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Abstract
To study visual and semantic object representations, the need for well-curated object concepts and images has grown signifi-
cantly over the past years. To address this, we have previously developed THINGS, a large-scale database of 1854 systemati-
cally sampled object concepts with 26,107 high-quality naturalistic images of these concepts. With THINGSplus, we signifi-
cantly extend THINGS by adding concept- and image-specific norms and metadata for all 1854 concepts and one copyright-free 
image example per concept. Concept-specific norms were collected for the properties of real-world size, manmadeness, pre-
ciousness, liveliness, heaviness, naturalness, ability to move or be moved, graspability, holdability, pleasantness, and arousal. 
Further, we provide 53 superordinate categories as well as typicality ratings for all their members. Image-specific metadata 
includes a nameability measure, based on human-generated labels of the objects depicted in the 26,107 images. Finally, we 
identified one new public domain image per concept. Property (M = 0.97, SD = 0.03) and typicality ratings (M = 0.97, SD 
= 0.01) demonstrate excellent consistency, with the subsequently collected arousal ratings as the only exception (r = 0.69). 
Our property (M = 0.85, SD = 0.11) and typicality (r = 0.72, 0.74, 0.88) data correlated strongly with external norms, again 
with the lowest validity for arousal (M = 0.41, SD = 0.08). To summarize, THINGSplus provides a large-scale, externally 
validated extension to existing object norms and an important extension to THINGS, allowing detailed selection of stimuli 
and control variables for a wide range of research interested in visual object processing, language, and semantic memory.

Keywords  Database · Object concepts · Object images · Concrete concepts · Semantic norms · Visual norms · Object 
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Introduction

There are a large number of different objects in the world, and 
researchers from various disciplines have made great efforts 
to understand how they are processed and semantically rep-
resented in memory (DiCarlo et al., 2012; Grill-Spector & 
Weiner, 2014; Lambon-Ralph, 2014). Given the endless 
scope of possible object categories, selecting a well-curated 

set of object concepts is crucial for systematically investigat-
ing object recognition or semantic memory.

Many researchers manually curate stimuli for their experi-
ments, which requires a massive investment of time and effort 
and risks creating a limited and unrepresentative selection 
of concepts. Others make use of existing databases compris-
ing pre-curated sets of concepts or images. However, many 
of these databases have shortcomings that make them insuf-
ficiently suited for research in vision science. For instance, 
they may be based on a comparably small number of objects 
cropped from their natural background (e.g., BOSS: Bro-
deur et al., 2014), contain objects that have been selected 
in a more-or-less arbitrary fashion for the purpose of image 
classification, and contain images of insufficient quality for 
psychological and neuroscience experiments (e.g., ImageNet: 
Deng et al., 2009; for a review, see Hebart et al., 2019).

To provide an alternative to classical object concept 
and image databases, we developed the THINGS database 
(Hebart et al., 2019; https://​osf.​io/​jum2f/). THINGS is a 
comprehensive, freely available database of 1854 living- and 

 *	 Laura M. Stoinski 
	 stoinski@cbs.mpg.de

	 Jonas Perkuhn 
	 joperkuhn@gmx.de

	 Martin N. Hebart 
	 hebart@cbs.mpg.de

1	 Max Planck Institute for Human Cognitive & Brain 
Sciences, Leipzig, Germany

2	 Justus Liebig University, Gießen, Germany

https://osf.io/jum2f/
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02110-8&domain=pdf


1584	 Behavior Research Methods (2024) 56:1583–1603

1 3

non-living objects systematically sampled from American 
English, with a minimum of 12 images per object concept, 
consisting in total of 26,107 naturalistic, high-quality object 
images. In addition, THINGS includes validated category 
memberships of the concepts for the 27 most common 
higher-level categories (e.g., “animal,” “food,” “furniture”).

Most importantly, THINGS distinguishes itself in its 
extensive and systematic selection of concrete object con-
cepts. Sampling concepts from almost all nameable objects 
in the world is crucial to ensure a comprehensive represen-
tation of the entire object space. THINGS was created by 
collecting a list of concrete, picturable object nouns from an 
existing word database (Brysbaert et al., 2014). Synonymous 
words were unified, and we applied crowdsourcing to further 
reduce our selection to concepts nouns that were named con-
sistently. This approach ensured a sufficiently comprehen-
sive selection while avoiding redundancy and concepts too 
specific to be robustly identified. For example, we excluded 
the concept “robin” since it was consistently named “bird”.

The THINGS image dataset comprises natural and 
colored photographs of object concepts, which pose a more 
naturalistic depiction of everyday objects than line drawings 
or images with the objects isolated from their background 
(Bracci et al., 2017; Bracci & de Beeck, 2016; Proklova 
et al., 2016). We also focused on images showing one promi-
nent, picturable object contrary to images displaying multi-
ple concepts (e.g., as in a still-life) and to natural, navigable 
scenes (e.g., cities, beaches). We concentrated on concrete 
and individually depicted concepts, as they are the main 
subject of much research regarding object processing and 
semantic memory. Further, our dataset offers several images 
per concept, necessary to determine robust and generaliz-
able object representations. Lastly, we curated the images 
manually and defined several selection criteria to assure a 
standardized and high quality of our images (see Hebart 
et al., 2019, for details).

Together, THINGS provides a rich resource of systemati-
cally selected object concepts, images, and high-level cat-
egories. As such, THINGS offers a valuable tool optimized 
for systematic and large-scale naturalistic research in psy-
chology, neuroscience, and computer science. It supports 
researchers in selecting a representative and standardized 
set of object concepts and images, providing a foundation 
for exploring the perceptual and cognitive processing of 
complex real-world stimuli at scale or with a systematic 
sampling strategy. In addition, with THINGS starting to be 
adopted more widely (e.g., de Varda & Strapparava, 2022; 
Demircan et al., 2022; Dobs et al., 2022; Frey et al., 2021; 
Gifford et al., 2022; Griffin, 2019; Grootswagers et al., 2022; 
Lam et al., 2021; Muttenthaler et al., 2022; Ratan Murty 
et al., 2021; Rideaux et al., 2022), THINGS allows increased 
comparability between studies across different laboratories 
or disciplines.

The need for extending the THINGS database

Yet, more work is required to further develop and improve 
the THINGS database. For instance, while THINGS was 
published according to fair use in the United States and as 
such may be used for research purposes (https://​www.​copyr​
ight.​gov/​fair-​use/), any copyright restrictions, including 
the creative commons licenses (https://​creat​iveco​mmons.​
org/) will also impose restrictions on the use of image data-
bases in publications. Thus, while mostly unlimited use of 
THINGS is possible for research purposes, there are still 
restrictions for visualizing THINGS images in publications. 
Thus, providing a set of public domain images would allow 
the free usage and editing of those images while increasing 
the scope of the THINGS image dataset, specifically for data 
driven analyses that in part depend on being able to visual-
ize images.

THINGS includes membership information for 27 com-
mon higher-level categories that merely encompass around 
half of the object concepts. Identifying additional catego-
ries would allow for finer distinctions between objects and 
facilitate selecting or excluding stimuli representing spe-
cific object classes (e.g., choosing only living or non-living 
objects). Further, it would open up a way to investigate 
category-specific effects for a larger number of objects and 
object domains.

Typicality ratings are often used in psychological 
research to judge the degree of representativeness of an 
object for higher-level categories. While some objects are 
considered good or typical members of a category, others 
are perceived to be less typical members (e.g., an apple is 
a more typical fruit than a coconut; Rosch, 1975). Typical-
ity is of major interest when selecting object concepts, as 
typical examples of a category are preferentially processed 
over atypical members (Larochelle & Pineau, 1994; Rosch 
& Mervis, 1975; Woollams, 2012). Gathering typicality rat-
ings on THINGS concepts would thus enormously improve 
their applicability for research on object categorization and 
semantic knowledge more generally.

