
but remain constant across items at a specific time point.

Model estimation

Model identification

To ensure the comparability of latent constructs across time 
points, an anchor-item design or a repeated measurement 
design (i.e., all items are anchor items) is often used. Kolen 
and Brennan (2004) recommended that assessments use at 
least 20% of the items in question to anchor the parameters 
to the common scale. If an adequate number of items is 
linked across time and no item parameter drift is assumed, 
the estimation of model parameters requires the imposition 
of a few model identifiability constraints. We impose con-
straints on the mean and variance of ability and the speed 
to identify the scales of ability and speed. In the proposed 
models, the mean of latent ability at the first time point is 
set to zero to identify the mean of the ability scale. Simi-
larly, the mean of processing speed at the first time point is 
set to zero to identify the mean of the speed scale. Specifi-
cally, in the COV, we set μθ1 = μτ1 = 0; in the LGC, we set 
μπ0 = μδ0 = 0 ; and in the ACL, we set β01 = λ01 = 0. Next, in 
all the proposed models, the product of item discrimination 
parameters is restricted to 1 to identify the variance of the 
ability scale, and the product of item time-discrimination 
parameters is restricted to 1 to identify the variance of the 
speed scale. Once the ability and speed scales are identified, 
all higher-level model parameters can be identified.

Bayesian parameter estimation

The parameters of the proposed models can be estimated 
using the Markov chain Monte Carlo (MCMC) method 
within the Bayesian estimation framework. In this study, 
the PyMC3 package (version 3.11.2) (Salvatier et al., 2016; 
https://​docs.​pymc.​io) in the Python software environment 

is used to implement the MCMC method. Moreover, the 
No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014) in 
PyMC3 is used as the MCMC sampling algorithm because 
it uses gradient information from the likelihood to converge 
considerably faster than traditional sampling algorithms 
(e.g., Gibbs sampling), especially in the case of complexity 
models.

Herein, medium-informative hyper-priors are used to 
increase the generalizability of our code. The priors used in 
this study are listed in Section S1.1 of the online appendix. 
In addition, a robustness analysis of the model parameter 
estimation for low-, medium-, and high-informative hyper-
priors is presented in Section S1.2 of the online appendix. 
The results indicate that the three proposed models are 
highly robust against prior distributions containing differ-
ent amounts of information.

In longitudinal studies, missing data are encountered 
commonly owing to factors such as sample attrition and 
test design (i.e., missing by design). A common practice 
in Bayesian estimation is to have the algorithm automati-
cally fill in missing values on the basis of the sampled 
model parameter values (e.g., Pan & Zhan, 2020). How-
ever, when the proportion of missing values is high, the 
computational cost increases considerably. In addition, 
when the model does not fit the data well, the automati-
cally filled data may have large biases. By contrast, if the 
data are missing completely at random (MCAR) or miss-
ing at random (MAR), we suggest using only the observed 
data to fit the proposed models.3 For the MCAR or MAR, 
Rubin (1976) postulated that respondents were similar to 
nonrespondents within a subcategory; methods such as 
full information maximum likelihood estimation, which 
ignores missing values and calculates the likelihood func-
tion using observed data, will work reasonably well in 
such cases (Pokropek, 2011). To delete the missing data 
that are devoid of information at the response level (i.e., 
missing data of specific persons for specific items), we 
adjust the data format from the traditional item response 
matrix to the item response vector with tags that include 
time points, persons, and items. Further details pertaining 
to the aforementioned data format conversion can be found 
in Section S2 in the online appendix.

3  In practice, testing the missing data mechanism is not an easy task. 
Fortunately, the mechanisms of missing data due to some specific fac-
tors are easier to determine. For example, participants in longitudinal 
studies are frequently requested to complete only a portion of a test in 
order to lessen their cognitive burden; the resulting missing data by 
design are usually identified as MCAR (Peugh & Enders, 2004; Pok-
ropek, 2011). In addition, Little's test of MCAR (Little, 1988) is often 
used to test for missing data mechanism.

https://docs.pymc.io
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Applications

The proposed models were applied for analyzing two sets 
of data. The first set was collected from a computer-based 
learning platform that aims to improve students’ spatial 
rotation skills. The experiment was conducted over 1 to 2 
hours with short intervals between time points. The second 
data set was collected from a computer-based behavioral 
experiment in the field of developmental psychology, and it 
was characterized by long intervals between time points. In 
both experiments, the participants’ longitudinal RA and RT 
data were recorded. The three proposed joint models were 
fitted to both data sets. In addition, to evaluate the benefit 
of using a joint modeling framework, we also separately 
fitted the longitudinal RA and longitudinal RT data by their 
corresponding measurement model (denoted as sep-COV, 
sep-LGC, and sep-ACL, respectively). That is, ignoring the 
structural relationship between latent ability and processing 
speed.

Empirical example 1: Computer‑based spatial 
rotation learning experiment

Data description

The spatial rotation data set employed herein has been used 
in a few previous studies to track learning trajectories in 
dynamic CDM frameworks (e.g., Wang et al., 2020; Wang, 
Yang, et al., 2018a; Wang, Zhang, et al., 2018b). In the 
experiment, a total of 350 participants answered 50 ques-
tions from five testing blocks sequentially and received a 
learning intervention between any two adjacent testing 
blocks. Each testing block contains 10 items and represents 
a time point. To balance the item positions and avoid the 

empirical identifiability problem, a total of five versions of 
the test were developed following the Latin square design, 
and they were randomly assigned to the participants to guar-
antee that different test blocks have the same chance of being 
the first block among all participants. Detailed descriptions 
of the test questions, learning intervention, and the entire 
experimental process can be found in Wang, Yang, et al. 
(2018a).

