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Abstract

The pupil of the eye provides a rich source of information for cognitive scientists, as it can index a variety of bodily states (e.g.,
arousal, fatigue) and cognitive processes (e.g., attention, decision-making). As pupillometry becomes a more accessible and
popular methodology, researchers have proposed a variety of techniques for analyzing pupil data. Here, we focus on time series-
based, signal-to-signal approaches that enable one to relate dynamic changes in pupil size over time with dynamic changes
in a stimulus time series, continuous behavioral outcome measures, or other participants’ pupil traces. We first introduce
pupillometry, its neural underpinnings, and the relation between pupil measurements and other oculomotor behaviors (e.g.,
blinks, saccades), to stress the importance of understanding what is being measured and what can be inferred from changes in
pupillary activity. Next, we discuss possible pre-processing steps, and the contexts in which they may be necessary. Finally, we
turn to signal-to-signal analytic techniques, including regression-based approaches, dynamic time-warping, phase clustering,
detrended fluctuation analysis, and recurrence quantification analysis. Assumptions of these techniques, and examples of the
scientific questions each can address, are outlined, with references to key papers and software packages. Additionally, we
provide a detailed code tutorial that steps through the key examples and figures in this paper. Ultimately, we contend that the
insights gained from pupillometry are constrained by the analysis techniques used, and that signal-to-signal approaches offer
a means to generate novel scientific insights by taking into account understudied spectro-temporal relationships between the
pupil signal and other signals of interest.
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Introduction

Technological advances in the last half-century, progressing
from manual photography to infrared camera and eye-
tracking computers, have made pupillometry an increasingly
low-cost and popular methodology. The size of the pupil
became the focus of interest in psychology about 50 years ago
with studies on mental effort and motivational interest. The
list of applications of the pupillometric method includes psy-
chiatric and clinical studies (Rukmini et al., 2019; Kremen
etal., 2019; Joyce et al., 2018; Granholm et al., 2017; Lim et
al., 2016; Steinhauer & Hakerem, 1992), developmental and
animal psychology research (Chatham et al., 2009; Hepach
et al., 2015), neurophysiology (Gamlin et al., 2007; Reimer
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et al., 2016; Joshi et al., 2016), and cognitive neuroscience
(Schwalm & Jubal, 2017; Urai et al., 2017).

The key processes associated with changes in pupil size
are summarized in Table 1. As can be seen, the pupil is asso-
ciated with a variety of states, some of which may, on their
face, seem to bear no similarity to each other (e.g., fatigue and
uncertainty); however, most of these states can be conceived
of in relation to arousal (fatigue = low arousal; uncertainty
= high arousal). Indeed, much of the interest in pupillome-
try stems from the proposed relationship between the pupil
and the noradrenergic system of cognitive arousal. A bet-
ter understanding of the neural underpinnings of changes
in pupil size will make it clearer why these myriad pro-
cesses are associated — still in a largely mysterious way —
with small movements of the pupil and may be driven by the
same system or by a few interacting systems (see ‘“Neural
underpinnings of pupil dynamics”).

We first briefly summarize the historical context of pupil-
lometry in psychological research, as well as the neural
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Table 1 Cognitive processes associated with pupil size dynamics

Cognitive process

Key papers

Key findings

Mental effort

Attention (general)

Attention (spatial)

Uncertainty, decision-making

Surprise, salience, orienting, prediction error

Sexual or emotional arousal

Response preparation, motor activity

Fatigue, task performance

Imagined arousal, effort, or brightness

Memory and familiarity

Kahneman and Beatty (1966);
Kahnemann and Beatty (1967); Johnson
(1971); Kramer et al. (2013)

Kahneman (1973); Hoeks and Levelt
(1993); Iriki et al. (1996); Smallwood et
al. (2011); Wierda et al. (2012)

Mathot et al. (2013); Binda et al. (2013);
Naber et al. (2013a)

Friedman et al. (1973); Einhduser et al.
(2008); Jepma and Nieuwenhuis (2011);
Laeng et al. (2012); de Gee et al. (2014);
Urai et al. (2017); Kawaguchi et al.
(2018); Colizoli et al. (2018a)

Beatty (1982a); Preuschoff et al. (2011);
Wang et al. (2014); Fink et al. (2018);
Alamia et al. (2019)

Hess and Polt (1960); Bradley et al. (2008)

Einhiuser et al. (2008); Reimer et al.
(2014); McCloy et al. (2016)

Lowenstein et al. (1963); Beatty (1982a);
Aston-Jones and Cohen (2005); Murphy
et al. (2011); Eldar et al. (2013);
McGinley et al. (2015); Knapen et al.
(2016)

Whipple et al. (1992); Laeng and
Sulutvedt (2014); Sulutvedt et al.
(2018); Kang and Banaji (2020)

Vo et al. (2008); Kafkas and Montaldi
(2011); Naber et al. (2013b); Papesh et
al. (2012); Gomes et al. (2021)

Pupil size sensitive to variations in effort
(greater effort, greater pupil size)

Pupil signal indexes changes in attention
over time. Pupil time course can be
modeled via attentional pulses. Pupil
exhibits greater spontaneous fluctuation
when attention is decoupled from task

When focusing attention on a visual
object (even covertly), the pupil adjusts
to the objects’ brightness

Pupil diameter increases prior to
perceptual shifts and decision-making.
Negative relationship between pupil size
and decision confidence

Pupil dilation response to surprising /
alerting / salient stimuli, even when
below perceptual threshold or
unconscious and irrelevant to the task.
Positive relationship between pupil size
and prediction error

Greater arousal correlated with greater
pupil size. Heart rate and skin
conductance also correlated with pupil
activity

Making a motor response (e.g., a button
press) increases pupil dilation, which
begins prior to the motor response. In
mice, fluctuations in pupil size
correlated with locomotion activity

Performance on a task follows an inverse
U-shaped function, with optimal
performance at intermediate pupil sizes.
Tonic pupil size decreases with
time-on-task. Pupil size and behavior are
correlated with changes in neural gain

Even during imagery or visual illusions,
the pupil follows the same dilation
patterns as observed during naturalistic
conditions

Greater pupil size for greater familiarity;
however, false alarms also produce pupil
dilation (i.e., the pupil may not
distinguish accurate familiarity, rather
participants’ belief). Greater pupil size
at encoding predicts greater retrieval
success. cf. Beukema et al. (2019) and
“Surprise” section above

underpinnings of changes in pupil size, before moving to
our key concern in this article: the analysis of pupil data.
We briefly outline possible data pre-processing steps, with
a focus on why, how, and in what context each step might
be employed; we do not attempt to define a standard but
rather to increase awareness around the function of each
possible pre-processing step and for which kinds of later

analyses it may or may not be relevant. We then provide a
sampling of pupil analysis approaches that are epoch- and/or
condition-based, to situate a discussion of why one might
want to employ more dynamic, signal-to-signal analysis
approaches.

Though analyzing mean pupil size in a temporal window
of interest has served psychology well for the last half cen-
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tury (and will undoubtedly continue to do so), we aim to
show that a variety of powerful inferences may be possible
by using more complex analysis techniques which take into
account the temporal and/or spectral dynamics of the pupil
signal. We are particularly focused on methods to relate the
dynamic (i.e., changing over time) pupil signal to a dynamic
stimulus (e.g., music, speech). Details about each analysis
method and links to further reading and code implementa-
tions are provided. Additionally, we provide a code-based
tutorial to recreate some of the key examples discussed in
this paper. Our goal is to provide a concise and practical
overview of existing methods, for those who are interested in
pursuing pupillometry research but may lack the appropriate
background, either in terms of the history of pupillometry or
the conceptual understanding of difficult analysis techniques.

Pupillometry

Irene Loewenfeld, in her monumental monograph on pupil-
lometry in two volumes (1999), pointed out that there is
centuries-old anecdotal and semi-scientific knowledge that
the diameter of the pupil changes not only in relation to
the amount of light entering the eye but also — sometimes
visibly — to an individual’s internal states. The pupils were
early described poetically by Joshua Sylvester (1563-1618)
as “windows of the soul.” It is now common lore that dilated
pupils convey the impression of someone looking both “inter-
ested” and “interesting” (explaining the cosmetic use of the
herbal substance ‘belladonna’ in the Renaissance (Simms,
1967), an idea further popularized by the pioneer of pupil-
lometry in psychology, (Hess, 1975a)).

Until the invention of infrared eye trackers, by which
dynamic changes in the size of the pupil can be measured
accurately, pupillary changes were simply observed with the
naked eye (e.g., during neurological or ophthalmological
examinations (e.g., Wilhelm et al., 1999; 2002) or by film-
ing the eye at close range and measuring frame-by-frame
the pupil diameter from the film projection (e.g., as done
in the classic studies by Hess and Polt (1960, 1964) and
Kahnemann and Beatty (1966; 1967). The modern infrared
technology was initially developed by physiologists but was
revolutionized by the development of computerized systems
linked to infrared camera and specialized software for basic
eye-data analysis and visualizations. Infrared light cameras
also have the advantage of obtaining images in virtual dark-
ness (for the human eye) and independently of eye colors
(which vary in iris contrast on standard film).

Modern infrared eye-trackers provide raw data about pupil
diameters as samples (either coded by sample frequency or
by the computer clock’s time) expressed in arbitrary values
(like the number of pixels of the camera) or in ‘mapped’
millimeters (after a calibration routine that also establishes
head and eye distance from the camera). Nowadays, several
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types of eye trackers are commercially available. Broadly,
they are stationary (by positioning the camera close to a
computer screen) or mobile (head-mounted or integrated into
glasses-like frames or within virtual reality goggles). These
computerized infrared systems are capable of measuring not
only how pupil size may change on average but also the
dynamic movements of the pupil over time.

Within psychology, pupillometry has become the stan-
dard term, especially after Janisse’s book by the same name
(Janisse, 1977). The method entered experimental and cogni-
tive psychology due to several influential publications (Hess
& Polt, 1960, 1964; Kahneman & Beatty, 1966; Beatty &
Wagoner, 1978; Ahern & Beatty, 1979b). In ’ Attention and
Effort,” Kahneman (1973) put forward the idea that pupillom-
etry is ameasure of attention and, specifically, of an important
aspect of it: load on capacity. He proposed a psychophysi-
ological model of ‘cognitive effort” where pupil diameters
reflect, first of all, the general physiological arousal at each
moment but, more specifically, how intensively the cognitive
system ‘works’ at a specific moment in time and draws on
its limited resources. Subsequent physiological advances on
the role of the noradrenergic system of the brain (Aston-
Jones & Cohen, 2005) have provided a functional neural
basis for cognitive arousal and its energizing role (tonic
and phasic) on the activity of various neural systems, all
concomitantly reflected in changes of the diameter of the
pupil. Hence, both arousal and pupillary size are relevant
variables within the current cognitive and affective neuro-
sciences (Aston-Jones et al., 2007), with animal studies able
to directly probe the activity in the noradrenergic system
of the brain and its relation to pupillary changes (see e.g.,
Joshi & Gold, 2020 and “Neural underpinnings of pupil
dynamics” below).

In psychology, the appeal of pupillometry may be also
due to pupillary changes being difficult to control voluntar-
ily, unlike other oculomotor dependent measures. Control
of pupil size seems only possible after extensive training
(Eberhardt et al., 2021) and/or the use of indirect meth-
ods or strategies (Loewenfeld & Lowenstein, 1999). This
feature of automaticity or reflexive response of the pupil
to internal states seems to offer a “window into the inner-
most mind” (Hess, 1975b) and into mental processes that
generally occur below the threshold of consciousness (Laeng
etal., 2012; Fink et al., 2018). Since the initial studies within
experimental psychology, pupillometry has spread into social
(e.g., Goldinger et al., 2009) and developmental psychology
(e.g., Hepach et al., 2015). Pupillometry is relevant in the
study of low-level processes (e.g., light reflex, near response),
mid-level processes (alerting and orienting), and high-level
processes (executive functioning), as recently summarized
by Strauch et al. (2022). Readers wishing to learn more about
the basics of pupillometry are directed to the existing relevant
reviews (e.g., Beatty, 1982b; Mathdt, 2018; Zekveld et al.,
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2018; Winn et al., 2018; Steinhauer et al., 2022; Strauch et al.
2022) or book chapters (e.g., Beatty et al. (2000); Einhéduser
(2017); Laeng and Alnaes (2019)).

Neural underpinnings of pupil dynamics

Pupil dilation and constriction are controlled by the smooth
dilator and sphincter muscles of the iris, respectively. The
sphincter muscle is innervated by parasympathetic axons
from the Edinger—Westphal nucleus, while the dilator muscle
is enervated by sympathetic axons from the superior cer-
vical ganglion (Loewenfeld & Lowenstein, 1999; Samuels
& Szabadi, 2008b, a; Szabadi, 2012). The contribution of
these two different pathways can be experimentally disso-
ciated by conducting experiments in a dark room, which
reduces parasympathetic tone such that the majority of the
pupil dilation response is a result of sympathetic activity
(Steinhauer & Hakerem, 1992; Steinhauer et al., 2004), or
by using pharmacological agents that block cholinergic or
adrenergic receptors in the iris, or mydriasis eye drops (e.g.,
tropicamide). Such studies have confirmed, for example, that
the observed pupil dilation response to an alerting stim-
ulus can be dissociated into two components: an earlier
parasympathetic one (600-900 ms) and a later sympathetic
one (~1200 ms) (Steinhauer & Hakerem, 1992), and that
transient decreases in parasympathetic arousal precede per-
ceptual switches (Nakano et al., 2021) (see Steinhauer et al.
(2022)’s Section 1.2.4 for additional discussion).