Also, objects can be characterized according to many pos-
sible criteria. For example, neuropsychological and neuro-
imaging evidence suggest that dimensions such as animacy 
(e.g., is it alive?), real-world size (e.g., what size does this 
object usually have in real life?), and manipulability (e.g., 
how easily can you grasp it?) play a critical role in mental 
object representation (Caramazza & Shelton, 1998; Chao 
et al., 1999; Sudre et al., 2012). Other critical dimensions 
include movability (e.g., can it move?) and naturalness 
(e.g., is it manmade or natural?; Huth et al., 2012; Magri 
et al., 2020; Sudre et al., 2012). Further, object images and 
concepts vary in their subjective value, weight, emotional 
valence, or arousal (Bradley & Lang, 1999; Sudre et al., 
2012). Object ratings along these dimensions would enhance 

https://www.copyright.gov/fair-use/
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their interpretability and allow for identifying properties 
underlying mental and neural representations of objects. 
These and similar properties have been collected for other 
smaller-scale image databases (e.g., Brodeur et al., 2014) but 
not for THINGS concepts or images.

Finally, labels for the object concepts in THINGS were 
generated based on an existing word database - WordNet 
(Fellbaum, 1998). The nameability of the 1854 concept 
nouns was verified by asking humans to label the objects 
based on their natural appearance in individual photographs. 
It is, however, unclear to what degree the desired concepts 
are correctly named in all 26,107 images of the database. 
For example, many concepts have synonymous designations, 
and while the concept “couch” might be named correctly in 
some of the THINGS images, it might be consistently called 
“sofa” in others. Providing a measure of concept nameabil-
ity would quantify the extent to which the THINGS nouns 
pose the appropriate label for each of their corresponding 
images. In addition, it would be helpful to determine how 
people generally call the concepts and how strongly they 
agree on this.

Aim of the THINGSplus project

The general aim of THINGSplus is to extend and improve 
the THINGS database to increase its utility for research 
communities in psychology, neuroscience, and computer 
science. We intend to provide researchers in those fields 
with concept-specific norms and metadata, including (1) 
an expanded set of 53 higher-level categories, (2) typical-
ity ratings of object concepts within these categories, and 
(3) evaluations of concepts along critical object dimensions 
(e.g., size, animacy, manmadeness). Further, we extended 
the THINGS image dataset by (4) collecting human-gener-
ated labels of objects based on their appearance in natural-
istic images and (5) providing one additional public domain 
image per concept.

To create norms and metadata, we conducted four short 
experiments on the online crowdsourcing platform Ama-
zon Mechanical Turk (AMT). In Experiment 1, we asked 
AMT workers to label the main object and other potential 
objects in all 26,107 images using one word. In Experiment 
2, participants sorted objects based on their typicality for 
53 higher-level categories. Finally, in Experiment 3, we col-
lected ratings of real-world size and size range of object 
concepts and in Experiment 4 asked participants to clas-
sify the degree to which objects relate to 11 critical object 
dimensions “manmadeness," "preciousness,” “liveliness,” 
“heaviness,” “naturalness,” “ability to move,” “graspabil-
ity,” “holdability,” “ability to be moved,” “pleasantness,” 
and “arousal level”. Public domain images and membership 
affiliation to newly identified higher-level categories were 
manually selected by the authors.

All norms, metadata, and supplementary public domain 
images of the THINGSplus project have been added to the 
existing THINGS database, which is freely available for aca-
demic purposes (https://​osf.​io/​jum2f/).

THINGSplus provides a substantial extension of 
THINGS, but also offers unique value beyond other existing 
databases. Most importantly, the number of object concepts 
and images captured by our norms are much broader than 
those found in existing databases and include a systemati-
cally selected set of object categories not typically covered 
in other datasets. Thus, it is much more likely for authors to 
find norms for their object categories and facilitate the selec-
tion of a standardized set of concepts, images, and control 
variables according to a researcher’s individual needs. In 
addition, our comprehensive database allows a much broader 
study of the effects of individual object-related variables 
than previously possible and allows assessing how previous 
findings may generalize to a larger set of objects.

Methods

Selection of public domain images

The THINGS image dataset includes a comprehensive set of 
naturalistic photographs, with 12 or more example images 
per concept. However, since most images in THINGS are 
not from the public domain, it is challenging to use them as 
example images in publications. To overcome this issue, we 
identified one additional public domain image for each of 
the 1854 object concepts. Identification of candidate images 
and postprocessing (e.g., cropping) were carried out by the 
authors in multiple steps (see below). This selection pro-
cess was repeated until one suitable image was identified 
per concept.

Selection criteria

We selected one novel, freely usable (i.e., public domain) 
picture for every object concept. The images were colored 
photographs of one or multiple examples of the respec-
tive object cropped to a square size. The selection cri-
teria followed identical guidelines as reported in Hebart 
et al. (2019). For some concepts, it was challenging to 
find appropriate images that conformed to our selection 
criteria. If our web search resulted in no suitable candi-
date image, we either loosened the criteria slightly or took 
our own pictures (see below for details). To make these 
decisions transparent, we distinguish between the terms 
“exclusion” and “avoiding.” The former refers to strictly 
observed exclusion criteria, whereas the latter describes 
guidelines that were less strictly adhered to, depending on 
how difficult it was to find suitable images.

https://osf.io/jum2f/
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Most importantly, we only chose candidate images 
with a public domain or CC0 copyright license. We fur-
ther focused on images with the desired object concept as 
the central and dominant image component, however, the 
photograph could also include additional object concepts 
in the background. For instance, body parts were permit-
ted in images of clothing parts, while human faces were 
generally avoided due to their strong salience (except for 
concepts like “man” and “woman,” which are defined by 
human faces). In addition, we took care to select pictures 
that still contained the majority of the object after crop-
ping to a square size.

We selected images of objects with naturalistic back-
grounds, i.e., we avoided images with uniform-colored 
backgrounds and excluded pictures in which the back-
ground was removed or recognizably modified. We 
avoided blurry images with over- or underexposed lighting 
and excluded pictures with non-naturalistic colors (includ-
ing grayscale) or strong color filters. Finally, we avoided 
images with borders, watermarks, added text, or text that 
naturally appeared within the image, especially when the 
text referred to the concept’s name (e.g., “toothpaste” writ-
ten on a toothpaste). Since for some concepts this was very 
difficult to avoid, we edited the color and exposure with 
photo editing software when necessary.

Identification of candidate images

Candidate images were manually selected from the pho-
tography websites Flickr, Pexels, Pikrepo, Pixabay, and 
Wikimedia commons. Search terms constituted the label 
of the object concept or synonyms. In some cases, foreign 
translations of the labels were used as keywords. Further, 
we added our own images for concepts for which no ade-
quate image was available and uploaded them on Flickr 
with a CC0 license.

Image cropping and manual quality check

All candidate images were cropped to a square size 
using Adobe Photoshop. Next, the images were manually 
screened, and all images that were of low quality or did 
not meet the selection criteria were removed. The previ-
ous steps were repeated for all images until we found one 
suitable candidate image for every concept.

Semi‑automatic identification of highly similar or duplicate 
images

We passed all pictures through the deep convolutional neural 
network VGG-16 (Simonyan & Zisserman, 2014) to ensure 

that candidate images were novel and not yet included in the 
THINGS database. All duplicate images were exchanged 
with new candidate images that underwent the entire 
selection process again. We manually checked all images 
once more and, if necessary, repeated the previous steps. 
Finally, all images were compressed to a maximum size of 
1600×1600 pixels, converted to jpeg format for consistency 
with THINGS images, and named according to the respec-
tive THINGS’ unique concept ID. After cropping, all pho-
tographs had a minimum of 480×480 pixels, but on average 
the images were 1467.33 (SD = 266.99) pixels or larger.