Essentially, this data set represents a longitudinal assess-
ment with the repeated measure design. To facilitate the 
proposed model fitting process, we reorganized the data set 
using 350 individuals’ responses to 250 items at five time 
points (50 items per time point). At a given time point, a par-
ticipant only answered 10 items, and responses to the other 
40 items remained missing because of the design. These 
missing data due to test design were considered as MCAR 
and were ignored in the data analysis. Figure 4 depicts box 
plots of the total raw score and the average logarithm of the 
RTs (logRTs) of all students on the 50 items at each time 
point (excluding the missing values). A clear decreasing 
trend of the average logRTs can be observed; as for the total 
raw score, it shows an increase between time points 1 and 2, 
and the changes between the other time points are negligible.

Analysis

In this application, latent ability represents a student's spa-
tial rotation ability, while latent processing speed denote 
a student's latent speed when completing a rotation ques-
tion. To each model, two Markov chains were applied. In 
each chain, 10,000 iterations were performed, with the first 
5000 iterations as burn-in, and the remaining 5000 iterations 
(10,000 per chain in total) performed for model parameter 
inference. PyMC3 provides different initialization schemes 

Fig. 4   Box plot of students’ total raw scores and average logarithm of response times at each time point in empirical example 1
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for MCMC chains, as well as a set of tools for automatically 
diagnosing convergence after sampling.4 In this study, the 
advi+adapt_diag initialization scheme, which runs auto-
matic differentiation variational inference and, subsequently, 
adapts the resulting diagonal mass matrix on the basis of 
the variance of the tuning samples, was used. This scheme 
initializes the chain at the test value, which depends on the 
prior distribution and is usually the mean or mode of the 
prior distribution. We checked for convergence using the 
criterion that the potential scale reduction factor (PSRF) 
should be less than 1.1 (Brooks & Gelman, 1998) or 1.2 (de 
la Torre & Douglas, 2004).

Posterior predictive model checking (PPMC; Gelman 
et al., 2014) was used to evaluate the absolute model–data 
fit. A posterior predictive probability (ppp) value near 0.5 
indicates no systematic differences between the realized and 
predictive values and, thus, an adequate model fit. By con-
trast, a ppp value smaller than 0.05 or larger than 0.95 was 
considered the indication of an inadequate model fit. In this 
study, the ppp value was computed separately for each time 
point. Only the differences between the observed and pre-
dicted data were compared, and these differences were used 
to compute the ppp values (Levy & Mislevy, 2016). Specifi-
cally, for both RA and logRT on each time point, the differ-
ences between the observed data, X, and posterior predicted 

data, Xpostpred, were compared in computing the PPMC, as 
ppp =

∑E

e=1

�
Sum

�
X
postpred(e)

�
≥ Sum(X)

�
∕E , where E is the 

total number of iterations in MCMC sampling; Xpostpred(e) 
were the posterior predicted data in e-th iteration, which 
were generated from the item response function (Eq. (1) for 
RA and Eq. (2) for logRT) based on the samplings of the 
model parameters from the posterior distributions. The devi-
ance information criterion (DIC) and the widely available 
information criterion (WAIC) (Gelman et al., 2014) were 
computed for model selection. Smaller DIC and WAIC val-
ues indicate a better model–data fit.

Results

The PSRFs of all the parameters in each model were less 
than 1.1, indicating good convergence under the specified 
setting. Figure 5 depicts the ppp values of the six models 
for the RA and RT data of each time point. The results of 
absolute fitting of the data with the joint model and its cor-
responding separate model are generally consistent. Both 
the COV and the ACL were able to fit these data well at 
all five time points. As for the LGC, its RA model was not 
able to fit the RA data at time point 2, mainly because the 
change in total raw score was not linear with respect to 
time (as shown in Fig. 4), but its RT model was able to fit 
the RT data.

Table 2 summarizes the relative model–data fit indices 
of the six models and their computation times. Accord-
ing to the −2LL, among the six models, the COV model 
provided the best fit for both RA and RT data, regardless 

Fig. 5   Posterior predictive probability values of six models to 
response accuracy (RA) and response time (RT) data at each time 
point in empirical example 1. Note. COV unstructured covariance 

matrix-based longitudinal joint model, LGC latent growth curve lon-
gitudinal joint model, ACL autoregressive cross-lagged longitudinal 
joint model; sep- separate modeling

4  NUTS convergence and sampling speed are highly dependent on 
the choice of mass matrix. Different methods for choosing or adapt-
ing the mass matrix can be found in https://​docs.​pymc.​io/​en/​latest/​
api/​gener​ated/​pymc.​initn​uts.​html.

https://docs.pymc.io/en/latest/api/generated/pymc.initnuts.html
https://docs.pymc.io/en/latest/api/generated/pymc.initnuts.html
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of model complexity, because it was the most generalized 
model. When the model complexity penalty was considered, 
in terms of the DIC and WAIC, the ACL model provided the 
best fit for the RA data, and the LGC model provided the 
best fit for the RT data. In addition, the joint model generally 
fitted the data better than its corresponding separate model, 

except the COV. A possible reason is that the COV incor-
porates more covariance coefficients between latent ability 
and processing speed, resulting in larger complexity than 
the sep-COV, and hence higher DIC and WAIC. Further-
more, because the separate models are more parsimonious 
than the joint models, the computation times of the former 

Table 2   Relative model–data fits and computation times (in seconds) of six models in empirical example 1