Neural activity in the locus coeruleus (LC) is highly
correlated with changes in pupil size, in both animals and
humans (Aston-Jones & Cohen, 2005; Alnas et al., 2014),
corroborating the belief that changes in pupil size reflect
the functioning of the locus coeruleus—noradrenergic (LC-
NA) system (Aston-Jones & Cohen, 2005; Aston-Jones et
al., 1994; Minzenberg et al., 2008; Murphy et al., 2014; Nas-
sar et al., 2012; Rajkowski, 1993). LC-NA activity affects
the pupil dilation pathway, with direct stimulation of the LC
resulting in a dilation of the pupil within a few hundreds of
milliseconds (Joshi et al., 2016).

However, recent evidence suggests that the activity of a
variety of brain regions, in addition to LC, is correlated with
pupil size changes and may even be capable of driving dila-
tion (Joshi et al., 2016; Wang et al., 2014). For example,
Wang et al. (2014) show that the pupil exhibits a similar
multiphasic, transient response to both visual and auditory
stimuli, and assert that the intermediate layer of the supe-
rior colliculus (SCi) is likely the brain region responsible
for integrating auditory and visual stimuli and interacting
with the nuclei controlling pupil size. In their study, stim-
ulation of the SCi yielded a similar pupillary response to
that evoked by visual stimuli; this effect was not observed
when stimulating in the superficial layers of the SC. Wang
et al. (2014) offer a neuroanatomical model outlining the

neural circuitry likely involved in mediating the pupil-
lary response, which they later refine in Wang and Munoz
(2015). According to their neurophysiological model, cogni-
tively driven changes in pupil size could occur without any
involvement of the LC, as could sensory-driven changes.
Wang and Munoz (2015) position the mesencephalic
cuneiform nucleus as the critical area receiving signals from
the SC and communicating with the pathways controlling
pupil dilation and constriction.

Joshi et al. (2016) also highlight some important issues
with the LC-NA model. In their study of non-human pri-
mates, Joshi et al. (2016) micro-stimulated sites in the
LC/subcoeruleus, inferior colliculus, and SCi. They showed
that stimulation in each site caused a transient pupil dila-
tion within 1s (Joshi et al., 2016). They analyzed pupil vs.
neural activity on multiple time scales and during sponta-
neous vs. evoked (tone burst) activity and showed that the
LC is not necessarily the region in control. The delay until
pupil dilation after LC stimulation was slow enough (500
ms) to suggest the involvement of an indirect pathway. In a
recent review paper, Joshi and Gold (2020) summarize evi-
dence suggesting that pupil size modulations can occur via
three possible pathways, involving the LC, SC, or pretectal
olivary nucleus (PON), respectively. The PON pathway is
a direct one (i.e., there exist direct anatomical connections
from the retina to the PON and back to Edinger—Westphal
nucleus) and is known to be involved in pupil constriction
and the pupillary light reflex; the SCi pathway is thought to
be both direct and indirect, and is involved in the orienting or
saliency response; the LC-NA pathway also seems to have
direct and indirect connections to pupil dilation and constric-
tion and influences pupil-linked arousal and cognition (please
see Joshi & Gold, 2020 for anatomical diagrams and further
details).

The neuromodulatory influences over pupil size may
also be more complex than previously thought. Cholinergic
(Reimer et al., 2016), dopaminergic (de Gee et al., 2014),
and serotonergic (Schmid et al., 2015) activity have all been
shown to correlate with changes in pupil size. However, it
is possible that the activity of these three neuromodulatory
systems may nonetheless be tied to LC-NA activity. Nora-
drenergic neurons from LC project to ACh neurons in the
basal forebrain (Jones, 2004), dopaminergic nuclei are con-
nected with the LC (Sara, 2009), and serotonergic effects on
pupil size may be the result of interactions with the LC-NA
system (see Larsen & Waters, 2018 for further discussion on
this topic). Future studies are needed to definitively determine
the complex interactions of the neuromodulatory systems
and neuroanatomical pathways capable of influencing pupil
size.

Summarizing across the psychological and neural under-
pinnings of pupillometry, readers may be left with the
question of what the purpose of the pupil response is.
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Why is it that “higher” level processes like mental effort
should be connected with the neural systems that control a
light reflex, all indexed by pupil size? One way to explain
the commonalities is by the underlying neurophysiological
processes that are based on an activation-inhibition circuit.
The LC modulates the activity of the Edinger—Westphal
nucleus by inhibiting it — hence reducing the activity that
leads to constrictions of the pupils — while at the same
time providing excitatory signals to sympathetic circuits that
directly stimulate the dilator muscles of the pupil. In other
words, whenever the ascending arousal system — of which
the noradrenergic LC is a key center — becomes active (e.g.,
because of cognitive or affective processing) the pupil dilates
in proportion of the LC activation (e.g., Alns et al., 2014).
Another way to think about commonalities is in terms of
behavioral relevance. The pupil is part of an active visual
system, which helps us to better explore or detect stimuli so
that larger pupils provide higher sensitivity for faint stimuli
or when illumination is low, whereas smaller pupils provide
sharper acuity. Such an over-arching principle helps us to
understand the connection between low and medium level
pupillary responses, such as attentional orienting, and sev-
eral scholars (e.g., Laeng & Alnaes, 2019; Mathot, 2018)
have pointed out that, even with respect to higher level pro-
cesses, the nervous system, as a whole, should prime itself
for an optimal response. For example, when the system is
already nearer to load capacity, increased pupil size (due
to load) might act as a compensatory mechanism for mak-
ing sure that important changes in the environment are not
missed. A possibility is that, at some evolutionary point,
enlarging the pupil would enhance sensitivity to numerosity,
which could confer advantages in a prey/predator situation
(e.g., Castaldi et al., 2021). Of additional relevance, at least
in mice, it has been shown that pupil dilation alters visual
sensitivity via a switch from rod to cone-dominated visual
responses — a result of the change in the amount of light
hitting the retina (Franke et al., 2022). This alteration in
spectral sensitivity is causally related to pupil size changes
and naturally occurs during periods of increased behavioral
activity, in this case locomotion, and is thought to be a
behaviorally relevant mechanism to aid in predator detection
(Franke et al., 2022). Further research and theorizing are,
of course, required in humans. To that end, a better under-
standing of the relationship between pupil dynamics and
other ocular motor behaviors will help in forming a more
integrated view of the nervous system. Similarly, alternative
analysis techniques may help to elucidate or differentiate spe-
cific pupillary functions.

The relationship between pupillary activity
and other oculomotor behaviors

As might be implied by the seemingly critical role of the
superior colliculus (SC) described above, changes in pupil
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size have a special relationship to other oculomotor behav-
iors, such as saccadic movements and blinks.

Saccades and microsaccades

Visual processing is not uniformly distributed throughout
the visual field, which makes it necessary that the eyes
move to acquire visual information via foveation. Saccades
are rapid, conjugate eye movements that occur about 2—
3 times per second. Visual processing mostly occurs in
between two saccades, when the eyes are seemingly still.
However, eye movements are always present and three types
of fixational eye movements have been defined: slow move-
ment (drift), superimposed by high-frequency jitter (tremor),
interrupted by high-velocity movements (microsaccades).
Fixational eye movements, traditionally regarded as noise,
have been demonstrated to strongly contribute to high visual
acuity (see Rucci & Poletti, 2015 for a review of these con-
cepts). Here, we focus on saccades and microsaccades, which
seem to share the function of foveating regions of interest
(Rucci & Poletti, 2015).

Both saccades and microsaccades are controlled by the
superior colliculus and are linked to shifts in covert atten-
tion (Hafed et al., 2009). The SC — more specifically, the
intermediate layers of the SC (SCi) — are thought to be
an integral part of the pupil dilation response circuit (Joshi
etal., 2016; Wang et al., 2014). The SCi receives input from
visual, auditory, somatosensory, and fronto-parietal areas, as
well as from the superficial layers of the SC (which only
receive early visual input). In line with the notion that the SCi
is crucial for multi-sensory integration, (Wang et al., 2017)
find that pupil dilation, saccade response time, and microsac-
cade inhibition are correlated variables, and all exhibit greater
responses in audiovisual orienting tasks, compared to solely
audio or visual tasks. In earlier studies, they showed that
microstimulation of the SCi (but not superficial SC layers)
in monkeys led to transient pupil dilation (Wang et al., 2012,
2014; Wang & Munoz, 2014) and argue that the SCi acts as
a coordinator of orienting responses, which can be measured
via pupil, saccades, and microsaccades (Wang et al., 2017).

However, while saccades, microsaccades, and pupil size
changes become correlated in response to a salient stimulus,
it is not necessarily the case that they correlate at rest. For
instance, Joshi et al. (2016) report that during stable fixation
only a small proportion of the measured pupil events con-
tained microsaccades and that those microsaccades did not
occur with any consistent phase angle to the timing of pupil
change events. As always, context is an important factor to
consider.

The relationship between ocular motor behaviors likely
changes as a function of the task at hand, tonic level of
arousal, and other autonomic factors, such as the heart-
beat. It has recently been shown that both microsaccades
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(Onl et al., 2016) and changes in pupil size are coupled
to heart rate (Wang et al., 2018). Further, Ohl et al. (2016)
posit that heartbeat-evoked neural responses are capable of
creating fluctuations in the oculomotor map of the SC. Such
fluctuation would in turn affect the generation of saccades,
microsaccades, and possibly changes in pupil size. Indeed,
some have used variations in pupil size to reconstruct the
heart rate rhythm and shown that pupil size variation is syn-
chronized with very low frequency (0.0033—0.04 Hz), low
frequency (0.04—0.15 Hz), and high frequency (0.15—0.4
Hz) cardiac rhythms (Park et al., 2018).

Blinks

Spontaneous blink generation has been linked to striatal do-
paminergic functioning (Colzato et al., 2009; Esteban et
al., 2004; Jongkees & Colzato, 2016), cf., (Sescousse et
al., 2018; Dang et al., 2017), with disruptions in typical
eyeblink patterning observed in clinical conditions involv-
ing timing and motor impairments (Deuschl & Goddemeier,
1998; Esteban et al., 2004; Karson et al., 1990; Nakano et al.,
2011; Shultz et al., 2011; Tavano & Kotz, 2021). Blinks are
thought to index endogenous attention; they increase in fre-
quency in conjunction with an increase in Default Mode
Network activity and decrease in Dorsal Attention Network
activity (Nakano, 2015; Nakano et al., 2013). Blinks are
known to occur at structurally salient breaks during reading
and speech (Cummins, 2012; Hall, 1945) and to be indi-
cators of cognitive event chunking, as well as cognitive load
(Siegle et al., 2008; Stern et al., 1984). Blinks increase whilst
speaking, in conjunction with increased facial motor activity
(Orchard & Stern, 1991) and are likely to become synchro-
nized between speakers (Nakano & Kitazawa, 2010).

With regard to pupil size, Siegle et al. (2008) show that
the proportion of blinks at any given moment in time (aver-
aged across trials, per sample) closely mirrors the pupillary
response, during a cognitive load task. Their data suggest that
an increase in blink activity precedes an increase in pupil size
and that instances of greater blink activity tend to occur when
the pupil signal is stationary in terms of acceleration (i.e., not
accelerating or decelerating, in other words, when the sec-
ond derivative of pupil size nears 0). A sustained increase
in proportion of blinks was observed following pupil dila-
tion. Interestingly, Siegle et al. (2008) find that blinks at the
beginning of a trial are correlated with pupil dilation at a later
stage (4-10s later in a Stroop task), suggesting that the cog-
nitive load indexed by pupil dilation is proportional to the
blink response at initiation of the cognitive event. Though
blinks and pupil size changes were correlated, Siegle et al.
(2008) suggest that they provide unique information, with
blinks being more sensitive to event onsets and offsets, and
pupil dilation more sensitive to on-going processing.

Such a finding of blinks correlating with the pupil signal,
even seconds later, is in line with the more recent work of
Klingner et al. (2011) and Knapen et al. (2016). Knapen et al.
(2016) show that blinks explain approximately 40% of the
variance in pupil data, and show pupil effects lasting approx-
imately 5s after a blink. In their data, a blink causes a rapid
decrease in pupil size, followed by a seconds-long increase.
To correct for this, they model the pupillary response to a
blink with a double gamma function, find instances of blinks
in the pupil data, and deconvolve the blink-related pupil
response from the data. Klingner et al. (2011) also determined
that blinks affect the timing and magnitude of the pupil signal,
and show differences in the pupillary response to the blink
which depend on the duration of the blink. To counteract
the possibility that blinks were systematically biasing their
pupil data, they grouped blinks by duration and calculated
an average pupillary response for each blink duration, which
they then subtracted from the relevant portion of their pupil
data. This average response typically consisted of a brief
dilation, followed by constriction, followed by an approxi-
mately 2-s return to baseline pupil size, though the timing and
magnitude of the changes were a function of blink duration.
Interestingly, Klingner et al. (2011) report that their pupil
results remained the same whether using their blink correc-
tion method as described above or only using standard blink
interpolation. Similarly, Zénon (2017) reports a significant
negative relationship between pupil dilation and blinks (i.e.,
pupil constriction after a blink) but shows that, even when
accounting for such correlations in a statistical model, the
main results related to pupil dilation and arousing images
are not affected. Quirins et al. (2018) also find little differ-
ence in their results depending on whether they reject blink
trials or interpolate pupil data during blinks.