Identification of additional higher‑level categories

THINGS includes membership information of 1854 object 
concepts for 27 common higher-level categories. In the 
present study, we extended the number of categories to 53 
by identifying 26 additional superordinate categories. We 
employed the same dataset that was used to identify the 
initial 27 categories (see Hebart et al., 2019). In short, the 
original 27 high-level categories were identified accord-
ing to the following steps: (1) Workers on AMT proposed 
higher-level categories for all 1854 object concepts (n = 20 
per concept). (2) Another group of participants (n = 20 per 
concept) selected the most suitable category for each object 
from those candidate terms to reduce noise. (3) After cor-
recting for spelling errors and unifying synonyms, superor-
dinate categories were kept if 11 or more workers agreed on 
the high-level category or if five or more workers agreed on 
the high-level category while all others were named a maxi-
mum of two times. (4) All categories with a minimum of 15 
members named consistently by workers were retained. This 
original procedure resulted in 27 higher-level categories (for 
more detail, see Hebart et al., 2019).

For THINGSplus, additional categories were identified 
by using a less restrictive criterion, using a minimum of 6 
members rather than 15 members, since workers may not 
frequently name common categories even though these 
categories would accurately describe their members (e.g., 
for “deer”, workers may agree on “animal” but not “mam-
mal”, while for “dog”, they may agree on “mammal” but 
not “animal”). Based on this lenient criterion, we identified 
84 high-level categories. Of these categories, we merged 
five: “boat” was integrated into “watercraft”, “sea crea-
ture” into “sea animal”, “hair tool” into “hair accessory”, 
“game” into “entertainment”, and “craft supply” and “art 
supply” were merged into “arts & crafts supply”. Finally, 
we removed four additional categories that were already 
included in other categories and did not differ sufficiently: 
“storage” overlapped with “container”, “accessory” with 
“clothing accessory”, and “decoration” and “holiday decora-
tion” with “home decor”. Finally, we removed “underwear” 
since it was considered too explicit. This left us with 74 
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high-level categories. Finally, rather than relying solely on 
agreement of AMT workers, memberships of all categories 
were independently assigned by two of the authors (L.M.S. 
and J.P.), and inconsistencies were corrected by the third 
author (M.N.H.). Of this expanded list, all superordinate 
categories with 15 members or more were kept, resulting in 
a total of 53 categories.

Creation of concept‑specific and image‑specific 
norms and metadata

Participants

A total of 9263 individuals from AMT were recruited for dif-
ferent tasks, including object image labeling and rating of typi-
cality, size, and several other semantic and perceptual proper-
ties of object concepts. All participants resided in the USA.

The experiment was approved by the Ethics Committee 
of the Medical Faculty of Leipzig University, and workers 
were compensated with small reimbursements for solving 
short tasks (labeled “Human Intelligence Task,” HIT) related 
to our study. Individual workers often participated in several 
HITs in a row, i.e., they potentially engaged in the same task 
multiple times. A limitation of unsupervised crowdsourcing 
is that some participants may not comply with task instruc-
tions. For this reason, we defined several criteria to identify 
workers who did not participate conscientiously in the experi-
ment (see exclusion criteria below). In the following, we will 
refer to these participants as “non-adherent workers.” After 
exclusion, 8456 individual workers remained (4924 female, 
3489 male, 53 other), who completed a total of 299,898 HITs 
(= 719,804 trials; 1 to 2345 HITs per worker, M = 35.46, SD 

= 73.60). The mean age of the sample was 37.24 years (SD 
= 12.06, 18 to 86 years). Demographic information for each 
task is summarized in Table 1. Please note that some workers 
participated in several experiments but are only counted once 
in the above statistics.

Image labeling  For the image labeling task, participants 
who finished five trials faster than 800 ms or all ten tri-
als faster than 1.10 s each were marked as candidates for 
non-adherent workers. Workers who wrote comments which 
have been related to low-quality responses in the past (e.g., 
“nice,” “good,” “thanks”) were also marked as candidates for 
being non-adherent. All participants labeled as candidates at 
least twice were prevented from further participation using 
an automated script created by a member of our team. After 
data collection, we did not exclude workers but individual 
HITs or trials (i.e., single labels) from our analyses matching 
the exclusion criteria reported in the analysis sections below.

Object typicality  Data for the typicality experiment were col-
lected twice, as the initial version of the experiment did not 
control for the potential confound of familiarity (see Design 
& Procedure for more details). In the following, we will only 
report the results and design of the second, improved version 
of the experiment. However, information about both versions 
can be derived from Appendix 1. We also made the combined 
data available in the THINGS database.

Workers were only allowed to participate in 20 HITs. This 
was ensured by a JavaScript code generated through https://​
uniqu​eturk​er.​myleo​tt.​com/. Participants who completed 
more than five trials below 30 s were excluded from data 
analysis. Mean typicality ranks were computed for every 

Table 1   Participant statistics pre- and after exclusion and number of single trials per experimental task

The sample size pre- and post-exclusion are identical for the Image Labeling task, as we excluded single trials instead of individual workers

Task Pre-exclusion Post-exclusion

N Worker N Trials N Worker N Trials Gender M Age SD Age

Image labeling 1956 522,140 1956 467,906 female: 1283
male: 659
other: 14

37.72 12.03

Object size 2162 93,210 2010 82,990 female: 1165
male: 830
other: 15

37.47 12.22

Object typicality 1318 14,555 1201 13,024 female: 747
male: 443
other: 11

36.10 12.10

Object properties 4360 74,160 4156 69,182 female: 2418
male: 1712
other: 26

36.02 11.80

Arousal follow-up collection 1458 111,240 1040 86,702 female: 528
male: 510
other: 2

45.55 10.30

https://uniqueturker.myleott.com/
https://uniqueturker.myleott.com/
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concept over participants, and the 5% of workers whose 
responses correlated lowest with the mean ratings across all 
their trials were excluded (cut off: rs = .095).

Object size  As with typicality, for object size ratings, each 
individual worker could only participate 20 times. During 
data collection, workers who responded faster than 4.0 s 
at least five times or faster than 5.5 s in all ten trials were 
labeled non-adherent. Participants who wrote suspicious 
comments (see above) were also marked as non-adherent 
workers. Again, all participants identified as non-adherent 
candidates twice were prevented from participating in fur-
ther HITs.

After data collection, additional HITs were excluded if 
we suspected that a subject answered randomly to finish the 
task quickly. This included HITs in which the worker did not 
know the object in at least four trials or mainly responded by 
clicking on a similar location of the rating scale, i.e., HITs 
with a response variance below 0.40 for the first step of the 
rating task. Further, size ratings were randomly shuffled over 
trials to generate a random distribution of ratings. For every 
HIT in the original and randomized data set we computed 
the deviation of every response to each object’s average size 
rating. All HITs that differed below the 20th percentile from 
the random variance distribution were excluded (i.e., HITs 
that were too similar to the random answer pattern, suggest-
ing that the workers also answered randomly). Finally, we 
rejected all HITs of a given worker if half or more of that 
worker’s HITs were flagged as suspicious.

Object properties  Each worker was allowed to complete 40 
surveys of the object properties task. Again, workers who 
wrote suspicious comments were marked as non-adherent, 
and all participants marked as non-adherent at least twice 
were prevented from participating in further HITs. After 
collecting the data, HITs completed faster than 1 s were 
removed. In addition, a HIT was excluded if the responses 
of the survey varied less than 0.50 between the 11 items or 
if the responses of all items differed 25 points or more from 
the median ratings of the currently sampled concept.

A closer look at the collected ratings showed that arousal 
level correlated negatively with pleasantness (r(1854) = – 
0.77, 95% CI = – 0.75 to – 0.79). This suggests that par-
ticipants interpreted the dimension of arousal mainly as 
negative arousal, as associated with fear or disgust evoking 
objects (e.g., weapons, spiders), and less with positively 
arousing concepts (e.g., puppies, gifts). For this reason, we 
collected arousal ratings again, with the intention of clari-
fying the concept of arousal further. All participants who 
wrote suspicious comments or either responded five trials 
faster than 1 s or ten trials faster than 1.5 s were marked as 
non-adherent workers. All workers labeled non-adherent at 
least twice were prevented from further participation. After 

data collection, we excluded all HITs in which the responses 
varied less than 0.25 and all HITs in which the ratings dif-
fered more than 30 units from the median answers.