COV unstructured covariance matrix-based longitudinal joint model, LGC latent growth curve longitudinal joint model, ACL autoregressive 
cross-lagged longitudinal joint model, sep- separate modeling, −2LL −2 log likelihood, DIC = deviance information criterion, WAIC widely 
available information criterion. The numbers in bold type face indicate the smallest values

Analysis model Response accuracy model Response times model Computation time

−2LL DIC WAIC −2LL DIC WAIC

COV 18,859.25 19,611.46 19,245.21 39,104.56 40,170.01 39,655.39 3362.525
LGC 18,897.69 19,497.79 19,204.12 39,147.48 40,013.14 39,592.88 4924.093
ACL 18,892.19 19,484.25 19,194.67 39,144.22 40,028.14 39,599.17 6441.862
sep-COV 18,867.10 19,574.90 19,230.10 39,120.69 40,108.27 39,630.25 3069.254
sep-LGC 18,894.14 19,516.55 19,212.36 39,144.47 40,029.14 39,599.98 4659.859
sep-ACL 18,893.79 19,502.56 19,204.93 39,145.14 40,036.33 39,603.91 5940.281

Fig. 6   Estimated developmental trajectories of latent ability and pro-
cessing speed in empirical example 1. Note. COV unstructured covar-
iance matrix-based longitudinal joint model, LGC latent growth curve 

longitudinal joint model, ACL autoregressive cross-lagged longitudi-
nal joint model. The thick solid line represents the developmental tra-
jectory of the population mean
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were shorter than those of the latter. The following section 
discusses the results of the joint models.

Figure  6 displays the developmental trajectories of 
latent ability and processing speed estimated using the 
three joint models. First, there was a high degree of con-
sistency among the developmental trajectories estimated 
using the three models, especially between the results 
from the COV and ACL models. Second, the latent ability 
increased clearly between time point 1 and time point 2, 
but there was almost no change between time point 2 and 
time point 5. Meanwhile, the processing speed exhibited 
a steady increasing trend from time point 1 to time point 
5 for all three models. These results are consistent with 
the findings of previous studies (Wang et al., 2020; Wang 
and Chen, 2020), and they explain the change trends of 
the observed variables in Fig. 4. Moreover, these results 

reflect the benefit of additional RT data analysis. That is, 
the benefit of using the designed intervention is not only 
in improving the latent ability but also in increasing pro-
cessing speed., which cannot be detected if using RA data 
alone.

Furthermore, in the case of the COV model, the estimated 
scale changes of latent ability and processing speed over 
time (i.e., σ̂θ(p+1)∕σ̂θp and σ̂τ(p+1)∕σ̂τp , respectively) were 
(1.093, 1.287, 0.849, 1.020)′ and (1.038, 1.120, 0.902, 
0.970)′, respectively. In the case of the ACL model, the 
σ̂εθ(p+1)∕σ̂εθp and σ̂ετ(p+1)∕σ̂ετp over time were (1.110, 1.073, 
0.995, 1.008)′ and (1.038, 1.051, 0.964, 0.988)′, respectively. 
In the case of the LGC model, neither ρ̂π0π1 = 0.296 (95% 
highest posterior density [HDP] of [−0.375, 0.931]) nor 
ρ̂δ0δ1 = 0.039 (95% HDP of [−0.664, 0.746]) was signifi-
cantly different from zero. These results indicate the absence 

Fig. 7   Scatterplot between estimates of latent ability and processing 
speed in empirical example 1. Note. M1 unstructured-covariance-
matrix-based longitudinal joint model, M2 latent growth curve longi-
tudinal joint model, M3 autoregressive cross-lagged longitudinal joint 
model, Tx xth time point. The upper and lower triangular matrices 

represent the estimates of processing speed and that of latent ability, 
respectively. The position of each dot on the horizontal and vertical 
axes in each scatter plot represents the estimates of the two models 
corresponding to the row and column in which the plot is located
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of a significant Matthew effect5 for the changes in latent 
ability and processing speed.

Figure 7 presents the scatter plot between the estimates of 
latent ability and processing speed across all time points for 
all models. First, for each model, both latent ability and pro-
cessing speed exhibit a high degree of correlation among the 
estimates at five time points, indicating a high degree of consist-
ency in latent ability or processing speed at different time points 
(mainly because of the short interval between the time points in 
this test). Second, the estimates of both latent ability and pro-
cessing speed obtained using different models at a given point 
exhibit a high degree of correlation, indicating a high degree of 
consistency between the estimates yielded by different models.

Figure 8 displays the estimates of the item parameters of 
all the models considered in this empirical study. The item 
parameter estimation was highly consistent across the three 
models, especially the COV and ACL models. Most of the 
item difficulty parameter estimates were negative, indicat-
ing that the overall difficulty of the test was low, and the 

resulting ceiling effect may explain the observation that the 
average total raw score hardly changed after time point 2.