In sum, these studies speak to the importance of at least
checking the relationship between blinks and pupil dilation
and quite possibly correcting for it using a subtractive or
regressive technique. In particular, for tasks in which blink
activity is highly correlated with stimulus events in one
condition but not another, not correcting for blinks may sig-
nificantly bias the results. Nonetheless, a balance between
theoretical considerations and pragmatic ones must be struck.
We discuss such issues further in the pre-processing consid-
erations below.

Pre-processing pupil data

We outlined the neural underpinnings of changes in pupil
dynamics, as well as the relationship between changes in
pupil size and other oculomotor behaviors to stress the impor-
tance of understanding what exactly is being measured when
recording pupil size and what can and cannot be inferred
from changes in pupillary activity. However, equally impor-
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tant is to note that the insights one can gain from pupillometry
are constrained by the analysis techniques one uses. Before
arriving at analysis approaches, a consideration of pre-
processing steps is necessary. However, we emphasize that
the pre-processing steps one chooses should be dependent
on one’s planned analyses. For example, many time-series
based techniques discussed below require the pupil signal to
be evenly sampled and contiguous. This means that pupil data
during blinks, saccades, or other moments of data loss should
be imputed or interpolated. Further, all pupil data for all par-
ticipants should be at the same sampling rate and ideally
contain the same number of samples. However, depending
on the eventual statistical model one wishes to use, some
pre-processing steps might become unnecessary: for exam-
ple, gaze position (van Rijj et al., 2019) or blinks (Zénon,
2017) can be entered into statistical models as co-variates,
rather than corrected for in the pupil signal; interpolation
and filtering should be avoided when using GAMMs, as they
increase autocorrelation in model residuals (van Rij et al.,
2019; Wood, 2020). Below, we outline possible components
of a possible pre-processing pipeline — not a required list.
We provide basic details about each possible pre-processing
operation and discuss considerations with respect to even-
tual analysis techniques. Regardless of the pre-processing
steps implemented, we cannot stress enough the importance
of visualizing data and checking for outlying samples, spikes,
etc. In the accompanying code tutorial, readers can explore
pupil data for different participants’ and think through poten-
tial issues and sources of noise (see code tutorial section
Explore basics of time series).

Discarding trials in which too many pupil data
points are missing or noisy

Missing data occurs when the pupil size goes to zero, result-
ing either from a blink or from the eye-tracker’s loss of the
pupil. Noisy or problematic data are typically registered via a
flag output by the eye-tracker for each pupil sample indicating
whether it is valid or invalid, or, alternatively, a continuous
measure of tracking quality or confidence (N.B. eye-trackers
handle this procedure differently, depending on the manufac-
turer’s choice and scientific tradition). Missing and invalid
pupil data should be set to “not a number” (NaN) for future
pre-processing (i.e., interpolation). One way of automating
such a process would be to set a threshold-based rule, like,
“if greater than x% of the pupil data are missing, the run is
discarded.” Note that there is no decisive rule for percent
missing data permissible; note also, that, if baseline periods
are being used, missing data may need to be evaluated sep-
arately for baselines vs. trials (see also “Baseline correcting
pupil data”).
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Removing improbable data

Mathot et al. (2018) suggest setting a cutoff threshold (based
on visualization of pupil size distributions, not predetermined
rules like 2 standard deviations) and removing outlying data
points. Perhaps more broadly applicable, Kret and Sjak-Shie
(2019) suggest removing outlying pupil data points that 1)
contain unrealistic changes in dilation speed or 2) are iso-
lated from surrounding data (e.g., a sparse data point that
my occur in the midst of a blink when the eye-tracker erro-
neously measures the pupil for a few samples or tracks other
elements of the face, like eye lashes, especially if the partic-
ipant has applied mascara). The authors provide equations
and code for enacting these cleaning procedures. Please note
that though the word “removing” is used, we do not literally
mean removing those data points and shortening the signal,
we mean setting problematic data points to “empty” or NaN.
These empty data points can later be interpolated.

Interpolating missing data

Interpolation involves fitting a line, or quadratic function,
to fill in missing data between existing data points. If not
due to poor recording quality or participant movement, there
will always be brief periods of loss, or extreme values, in
the pupil signal due to blinks. Typically, these periods, plus
some padding on both sides (usually 50-200 ms), are set to
NaN (see section above), then interpolated. Whether to use
linear or cubic spline interpolation is a matter of personal
preference, as there seems to be no consensus in the extant
literature. While fitting a quadratic function (cubic spline
interpolation) may more closely mimic the natural fluctu-
ations of the pupil, it can also lead to a wider variety of
introduced artifacts as compared to the fitting of a simple line.

Note, however, an alternative to interpolation would be
to leave all missing samples as NaN, especially if one only
needs to compute the average pupil dilation response in an
epoch, or if one plans to use GAMMs. On the contrary, many
signal processing techniques (e.g., a fast Fourier transform)
require continuous data and cannot handle a time series with
empty samples as input. Therefore, in such cases, interpola-
tion becomes a necessity. Readers are thus reminded to think
carefully about their particular use case before applying such
corrections, and to visualize any signal transformations they
employ, such as interpolation, to be sure that no artefacts
have been introduced in the process.

Modeling the pupillary response to blinks
and saccades using regression

As foreshadowed by the discussion of the relationship
between pupillary activity and other oculomotor behaviors
above (“The relationship between pupillary activity and other
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oculomotor behaviors”), it is important to control for a vari-
ety of other oculomotor parameters when analyzing changes
in pupil size. One solution is removal and/or interpolation
(outlined above). Another solution is Knapen et al. (2016)’s
method to model the pupillary response to both blinks and
(micro)saccades and deconvolve those stereotyped responses
from the pupil data (for more details about the basics of con-
volution see “Pupillary response function”). Because they
show that the effect of blinks and saccades on pupil size
lasts approximately 5s, a method like interpolation will not
remove the long-term artifact caused by these oculomotor
behaviors, making the deconvolution method a possibly nec-
essary step (notice that interpolation should still be conducted
beforehand). For those interested in implementing Knapen
etal. (2016)’s finite-impulse-response fitting method, Python
code and tutorials are provided alongside the original paper.

As Knapen et al. (2016)’s artifact removal method has
only recently been suggested, it is not yet widely adopted.
One potential issue is that one needs enough observations
of blink and saccade-related pupil activity to estimate a valid
deconvolution kernel for those events (i.e., to build a model of
saccade and blink-related pupil activity, respectively). Such
models will be difficult to estimate if participants rarely blink,
for example. One may need to employ specific experimental
design choices to ensure enough blinks for a valid model (e.g.,
allowing participants to blink freely, having a long baseline
period in which blinks are sure to occur, etc.). Pragmati-
cally speaking, if blinks or saccades rarely occur, they are
probably negligible. Even though they may add measurable
noise to the pupil signal, such noise may make no signif-
icant difference in terms of statistical results. Nonetheless,
the relative frequency and magnitude of blinks and saccades
should be assessed. The most important check is that blinks
and saccades do not occur in some experimental condition
with greater frequency and magnitude vs. another, thus pos-
sibly biasing pupil results and interpretations. If significant
differences exist for blinks or saccades in certain conditions,
those should be reported and the researcher should be careful
to control for such confounds in the pupil data.

Filtering

A high-pass filter can be used to remove large-scale (low fre-
quency) drift in pupil data, while a low-pass filter can be used
to remove physiologically irrelevant high frequency noise in
the data. However, with either high- or low-pass filtering, it
is important to be sure that the filtering functions being used
do not affect the phase of the pupil signal or create ringing
artifacts, which might later appear as activity of interest (see
de Cheveigné & Nelken, 2019 for a discussion of this issue
and filtering advice). Similarly, this artifactually introduced
autocorrelation in the signal can be a problem for some statis-
tical modeling approaches one might later wish to use (e.g.,

GAMMs; see van Rij et al., 2019). It is also important to note
that low frequency information in the pupil signal might actu-
ally be of interest, since it may signal changes in tonic activity
in the LC-NA system that is meaningful in terms of cogni-
tive processing. In this case, very low or no high-pass filtering
should be employed (e.g., for infraslow activity see Blasiak
et al. (2013); Okun et al. (2019); for time-on-task effects,
see “Accounting for time-on-task™; or for detrended fluctu-
ation analysis see “Detrended fluctuation analysis (DFA)”).
Additional examples and discussion can also be found in
accompanying code tutorial section Filtering.

Gaze correcting pupil data

When gaze changes occur during a task (e.g., during free-
viewing or reading tasks), itis of critical importance to correct
for the pupil foreshortening error (Hayes & Petrov, 2016;
Gagl et al., 2011; Brisson et al., 2013) — that is, when the
pupil falsely appears to have changed size due to the now
different angle of the pupil to the eye-tracking camera, as
a function of gaze position change. The correction tech-
nique of Hayes and Petrov (2016) is fairly straightforward
but requires taking measurements of distances from the eye-
tracking camera to the eye, to the screen, etc. to be used
in calculating an appropriate model. Though such measure-
ments could be easily computed in most cases, they might
not be possible if the data are being accessed in an open-
source context that has not documented such information.
In the event that these measurements are unknown or par-
ticipants are constantly presented with a fixation cross and
nothing else on the screen (e.g., a purely auditory task), an
alternative to gaze correction would be to remove any peri-
ods in which the eye is greater than a few degrees away from
the center fixation cross (Korn & Bach, 2016). If the task
only involves changes in horizontal gaze position (e.g., dur-
ing text reading), then the synthetic correction function of
Gagl et al. (2011) can be applied. Alternatively still, rather
than correcting pupil size in the pre-processing stage, one
can include x and y gaze position as regressors in a later sta-
tistical model (see e.g., van Rijj et al. (2019), who include
x and y gaze as nonlinear interaction terms in a generalized
additive mixed model). Similarly, based on gaze position,
Madsenetal. (2021) regressed out both local and global lumi-
nance from every subject’s pupil data while watching a video.
The global luminance was the luminance of the entire frame,
while the local luminance was a small, defined radius around
the point of gaze. Note, however, that in typical cognitive
psychology pupillometry experiments, the general recom-
mendation is for eye position to remain constant between
conditions (please see Mathot & Vilotijevic, 2022 for detailed
discussion of relevant experimental design principals).
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Normalizing pupil data

To compare variance in the pupillary time course related to
the task at hand, normalizing pupil can be useful. Several
studies normalized their data in some way — for example,
by calculating percent change from mean pupil size over
the course of a trial (e.g., Lavin et al., 2014), by z-scoring
the pupil data for each trial (e.g., Colizoli et al., 2018a;
Kawaguchi et al., 2018; Fink et al., 2018; Wainstein et
al., 2020), or by using dynamic range normalization (e.g.,
Piquado et al., 2010 employed a pre-test to ascertain differ-
ences in pupil response ranges between younger and older
adults and correct trial data based on these individual ranges).
Perhaps the most critical aspect of normalization is to clearly
report the equation used so that others can easily replicate
results or understand how results might diverge based on
different normalization choices. To provide a few concrete
examples: Fink et al. (2018) report the following equation,
normalizing based on the mean and standard deviation of the
trial:

;X=X

T S()

ey

while Piquado et al. (2010) report the following equation,
normalizing based on the minimum and maximum range of
the pupil:

, X — Xmin

X =ML 100 )

Xmax — Xmin

In deciding about data normalization, one should consider
what kind of variability is relevant for the research question
athand, and operate accordingly. Again, later statistical mod-
eling approaches that include random effects for individuals
may preclude the need to normalize data.

By definition, a normalization procedure will convert
the pupil data from the raw measured units to arbitrary or
standardized ones. While such a transformation can have
advantages for cross-participant or group comparisons, it also
has some downsides. For example, the true pupil diameter
value in millimeters may provide additional insights as to
which type of process underlies pupillary change. Steps up
or down of light intensity can change the pupil with con-
strictions as small as one third of its diameter or dilations
that are twice as large as the diameter of the resting state.
Such pupillary responses to light increments or decrements
are very dramatic, compared to pupillary change due to psy-
chological factors (like mental work or emotional states),
best observed when luminance is kept constant. Psychologi-
cal changes are rarely greater than 0.5 mm? or approximately
15 to 20% increments from rest. Moreover, given that pupil
size can range between 2 and 8§ mm (Watson & Yellott, 2012)
and that pupil changes driven purely by sensory information
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(e.g., luminance or nearness) are greater than psychosen-
sory responses makes meaningful checking the true values
in millimeters (if available), since these may be an impor-
tant data quality check (Mathot, 2018). Pupils being part of
human anatomy, there is an obvious advantage in expressing
pupil size according to real-world dimensions, as is recom-
mended by Steinhauer et al. (2022). However, though some
eye-trackers output pupil size in millimeters, others output
pupil size in arbitrary units. In the case of arbitrary units,
some algorithms to convert to mm exist, if particular param-
eters are known (e.g., distance to the screen; see Hayes &
Petrov, 2016, Fig. 4), otherwise, normalizing can offer the
possibility to put pupil data recorded in arbitrary units onto
the same scale across participants.