Design & procedure

All image and object nouns were derived from the THINGS 
database. In general, participants were presented with a short 
instruction, after which they provided informed consent and 
agreed to the data storage policy before continuing with the 
HIT. At the end of each task, participants indicated their age 
and gender and were provided with the opportunity to leave 
comments before submitting the HIT.

Image labeling  We collected image labeling information for 
all 26,107 images of the THINGS image dataset. Each image 
was sampled at least 20 times. Participants completed HITs 
of ten trials. Each trial showed one image, and participants 
were asked to provide the name of the prominently depicted 
object as found in a dictionary. If they did not recognize the 
object, they were instructed to guess what it could be. If 
present, they were encouraged to name all additional objects 
in the image separately (e.g., objects depicted in the back-
ground). Participants responded by typing their answers in 
text fields below the image.

Object typicality  Overall, participants sorted 1448 of the 
1854 object concepts based on how typical they are of the 
53 high-level categories (as generated above). Together, all 
categories comprised 2355 members, since categories could 
overlap with each other (e.g., “animal” and “mammal”). Not 
all THINGS concepts were sampled, as some objects do 
not belong to any superordinate category. Each object con-
cept was sampled at least 50 times. The THINGS database 
includes several concepts with identical labels but distinct 
meanings (homonyms; e.g., “bracelet” as an independent 
piece of jewelry vs. “bracelet” of a watch). Thus, we pro-
vided additional information for all homonyms in parenthe-
ses, e.g., “bracelet (jewelry)”, “bracelet (watch)”.

Participants were shown a higher-level category label 
(e.g., “animal”) at the top of the screen and eight randomly 
aligned objects nouns below that belonged to the category 
(e.g., “dog,” “parrot,” “zebra,” ...). Their task was to drag 
the concepts into a box, sorting them based on how typical 
or representative they were of the category. Typicality was 
explained by referring to the game show Family Feud: “More 
typical is what you think more people would say first, less 
typical is what fewer people would say.” Examples of three 
categories not included in THINGS were given to make the 
concept of typicality as clear as possible to participants.

In addition, participants could drag concept words into an 
unknown box instead of the typicality box to indicate that 
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they were unfamiliar with the word’s meaning. The unknown 
box was introduced to reduce the confound of familiarity, 
i.e., unfamiliar words are rated as less typical because they 
are not known by some people (Malt & Smith, 1982).

Object size  Size ratings were collected for all 1854 object 
nouns. For words with ambiguous meaning (homonyms), 
additional information about the context of the concept was 
given in parentheses, e.g., “bat (sports)” versus “bat (ani-
mal).” Each object concept was sampled at least 50 times. 
The object concept “straw (stalks of dried grain)” was not 
sampled in the first round of data collection by mistake, 
while the concept “straw (for drinking)” was sampled twice 
as often. Thus, we collected 50 additional HITs, each includ-
ing the object “straw (stalks of dried grain)” and each nine 
objects from the previous collection who had the smallest 
sample size after exclusion. After excluding low-quality tri-
als, an average of 44.80 trials was included in analyses per 
concept (17 to 91 trials, SD = 2.62).

Each HIT comprised ten trials. Per trial, one object noun 
was shown, and participants were asked to rate the real-
world size of the object in two steps. First, workers were 
instructed to indicate the approximate size of the object 
on a continuous scale (520 units). Nine object nouns were 
provided as response anchors for size references on the 
scale. As a reference, the objects “grain of sand,” “marble,” 
“chicken egg,” “grapefruit,” “microwave oven,” “washing 
machine,” “king-size bed,” “ambulance” and “aircraft car-
rier” were chosen, as they are relatively standardized in size 
and encompass the whole size range of all 1854 objects 
quite evenly assuming log scale. We did not give partici-
pants any further instructions on how to define size, i.e., 
through length, height, surface size, or volume. If partici-
pants did not know the object or if the object had no size 
(e.g., “sand,” “water”), workers could skip to the subsequent 
trial by checking respective response boxes below the scale.

In the second step, the rating scale zoomed closer, now 
encompassing 160 of the previous 520 units. For instance, if 
workers clicked on a position on the scale between “micro-
wave” and “washing machine” in the previous step, the 
zoomed-in scale now ranged from one anchor point below 
(“grapefruit”) to one anchor point above the chosen inter-
val (“king size bed”). Furthermore, one additional reference 
object was embedded between each of the previous anchor 
points (e.g., “football” between “grapefruit” and “micro-
wave”; see. Appendix 2 for a list of all referenced objects). 
The participant’s task was to refine their initial response and 
indicate the size range that the object usually occupies in the 
real world. For example, some coconuts can be larger than 
others but are relatively similar in size. In contrast, boats 
can vary more widely, ranging from small rowboats to large 
fishing boats. Participants responded by clicking and drag-
ging their mouse from the lower to upper end of the range. 

For objects with no size range (e.g., standardized objects 
like “soccer ball”), workers were asked to click on the scale 
only once. During step 2, workers always had the option to 
go back to step 1 to edit their previous choice.

Object properties  Participants completed short surveys, 
including the 1854 object nouns and 11 items related to 
properties of that object (“manmadeness,” “preciousness,” 
“liveliness,” “heaviness,” “naturalness,” “ability to move,” 
“graspability,” “holdability,” “ability to be moved,” “pleas-
antness,” and “arousal level”). Every object concept was 
sampled 40 times.

In each survey, participants were presented with one 
object noun and a corresponding image of the object con-
cept. They were asked to rate how well the 11 different prop-
erties apply to the object using seven-point Likert scales. For 
properties “manmade,” “precious,” “something that lives,” 
“heavy,” “natural,” and “something that moves,” participants 
responded on a scale ranging from 1 “strongly disagree” to 
7 “strongly agree.” The features “How difficult/easy is it to 
grasp?”, “How difficult/easy is it to hold?” and “How dif-
ficult/easy is it to move?” were rated on a scale from 1 “very 
difficult” to 7 “very easy.” Finally, workers responded to 
“How unpleasant/pleasant is the object?” on a scale ranging 
from 1 “very unpleasant” to 7 “very pleasant” and to “How 
calming or arousing/agitating is the object?” on a scale from 
1 “very calming” to 7 “very arousing.”

We collected arousal again, due to their high correla-
tion with pleasantness ratings. We used a similar task as 
described above, but this time, we explained the construct 
of arousal in more detail and emphasized its independence 
from valence. We did this by giving specific examples of 
very arousing or very calming objects with strong positive 
and negative valence. Two sets of example concepts were 
used throughout the data collection (pleasant: kittens & gifts 
vs. puppy & baby; unpleasant: spider & knife vs. snake & 
gun), whereby the concepts used as examples were not sam-
pled in the respective version of the rating task. Each HIT 
comprised 11 trials. In each trial, participants were shown 
the image and name of one object and instructed to rate the 
object's arousal level on a scale from 1 “very calming” to 
7 “very arousing.” Initially, every object concept was sam-
pled 40 times. However, as we deemed the internal rating 
consistency insufficient (split-half reliability: r = 0.64), we 
collected another 20 samples per concept.

Analyses

All analyses were computed in Python 3 (van Rossum & 
Drake, 1995). In instances where the central tendency of 
multiple correlation coefficients was computed, we first 
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standardized the coefficients using Fisher-z transform and 
then re-standardized the average.

Image labeling  First, trialwise answers were corrected in 
Python. All labels were changed into their singular form, 
provided that the THINGS concept noun was also written 
in the singular form (e.g., we corrected “dogs” to “dog” but 
not “jeans” to “jean”). Capital letters were changed to lower 
case letters (e.g., we corrected “DOG” or “Dog” to “dog”), 
and we removed nonsense answers (e.g., “sjbfk”), indefinite 
articles (e.g., “a dog” for “dog”), punctuation marks (e.g., 
“dog?”), additional text (e.g., “the image shows a dog”), and 
comments (e.g., “sorry, I do not know this object”).