In addition to the comparative results of the three above-
mentioned models, a few characteristics of the data itself 
can be identified using the parameter estimates of the dif-
ferent models. For example, Table 3 presents the estimates 
of correlations among latent ability and latent speed across 
all time points in the COV model. A low to medium degree 
of correlation was found between latent ability and latent 
speed at each of the time points. Figure 9 shows the esti-
mates of the structural model parameters (i.e., correlation 
coefficients) of the LGC. In these data, there exists a cor-
relation only between the starting level of latent ability and 
the starting level of processing speed. Moreover, there is 
no interaction between the development of these two con-
structs over time. Figure 10 presents the estimates of the 
structural model parameters (i.e., autoregressive coefficients 
and cross-lagged coefficients) of the ACL model. In these 

Fig. 8   Violin plot of estimates of item parameters in empirical example 1. Note. COV unstructured-covariance-matrix-based longitudinal joint 
model, LGC latent growth curve longitudinal joint model, ACL autoregressive cross-lagged longitudinal joint model

Table 3   Estimates of structural model parameters (i.e., correlation 
coefficients) in the unstructured-covariance-matrix-based longitudinal 
joint model in empirical example 1

# means that the 95% highest posterior density (HPD) includes zero, 
that is, the correlation coefficient is not significantly different from 
zero. 95% HPD of each estimate was presented in Table S10 in the 
online appendix

θ1 θ2 θ3 θ4 θ5

τ1 0.420 0.319 0.426 0.299 0.295
τ2 0.296 0.279 0.307 0.192# 0.235
τ3 0.314 0.308 0.362 0.224 0.287
τ4 0.290 0.218# 0.286 0.205# 0.221
τ5 0.269 0.230 0.304 0.185# 0.259 n0 n1

n0 n1

0.389
(0.235, 0.548)

Fig. 9   Estimates of structural model parameters (i.e., correlation 
coefficients) of the latent growth curve longitudinal joint model in 
empirical example 1. Note. 95% highest posterior density (HPD) in 
parentheses. The dotted line indicates that the correlation coefficient 
is not significantly different from zero (i.e., 95% HPD includes zero). 
95% HPD of each estimate was presented in Fig.  S3 in the online 
appendix

5  The Matthew effect means that participants starting out at a higher 
level of proficiency gain more on average than participants starting at 
a lower proficiency level.
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data, a parallel relationship exists between developmental 
change in latent ability and developmental change in pro-
cessing speed, and they do not affect each other over time.

Empirical example 2: Subitizing task 
in developmental psychology

Data description and analysis

This subitizing task was adapted from LeFevre et al. (2010). 
In the task, the participants were presented with a series of 
black dots (the number of dots ranged from 1 to 4) on a com-
puter screen and asked to indicate verbally the number of 
dots they saw as fast and accurately as possible. In each trial, 
the picture of the dots was displayed after a 200-ms mask. 
The testers recorded the RA and RT data of each participant 
by pressing a key. The test consists of 18 items, and each 
series of dots (containing 1–4 dots) was presented thrice, 
albeit at different locations on the screen. A total of 204 
Cantonese-speaking children participated in the task. They 

were followed for three years across five test time points.6 
At each of these time points, 190, 189, 183, 180, and 186 
children completed the same task containing 18 items. The 
data set used herein was deployed in a previous study related 
to development psychology (Ouyang et al., 2022).

As depicted in Fig. 11, the average raw score increased 
over time, while the average RT decreased over time, pos-
sibly indicating that the participants’ latent ability and latent 
processing speed tended to increase and decrease, respec-
tively, over time. Little’s test of MCAR was performed 
(across the five time points, approximately 8.85% of the 
data was missing), and the results indicated that the null 
hypothesis “the missing data are MCAR” cannot be rejected 
(for RA: χ2 = 534.863, df = 522, p = 0.339; for RT: χ2 = 
528.768, df = 522, p = 0.409). The analysis process was 
identical to that followed for empirical example 1.

n1 n2 n3

n1 n2 n3

1.033

(0.920, 1.190)

1.051

(0.928, 1.203)

1.032

(0.932, 1.153)

1.044

(0.932, 1.167)

0.438

(0.259, 0.608)

n4 n5

n4 n5

0.990

(0.847, 1.119)

1.005

(0.858, 1.119)

0.982

(0.869, 1.070)

0.994

(0.886, 1.087)

Fig. 10   Estimates of structural model parameters (i.e., path coeffi-
cients) of the autoregressive cross-lagged longitudinal joint model in 
empirical example 1. Note. 95% highest posterior density (HPD) in 
parentheses. The dotted line indicates that the path coefficient is not 

significantly different from zero (i.e., 95% HPD includes zero). 95% 
HPD of each estimate was presented in Figure S4 in the online appen-
dix

Fig. 11   Change trends in total raw score and average response times over time (with standard deviation range)

6  The original data contained a total of seven time points, and owing 
to the small number of children at the first two time points, only the 
data of the last five time points were used in this study (new children 
were added starting from the third time point).
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Results

For simplicity, only a few main results are discussed here, 
and details about the results obtained for this data set can 
be found in Section S3.3 in the online appendix. The PSRFs 
of all the parameters of the six models were less than 1.1. 
Figure S5 in the online appendix displays the ppp values of 
the six models applied to the RA and RT data at each time 
point. The results of absolute fitting the data with the joint 

model and its corresponding separate model are generally 
consistent. Overall, the COV and ACL models were able to 
fit the data at all time points (nearly unfitted to the RTs at 

Fig. 12   Estimated developmental trajectories of latent ability and 
processing speed in empirical example 2. Note. COV = unstructured-
covariance-matrix-based longitudinal joint model, LGC = latent 

growth curve longitudinal joint model, ACL = autoregressive cross-
lagged longitudinal joint model. The thick solid line represents the 
developmental trajectory of the population mean

Table 4   Estimated structural model parameters (i.e., correlation coef-
ficients) of the unstructured-covariance-matrix-based longitudinal 
joint model in empirical example 2

# indicates that the 95% highest posterior density (HPD) includes 
zero, that is, the correlation coefficient is not significantly different 
from zero. 95% HPD of each estimate was presented in Table S12 in 
the online appendix