Baseline correcting pupil data

While normalization re-scales a signal based on measured or
statistical constants, baseline-correction refers to altering the
pupil signal based on measurements taken during a baseline
period. Such correction does not necessarily change the unit
of pupil measurement (i.e., it can still be in millimeters), but
it does make the reported pupil measure relative (to the base-
line). The assumption is that, by taking the mean or median
of the pupil size during the pre-stimulus period and subtract-
ing (or dividing) it from the stimulation period, aspects of
the pupil signal unrelated to the stimulus are removed. Such
“aspects” might be person-specific (e.g., general arousal
level) and/or stimulus-specific (e.g., luminance). However,
Mathét et al. (2018) show through a series of simulations that
baseline correction can create large distortions in the mea-
sured pupil data (particularly if a blink occurred during the
baseline period) and bias statistical results. Ultimately, they
suggest using a subtractive, rather than divisive, baseline cor-
rection, as it is less susceptible to artifact. They also provide
suggestions for visually inspecting baseline-corrected pupil
data to check for artifacts (e.g., rapid changes in pupil size
occurring in less than 200 ms following the baseline period
are suspect). Similarly, Laeng and Alnaes (2019) suggest a
subtractive method and advise against percentage-based cor-
rections, in line with the first generation of researchers in
pupillometry (Beatty, 1977). See also Reilly et al. (2019) for
further discussion of baseline procedures and the need for
standard procedures.

An alternative to baseline-correcting the pupil data of
interest, is to include baseline pupil size as a regressor in
a final statistical model (van Rij et al., 2019). This approach
circumvents the possible issues noted above and is an ele-
gant means to account for a variety of possible baseline
effects. For example, Widmann and colleagues illustrate how
such an approach unites divergent findings related to the
effect of baseline pupil diameter and luminance levels on
subsequent pupil diameter changes (Widmann et al., 2022).
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Combined with a factor analysis separating the pupil trace
into parasympathetic and sympathetic components, they
show that baseline pupil size has a negative linear relation-
ship with parasympathetically mediated pupil size changes,
while the sympathetic component exhibits an inverted U-
shaped function. They also suggest that, given the effect of
luminance level on the possible range of evoked pupil sizes,
pupil data recorded at different luminance levels cannot be
directly compared and should always be reported.

Accounting for temporal lag

One possible limitation of pupillometry is the lag between
external and/or cognitive events and the subsequent change
in pupil dynamics. Such lag is still less than the lag in
blood-oxygen level dependent (BOLD) signal in functional
magnetic resonance imaging (fMRI), but is considerably
larger than the lag of electroencephalographic (EEG) or
magnetoencephalographic (MEG) signals. While such a lag
should not deter one from conducting pupillometry studies, it
should be carefully considered in experimental design (e.g.,
making sure there is enough time between the presentation
of any two successive events for the pupil to return to base-
line) and/or analyses (e.g., correcting pupillary responses
which may have summed in time due to events occurring
rapidly; see e.g., Wierda et al. (2012) and “Pupillary response
function”). To date, a few main approaches exist for handling
lag in pupil analyses: (1) using convolution or deconvolution
with a pupillary response function (PRF), (2) calculating the
first derivative of the pupil signal, or (3) separately analyz-
ing a fast and slow pupillary component. We discuss all three
approaches in turn.

Pupillary response function

Given the various possible top-down and bottom-up influ-
ences on changes in pupil size, it is difficult to ascertain
which external or cognitive events drive pupillary changes,
and at what time lag. To address this issue, Hoeks and Lev-
elt (1993) asked participants to listen to auditory tones and
respond with a button press. They fit the averaged pupillary
responses of participants with an Erlang gamma function.
The function was estimated to have parameters m = 1 (lin-
ear exponent), n = 10.1 + / — 4.1 (numbers of steps in the
signaling cascade) and tmax = 930ms + / — 190ms (latency
of maximum pupil response). Such a function can be used to
model how the pupil will respond, given some input stimu-
lus. However, with only eight participants, during one type
of task, the parameters of this pupillary response function
(PRF) remain to be more widely studied in different contexts
and with a larger number of participants.

More recent reports have noted that, when no motor
response is required, the maximum pupil response latency is

around 500 ms, and that, when a motor response is required,
two peaks are present in the pupil signal, the first around 750
ms and the second, bigger peak around 1400 ms after tone
onset (McCloy et al., 2016). Still others continue to refine
PRF models by adding free parameters into the response
function (Fan & Yao, 2010) or disregarding the biophysi-
cal reality and finding the best fitting model (Korn & Bach,
2016). Additionally, recent work shows that the time to maxi-
mum pupil dilation varies across participants but is consistent
within participant, suggesting the need to fit a PRF separately
for each participant (Denison et al., 2020), rather than using
one canonical model for all participants.

The advantage of using a PRF is that it allows one to either
forward (convolution) or reverse (deconvolution) model the
predicted pupil time series or the correlated cognitive or stim-
ulus events, respectively (see Fig. 1). The (de)convolution
technique has been used in a variety of studies to show that the
pupil reflects fluctuations in attention and decision-making
at a fine temporal resolution; see for example: Wierda et al.
(2012); de Gee et al. (2014); Kang and Wheatley (2015);
Korn and Bach (2016); Korn et al. (2017); Fink et al. (2018);
Denison et al. (2020). Generally defined, convolution is the
integral of the product of two functions — in our case, our two
times series of interest, with one reversed and shifted along
the length of the other. It could also be thought of as the mov-
ing dot product calculated at each moment in time when one
signal is reversed and shifted in time along the other. Still also,
convolution can be thought of as a type of filter or weighting
function. For example, in Fig. 1A, we see the amplitude of
an acoustic signal. When we convolve that signal with our
PREF, or “kernel,” we see that the output signal is now much
lower in frequency content (i.e., high frequencies have been
removed and the input signal is now weighted by the response
properties of the pupil; in other words, in the temporal range
of the pupil). To help readers gain a deeper understanding
of (de)convolution, we provide an interactive demo in the
accompanying code tutorial; see code sections Convolution,
Building intuition about how convolution works, Deconvo-
lution, and Predicting pupil data.

Alternative to using pure convolution, one could do the
same type of analysis by optimizing a fit between the
two signals, using regression-based techniques. Please see
“Temporal response function” for more details about such
an approach and for more information about using the pupil-
lary response function as a dependent measure, rather than
as a means to account for lag between pupil activity and the
signal of interest, as explained above.

Pupillary difference signals
Depending on the research question, the number of pupillary

changes, or the time points of change, may indeed be more
interesting than evoked pupil size. For instance, in the sim-
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Fig.1 Example of using
convolution (A) or
deconvolution (B) to predict the
recorded pupil trace or
precipitating events,
respectively. Note that one could
use the canonical pupillary
response (PRF) for each
participant or estimate the PRF
individually for each participant.
Alternatively, estimating the
PRF could be the goal of
analysis in its own right (see
“Temporal response function”
below)

ulated data plotted in Fig. 3C, The first and second traces
show opposite polarity of pupil size (i.e., when one increases
in size, the other decreases); however analyzing the deriva-
tive of both signals would show similar instances of pupillary
change. Further, analyzing the derivative of pupil size allows
one to examine instances of pupillary change which occur
on a faster time scale. In relation to preceding events, de
Gee et al. (2020) show that, in humans, the first derivative of
pupil change can be observed as early as about 240 ms after
stimulus onset, bringing the pupil time series onto a much
faster timescale, potentially more suitable for certain types
of analyses or research questions.

Beyond increasing the temporal resolution of the pupil
signal, pupil derivative metrics may be interesting dependent
measures in their own right, for instance in classifying clini-
cal conditions (Fotiou et al., 2009), predicting lapses in task
performance (van den Brink et al., 2016), or studying atten-
tion to auditory sequences (Milne et al.,2021). One could also
count the number of changes in pupil size between conditions
as a dependent measure, as has been done in both macaque
(Joshi et al., 2016) and human studies (Jagiello et al., 2019;
Schneider et al.,, 2016). Note that most of the analysis
techniques discussed below in “Analysis techniques” can be
conducted on the standard pupil signal or its derivative(s).

Pupillary components
Because the pupil is driven by both parasympathetic and

sympathetic activity, another approach to understanding the
temporal lag or dynamics in the system is to separate the
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pupil signal into different components, typically using princi-
pal components analysis (PCA; e.g., Steinhauer & Hakerem,
1992; Steinhauer et al., 2004). Such an approach has been
used, for example, by Widmann et al. (2018) to show that
emotionally arousing music acts on pupil dilation specifically
through the sympathetic branch. In addition to segregating
by sympathetic and parasympathetic, one could also sepa-
rate the pupil signal into components thought to be driven
by cognitive events, such as an early attentional orienting or
sensory component vs. a later executive control one (see e.g.,
Geva et al., 2013; Geng et al., 2015). Note that PCA is typ-
ically used on the pupil dilation response over a somewhat
short time window (e.g., 3s), and to date has not been used
over longer time scales. Nonetheless, we discuss it here as
one might still wish to employ some of the time series meth-
ods discussed below on these short component traces, or to
attempt application of PCA to pupil time series of longer
duration.

Accounting for time-on-task

Prolonged task performance results in changes in tonic pupil
diameter (i.e., time-on-task effects). For example, van den
Brink et al. (2016) showed that time-on-task can impose rela-
tionships between pupil diameter and task performance that
obscure the more nuanced effects of task on pupil dilation.
Thus, in addition to revealing interesting phenomena, such
as lapses in attention (Kristjansson et al., 2009) or changes
in pupil size decrements depending on emotional content of
auditory text excerpts (Kaakinen & Simola, 2020), it may be
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important to control for time-on-task effects in pupil diameter
analysis over long time scales.

One way to take into account such effects is to apply a slid-
ing window to the behavioral performance (e.g., accuracy
or response times) and pupil data and to extract the aver-
age performance as well as pupil diameter and/or velocity
(i.e., the first order temporal derivative) within each window.
To examine whether the pupillary signal shows time-on-task
effects, van den Brink et al. (2016) fitted a straight line
to the pupil time series obtained by the moving average
and used the slope of the fitted line as an index of lin-
ear trend over time. The distribution of slopes across task
blocks for each participant was then compared to zero using
a t test. Relationships between the time series of pupillary
and performance measures can be examined by comparing
these measures with multiple regression (see e.g., van den
Brink et al., 2016). Including quadratic regressors in sta-
tistical models can reveal non-linear relationships between
variables, such as the typical Yerkes—Dodson (i.e., the
inverted U-shaped) relationship between pupil dilation and
task performance, which is compatible with the adaptive gain
theory of LC-NE function (Aston-Jones & Cohen, 2005).
Such effects may be obscured if the time-on-task effects are
not statistically partialled out.

Related to time-on-task, one may also wish to consider
the sleepiness of participants. For example, Liidtke et al.
(1998) analyzed slow (0.0—0.8 Hz) pupillary oscillations as
indices of participants’ fatigue. They detected slow waves by
applying a fast Fourier transformation for consecutive seg-
ments of 82 s over the entire 11-min recording and plotted the
power spectrum estimate for each data segment. Slow oscil-
lations (fatigue waves) were more prominent for participants
who scored high on self-rated sleepiness. They used a pupil-
lary unrest index (PUI: cumulative changes in pupil diameter
based on mean values of consecutive data sequences) to fur-
ther characterize the differences between alert and sleepy
participants. The median power and PUI scores were both
higher in the sleepy as compared to the alert participants.
Both slow oscillations reflecting fatigue and changes in pupil
diameter over time-on-task thus increased when participants
were sleepy. Similar observations were made in a seminal
paper by Lowenstein et al. (1963). Note that the PUI may also
be an interesting dependent measure in its own right, depend-
ing on the research question (see e.g., Schumann et al., 2020)
and that that these low frequency oscillations have alterna-
tively been referred to as hippus (Bouma & Baghuis, 1971)
or fatigue waves (Lowenstein et al., 1963). These < 0.15 Hz
oscillations are thought to be mediated mostly by parasym-
pathetic activity, though Schumann et al. (2020) also show a
relation with sympathetic measures, namely, the amplitude
of pupillary responses, vagal heart rate variability, and spon-
taneous skin conductance fluctuations.

While one solution to account for time on task would
be including regressors in statistical models, other solutions
are also available. van den Brink et al. (2016) found that
the derivative of pupil diameter (see ‘“Pupillary difference
signals”) was robust to time-on-task effects, suggesting that
this measure offers a potential marker of attentional perfor-
mance that does not require correcting for time on task.
Additionally, working with shorter (e.g., 1s) epochs and
z-scoring them accounts for time-on-task effects (see e.g.,
Madore et al., 2020). Another alternative is to restrict the
analyses to pupillary responses from a subset of trials that are
not affected by the time on task (see e.g., Aminihajibashi et
al., 2020), or to use a high-pass filter to correct pupil drift over
time (see “Filtering”). Yet another approach is to think about
time-on-task effects as a special case of temporal dependency
in the signal; in this case, statistical models that account
for autocorrelated errors can be employed (see “Single trial
models” and van Rij et al. (2019)).