Next, the data was manually corrected for spelling and 
typing errors (e.g., we corrected “ardvark” or “aardvsrk” 
to “aardvark”). Abbreviations (e.g., “tv” for “television”) 
or different ways of spelling (e.g., “yoyo,” “yo yo,” or “yo-
yo”) were assumed to reflect the same concept and manually 
adapted to the spelling of the THINGS nouns. Finally, we 
created an additional version of the responses in which we 
adapted more specific but otherwise identical labels to the 
respective spelling of the THINGS concept (e.g., corrected 
“green acorn” to “acorn” or “electric air conditioner” to “air 
conditioner”).

We computed nameability and naming consistency meas-
ures for each image. Nameability was defined as the propor-
tion of generated labels identical to the respective THINGS 
noun. Naming consistency refers to the proportion of the 
most used label, regardless of whether it was correct.

Object typicality  For every trial, each word was assigned a 
rank from 1 (most typical) to 8 (least typical), following the 
order participants has sorted them in. The maximum ranks 
varied in some trials, depending on how many words were 
classified as unknown. For this reason, ranks were divided 
by the maximum rank for that trial, resulting in standardized 
ranks from 0 (most typical) to 1 (least typical). This way, the 
lowest possible score (highest typicality) could vary between 
trials (e.g., 1/8 for trials with zero unfamiliar objects, 1/6 
for trials with two unknown objects). Hence, the typical-
ity scores are best interpreted at the ordinal level. To avoid 
misinterpretations the scores were inverted, i.e., 0.875 was 
defined as most typical and 0 as least typical. Finally, the 
average typicality score and standard deviations were com-
puted for each concept.

Internal rating consistency of typicality ratings was 
assessed for every higher-level category separately. More 
precisely, we computed the split-half reliabilities by ran-
domly dividing the trialwise data into two sets and corre-
lating the mean size scores and mean size ranges of each 
member between the two halves (n = 2355). This procedure 
was repeated 30 times, and the resulting correlation coeffi-
cients were standardized using the Fisher-z transform before 

averaging over iterations. The mean correlations were then 
re-transformed and corrected for split-half reliability using 
Spearman–Brown correction.

Object size  For object size, we first computed trialwise 
object sizes. The size of each object was defined as the mid-
point of the size range collected in the second step of the 
rating procedure. If no range was indicated in the respective 
trial, the point on the rating scale on which the respondent 
clicked was taken as the size measure. Next, we averaged the 
responses over trials and computed mean size rating, size 
range, and start and endpoint of the range for each object 
concept. Standard deviations were calculated for all four size 
measures. Split-half reliabilities were computed analogously 
to the typicality ratings.

Object properties  We calculated mean rating and standard 
deviations of all object properties (including new arousal 
ratings) for each object concept. Further, we determined the 
absolute rating frequencies (at each scale level) of all 1854 
concepts and split-half reliabilities for each object property.

Results

Fifty‑three higher‑level categories

Of the 1854 object concepts, 1448 were assigned to one or 
more of the 53 higher-level categories. Conversely, 406 objects 
did not belong to any of the THINGS higher-level categories 
(e.g., “altar,” “backdrop,” “fire”). The overlap between catego-
ries was moderate. Overall, 664 concepts belonged to two or 
more higher-level categories. Of these, 476 were assigned to 
two different categories, 140 to three, 42 to four, five objects 
to five, and one object (“chainsaw”) to six distinct categories.

To validate the higher-level categories, we determined 
their congruence with categorizations in three other data-
sets (Banks & Connell, 2022; Rosch, 1975; Uyeda & Man-
dler, 1980). Some category names included in the external 
studies were slightly different from our category names but 
conveyed the same meaning (e.g., “beverage” instead of 
“drink,” “animals” instead of “animal”). In these cases we 
treated them as reflecting the same higher-level category. 
Not all concepts in the respective dataset overlapped with 
those included in THINGSplus, therefore we only consid-
ered matching objects in the comparison. We then computed 
classification sensitivity per higher-level category, defined 
as the fraction of category members included in the external 
dataset also identified as category members in our database. 
Table 2 summarizes the sensitivities per category compared 
to the three datasets (see also Fig. 1). Table 2 also provides 
examples of objects only assigned to a specific category in 
THINGSplus versus solely in the other dataset.
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Table 2   Sensitivities of shared THINGSplus categories and number of uniquely categorized, equally categorized, and not-categorized object 
concepts in comparison to three datasets

 Results for the comparison of THINGSplus and Banks and Connell (2022) are printed in regular font, in bold for the comparison to Uyeda and 
Mandler (1980), and in cursive for Rosch (1975)

Category N unique 
THINGS

N overlap N unique other Sensitivity Unique THINGS Unique other

Animal 30 91 0 1.00 alpaca, blowfish, bull, calf, 
catfish, …

Bird 2,
0,
0

20,
12,
20

0,
0,
3

0.95, 
0.92,
0.87

bird, rooster chicken (meat),
crane, bat

Body part 0,
0

28,
18

0,
2

1.00,
0.90

nail, trunk

Clothing 5,
0,
1

30,
20,
25

3,
0,
6

0.91,
1.00,
0.81

bonnet, bracelet, crown,  
sombrero, tiara, bow

bag, cap, glasses, handkerchief, 
purse, ring, watch, necklace, …

Drink 0 7 0 1.00
Farm animal 1 14 5 0.74 calf alpaca, cat, dog, fish, llama
Fruit 0,

0,
0

28,
26,
28

2,
0,
6

0.93,
1.00,
0.82

cucumber, squash, pumpkin, nut, 
gourd, olive, pickle, …

Furniture 1,
0,
0

11,
10,
15

9,
7,
16

0.55,
0.59,
0.48

chest computer, cooker, door, fireplace, 
freezer, …,

 lamp, buffet, piano, stereo,  
television, …,

stove, clock, refrigerator, vase, 
ashtray, …

Garden tool 0 12 6 0.67 brush, bucket, drill, fork, ladder, …
Headwear 3 4 4 0.50 hat, headband, tiara baseball, bucket, cap, straw
Insect 1 14 6 0.70 bug slug, snail, snake, spider, stick, …
Jewelry 0 10 3 0.77 diamond, gold, ruby
Kitchen appliance 1 8 19 0.30 cooker bowl, dryer, fan, flan, fork, …
Kitchen tool 1,

0
9,
5

10,
16

0.47,
 0.24

grinder blender, blowtorch, bowl, fork, 
pan, …,

pot, mixer, plate, bowl, blender, 
…

Musical instrument 0,
0

24,
19

0,
0

1.00,
1.00

Personal hygiene item 0 7 5 0.58 cream, hair, highlighter, mirror, 
powder

Sea animal 2 16 2 0.89 fish, snail goldfish, horse
Sports equipment 5 4 2 0.67 ball, bat, skateboard, sled, 

surfboard
squash, checkers

Tool 11,
7,
4

21,
15,
22

4,
1,
15

0.84,
0.94, 
0.63

blowtorch, brush, fork, grater, 
hoe, …,

chain, fork, ladle, punch, rope, 
…,

chain, pitchfork, razor, rope, 
spatula,…

ball, nail, paper, stapler, wood, 
toolbox, bench, wood, lumber, 
brace, …

Toy 1,
3

5,
6

13,
24

0.28,
0.20

scooter, scooter, skateboard, 
slingshot

block, wagon, truck, tricycle, 
train, …,

baseball, drum, football, game, 
swing, …

Vegetable 3,
0,
1

20,
17,
21

3,
2,
8

0.87,
0.89,
0.72

jalapeno, parsley, squash, gourd avocado, mushroom, rocket, bean, 
rice, bean, mushroom, avocado, 
sauerkraut, seaweed, …

Vehicle 1,
0,
0

19,
21,
29

0,
2,
7

1.00,
0.95,
0.85

rocket trailer, tank, trailer, tank, horse, 
blimp, camel, …

Weapon 3,
2,
2

19,
13,
21

6,
5,
14

0.76,
0.72,
0.60

blowtorch, chainsaw, scissors, 
axe, bat, bat, crowbar

bottle, brick, glass, rock, rope, …,
chain, stick, rock, rope, hand,
hatchet, razor, rocket, stick, rock, …
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Additionally, we determined the sensitivity for all possible 
combinations of “test” and “true” datasets (see Table 3). Over-
all, categorization sensitivities were higher for the external 
datasets. However, as shown in Table 2, this is due to the more 
liberal categorizations in the external datasets. For instance, 
assigning “snail” to the category “insect” or “truck” to “toys.”