θ1 θ2 θ3 θ4 θ5

τ1 0.498 0.198 0.218 0.292 0.250
τ2 0.406 0.340 0.395 0.161# 0.416
τ3 0.405 0.300 0.430 0.208 0.240
τ4 0.182# 0.050# 0.266 0.264 0.259
τ5 0.128# 0.230 0.060# 0.125# 0.148#

δn0 δn1

πn0 πn1

-0.716
(-0.974, -0.425)

0.794
(0.640, 0.945)

-0.878
(-0.998, -0.702)

Fig. 13   Estimated structural model parameters (i.e., correlation coef-
ficients) of the latent growth curve longitudinal joint model in empiri-
cal example 1. Note. 95% highest posterior density (HPD) in paren-
theses. The dotted line indicates that the correlation coefficient is not 
significantly different from zero (i.e., 95% HPD includes zero). 95% 
HPD of each estimate was presented in Figure S8 in the online appen-
dix



1670	 Behavior Research Methods (2024) 56:1656–1677

1 3

time point 5), while the LGC model was nearly unfitted to 
the RA data at time points 1 and 2, and it did not fit the RT 
data at time points 3–5. Table S11 in the online appendix 
summarizes the relative model–data fit indices and the com-
putation times of the six models. The ACL model was found 
to be preferable on the basis of the DIC and WAIC values for 
both RA and RT data. Since the joint model generally fitted 
the data better than its corresponding separate model, the 
following section discusses the results of the joint models.

Figure 12 displays the estimated developmental trajecto-
ries of latent ability and processing speed of the three pro-
posed models. There was a high degree of consistency in 
the estimated developmental trajectories from the three joint 
models. The estimated mean population latent ability and 
latent processing speed both increased over time. In addition, 
there was a significant upward shift in the processing speed 
of several children at time point 5, indicating the existence 
of heterogeneity among the children at that time point for 
some reason (e.g., rapid guessing owing to poor motivation).

Figure S6 in the online appendix shows a scatter plot 
between the estimates of latent ability and processing speed 
across all time points for all models. The results indicate a 
high degree of consistency between the estimates obtained 
using different models, as well as a moderate correlation 
between latent abilities at different time points and a weak 
correlation between processing speeds at different time 
points. A possible reason for this phenomenon is the long 
interval between time points. Figure S7 displays the esti-
mated item parameters of all models in the empirical study. 
There was a high level of agreement between the estimates 
of each of the item parameters of the three models.

Table 4 presents the estimated correlations among latent 
abilities and latent speed across all time points in the COV 
model. A low to moderate degree of correlation was found 
between latent ability and latent speed at each time point. 

Figure 13 shows the estimates of structural model param-
eters of the LGC model.7 The results indicate that (a) a high 
degree of correlation existed between the starting levels of 
latent ability and processing speed, and (b) the increase in 
processing speed was slower for children with high start-
ing levels of latent ability and processing speed. Figure 14 
displays the estimates of the structural model parameters of 
the ACL model. The results mainly indicated that the latent 
ability at the current time point was positively influenced by 
both latent ability and latent processing speed at the previous 
time point. These parallel developmental phenomena with 
cross-time relationships between latent ability and process-
ing speed cannot be observed from RA data alone.

Simulation study

A simulation study was conducted to further explore the psy-
chometric performance of the proposed models in different 
test scenarios. Note that we did not intend to compare the 
performance across the three modeling approaches, because 
they have their own modeling assumptions, and therefore 
cannot be compared fairly using the same data-generation 
mechanism.

Design, data generation, and analysis

For each model, we considered three factors, namely, sample 
size N = 250 and 500, test length at each time point Ip = 15 
and 30, and the number of test time points, P = 3 and 5. We 

θn1 θn2 θn3

τn1 τn2 τn3

0.872

(0.677, 1.138)

0.757

(0.614, 0.903)

0.190

(0.068, 0.311)

0.395

(0.209, 0.615)

0.491

(0.366, 0.629)
0.054

(0.024, 0.088)

0.044

(0.017, 0.077)

θn4 θn5

τn4 τn5

0.714

(0.541, 0.900)

0.798

(0.565, 1.036)

0.025

(0.002, 0.049)

0.054

(0.014, 0.114)

Fig. 14   Estimated structural model parameters (i.e., path coefficients) 
of the autoregressive cross-lagged longitudinal joint model in empiri-
cal example 1. Note. 95% highest posterior density (HPD) in paren-

theses. The dotted line indicates that the path coefficient is not signifi-
cantly different from zero (i.e., 95% HPD includes zero). 95% HPD of 
each estimate was presented in Figure S9 in the online appendix

7  Notably, the LGC model was not able to fit these data, and the 
results were primarily used to demonstrate the practical use of the 
LGC model for reference purposes only.
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assume the same items were used at each time point, as in 
the empirical studies. The true item parameters were simu-
lated by referring to those in the literature (e.g., Bolsinova 
& Tijmstra, 2018; Fox & Marianti, 2016; Man et al., 2019; 
Wang, Zhang, et al., 2018b; Zhan et al., 2018). Specifically, 
bit = bi ∼ N

(
μb, σ

2

b

)
= N(0, 1) , ait = ai ∼ N

(
μa, σ

2

a

)
= N(1, 0.05)  , 

ξip = ξi ∼ N

(
μξ, σ

2

ξ

)
= N(4, 0.25) , ϕip = ϕi ∼ N

(
μϕ, σ

2

ϕ

)
= N(1, 0.05) , and 

ωip = ωi ∼ N
(
μω, σ

2
ω

)
= N(2, 0.05).