Analysis techniques

Whether analyzing the raw pupil trace, pupil derivative, pupil
components, or (de)convolved pupil signal, the eventual goal
is to characterize similarities or differences between pupil
responses in different conditions, within / between partic-
ipants, with respect to a given stimulus, or with respect
to predicted pupil data (see Fig. 3 for examples). To date,
most pupillometry papers have compared mean pupil size or
the pupil dilation response across different epoched condi-
tions of interest. This section first outlines those traditional
methods based on means, before moving into ways to ana-
lyze single-trial pupil signals in both the time and frequency
domains, in linear and non-linear ways. While the overall
focus and interest of this paper is on signal-to-signal analy-
sis approaches (e.g., comparing the continuous pupil signal
to a continuous speech or music signal; see Fig. 3), it is criti-
cal to understand epoch-based approaches when considering
whether and when to use alternative, continuous, signal-to-
signal ones. Additionally, with an appropriate experimental
design and planned statistical model, some signal-to-signal
measures may be used within epoch-based frameworks.
Table 2 provides a summary of each of the signal-to-signal
analysis techniques we discuss below and the type of question
they can help to answer. In the subsection for each technique,
we aim to provide (1) a conceptual understanding of the math-
ematical concept, (2) its application in pupillometry, and (3)
references to key papers, tutorials, or code toolboxes to learn
more about the technique. All code required to recreate every
figure in the paper and to step through the analysis techniques
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Table 2 Signal-to-signal analysis techniques and the general question each can address

Method Question

Correlation

Cross-Correlation
them?

Inter/Intra subject correlation

To what degree do the signals change together?

To what degree do the signals change together, when allowing for different temporal lags between

To what degree do the pupil traces across participants, or within a single participants’ repeated

exposure to the same stimulus, change together?

Reverse correlation
Regression

Dynamic time warping
in time?

Inter-site phase clustering
Magnitude squared coherence
Detrended cross-correlation

Cross-recurrence quantification

Which events lead to moments of change in pupillary activity?
How well can we predict one signal given another?

How (dis)similar are the signals with respect to changes in amplitude, when allowing for warping

How well are the signals aligned in phase, at specific frequencies, irrespective of power?
How well are the signals aligned in phase, at specific frequencies, when accounting for power?
Do the signals exhibit similar scale-free dynamics?

Do subsections of the signals repeat in a coupled way?

with the provided toy data set, is available on GitHub and on
Code Ocean.!

A brief review of epoch-based approaches

The first and still widely used method for analyzing the pupil
diameter (see Laeng & Alnaes, 2019 for a review) either
disregards pupil data as time series or approximates it by
dividing the pupil response into epochs or bins, typically
based on an equal number of samples (e.g., Bianco et al.,
2019; Bochynska et al., 2021; Zavagno et al., 2017). How-
ever, we wish to note that time is never really “ignored;”
rather, the researcher makes the implicit assumption that the
window over which they have averaged is the only relevant
temporal scale of interest, thereby discarding experiment-
wise changes in response patterns.

Many classical and influential studies used a statistical
approach which did not take pupillary changes over time
into account, although they also often presented graphs of the
pupil waveform as an illustration (e.g., Kahneman & Beatty,
1966; Ahern & Beatty, 1979a), relying on the readers’ abil-
ity to perform “eyeball statistics” (i.e., viewing that some
portions of the waveform belonging to different conditions
or groups of participants were visibly above or below one
another). In fact, some of the seminal studies by Hess and Polt
(1960, 1964), which introduced the method of pupillometry
into psychology, did not analyze the pupil with formal, infer-
ential, statistics but simply showed average data in either a
table or a bar graph (without any metric of error).

! GitHub: https://github.com/lkfink/pupil Tutorial, Code Ocean cap-
sule: https://codeocean.com/capsule/1209338/tree/v1
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Note that, though most previous studies solely analyzed
mean pupil size within an epoched window (sometimes
referred to as a task-evoked pupillary response, or TEPR),
recent studies have turned to a variety of new epoched
measures, such as maximum evoked dilation, latency until
maximum dilation, dilation velocity, sustained amplitude,
delay until return to baseline, or area under the curve of the
dilation response (see e.g., Wang et al., 2014). Visualizations
of some of these metrics are provided in Fig. 2, panel A. Pan-
els B and C highlight cases where specific measures differ. An
important point of interest to highlight is in Panel C, where
taking the mean pupil size in the 3-s epoch would yield the
same result for the two pupil traces (solid black and dotted
pink), perhaps leading a researcher to conclude that there
are no significant differences between the two conditions
that correspond to those two traces. However, visualiza-
tion of the pupil waveform clearly shows some potentially
important differences with respect to response onset latency,
peak dilation, dilation velocity, etc. We, therefore, urge
researchers to visualize their pupil waveforms, rather than
blindly taking means within epochs. Such visualization is
also important for considering the appropriate epoch dura-
tion to choose (Steinhauer et al., 2022).

While these other metrics can clearly provide alternative
insights, compared to means alone, they also present some
new challenges. For example, how to define peak pupil dila-
tion. In the black traces in each panel in Fig. 2 the peak pupil
amplitude is quite obvious; however, what about the pink
trace in Panel C — when exactly does the peak occur? Defin-
ing the peak also influences other possible metrics of interest,
such as latency to peak or peak to baseline latency, or a metric
not pictured here — referred to as peak-to-peak amplitude —
which would be relevant if the pupil exhibited a positive peak,
followed by a negative one. Thus, defining the peak is an
important problem. Looking for the maximum value of pupil
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Fig. 2 Examples of possible metrics of interest within a pre-defined
epoch (A). Panel B shows two simulated pupil traces, corresponding
to two hypothetical conditions of interest (solid black line vs. pink
line). These two traces represent an example of when the pupil dila-
tion response differs in mean and peak amplitude, duration of response,
area under the curve, etc., but not dilation velocity. Panel C, on the

size within the epoch is, of course, the easiest way to define
the peak amplitude; however such an approach can be suscep-
tible to artifacts. An alternative might be taking a mean within
the window of time between two changes in slope (see e.g.,
Reilly et al., 2019). However, it is also important to keep in
mind that averaging waveforms can result in distorted peaks
and latencies. Thus, finding peaks on the single trial level
then averaging, or constructing a statistical model with sin-
gle trial peak amplitudes included (see “Single trial models™),
may be preferable to finding the peak of an averaged wave-
form. In general, pupil dilation responses can be conceived
of analogously to event-related potentials (ERPs) in EEG
analysis. In the ERP literature, the possible pitfalls of mak-
ing assumptions from averaged waveforms (actually com-
posed of different underlying component waveforms) and
analyzing waveform peaks have both been discussed exten-
sively. Please see Luck (2014) for thorough explanations and
advice regarding best practices.

o°

T|mev(sec)

other hand, shows example pupil dilation responses with the same mean
amplitude but different response onset latencies, dilation velocities, and
sustained dilations. See ““A brief review of epoch-based approaches” for
more details. All data are simulated from a canonical pupillary response
function; see accompanying code tutorial section Fig. 2

If epoched analyses, with statistical inferences, are the
sole analysis aims of the reader, many recently developed
software tools will work off-the-shelf. For example, CHAP
(Hershman et al., 2019), written in MATLAB, provides an
easy-to-use and standardized starting point. CHAP can parse
input files from a variety of different eye-tracking systems
and can deal with basic pre-processing steps (outlying sam-
ples, interpolation during blinks, exclusion of outlying trials,
and exclusion of outlying participants). In a graphical user
interface (GUI), the user can define preferred parameters for
exclusion and subsequently define the trial and group level
variables that are relevant for analyses. CHAP will provide
epoch-based statistics and plots, with respect to the entire
epoch or to changes over time during the epoch. For those
wishing for programmatic usage of a MATLAB pupil pre-
processing toolbox, the recently published PuPl (Kinley &
Levy, 2021) offers both GUI and programmatic solutions,
and can also be used in the open-source MATLAB alterna-
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tive, Octave (Eaton, 2002). Further, it provides the possibility
to process epoched or continuous data, and to correct
pupil size for gaze position. For Python users, PyTrack
(Ghose et al.,, 2020) and Math6ét and Vilotijevi¢ (2022)
provide similar functionality, while gazeR (Geller et al.,
2020) or pupillometryR (Forbes, 2020) will do the job in
R.

Single trial models

Rather than calculating epoch averages per condition of inter-
est, and running statistics on these group averages, a more
recent trend in pupillometry is to model single trial pupil
data. While differences in means between populations or
conditions form the foundation of psychological research,
single-trial analyses — which take variance within subjects
into account — can provide insights impossible to observe on
the mean level (for a special issue on this topic, see Pernet
et al., 2011). For example, one could analyze fluctuations in
task performance over trials as a function of pupil diameter,
assess the relationship between stimulus and pupil for each
trial (see time series methods below), classify the task or
state a participant was in during each trial, etc. Importantly,
by reporting both within and between subjects and trials vari-
ance, a more full picture of the experimental process under
consideration can be obtained.

To date in pupillometry research, a variety of single-trial
analysis approaches have been used. In some cases, summary
statistics like the ones discussed above (e.g., mean pupil size;
peak dilation) have been calculated in some time window
and entered into a multi-level model, such as a generalized
linear mixed model (GLMM). Such approaches allow for
nested, hierarchical data and the possibility to model partic-
ipants, stimuli, participant-by-condition interactions, etc., as
random effects. They also allow one to control for co-variates
like baseline pupil size and gaze position. However, such an
approach still collapses information across time. For a dis-
cussion of the limitations of this single-value approach, see
Hershman et al. (2022). Possible alternatives include enter-
ing time bin as an additional predictor (and calculating the
same pupil metric repeatedly in different time windows), or
modeling the parameters of the pupillary time course from
the data of the full trial. This latter approach has multiple
potential instantiations. For example, some have used growth
curve analysis (GCA; see e.g., McLaughlin et al., 2022;
Wagner et al., 2019; McGarrigle et al., 2017; Geller et al.,
2019). Others have used generalized additive mixed model
(GAMM; see van Rij et al., 2019 for detailed review and
tutorial). And still others have used Bayesian approaches with
repeated ¢ tests across the time courses of two conditions (see
Hershman et al., 2022 for an overview). For further discus-
sion of the influence of time window selection on statistical
results, please see Peelle et al. (2021).
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Typically, such analyses are focused on differences
between conditions, measured via pupil diameter, whether
that is in a single-value framework, or with respect to
dynamic changes over time. Below, we switch focus to
approaches that can be referred to as “signal-to-signal”; that
is, analytic techniques that define some relationship between
the dynamic pupil signal and a dynamic stimulus of inter-
est (e.g., the amplitude envelope of music or speech). Such
approaches are different from the measures shown in Fig. 2
in that they define a relationship between the pupil and some
other signal(s), rather than being exclusively based on the
pupil signal alone. Please note that these approaches do
not represent final statistical models. The output from these
signal-to-signal techniques might be chosen to be calculated
in a time-binned or single-valued way and entered into any
number of final statistical models, based on the researchers’
chosen theoretical framework (e.g., frequentist, Bayesian,
linear, non-linear, etc.).

Correlation

Rather than looking at central tendency measures in epoched
time windows, there are instances in which one might want
to analyze the dynamics of the pupil signal over time. For
example, one may wish to compare two or more pupil traces
with one another, with a predictive model, or with an attended
stimulus (see Fig. 3 for examples), to answer questions such
as “Does pupil size change with changes in stimulus fea-
ture X?” or “Do participants’ pupil traces synchronize with
the stimulus?” The most appropriate analytic technique to
answer such questions will depend on the characteristics
of the data, as well as the specific mathematical properties
underlying the question one wishes to address (see Table 2).
It is our goal to provide an overview of the types of signal-to-
signal analyses that have been applied in pupillometry and the
contexts in which one might wish to use them, so that readers
can come to their own informed decisions about what tech-
nique to apply to their data. Here, we start with the simple
case of computing a correlation, before moving on to more
complex methods.

Pearson’s correlation coefficient, which ranges from -1 to
1, is used to index the strength of linear covariance between
two times series. The coefficient is calculated as the covari-
ance of the two signals, divided by the product of their
standard deviations. The Pearson correlation coefficient is
scale-invariant (i.e., X or Y can be transformed by some
constant and the correlation coefficient will not change) and
symmetric (i.e., corr(X,Y) = corr(Y, X)). While the sign
of the correlation coefficient (positive or negative) can be
used to understand the relationship of the effects, the square
of the correlation coefficient (i.e., the coefficient of deter-
mination) is often used as a measure of the proportion of
variance one variable can explain in another, ranging between
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Fig.3 Examples of time series

one might wish to compare. A A
Recorded pupil data (black) vs.

predicted pupil data (green). B

Pupil traces of many different
participants perceiving the same
stimulus. C Pupil traces of one
participant perceiving the same

stimulus. Simulated data; see
accompanying code tutorial B
section Fig. 3
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0 and 1. For example, say one is interested in the correlation
between the pupil time series and the amplitude envelope of
some audio signal to which a participant was listening. We
get a correlation r of .6, which we can interpret to mean that
when the amplitude envelope of the sound increases so does
the pupil size (and vice versa). We can then square this coef-
ficient and say that the amplitude envelope explains 36% of
the variance in our pupil time series. Note that, when using
Pearson’s product-moment correlation, the two time series to
be correlated should be normally distributed and the analysis
will only capture a linear relationship between X and Y (i.e.,
it cannot be used to analyze nonlinear relations which might
exist in the data).