Image labeling

Table 4 summarizes the descriptive statistics of the Image 
Labeling experiment. Labeling data was not externally vali-
dated, as the data referred to individual images for which 
there was no adequate measure of comparison.

Fig. 1   Sensitivity of the THINGSplus categorizations in comparison 
to three datasets. Note. Categorization sensitivities per higher-level 
category, defined as the fraction of all shared objects categorized 

equally in THINGSplus as in the external dataset. We only computed 
the sensitivity for concepts matching between both datasets

Table 3   Mean sensitivity per dataset in comparison to all other datasets

We only analyzed higher-level categories included in THINGSplus. Of these categories, Rosch (1975) have eight categories and 226 members in 
common with Banks and Connell (2022) and nine categories and 238 members with Uyeda and Mandler (1980). Banks and Connell (2022) and 
Uyeda and Mandler (1980) shared 11 categories and 224 members

Truth THINGSplus Rosch (1975) Banks and Connell (2022) Uyeda and Mandler (1980)
Test

THINGSplus 1.00 0.68 0.82 0.74
Rosch (1975) 0.88 1.00 0.95 0.99
Banks and Connell (2022) 0.90 0.87 1.00 0.95
Uyeda and Mandler (1980) 0.95 0.93 0.81 1.00



1593Behavior Research Methods (2024) 56:1583–1603	

1 3

Across all individual images, concepts were correctly 
labeled (nameability) 66% of the time, and nearly half of 
the images were correctly identified by at least 50% of AMT 
workers. Participants generally agreed on the name of the 
depicted object, whether correct or not, in 73% of cases 
(naming consistency).

Computing mean nameability per concept (averaged over 
image examples) showed that concepts were correctly named 
by 70% and consistently named by 71% of participants.

It is worth noting that nameability and naming consist-
ency are rather conservative measures, and the present 
results are not surprising, given the large number of possi-
ble synonyms people can use instead of the THINGS nouns. 
Nevertheless, the concepts had 9.73 images on average with 
a reasonable nameability of ≥ 50% (SD = 5.10), or 10.55 
images with a naming consistency of 50% or higher (SD = 
5.70).

Object typicality

Internal consistency of typicality ratings was determined 
separately for every higher-level category. Inspected over 
all 53 categories, consistency scores revealed high reliability 
averaged over all categories, M = 0.97 (SD = 0.01, r(2355) 
= 0.92–0.99; see Table 5).

For external validation typicality scores were Spearman 
rank correlated with equivalent norms of three different 
datasets:

(1)	 Typicality ratings of 27 superordinate categories were 
compared to ratings collected by Hebart et al. (2020). 
In their study AMT workers were instructed to rate 

the typicality of 1619 THINGS objects using a Likert 
scale from 0 (atypical) to 10 (typical). The comparison 
revealed a high correlation of both norms’ typicality 
ratings, rs(1619) = 0.88 (95% CI = 0.87–0.89).

(2)	 Next, typicality scores were compared to a dataset 
by Rosch (1975). Their dataset includes 207 objects 
categorized in accordance with THINGS into ten 
categories (see also Table 2). Typicality scores of 
objects for their respective category were rated 
on a Likert scale from 1 (typical) to 7 (atypical). 
We inverted the scores of Rosch (1975) for easier 
comparison. Typicality ranks of the two datasets were 
moderately to highly correlated, rs(207) = 0.74 (95% 
CI = 0.67–0.80).

(3)	 Finally, we compared our data to typicality scores by 
Uyeda and Mandler (Uyeda & Mandler, 1980; see 
also Table 2). Their study comprises typicality ratings 
from 1 (typical) to 7 (atypical) for 13 categories and 
199 concepts that match the THINGS categorization. 
Their inverted typicality scores showed a moderate cor-
respondence with our data, rs(199) = 0.72 (95% CI = 
0.64–0.78).

Object size

Across all object concepts, mean size ratings varied from 
100.02 to 423.10 on a scale from 0 to 519 (M = 235.80, 
SD = 57.73). Size ranges spanned between 4.82 to 78.60 
units (M = 22.87, SD = 8.34). Size ratings showed a high 
internal consistency of Pearson r(1854) = 0.99 (95% CI = 
0.992–0.993). The consistency of size range scores was also 
high, r(1854) = 0.87(95% CI = 0.85–0.88).

Table 4   Image- and object-wise percentiles and means of the naming consistency and nameability scores and number of concepts with one, five 
or ten highly accurate images

Image-wise: Fraction of images with accuracy:
M SD Mean SE Max. SE ≤ 10% ≥ 50% ≥ 90%

Naming consistency 0.70 0.23 0.09 0.27 0.00 0.53 0.25
Nameability 0.66 0.29 0.08 0.14 0.04 0.46 0.25

Object-wise: Fraction of concepts with accuracy:
M SD Mean SE Max. SE ≤ 10% ≥ 50% ≥ 90%

Naming consistency 0.70 0.25 0.03 0.03 0.00 0.60 0.20
Nameability 0.65 0.20 0.02 0.03 0.02 0.51 0.20

Number of objects that have at least 1, 5, or 10 images with accuracy:
≥ 50% ≥ 80%
1 5 10 1 5 10

Naming consistency 1800 1558 1214 1301 874 557
Nameability 1679 1427 1119 1248 876 561
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Table 5   Overview of the categories, their most and least typical members and ratings consistency

Category N member Most typical member Least typical member Rating consistency 
(Pearson r)

animal 177 dog (0.85) coral (0.02) 0.98
arts and crafts supply 44 paint (0.78) marble (0.14) 0.96
bird 27 eagle (0.70) puffin (0.11) 0.95
body part 34 arm (0.80) beard (0.04) 0.97
breakfast food 35 egg (0.81) French fries (0.06) 0.97
candy 16 candy (0.73) marshmallow (0.15) 0.96
clothing 108 jeans (0.84) straitjacket (0.05) 0.98
clothing accessory 38 belt (0.78) eye patch (0.08) 0.97
condiment 15 ketchup (0.85) applesauce (0.11) 0.98
construction equipment 28 bulldozer (0.71) pump (0.15) 0.96
container 105 box (0.83) tent (0.10) 0.97
dessert 37 cake (0.81) cheese (0.02) 0.97
drink 19 coffee (0.75) eggnog (0.05) 0.96
electronic device 74 laptop (0.84) slicer (0.10) 0.97
farm animal 18 cow (0.81) bison (0.10) 0.98
fastener 32 zipper (0.61) gasket (0.09) 0.92
food 295 cheeseburger (0.84) poppy (0.04) 0.97
footwear 15 shoe (0.86) flipper (0.07) 0.99
fruit 34 apple (0.84) mulberry (0.07) 0.98
furniture 39 couch (0.80) lectern (0.08) 0.98
game 19 board game (0.71) yo-yo (0.12) 0.96
garden tool 17 rake (0.71) pickax (0.15) 0.98
hardware 79 bolt (0.72) strainer (0.15) 0.92
headwear 19 hat (0.84) headdress (0.20) 0.96
home appliance 38 stove1 (0.78) soda fountain (0.10) 0.98
home decor 45 lamp (0.8) abacus (0.07) 0.98
insect 17 fly (0.74) earwig (0.10) 0.97
jewelry 15 necklace (0.77) barrette (0.17) 0.98
kitchen appliance 20 refrigerator (0.77) slicer (0.14) 0.98
kitchen tool 27 knife (0.79) icepick (0.08) 0.98
lighting 16 lamp (0.81) penlight (0.18) 0.98
mammal 88 dog (0.84) aardvark (0.05) 0.97
medical equipment 27 stethoscope (0.77) eye patch (0.17) 0.96
musical instrument 33 guitar (0.84) chime (0.11) 0.98
office supply 25 pen (0.79) punch2 (0.12) 0.96
outerwear 16 jacket (0.83) lab coat (0.14) 0.98
part of car 30 steering wheel (0.77) roof rack (0.09) 0.97
personal hygiene item 31 soap (0.81) flatiron (0.15) 0.98
plant 47 flower (0.77) leek (0.14) 0.96
protective clothing 16 helmet (0.69) overalls (0.22) 0.95
safety equipment 21 helmet (0.70) spacesuit (0.08) 0.95
school supply 26 notebook (0.78) inkwell (0.01) 0.97
scientific equipment 35 microscope (0.81) prism (0.16) 0.96
sea animal 30 dolphin (0.78) barnacle (0.08) 0.97
seafood 24 fish (0.81) sea urchin (0.09) 0.98
sports equipment 64 ball (0.80) baton3 (0.05) 0.97
tool 107 hammer (0.84) quill (0.09) 0.96
toy 34 ball (0.78) stilt (0.06) 0.97
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For external validation, THINGS size data was compared 
to size ratings collected by Konkle and Oliva (2011). In their 
study, perceived object size was determined by asking par-
ticipants to sort 100 images of objects into eight groups with 
ascending real-world sizes. In addition, their dataset pro-
vides information about the actual size of objects. Actual 
object size was defined as the logarithmized diagonal of the 
object bounding boxes, as quantified by their length, height, 
and width in centimeters. We correlated our size ranks with 
Konkle & Oliva’s subjective size ranks for all concepts 
included in both datasets. The results showed a high cor-
relation of Spearman rs(73) = 0.95 (95% CI = 0.92–0.97). 
Compared to their actual size measure, the correlation was 
high and significant as well, Pearson r(73) = 0.97 (95% CI 
= 0.95–0.98).