The person parameters of the COV model were gener-
ated using Eq. (3), where μθ = μτ = (0, 0.25, 0.5, 0.75, 1)′. 
The generated unstructured covariance matrix Σ is pre-
sented in Table S13 in the online appendix, and it was 
generated mimicking the �̂ in empirical example 1.The 
person parameters of the LGC model were generated using 
Eqs. (4) and (5). Four growth factors were generated using 
Eq. (6), where μπ0 = μδ0 = 0 , μπ1 = μδ1 = 0.25 , σ2

π0
= σ2

δ0
= 1

,σ2
π1
= σ2

δ1
= 0.02 , ρδ0π0 = 0.5 , and the correlations between 

all the other growth factors were set to 0.2. The residual 
terms were generated from εθnp ∼ N

(
0, σ2

θp

)
= N(0, 0.001) 

and ετnp ∼ N
(
0, σ2

τp

)
= N(0, 0.001) . The person parameters 

of the ACL model were generated using Eqs. (7) and (8), 
where β01 = λ01 = 0, β0p ≥ 2 = λ0p ≥ 2 = 0.25, β1p = λ1p = 0.95, 

and β2p = λ2p = 0.1. In Eq. (9), 
⎛⎜⎜⎝
εθn1

ετn1

⎞⎟⎟⎠
∼ MVN

⎛⎜⎜⎝

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
,

⎛⎜⎜⎝
1 0.5

0.5 1

⎞⎟⎟⎠

⎞⎟⎟⎠
 and 

(
εθnp≥2
ετnp≥2

)
∼ MVN

((
0

0

)
,

(
0.001 0

0 0.001

))
 . Finally, for each 

of the three joint models, 50 data sets were generated for 
each simulated test situation. In each data set, the model 
parameters were regenerated from the same distribution 
mentioned above. The three joint models and their corre-
sponding separate models were used to fit the data.

To evaluate the estimation accuracy, we computed bias 
and root mean square error (RMSE) as bias(x̂) =

∑50

r=1
x̂r−xr

50
 

and RMSE(x̂) =

�∑50

r=1 (x̂r−xr)
2

50
 , respectively, where xr is the 

true value of the model parameter generated in replicate r (r 
= 1, …, 50), and x̂r is the corresponding parameter estimate 
in replicate r. In addition, the correlations between the gen-
erated and estimated values (denoted as Cor) of the model 
parameters were computed. Other analysis processes were 
identical to those in the empirical examples, except that the 
length of each Markov chain was shortened to 4000 itera-
tions, of which the first 1000 iterations were earmarked for 
burn-in. The PSRFs of all model parameters were less than 
1.1, suggesting good convergence under the specified 
setting.

Results

Table 5 presents the recovery of the item parameters of the 
three joint models (Table S14 in online appendix presents the 

recovery of the item parameters of three separate models). 
Except for the time precision parameter (ω), which is largely 
unaffected, the recoveries of the other item parameters of the 
joint model were better than those of the corresponding sepa-
rate model. For three joint models, it was possible to recover 
all the item parameters across all simulated conditions, where 
all the biases were close to zero, RMSEs were less than 0.15 
for the RA model parameters and less than 0.1 for the RT 
model parameters, and all Cor values were close to 1. A larger 
sample size and a longer test length improved the recovery of 
the item parameters. However, the test length had a relatively 
weaker effect than the sample size. In addition, the number 
of time points had little effect on the recovery of the item 
parameters.

Table 6 presents the RMSE and Cor values of the per-
son parameter estimates obtained using the three models 
(Table S15 in online appendix presents the RMSE and Cor 
values of the person parameter estimates of three separate 
models). In addition, bias values of the six models are pre-
sented in Tables S16 and S17, respectively, in the online 
appendix. The recoveries of two person parameters of the 
joint model were better than those of the corresponding 
separate model. For three joint models, the recovery of 
latent processing speed was better than that of latent ability. 
A longer test length improved the recovery of the person 
parameters. The increase in the number of time points was 
beneficial for recovery in the ACL model, but it had no effect 
on recovery for the COV and LGC models. The sample size 
had little effect on the recovery of the person parameters for 
all models.

Furthermore, Table S18 in online appendix presents the 
average computation time for all models under all condi-
tions. Generally speaking, the computation time of the joint 
model was longer than that of its corresponding separate 
model, and the computation time increased as the sample 
size, number of time points, and number of items increased.

Conclusion and discussion

In this study, we proposed three longitudinal joint modeling 
approaches to simultaneously analyze longitudinal RA and 
RT data for assessing the parallel interactive development 
of latent ability and processing speed: the COV, LGC, and 
ACL models. Analysis results from these models can not 
only inform the developmental trajectories of latent ability 
and processing speed individually, but also show the rela-
tionship between changes in latent ability and processing 
speed through the across-time relations of these two con-
structs. The results of the empirical studies indicate that (1) 
all three joint models are practically applicable, and their 
conclusions were highly consistent in terms of the changes 
in ability and speed in the analysis of the same data set, and 
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(2) additional analysis of RT data and acquisition of indi-
vidual processing speed measurements can reveal the paral-
lel interactive development phenomena that are difficult to 
detect when using RA data alone. In other words, without 
the measures of processing speed, the interaction between 
latent ability and processing speed cannot be detected dur-
ing the development process. In addition, the results of the 
simulation study demonstrate that the proposed Bayesian 
MCMC estimation algorithm can ensure accurate model 
parameter recovery for all three proposed longitudinal joint 
models. In addition, for both empirical examples and sim-
ulation studies, we also compared the fit of joint models 
and of the separate models on one type of data at a time. 
Results of these comparisons indicate that the joint analy-
sis of bimodal data by considering the relationships among 
different latent variables can improve model–data fit and 
model parameter recovery to some extent compared with 
the separate models for one type of data at a time. On one 
hand, we do note that this conclusion may depend on the 

correlation between latent variables. For example, when the 
correlation between latent ability and processing speed is 
low, the joint model does not necessarily fit the data bet-
ter than its corresponding separate model, especially if one 
uses the relative model–data fit indices which account for 
the model complexity penalty. On the other hand, the result 
from the joint models allows us to capture the exact mag-
nitude of the correlation between different latent variables, 
which is more informative than not knowing or considering 
the correlation between them.