Depending on the properties of the signals (e.g., what
stimulus was presented while the pupil trace was recorded,
duration of the recording, etc.), it may be that the assump-
tion of stationarity (constant mean and variance over time) is
violated. In such a case, one could instead calculate the cor-
relation coefficient over moving time windows (in which the
signal could be assumed to be stationary). Such an approach
isreferred to as a ‘moving,” ‘rolling,” or ‘sliding window’ cor-
relation, and yields a time series of correlation coefficients,
with which one can then do further analyses.

Figure 4, shows two example signals to be correlated (pan-
els A and B). In the current case, the example signals are from
the toy data set associated with this paper, which includes
the pupil traces of multiple participants listening to the same
except of Duke Ellington’s “Take the A Train.” Panel A shows

the upper amplitude envelope of this music, while panel B
shows the average pupil trace across participants. The Pear-
son correlation coefficient between both example signals in
their entirety is r = -.207, p < .001. Panel C shows the mov-
ing window correlation between the two signals at window
sizes of 500 ms, 1, 2, and 3s. As can easily be visualized,
the choice of window size will affect results; the four traces
are not always in agreement, with respect to the correlation
coefficient at each moment in time. As is also obvious in the
plot: the larger the window size, the more smoothed out the
variation in correlation coefficient will be. The choice of win-
dow size should be made according to what the experimenter
deems to be the most relevant temporal scale, given the exper-
iment parameters. Note that, when using a windowed moving
correlation approach, if a p value for each moment in time is
needed, then it is necessary to correct said p values for multi-
ple comparisons. Such correction could be accomplished via
Monte Carlo simulations or data permutations to find a criti-
cal p value (though see “Appropriate controls” below about
permutation considerations).

When the assumption of normality is violated, Spearman’s
rank correlation coefficient can be used to assess the mono-
tonic, but not necessarily linear, relationship between two
signals. To calculate Spearman’s correlation coefficient, the
two raw signals are first converted to ranks, and then the
Pearson correlation of the rank sequences is computed. Due
to the conversion of samples to ranks, Spearman’s correlation
reduces the effect of outlying data points (e.g., the data point
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Fig.4 Time-domain techniques for analyzing the similarity/difference
between two or more signals. Panels A and B correspond to two possi-
ble signals of interest. Panel C shows the moving window correlation
between both signals at window sizes of 500 ms, 1, 2, and 3s. Panel D
plots the cross-correlation function between the two signals, with their
optimal lag highlighted by the cyan dot, while panel E visualizes the
two signals against one another at their ideal lag (with zero-padding
on either side). In this case, the highest correlation (r = -.25) occurs
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when the pupil lags the amplitude envelope by 3.55s. Instead of using
a constant lag, one can allow for variable lag between the two signals
by using dynamic time warping (Panel F). Here, the distance between
the two signals is 2020. Note that the x axis of F is now extended to
60s. Please see the in-text sections corresponding to each method for
more details. Analysis code to reproduce all examples in this figure is
provided in the accompanying code tutorial, section Fig. 4
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with the highest value will have the highest rank, regardless
of the magnitude of the raw value). Spearman’s correlation
has also been shown to be more robust for distributions with
heavy tails; see de Winter et al. (2016) for simulations and
discussion, or Schober et al. (2018) for an accessible tutorial
with visualizations. In the toy example in Fig. 4, the Spear-
man correlation coefficient between both example signals in
their entirety is r = -.229, p < .001. The moving window
analyses could also be conducted using Spearman, instead
of Pearson, correlation. To re-run these analyses, see accom-
panying code tutorial section Fig. 4.

Most programming languages have easy-to-install statis-
tics packages which include correlation and cross-correlation
(see “Cross-correlation”) functions, including the possibility
to select the “type” of correlation to use (e.g., Pearson, Spear-
man). For example, in Python, one could find such functions
in the NumPy, SciPy, or Pandas libraries, while, in R, the stats
or tseries packages would be good starting points. The same
code recommendations apply for cross-correlation functions
(discussed below in “Cross-correlation”).

Cross-correlation

Like for correlation, the cross-correlation between two sig-
nals can be used to understand the degree to which they
change together, however it additionally reveals the corre-
lation at varying temporal lags between the two signals. For
example, you might hypothesize a relationship between the
amplitude envelope of your stimulus and your pupil data, but
you likely do not think the relationship is instantaneous, and
may be interested in knowing at which temporal lag your
pupil data are most highly correlated with your stimulus.
The cross-correlation is calculated by repeatedly com-
puting the correlation (see “Correlation”) between the two
signals at specified lags (i.e., separations in time). The result
is typically normalized between -1 and 1, giving a correlation
coefficient between the two signals at each temporal lag. One
can then, for example, find the lag at which the correlation is
highest, to understand something about the temporal delay at
which these two signals are most related. In concrete terms,
we use our toy data set to show that the highest correlation
between the pupil signal and the amplitude envelope of the
auditory stimulus being listened to is greatest at a 3.55-s lag
(see Fig. 4, Panel D). Other examples include using cross-
correlation to determine if pupil size changes are elicited by
changes in lens accommodation (Hunter et al., 2000), or by
specific neurotransmitter systems (Reimer et al., 2016).
One can also take the cross-correlation of an individual
signal with itself (i.e., an autocorrelation) to analyze the
degree to which the current vs. past values of the signal are
similar to each other. Such an analysis (e.g., of the pupil signal
with itself) can reveal whether the signal is random (no peaks
in the autocorrelation function) or auto-regressive (decaying

correlation coefficients over time lags). Autocorrelation can
also be used to find temporal periodicities in the signal (e.g.,
if the signal tends to show a peak in correlation coefficient
every 5s). Thus, one could even consider comparing features
of the autocorrelation function (ACF; e.g., slope, lag of max-
imum correlation) across different participants’ pupil data or
between pupil data and some other stimulus-related ACF of
interest. Do note, however, that while analyzing autocorre-
lation in the pupil signal would be interesting in the context
of, for example, music listening, in other contexts, autocor-
relation can pose a problem for analyses (e.g., inflating type
I error in regression-based analyses). For further discussion
of this point, see van Rijj et al. (2019).

To look at the correlation between data at time t and time
t £+ lag without the influence of the intervening samples, a
partial autocorrelation can be used. While few pupillome-
try studies have employed such methodology, a recent paper
by Zénon (2017) analyzed the pupil data of five participants
passively viewing a rapid presentation of landscape images
and showed that all participants’ pupil traces exhibited a
shallow, negative ACF slope, and a partial autocorrelation
function that converged after about ten lags of 10-Hz sam-
ples (i.e., 1 s). Having confirmed the autoregressive nature of
pupillary responses, one can then model them using autore-
gressive models. However, given that Zénon (2017)’s study
only involved five participants in a rapid visual presentation
paradigm, further research is necessary to determine whether
the pupil regularly exhibits autoregressive characteristics in a
variety of contexts, across a majority of people, or whether a
more structured stimulus (e.g., music) might introduce peaks
in the autocorrelation function.

Reverse correlation

Reverse correlation aims to estimate unknown variables, for
example, a person’s mental representation (Brinkman et al.,
2019), or a neuron’s receptive field (Ringach & Shapley,
2004). Reverse correlation is particularly popular in social
psychology as a means to unveil the “mental templates” of
a participant (for a review and primer on this method, see
Brinkman et al., 2017). The basic approach of the method is
to present a participant with random variations of stimuli in
a two- or four-alternative forced choice task, asking them to
judge which stimulus most matches their mental representa-
tion of e.g., a woman. The method is referred to as “reverse”
correlation because the participant, rather than the experi-
menter, determines what is “signal” (i.e., relevant) and what
is “noise” (i.e., irrelevant).

Typically, reverse correlation has been used with visual
stimuli to construct a visual image; however, reverse
correlation is also possible in the auditory domain (Ponsot
et al., 2018). In fact, it has been used for decades in single-
unit neuron studies (De Boer & Kuyper, 1968) to identify
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the average type of stimulus that elicits an action potential
(i.e., a spike-triggered average), as opposed to the traditional
method of presenting the same stimulus multiple times and
creating a peri-stimulus time histogram of neural activity (for
review see Eggermont et al., 1983). Various methodological
advancements have further optimized the reverse correlation
method; recent work indicates the importance of account-
ing for shifting sensory weights and decision boundaries to
properly estimate and interpret reverse correlation in human
studies (Okazawa et al., 2018).

In pupillometry research, Kang and Wheatley (2017) used
reverse correlation to relate moments of pupillary synchrony
across listeners to the emotional salience of the narrative
to which participants were listening. They had a completely
separate sample of participants continuously rate the salience
of narrative. Then, they reverse correlated moments of high
pupillary synchrony (averaged epochs of low dynamic time
warping costs; see “Dynamic time-warping” below) with
the rated salience values. They predicted that moments of
greatest synchrony would correspond to moments of great-
est salience ratings, and that is indeed what they found.

Though referred to as reverse correlation, this method is
no different mathematically from a standard correlation or
cross-correlation. It is rather the conceptual frame that has
changed and the approach the experimenter takes to get to
a result. One might think of reverse correlation as a “data-
driven” or “bottom-up” approach, as it allows the pupil data
to show the experimenter what is important in relation to
the stimuli presented (as opposed to the experimenter only
looking at the pupil data time-locked to events they believe
should be of interest).

Inter/Intra subject correlation

Rather than comparing pupil time series with stimulus time
series, one might wish to compare the pupil signals of
multiple participants (inter-subject), or the same participant
(intra-subject), with each other. One method for comparing
multiple time series at once is inter-subject (or intra-subject)
correlation. ISC allows one to identify moments of high
correlation across all signals. We will proceed with the inter-
subject case. To calculate the ISC, all data for each participant
should be in a matrix. A correlation is then calculated across
all participants at each time point, using a user-defined slid-
ing window. Fisher’s r-to-z transformation is applied to the
correlation coefficients, then averaged z values are inverse
transformed back to r values.

When interpreting ISCs, note that positive r values indi-
cate moments in time where all traces show a consistent
change, while » values near zero indicate little correspon-
dence between traces at that moment in time. Perhaps a
bit counter-intuitive, low (i.e., negative) r values indicate
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moments in time that the traces consistently show a change,
albeit in different directions.

If one is additionally interested in which stimulus fea-
tures lead to consistent responses across participants, the
ISC time series can be compared to a stimulus feature of
interest using any number of other methods in this section.
For example, to identify specific moments in the stimulus
that lead to high ISC, one could use reverse correlation
(see “Reverse correlation”). Though ISC has only very
recently been applied to peripheral physiological measures
(Czepiel et al., 2021), including eye movements and pupil-
lometry (Madsen et al., 2021), a multitude of examples
exist in the EEG and fMRI literature (Simony et al., 2016;
Hasson et al., 2004; Ben-Yakov et al., 2012; Hasson et al.,
2010; Wilson et al., 2008; Jaidskeldinen et al., 2008). Code to
implement ISC can be found in the aforementioned papers
or on the Parra lab website (https://www.parralab.org/isc/),
though note that this implementation is for EEG Cohen and
Parra (2016) and will need to be adapted to single channel
pupil data.

Regression

Regression can be linear or non-linear. The simplest, linear
case involves predicting Y, given X. To keep things concrete,
that might be something like predicting pupil size (Y), given
the amplitude envelope of the stimulus to which someone was
listening (X). While we used that same example above in the
correlation “Correlation” in assessing the degree to which X
and Y changed together, the goal with regression is to fita line
that most minimizes the sum of squared errors between that
line and the actual observations. Via this fit, there are some
deviations from the mean pupil size, which we can account
for, and some for which we cannot. The proportion of error
we can account for in relation to the total error is referred
to as R2. In “Correlation” above, we discussed the squared
correlation coefficient; this value is identical to the R? of a
linear regression.

Beyond the most basic form of ordinary least squares lin-
ear regression, many more methods exist (e.g., polynomial,
lasso, logistic, support vector, Poisson, principal compo-
nents). Readers should turn to other resources for more
detailed mathematical explanations of all these types. In
the following, we briefly highlight a special case of regres-
sion which may prove particularly fruitful in the domain of
pupillometry.

Temporal response function

The temporal response function (TRF) has gained recent
popularity in EEG and MEG analyses (Lalor et al., 2006;
Lalor & Foxe, 2010; Ding & Simon, 2012; Broderick et
al., 2018). Theoretically, it is very similar in nature to
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(de)convolution (discussed above in “Pupillary response
function”), in that both aim to understand how an impulse in
a particular stimulus feature is mapped onto a physiological
response (i.e., one aims to obtain a response function). How-
ever, TRFs, as they have been discussed in recent literature,
have one important advantage over pure (de)convolution:
by using regression and optimizing a cost function, the
presence of autocorrelation in the signals (which, as pre-
viously discussed in “Cross-correlation”, may exist in pupil
data) is not a problem anymore (Crosse et al., 2016). Sim-
ilar to (de)convoultion, TRF-based analyses can occur in
the forwards or backwards direction to (1) predict a phys-
iological response, given the stimulus (forward), or (2)
predict (or “reconstruct”) the stimulus, given the physio-
logical data (backward). Depending on one’s direction of
interest, regularization techniques to prevent over-fitting may
be of more vs. less importance. For example, in the con-
text of EEG data and attended vs. unattended speech stimuli,
Wong et al. (2018) have shown that backwards models per-
form significantly better than forward ones, but rely more
heavily on proper regularization. Specifically, forward mod-
els can work well with ordinary least squares regression (no
regularization), while backwards models do not. In the back-
ward case, Tikhonov regularization (also known as ridge
regression) results in the highest accuracies. The segment
length over which one attempts decoding also has impor-
tant theoretical (how often are attention switches likely?) and
computational implications and again depends on the context
under study, though Wong et al. (2018) suggest an optimal
range of 3-5s (for EEG data).