Object properties

The internal consistency of object property ratings was com-
puted for each property individually, following the same pro-
cedure for typicality and size ratings. All properties collected 
in the initial questionnaire study showed a high split-half 
reliability of M = 0.98 (SD = 0.03, r = 0.91–0.99). In con-
trast, the consistency of subsequently collected arousal rat-
ings was only moderate, even after increasing the number of 
samples per object by 50% (r = 0.69, 95% CI = 0.67–0.72). 
Object properties were externally validated using five dif-
ferent databases (Amsel et al., 2012; Binder et al., 2016; 
Bradley & Lang, 1999; Sudre et al., 2012; Warriner et al., 
2013). Results of the external validations are summarized 
in Fig. 2 (see Appendix 3 for exact numbers). Across all 

Table 5   (continued)

Category N member Most typical member Least typical member Rating consistency 
(Pearson r)

vegetable 42 carrot (0.78) rhubarb (0.08) 0.97
vehicle 70 car (0.86) rocket (0.14) 0.97
watercraft 19 boat (0.79) torpedo (0.06) 0.97
weapon 48 gun (0.85) trident (0.12) 0.97
women's clothing 20 dress (0.82) boa (0.05) 0.99

We corrected the split-half correlations using the Spearman–Brown formula

Fig. 2   Correlation of object properties with external datasets and internal rating consistencies
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11 items, correlations were medium to high, again with the 
worst fit for arousal ratings.

The new arousal ratings were still moderately correlated 
with pleasantness (r(1854) = - 0.51). Nevertheless, this bias 
was significantly smaller than for the deprecated arousal rat-
ings (r(1854) = - 0.77), demonstrating that the construct of 
arousal was better conveyed to the workers. Both arousal 
ratings were moderately correlated, r(1854) = 0.59.

Discussion

With THINGS (Hebart et al., 2019) we have previously 
provided a large-scale database of 1854 concrete and 
picturable object concepts, 26,107 images of those con-
cepts, and membership information for 27 higher-level 
categories. In the present work, we present THING-
Splus, a large-scale extension to the THINGS database. 
We identified 26 additional higher-level categories and 
collected typicality ratings for members of all 53 catego-
ries. Further, we used crowdsourcing to generate a broad 
set of object property ratings; including manmadeness, 
preciousness, animacy heaviness, naturalness, ability to 
move or be moved, graspability, holdability, pleasant-
ness, and arousal level. Moreover, we collected ratings 
of objects’ perceived size and size range. In addition, we 
asked people to name the most prominent as well as all 
other objects depicted in the 26,107 images to compute 
measures of image nameability and naming consistency. 
Finally, we collected one novel public domain image 
per concept. Our norms and metadata show high rating 
consistencies, demonstrating that object and image prop-
erties were reliably rated over participants. Moreover, 
we compared our collected norms to datasets created by 
other authors, confirming their external validity.

Possible applications of THINGS and the newly 
collected norms, metadata, and public domain 
images

THINGS has already become a widely used resource by 
researchers. For example, the THINGS initiative (https://​
things-​initi​ative.​org/) brings together laboratories from 
different disciplines which share the same goal of under-
standing object recognition, semantic memory, and the 
content of mental object representations. Using the same 
database is advantageous, as it facilitates comparison 
between studies. It also allows sharing of data with other 
researchers. For example, the THINGS database is accom-
panied by extensive sets of freely available neuroimaging 

and EEG data (e.g., Gifford et al., 2022; Grootswagers 
et al., 2022; Hebart et al., 2023), behavioral similarity 
judgments (Hebart et  al., 2020), memorability scores 
(Kramer et al., 2022) and feature production norms of the 
objects generated with the natural language model GPT-3 
(Hansen & Hebart, 2022).

The newly collected norms and metadata represent an 
important expansion of the THINGS database. Normed 
data is crucial for characterizing objects and provides 
researchers with a standardized and detailed approach for 
selecting suitable stimuli. For instance, studies interested 
in emotional object processing or selective attention might 
focus on object concepts with high arousal levels and strong 
positive or negative valence (Bradley & Lang, 1994; Lang 
et al., 1997). Other studies might contrast neural responses 
to objects of different sizes or animacy (Chao et al., 1999; 
Konkle & Caramazza, 2013; Magri et al., 2020) with the 
prospect of identifying organizational dimensions of object 
representations and their related brain regions.

Image-specific nameability and naming consistency 
measures provide information on how well each image cap-
tures the desired object concepts and supports avoidance of 
object concepts that are ambiguously identified. We also col-
lected labels for all other objects in the images, which facili-
tate identifying, for example, all images depicting human 
body parts or other confounding concepts (Downing et al., 
2001; Downing et al., 2004).

Normative data also helps quantify variables that might 
exert confounding effects. For example, object naming stud-
ies have shown better performance in naming non-living 
objects than animals (Humphreys et al., 1988; Warrington 
& Shallice, 1984). However, when controlling for manipula-
bility – in the present work defined by graspability and hold-
ability – the benefit was larger for living and manipulable 
objects (Filliter et al., 2005).

Moreover, information about higher-level category 
memberships is crucial, as categorization is a vital 
ability of the cognitive system that allows us to make 
sense of the world around us. Our comprehensive set 
of 53 categories and associated membership informa-
tion enables us to study processes related to category 
classification and to cluster conceptually similar con-
cepts (e.g., compare animals to tools). Further, category 
affiliations are helpful for a wide range of experimental 
tasks, including object categorizations or verifying cat-
egory production tasks.

Finally, when working with the THINGS database, our 
newly curated license-free images can be freely edited, 
can be used as example images in publications, and thus 
serve also as an important tool for data visualization and 
explorative analyses.

https://things-initiative.org/)
https://things-initiative.org/)
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Limitations of THINGSplus

Despite the high value and applicability of our newly col-
lected norms, images, and related metadata, the THING-
Splus project has some limitations.