The choice of the modeling approach depends on the 
specific context of a longitudinal analysis. The COV model 
can be used if the primary objective is to determine the 
overall growth at each time point. The LCG model is use-
ful for obtaining the developmental trajectories of latent 
ability and processing speed, such as the consistency of 
or differences in changes between the two constructs. The 
ACL model is suitable when the objective is to analyze the 
self-influences of latent ability and processing speed and 

Table 5   Recovery of item parameters of joint models in simulation study

P number of time points, N sample size, Ip test length at each time point, COV unstructured-covariance-matrix-based longitudinal joint model, 
LGC latent growth curve longitudinal joint model, ACL autoregressive cross-lagged longitudinal joint model, a item discrimination, b item dif-
ficulty, ϕ time discrimination, ξ time-intensity, ω time precision, RMSE root mean square error, Cor correlation between the generated and esti-
mated values

Model P N Ip bias RMSE Cor

a b ϕ ξ ω a b ϕ ξ ω a b ϕ ξ ω

COV 3 250 15 0.001 −0.003 −0.006 0.000 0.001 0.108 0.116 0.069 0.018 0.057 0.999 0.999 0.999 0.999 0.999
30 0.001 0.001 0.005 0.000 −0.003 0.104 0.114 0.066 0.018 0.053 0.999 0.999 0.999 0.999 0.999

500 15 0.000 0.005 0.009 0.000 −0.002 0.080 0.083 0.041 0.013 0.040 0.999 0.999 0.999 0.999 0.999
30 −0.001 −0.002 −0.010 0.000 0.000 0.076 0.078 0.043 0.012 0.039 0.999 0.999 0.999 0.999 0.999

5 250 15 −0.001 0.018 0.020 0.000 −0.002 0.079 0.116 0.064 0.013 0.043 0.999 0.999 0.999 0.999 0.999
30 0.000 −0.009 0.001 0.000 0.000 0.081 0.096 0.056 0.013 0.040 0.999 0.999 0.999 0.999 0.999

500 15 0.000 0.010 0.011 0.000 0.001 0.060 0.077 0.051 0.009 0.030 0.999 0.999 0.999 0.999 0.999
30 0.001 0.004 0.005 0.000 0.001 0.060 0.070 0.056 0.009 0.030 0.999 0.999 0.999 0.999 0.999

LGC 3 250 15 0.001 −0.016 −0.005 0.000 −0.003 0.096 0.122 0.078 0.018 0.055 0.998 0.998 0.998 0.998 0.998
30 0.000 −0.010 −0.019 0.000 −0.001 0.096 0.117 0.070 0.018 0.053 0.999 0.999 0.999 0.999 0.999

500 15 0.000 −0.004 0.009 0.000 −0.002 0.076 0.087 0.053 0.012 0.040 0.999 0.999 0.999 0.999 0.999
30 0.000 −0.013 −0.005 0.000 0.000 0.070 0.091 0.054 0.013 0.038 0.999 0.999 0.999 0.999 0.999

5 250 15 0.000 0.020 0.006 0.000 −0.001 0.078 0.105 0.068 0.013 0.043 0.999 0.999 0.999 0.999 0.999
30 −0.001 0.022 0.022 0.000 0.001 0.076 0.104 0.075 0.013 0.042 0.999 0.999 0.999 0.999 0.999

500 15 0.000 0.002 −0.003 0.000 −0.002 0.056 0.069 0.058 0.009 0.030 0.999 0.999 0.999 0.999 0.999
30 0.000 0.012 0.003 0.000 0.000 0.056 0.074 0.054 0.009 0.028 0.999 0.999 0.999 0.999 0.999

ACL 3 250 15 0.001 0.013 −0.001 0.000 0.000 0.097 0.113 0.070 0.018 0.054 0.999 0.999 0.999 0.999 0.999
30 0.000 0.000 −0.007 0.000 0.002 0.098 0.117 0.082 0.018 0.052 0.999 0.999 0.999 0.999 0.999

500 15 0.001 −0.004 −0.004 0.000 0.000 0.072 0.083 0.039 0.012 0.038 0.999 0.999 0.999 0.999 0.999
30 0.001 0.001 −0.002 0.000 0.000 0.072 0.089 0.047 0.013 0.037 0.999 0.999 0.999 0.999 0.999

5 250 15 −0.001 0.006 0.006 0.000 −0.003 0.076 0.108 0.072 0.012 0.042 0.999 0.999 0.999 0.999 0.999
30 0.002 0.000 −0.003 0.000 −0.001 0.073 0.100 0.065 0.013 0.042 0.999 0.999 0.999 0.999 0.999

500 15 0.000 −0.013 0.000 0.000 0.000 0.052 0.074 0.041 0.009 0.029 1.000 1.000 1.000 1.000 1.000
30 0.001 −0.004 0.007 0.000 −0.001 0.054 0.076 0.047 0.009 0.029 1.000 1.000 1.000 1.000 1.000
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determine the relationships between the two constructs at 
adjacent time points. In addition, the LGC model did not 
fit well to the two empirical data sets in this study. This 
is mainly due to its strictest assumptions related to the 
developmental trajectories of the latent constructs (i.e., 
linear developmental trajectory) compared with the other 
two models, and these assumptions are difficult to satisfy 
in practice. By contrast, the COV and ACL models have 
more lenient assumptions related to the developmental 
trajectory of the latent constructs, and therefore they are 
more inclusive of practice data than the LGC model.