The canonical correlation analysis (CCA) is an extension
of the linear methods for analysis. With CCA, the two sig-
nals are projected onto a subspace that maximizes correlation
(Thompson, 1984), deriving a set of orthogonal directions
in which the two signals are highly correlated. Recently,
CCA has been shown to be better than forward and back-
ward TRF models in auditory-EEG analysis by de Cheveigné
et al. (2018). Further, deep learning methods also have
been explored for improving the canonical correlation
between the EEG signals and auditory stimuli, as illustrated
by Katthi and Ganapathy (2021).

To date, TRF techniques have not been applied to pupil
data by that name, but many papers exist which have used
(inverse) general linear models to estimate a response func-
tion of the pupil to some type of stimulus (see, for example,
Korn and Bach (2016); Korn et al. (2017)). Also, please see
“Pupillary response function” above. One possible avenue
of future research might include using regression or CCA
to decode the relationship between pupillary activity and
the amplitude envelope of speech or music (N.B. one could
do this for any number of different stimulus features of
interest, see e.g., Leahy et al., 2021). Further, by estimat-
ing a TRF for each participant individually, one could then

compare differences in the parameters of TRFs between
participants to determine the degree of pupil response vari-
ability for some particular stimulus feature. Such an approach
might be particularly useful in characterizing differences
in pupillary response functions to certain types of stim-
uli in clinical populations. Crosse et al. (2016) provide a
MATLAB implementation for multivariate TRF analyses;
a Python translation can be found here: https://github.com/
SRSteinkamp/pymtrf.

Dynamic time-warping

Because it is plausible that different people may exhibit dif-
fering time constants with respect to the relationship between
external or cognitive events and pupillary change, and/or that
pupil response latency may shift depending on the physi-
ological, psychological, and environmental context of the
person, it is reasonable to pursue analytical methods that
allow for some flexibility in the time domain when search-
ing for similarities between signals. Dynamic time-warping
(DTW) assesses the dissimilarity between two signals by
stretching/compressing them to fit each other in a way that
most minimizes the sum of Euclidean distances between sam-
ples. This process allows for the calculation of a “cost” of
warping the two signals to each other (lower cost = greater
similarity, higher cost = greater difference between the sig-
nals). An example of a DTW result is shown in Fig. 4, panel
F. Unlike cross-correlation, which enables discovery of the
optimal lag between two signals and the correlation coeffi-
cient at that lag, DTW allows lag between the two signals to
vary over time (as can be seen by the extended timeline in
the figure). In this example, the Euclidian distance between
the two signals is 2020 — but it is difficult to interpret such a
result. Unlike a correlation coefficient which has a normal-
ized value between -1 and 1, which allows for interpretation
of the magnitude of effect without reference to anything else,
distances from DTW should be considered relatively (e.g.,
compare distances between signals 1 & 2 vs. signals 1 & 3
to determine whether signal 1 is more similar to signal 2 or
to signal 3).

As with most time series methods, the window of analysis
and amount of overlap between sliding windows are impor-
tant parameters. While only a few studies have employed
DTW in pupillometry, the studies to date (in music and lan-
guage listening domains) suggest a window of 3 s with 1.5-s
overlap (Kang & Wheatley, 2015, 2017; Kang & Banaji,
2020). These studies have shown (1) that it can be deter-
mined which of two stimuli a participant is attending to, in
dichotic listening conditions, by assessing the similarity of
the pupil during the dichotic condition to the pupil trace when
each stimulus was attended alone (Kang & Wheatley, 2015);
(2) that one can predict above chance which of three songs
someone was imagining based on their pupil traces recorded
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while listening to those songs, or, (3) which of four songs
someone was imagining, from their previous pupil traces
during imagination (Kang & Banaji, 2020). Hence, DTW
seems a promising method for future pupillometric studies.
For implementation in MATLAB, see accompany code tuto-
rial, section Fig. 4. For R and Python, third-party packages
implementing dynamic time-warping are readily available;
see Giorgino (2009) and https://dynamictimewarping.github.
io/.

Phase clustering

One may wish to compare the spectral content of the pupil
signal to the spectral profile of the stimulus to determine
if they display a consistent phase lag at some frequency of
interest, indicating that the pupil has picked up some of the
temporal regularities in the stimulus. In such a case, a depen-
dent variable of interest is inter-site phase clustering (ISPC),
which measures the synchrony across two (or more) time
courses. ISPC is symmetrical (results do not change whether
the pupil is factored in relative to the stimulus, or vice-versa),
positive, and bounded O to 1, with 1 entailing perfect syn-
chrony. ISPC can be used to verify if the distribution of phase
angle differences is similarly non-uniform across time points.
First, the analytic signal must be obtained for both time-
courses, for example using the short-time Fourier transform,
and then the vector length corresponding to the difference
between phase angles for each frequency point is computed
across time points. This is done by first applying Euler’s for-
mula, which outputs the complex polar representation of the
phase angle difference for each time point, and then calcu-
lating the average vector across time points (Cohen, 2014).

n
ISPCy = |n_1 Zei(¢xt—¢yt)| 3)

t=1

In equation 3, n is the number of time points, ¢x is
the phase angle in radians extracted from the pupil sig-
nal, while ¢y is the phase angle derived from the stimulus
time course at a given frequency f and for the same time
sample ¢. By calculating ISPC, one highlights which fre-
quency shows high synchrony between pupil and stimu-
lus signals. Note that ISPC is sometimes referred to as
“phase-locking value” (see e.g., Assaneo et al., 2021 who
use that name for the same equation above). Importantly,
equation 3 highlights that information about the ampli-
tude of the signal (or its power) is not considered in
the analysis. This means that differences in power do not
contribute to synchrony estimation. Furthermore, ISPC is
computed over all trial time points. In this regard, if pre-
serving the time dimension in the output is important for
the hypothesis one is testing, then it is possible to cal-
culate a time-resolved ISPC using a moving window of
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sufficient length and overlap to provide a valid profile.
Figure 5 highlights an example ISPC analysis of our toy pupil
data set. We were interested in the phase consistency between
the pupil signal and the excerpt of music people were listen-
ing to: Duke Ellington’s “Take the A Train.” Fig. 5A, shows
ISPC estimates, averaged across time, between the average
pupil time course and the amplitude envelope of the audio sig-
nal. As can be seen, there is a clear peak in phase consistency
around 2.73 Hz. In fact, this frequency corresponds to what
two expert percussionists, as well as two models of musi-
cal beat, determined the tempo of the music to be: 163-165
BPM (or ~ 2.75 Hz). While this figure shows entrainment
of the pupil to the beat frequency, it does not tell us anything
about when that entrainment might begin or end. Figure 5B
provides an illustration for the time-resolved ISPC of the
quite long (305s) excerpt. ISPC seems to be high for about
three quarters of the duration of the music piece, and then
it decreases, suggesting a change in tempo or metric clarity.
Indeed, when we listen to the audio at that moment in time,
some of the instruments drop out and a piano solo begins. The
reader should keep in mind that, commonly, trials are much
shorter than the 30-s example plotted here (e.g., 1 — =3 s).
In such cases a reliable estimate of effects would require
time-resolved ISPC estimates to be averaged across trials,
assuming a sufficient number of trials is available (N > 20).
We refer readers to Cohen (2014) for more detailed tutorials
and advice.

Cross power spectral density & magnitude squared
coherence

The cross-power spectral density (CPSD) of two signals is
the correlation of two signals in the frequency domain. More
precisely, it is the discrete Fourier transform (DFT) of the
cross-correlation function of the two signals. As discussed in
the correlation and cross-correlation sections above, because
a DFT involves the assumption of stationarity, one should be
careful in considering whether one’s data meet those assump-
tions and, if not, to use windows of an appropriate length
during which stationarity can reasonably be assumed. Both
the length of the window over which the DFT is calculated,
as well as the overlap chosen between windows, influence
the frequency resolution of the resultant power spectral den-
sity estimates. Additionally, the type of window used may
introduce artifacts.

Similarly to ISPC, magnitude squared coherence (MSC)
reveals the strength of phase relationships between two sig-
nals at specific frequencies. The MSC between two signals
(X and Y) is calculated by taking the squared absolute value
of the CPSD of X and Y, and dividing it by the CPSD of X
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and Y with themselves: ference in radians between the pupil signal and the input
5 music stimulus at a given frequency and for the same time
MSC.. — S @ sample ¢. Figure 5C and D plots the magnitude squared coher-
i SexSyy ence averaged over time and across time, respectively, for the

where § represents cross-power spectral density. Dividing
by the auto-spectra normalizes coherence by power, and
gives it a value between 0 (independent signals) and 1 (total
coherence). However, it is important to note that despite this
normalization, coherence results could still be susceptible to
bias if phase angles are non-random with respect to changes
in power, for example if phase consistency increases but
power decreases. Normally, this is not a problem, as phase
is independent of power, except when power is very low
(Cohen, 2014; Lachaux et al., 1999).

MSC is similar to ISPC, except that power is also included
in the calculations. Its inclusion is highlighted in the follow-
ing equation (Cohen, 2014), which spells out the numerator
of the preceding equation:

n
—1 i 2
I Cimielimgy e
t=1

S3 )

In equation 5, the vertically barred m of x and m of y
correspond to the power of the analytic signals of pupil and
input music, respectively, while ¢xy is the phase angle dif-

same example as in the previous section. Thereby, the dif-
ference between ISPC and magnitude squared coherence is
made obvious in comparing Fig. 5SA and B to C and D.

In the realm of pupillometry, Fink et al. (2018) have
used the magnitude squared coherence to show a relation-
ship between a computational model of musical attention and
the pupil signal during music listening. They show increased
coherence at periodicities predicted by the model, specific to
each stimulus, and above chance. In other words, they show
pupillary entrainment to auditory rhythms. The observation
of a phenomenon such as entrainment requires a method that
takes phase into account (i.e., the study of pupillary entrain-
ment is not possible using the traditional methods outlined
in “A brief review of epoch-based approaches”).

Beyond analyzing the phase relationship between the
pupil and some stimulus, one can also analyze the rela-
tionship between the pupil and other physiological signals,
for example EEG or heart rate variability, or even neu-
rotransmitters (e.g., in mice, Reimer et al., 2016 show
coherence between pupillary activity and both acetylcholine
and norepinephrine activity at low and infra-low frequencies,
respectively). While functions to compute spectral coherence
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may not be in the base distribution of popular programming
languages, they are readily available in specific packages or
toolboxes (Python: csd() and coherence() in SciPy.signal;
MATLAB: cpsd() and mscohere() in the Signal Processing
Toolbox; R: spectrum() in the stats package. For further dis-
cussion and interactive code examples, see accompanying
code tutorial sections Time-frequency analyses and Fig. 5.

Detrended fluctuation analysis (DFA)

A number of human behaviors, such as finger tapping,
response times (RTs), and memory retrieval have self-similar
and scale-free temporal patterns (Kello et al., 2010), mean-
ing they are statistically similar at multiple time scales.
Such measures show power-law scaling and long-range
temporal correlations (LRTCs), which are a characteristic
feature of human behavioral dynamics (Gilden et al., 1995)
and brain activity (Linkenkaer-Hansen et al., 2001; Zhigalov
et al., 2015). This 1/f type (“scale-free”), arrhythmic activ-
ity is distinct from rhythmic (periodic) oscillatory activity
(He, 2014), as might be measured via the methods dis-
cussed above in “Phase clustering” and “Cross power spectral
density & magnitude squared coherence”. Indeed, prior
research (e.g., Monto et al., 2007) shows that the strength of
LRTCs of neuronal oscillations is independent of oscillatory
power in a given frequency band. However, it also seems that
optimal oscillatory dynamics and sensory processing may in
fact rely on the brain operating near what is referred to as a
“critical” state (Avramiea et al., 2020). That s, the brain oper-
ates near the “critical” point of a phase transition between
order and disorder (Chialvo, 2010; Linkenkaer-Hansen et al.,
2001; Kello et al., 2010). Operating near criticality is one
of the main hypotheses for the presence of LRTCs. It
allows for optimal information processing and flexibility in
reconfiguration among possible states (Kinouchi & Copelli,
2006; Chialvo, 2010; Avramiea et al., 2020). For example,
strong LRTCs were shown to parallel cognitive flexibil-
ity, suggesting an advantageous state for task performance
(Simola et al., 2017). A recent review (Zimmern, 2020)
further demonstrates the clinical relevance of studying brain
criticality.