First, different THINGSplus norms were acquired and 
preprocessed by different authors, and as a consequence, 
exclusion criteria for low-quality HITs varied. Nevertheless, 
cut-offs were determined quite rigorously and systematically, 
in most cases based on the distribution of deviations from 
the expected value, and even if the same criteria had been 
used, it is not clear how differences in tasks would translate 
to required changes in cut-offs. In the future, it would be 
possible to systematically evaluate the effect of exclusion 
criteria on the internal consistency and external validity of 
the collected norms.

Second, while typicality scores and most feature ratings 
showed high external validity, arousal ratings correlated only 
moderately with other arousal measures. We also observed 
a bias toward higher arousal levels for unpleasant (e.g., 
weapons, snakes) compared to pleasant (e.g., kittens, gifts) 
objects. This negativity bias persisted after collecting the 
ratings again with improved instructions.

Further, images without copyright restrictions were chal-
lenging to identify for some concepts, and in some cases, it 
was also infeasible to create our own photographs. For this 
reason, we sometimes had to choose images with slightly 
lower quality (e.g., with the object slightly blurred or not 
fully depicted after cropping).

Finally, image labeling data was manually corrected 
for spelling errors, alternative spelling, and abbreviations, 
introducing a certain degree of subjectivity. As a result, the 
nameability scores might underestimate the true nameability 
of objects.

Open questions and future directions

We aim to further develop and improve the THINGS data-
base. While we already collected a measure of nameability, 
including a more general measure of concept identifiability 
would allow for spotting hard-to-identify images or gener-
ally ambiguous concepts. With identifiability, we aim to 
capture the extent to which people grasp the meaning of 
a concept, even if they lack the appropriate label. Lexical 
databases like WordNet (Fellbaum, 1998) comprise only 
a limited selection of synonyms and categorical relations. 
Thus, for the future, it would be valuable to evaluate all 
generated image labels manually, to determine the por-
tion of correct (e.g., “appetizer”), synonymous (e.g., “hors 
d’oevre,” “starter”), or more precise labels (e.g., “canapé”), 

as well other cases in which participant may have rec-
ognized the concept but did not know the correct name 
(e.g., “pre-meal snack”). We are currently in the process 
of developing this measure with the aim of adding it to 
THINGSplus.

Further, object concepts can be characterized by multiple 
features not yet included in this THINGSplus project. Some 
researchers might benefit from a measure of occurrence 
frequency, which provides insight into objects’ subjective 
relevance in everyday life and how representations of more 
frequently perceived concepts (e.g., “cow,” “pants”) dif-
fer from rare or less essential objects (e.g., “sea urchin,” 
“suspenders”). Further, we intend to acquire image-specific 
parameters, including curviness and rectilinearity ratings, 
potentially with other low-level features such as image clut-
ter and degree of structure vs. object likeness. Moreover, 
knowing both the location and size that objects occupy in an 
image is crucial for many vision experiments. To this end, 
a typical approach is to ask participants to segment images 
in a way that separates the objects from their background. 
This is usually accomplished by dividing the pixels of an 
image into parts that have similar features and attributes 
or that depict specific objects. Asking human participants 
to segment THINGS images would provide the location of 
objects and their boundaries and thus increase manipula-
tory control.

While the distribution of workers from Amazon Mechanical 
Turk nicely captures many demographics of the general popu-
lation (Berinsky et al., 2012; Casler et al., 2013), workers are 
generally more highly educated. Further, all workers resided 
in the USA. Thus, it would be interesting to know how well 
these results would translate to other, non-US cultures. Finally, 
future studies can strengthen the validity of the THINGS data-
base by providing neural and behavioral correlates of THINGS 
norms and metadata.

Conclusions

Together, we believe THINGSplus to be an important 
addition to the THINGS database for the study of object 
concepts, object images, related norms and metadata. 
Many laboratories around the globe already use these con-
cepts and images. With our newly collected norms, public 
domain images, and metadata, we hope to strongly improve 
the database's usefulness and thus increase its value for the 
research community. The more widely THINGS is applied, 
the easier it is to compare different studies, research 
groups, and disciplines. We believe that these combined 
efforts will allow us to more effectively tackle the questions 
of how we make sense of the world around us, recognize 
objects and interact with them in a meaningful way.
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Appendix 1

Combined data of both typicality task versions

Methods  Workers were only allowed to participate in 
20 HITs of each version. Datasets from both versions of 
the typicality experiment were combined and analyzed 
jointly. Participants who completed more than five tri-
als below 30 s were excluded from data analysis. Demo-
graphic information for both typicality versions is sum-
marized in Appendix Table 6.

Each object concept was sampled at least 50 times per 
experimental version (100 in total). The design was identical 
to version 2, except for two aspects. First, we did not include 
an “unknown” box in the first version of the task. Second, 

we did not indicate additional information about homonyms 
in parentheses.

We did not control for homonymous members of the same 
category in the first version of the typicality task. Thus, we 
excluded all homonymous members of the same category in 
version1 and adapted the sorting ranks of the remaining mem-
bers of the affected HIT accordingly (243 occurrences of ten 
concepts). The concept “gorilla” was mistakenly included as a 
member of the “food” category in the first experimental version 
and removed analogously to the homonyms (35 occurrences).

Mean typicality ranks were computed for every concept 
over participants, and the 5% of workers whose responses 
correlated lowest with the mean ratings across all their trials 
were excluded (cut off: rs= .024). The results are summa-
rized in Appendix Table 7.

Table 6   Participant statistics pre- and post-exclusion for the combined typicality data

Task Pre-exclusion Post-exclusion

N Worker N Trials N Worker N Trials Gender M Age SD Age

Typicality Version 1 & 2 2466 29,088 2250 25,553 female: 1333
male: 902
other: 15

38.16 51.53

Table 7   Internal and external validation of the combined typicality data

Split-half reliability (Spearman–Brown cor-
rected)

Mean r = 0.98 SD = 0.01 r(2355) = 0.95–0.99

External validation
Hebart et al. (2020) rs(1619) = 0.88 95% CI = 0.87–0.89
Rosch (1975) rs(207) = 0.74 95% CI = 0.67–0.79
Uyeda and Mandler (1980) rs(199) = 0.72 95% CI = 0.64–0.78
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Appendix 2

Figure 3

Fig. 3   Layout of the size rating task.  (a) In Step 1 of the rating task, 
participants were asked to rate the approximate size of an object in 
relation to nine reference objects. (b) In Step 2, the scale zoomed 
closer, now encompassing additional reference objects (light gray). 

Participants were asked to refine their answer and indicate the size 
range of the object. (c) List of all anchor points/reference objects and 
corresponding size score
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Appendix 3

Split‑half reliabilities of the object properties 
and correlations with other object norm databases

Split-half reli-
ability

Sudre et al. (2012) Binder et al. (2016) Bradley and 
Lang (1999)

Amsel et al. 
(2012)

Warriner et al. 
(2013)

N objects (n shared) 1000 (596) 535 (160) 1034 (178) 559 (411) 13,915 (1270)

Object property
“manmade” 0.99 0.91 --- --- --- ---
“precious” 0.92 0.44 (valuable) --- --- --- ---
“something that lives” 0.99 0.94 --- --- --- ---
“heavy” 0.99 0.85 --- --- --- ---
“natural” 0.99 -0.90 (manmade) --- --- --- ---
“How difficult/easy is it 

to move?”
0.98 0.72 --- --- --- ---

“something that moves” 0.97 0.80 (is it fast) 0.91 (showing move-
ment)

--- 0.90 ---

“How difficult/easy is it 
to hold?”

0.99 0.83 (can you 
hold it)

0.84 (hold in one 
hand)

--- --- --- ---

“How difficult/easy is it 
to grasp?”

0.98 0.78 (can you 
hold it)

0.77 (hold in one 
hand)

--- --- 0.91 ---

“How unpleasant/pleas-
ant is the object?”

0.96 --- 0.91 0.85 --- 0.77

“How calming or arous-
ing/agitating is the 
object?”

--- ---

   deprecated:
   new:

0.91 
0.69

0.30
0.30

0.52
0.48

0.44
0.40

We corrected the split-half correlations using the Spearman–Brown 
formula
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