The results of this study shed light on the use of both 
RA and RT data to solve problems in various subdomains 
of psychology, including clinical psychology and develop-
mental psychology, which rely heavily on the use of RA 
data alone. For example, the results of common psychiatric 
scales in clinical psychology tend to be interpreted using 
RA data alone. Specifically, decisions regarding whether an 
individual has a certain mental illness or abnormal tendency 
are made by comparing the individual's scale score with a 
certain cutoff point. However, the outward manifestations 
of an individual’s mental illness may not be fully expressed 
using their choices of Likert-type items. For example, usu-
ally, people with depression or depressive tendencies take 
more time to complete the depression scale compared to 
people who are not affected by depression. In this sense, 
the joint analysis of RA and RT data might provide superior 
diagnoses of mental illnesses. In addition, as has been dem-
onstrated in our empirical data analysis, the joint analysis 
of longitudinal RA and RT data may reveal a significant 
change in speed when the change in ability is not significant 
(example 1). This might provide additional information for 
assessing the effectiveness of the interventions related to 
mental health when a repeated measure design is adopted.

Next, we discuss the limitations of our study. First, we 
have only considered the single-group situation in this 
study. That is, all individuals within the population are 
assumed to have homogeneous average developmental 
trajectory for a specific construct. To address the het-
erogeneity of developmental trajectories among indi-
viduals, we can extend the current models through the 
multigroup modeling (e.g., von Davier et al., 2011) and 
mixture modeling (e.g., Muthén & Shedden, 1999; Zhang 
& Wang, 2019) frameworks in the future. Second, herein, 
we assume the lack of item parameter drift throughout all 
analyses. This means that all item parameters (e.g., item 
difficulty and time-intensity) of the same item are assumed 
to be invariant over time. However, item parameter drift 
might be expected in repeated measure design, and in that 
case, more work would be required to address this issue 
when generating estimates using the proposed models. 
Third, although this study provides insights into the meas-
urement of individual growth from a holistic perspective, 

only two data modalities, namely RA and RT, and the con-
structs measured using these modalities, are considered. 
In recent years, with the increasing popularity of tech-
nology-enhanced assessments (Jiao & Lissitz, 2018), the 
acquisition of multimodal data beyond RA and RTs, such 
as action sequences (Han et al., 2021), eye-tracking (Man 
et al., 2022; Zhan et al., 2022), and brain activation (Jeon 
et al., 2021), has become possible. Technology-enhanced 
longitudinal assessments could be considered in the future 
to assess the parallel interactive development of multiple 
constructs (e.g., latent ability, processing speed, visual 
engagement, and brain activation) through the analysis of 
longitudinal multimodal data. Fourth, the proposed mod-
eling approaches are longitudinal extensions of the cross-
sectional joint-hierarchical modeling approach (van der 
Linden, 2007), in which separate measurement models are 
implemented for RA and RT data under conditional inde-
pendence assumptions. A few recent studies have proposed 
the joint cross-loading modeling approach (e.g., Bolsinova 
& Tijmstra, 2018; Molenaar et al., 2015), which attempts 
to relax the conditional independence assumptions and 
improve the precision of latent ability estimation through 
direct extraction of information from the RT data. We will 
investigate longitudinal extension of the joint cross-load-
ing modeling approach in the future. Fifth, given the focus 
of the present study on extending the applicability of the 
joint-hierarchical latent variable modeling approach (van 
der Linden, 2007), the proposed models draw on the three 
most commonly used longitudinal modeling approaches in 
SEM, but several new extensions of these approaches are 
not considered in the present study (e.g., Bianconcini & 
Bollen, 2018; Bishop et al., 2015; Hamaker et al., 2015; 
Kohli & Harring, 2013).

Finally, we discuss several other directions of study that 
can be explored in the future. First, in terms of the model 
assumptions related to dimensionality of the latent con-
struct, one route to increase the capability of the proposed 
longitudinal joint models in terms of describing the interac-
tions of students and items is to hypothesize that persons 
vary on a wide range of latent constructs. Cognitive science 
(Frederiksen et al., 1990) shows that subsets of those con-
structs are important for correct response to specific items. 
Hence, we could consider modeling the parallel interac-
tive development of multidimensional latent ability (Reck-
ase, 2009) and multidimensional processing speed (Zhan 
et al., 2021) in multidimensional longitudinal assessments. 
Another straightforward extension of the proposed models 
is to incorporate observed covariates (e.g., background vari-
ables and number of interventions) to explain the variations 
in individual growth. For example, for the COV model, the 
constructs at a specific time point may be regressed upon the 
observed covariates. For the LGC model, either the growth 
intercept or the growth slope or both can be regressed upon 
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the observed covariates to explain the variations in initial 
statuses or growth rates. For the ACL model, the observed 
covariates can be directly added to the regression model. 
Finally, dimensionality-reduction methods (e.g., Cai, 2010; 
Gibbons & Hedeker, 1992) can be investigated and incorpo-
rated into the model estimation procedure. This is especially 
necessary when there are large numbers of latent constructs 
and time points, which may lead to the high-dimensionality 
problem in the proposed joint models.
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