Detrended fluctuation analysis (DFA) (Peng et al., 1994,
1995) is a method for analyzing scaling behavior and it can
be used to reveal the presence of LRTCs in a time series
(Linkenkaer-Hansen et al., 2001). Hardstone et al. (2012)
provide a practical explanation to the DFA algorithm and
its underlying theory. To run the DFA, a signal is first nor-
malized to zero mean and then a cumulative sum of the
signal is computed. The integrated time series is then seg-
mented into multiple time windows. Within each window, the
root-mean-square (RMS) variation is calculated, followed by
determination of the typical fluctuation < F > in the given
time-scale (i.e., the mean/median of RMS variation of all
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identically sized windows). In the second stage, the fluctu-
ation for all window sizes is plotted on double logarithmic
coordinates to evaluate whether the data reveal power-law
scaling. It is therefore important to choose window sizes
that are equally spaced logarithmically, so that certain time
scales do not have more observations than others. Addi-
tionally, it has been recommended that time windows range
from at least four samples (enough points for a regression
(Peng et al., 1994)) to about 10% of the signal’s length (so
that there are enough windows to average over). Overlapping
windows may be one solution to increase resolution for win-
dow lengths longer than 10% of the signal Hardstone et al.
(2012).

The DFA exponent («) is the slope of the trend line in
the range of time-scales and can be estimated using linear
regression. Whereas DFA exponents 0.5 < o« < 1 indi-
cate that there are positive correlations in the time series,
o = 0.5 indicates that the time series is uncorrelated, and
a < 0.5 indicates an anti-correlated time series (i.e., fluc-
tuations are smaller in longer time-scales than expected by
chance). Values > 1 are non-stationary signals, and values
of approximately 1.5 are Brownian noise. It is important to
report the temporal range over which scaling is observed.
In the seminal article by Linkenkaer-Hansen et al. (2001),
LRTCs in the amplitude envelopes of ongoing oscillations
were analyzed on window sizes ranging from 5 to 300s.
The robustness of LRTCs have later been confirmed also
on shorter time-scales in the range about 1-20 s (Linkenkaer-
Hansen et al., 2007; Smit et al., 2011). Figure 6 shows an
example DFA of pupil for one trial, one participant, so that
the reader can get a sense of the basics of the analysis, from
raw pupil trace (top left) to cuamulative sum (bottom left), to
DFA (right) for the windows sizes indicated in the bottom left
plot. The DFA exponent could be calculated for every trial /
participant and compared between conditions, participants,
etc. Note that with larger window sizes, there is greater pupil
fluctuation.

The DFA method can reveal how pupil dynamics unfold
in time, taking into account different time-scales. It can
be applied to pupil size data collected during both resting-
state and continuous task performance. It can also be used
to quantify and compare pupil dynamics during different
tasks or even during presentation of different stimuli. One
potential advantage of using DFA is that transient pupillary
responses to stimuli are on the order of hundreds of millisec-
onds or a few seconds and can be ruled out as the source of
pupil size modulation on the scale of tens of seconds (see
Hardstone et al., 2012). Moreover, computing an average
value is often a poor description of scale-free processes,
because they typically do not have a characteristic scale. For
example, LRTCs in RT time series were uncorrelated with
the mean and standard deviation (SD) of RTs (Simola et al.,
2017), indicating that DFA taps into different determinants
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Fig.6 Example of detrended fluctuation analysis (DFA). The left pan-
els correspond to pupil data for one participant, one trial (fop), and
the cumulative sum of that pupil data (botrom), respectively. In the
bottom left panel, the colored lines indicate different window sizes in
which the detrended fluctuation analysis (right) was calculated. Note
that the window sizes are equally spaced on a logarithmic scale and
the largest window size does not exceed 10% of the signal. Here, we
used non-overlapping windows when calculating pupil fluctuations in
each window, but see discussion about windowing above. In the right

of task performance, otherwise not captured by traditional
measures.

The applications of DFA on pupil size data are so far
scarce. Onorati et al. (2016) used DFA to show that the pupil
exhibits three different ranges of scaling behavior, similar to
cardiac dynamics. They also found a higher DFA slope (in
the range of 1.5, Brownian noise) when participants recalled
autobiographical memories that evoked anger, as compared
to sadness or joy. Kaakinen and Simola (2020) used DFA
to analyze LRTCs in pupil size time series collected while
participants listened to story excerpts and showed that higher
story transportation was associated with stronger LRTCs in
pupil size fluctuations.

Detrended cross-correlation analysis (DCCA)

While we believe DFA, in its own right is an interesting
and useful approach for analyzing long-term memory pro-
cesses in the pupil signal over longer periods of time, the
focus of the current paper is on signal-to-signal approaches.
So, though one could analyze DFA exponents in condi-
tion A vs. B, in keeping with the goals of the paper, we
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panel, pupil size fluctuations are plotted for each window length. The
slope of the line of best fit connecting these points is referred to as the
scaling exponent, or «. Values < .5 indicate an anti-correlated signal;
=.5 an uncorrelated signal (white noise); .5 < @ < 1, 1/ f noise; > 1,
non-stationary signals, and values approximately 1.5, Brownian noise.
Please see “Detrended fluctuation analysis (DFA)” for more details.
Code to reproduce this figure is available in accompanying code tuto-
rial section Fig. 6

must highlight the signal-to-signal (bivariate) extension of
DFA, which is detrended cross-correlation analysis (DCCA).
DCCA captures long-range temporal correlations between
two (Podobnik & Stanley, 2008), or more (Zebende &
da Silva Filho, 2018), non-stationary signals. The result-
ing detrended correlation coefficient (DCCC) is analogous
to the Pearson correlation coefficient (see “Correlation”),
but more appropriate for non-stationary time series
(Podobnik et al., 2011; Zebende & da Silva Filho, 2018). It is
bounded between -1 and 1 and indicates the scale-invariant
detrended covariance between two signals. The DCCC can
even be calculated online, in real-time, allowing for a range
of possible applications in the realm of dynamic physiologi-
cal data analysis and human-computer interfaces (Kaposzta
etal.,2022). Both DFA and DCCA have recently been shown
to be robust measures in cases of time series with up to 50%
missing data (Zebende et al., 2020), further speaking to their
relevance for real physiological signals, like the pupil time
course, which may involve data loss for various reasons (see
“Discarding trials in which too many pupil data points are
missing or noisy”). Implementations of DFA and DCCA are
available for Python (Hardstone et al., 2012; Bianchi, 2020),
R (Prass & Pumi, 2020), and MATLAB (Ihlen, 2012); see

@ Springer



1400

Behavior Research Methods (2024) 56:1376-1412

also accompanying code tutorial section Fig. 6: Detrended
Fluctuation Analysis.

Recurrence-based analyses

The previous section introduced a particular kind of auto-
correlation pattern, long-range correlations, which capture a
type of temporal structure in a time series different from
the more classical short-range correlation models, (e.g.,
auto-regressive models). Recurrence-based analyses offer
yet another way to quantify temporal structure, providing a
range of auto-correlative measures. There is a wide range of
variants of recurrence-bases analyses (Marwan et al., 2007)
suitable for different kinds of data and research questions. In
the following, we will briefly introduce univariate recurrence
quantification analysis (RQA; (Webber & Zbilut, 1994))
which provides measures of temporal structure and complex-
ity for a single time series, such as measures of pupil dilation.
Further expansions of this technique exist, for example cross-
recurrence quantification analysis (CRQA; (Shockley et al.,
2002)), which allows to compare two trajectories — for exam-
ple two pupil dilation time series, or the co-evolution of a
pupil time series with a putative driver signal.

RQA is a versatile method that makes few assump-
tions and is robust in the face of outlying data points and
non-stationarity (Webber & Zbilut, 2005), making it an
attractive method to apply to biological signals, such as
pupil data. RQA can be used to ask different questions,
such as how predictable and stable a time series is, or
whether and when qualitative or quantitative changes occur
in a time series (Coco et al., 2020). As the name implies,
recurrence — that things repeat themselves — is the central
concept of RQA. Imagine a simple sequence of numbers
such as x = 1,2,3,4,5,6,11,2,3.1,4.2,5,6. The first
six numbers, 1 to 6, are repeated to different degrees of

accuracy in the last six numbers. While 1 is not reason-
ably repeated, 3 and 4 are, say, imperfectly repeated, and
the numbers 2, 5, and 6 are perfectly repeated. Now this
toy series can be displayed as a so-called recurrence plot
(RP).

Figure 7 shows a recurrence plot of the 12 numbers.
As we can see, strictly repeated numbers are presented as
black squares, while non-recurring numbers are represented
as white squares. When we deal with continuously measured
data, such as pupil dilation, we will, however, not observe
perfect repetition, as such data is subject to measurement
error, as well as endogenous fluctuations. Accordingly, one
can set a threshold parameter . The bigger r, the more
tolerance we allow for counting similar, but not identical
numbers as recurrence. If, for our current example, we set
r = 0.5, we include 3 and 3.1, as well as 4 and 4.2 into
the category of recurring numbers, while 11 is still excluded
(Fig. 7B).

The RP is the basis for quantifying recurrence patterns.
RQA provides several measures (Marwan et al., 2007), but
the simplest one is percent Recurrence (R EC), which is sim-
ply the sum of all recurrence points (minus the main diagonal)
divided by the size of the RP (minus the main diagonal).
Other measures can be computed that capture patterning in
a time series, for example, how many recurrence points are
part of larger repeating sub-sequences within a time series
— referred to as percent determinism (DET). DET is the
sum of all recurrence points that have diagonally adjacent
neighbors divided by the sum of all recurrence points. Com-
plexity of the time evolution can be captured by the measure
ENTR, which is calculated as the Shannon Entropy of the
diagonal line distribution of an RP (see Fig. 7 for illustra-
tions of REC, DET and ENT R). Note, however, that the
recurrence entropy is not equal to entropy of the raw sig-
nal, as a signal can be complex, but has comparatively low

!:ig. 7. Example RPs. A RP with a) b)
identical recurrences only. B RP 6 6
also including ‘imperfect’ s h. s
recurrences when a threshold
parameter is applied. Below 42 42
each plot are calculations for 3.1 31
three recurrence measures, 2 2
REC, DET,and ENTR 11 11
6 6
5 5
4 4
3 3
2 2
1 H 1
1 2 3 4 5 6 11 2 3342 5 6 1 2 3 4 5 6 11 2 3142 5 6

REC=6/144=12.5%
DET=16/18=88.8%
ENTR = 0.64
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REC =10/ 144 =15.3%
DET =22 /22 =100%
ENTR = 0.63
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uncertainty in its temporal evolution. RQA has been applied
to eye movement data and pupil dilation data, for example
to distinguish between traces of autonomic stimulation in
pupil dilation vs. rest (Piu et al., 2019; Mesin et al., 2014),
between pupil dilation dynamics of patients with sleep apnea
vs. controls (Monaco et al., 2014), or trace effects of affective
stimuli (Lanata et al., 2012).

Cross-recurrence quantification analysis (CRQA)

Using CRQA, we can also compare two time series. For
example, a time series of average pupil trace across multiple
participants recorded while listening to an auditory stimu-
lus, charted against the amplitude envelope of that stimulus.
Figure 8 shows the individual RPs of the average pupil trace
and the amplitude envelope (from Fig. 4A and B), as well as
their cross-recurrence plot (CRP). As can be seen from the
CRP in Fig. 8C, the central diagonal in the CRP is missing,
which means that the two signals are not perfectly time-
locked at lag0. Rather, there seem to be cross-recurrences
distributed across multiple diagonals.

We can now examine the same RQA outcome vari-
ables, REC, DET and ENT R for the CRP. Here, however
these measures characterize the average pattern of cou-
pling dynamics between the two signals, unlike in univariate
RQA, where they characterize the evolution patterns of a
single time series. For the example in Fig. 8C, the values
are: REC = 2.7%, DET = 169, and ENTR = 0.34.
These values are not always readily interpretable without
a proper baseline, control group, or surrogate set (Richard-
son & Dale, 2005), but overall, coupling seems to be not
very complex (low EN T R), with comparatively uniform and
unique snippets of recurrence of equal size. Furthermore,
coupling seems to be mainly due to individual instances
of the two series crossing each other, and not much orga-
nized in terms of larger trajectories where the pupil trace
follows the amplitude envelope over longer periods of time
(low DET).

If we are interested in knowing more about leader—
follower behavior, we can take a closer look at how cross-
recurrences are distributed in the off-diagonal, adjacent to the
main diagonal (Marwan & Kurths, 2002). This can be done
by simply summing up recurrence points in the adjacent diag-
onals and plotting them as a function of diagonal number, that
is, lag. Figure 8D charts the recurrences of the £10 diago-
nals off the main diagonal. As can be seen, there is some
asymmetry in that there are more recurrences on the right-
hand side (the positive lags), meaning that pupil trace recurs
more often with amplitude envelope at relative lags between
1 and 8. Hence, the pupil trace is following amplitude enve-
lope, and this following behavior is distributed above the first
eight lags, with at peak at lag 7.

In order to conduct RQA or CRQA, further parameters
have to be estimated and set; there are also many more mea-
sures that are available to quantify the dynamics of a time
series (Marwan et al., 2007). The parameter estimation proce-
dure and the description of the different recurrence measures
are treated in introductory papers highlighting the analytic
approach in R (Wallot & Leonardi, 2018; Wallot, 2017) or
MATLAB (Wallot & Grabowski, 2019). A formal introduc-
tion is provided by (Marwan et al., 2007). There exist several
RQA toolboxes: Norbert Marwan’s CRP Toolbox for Matlab
(Marwan, 2017; Marwan et al., 2007) and C (Marwan, 2006;
Gordon, 2007), Charles Webbers Toolbox for DOS (Web-
ber, 2021; Webber & Zbilut, 2005), the CRQA-Toolbox in R
from Coco and colleagues (Coco & Dale, 2014), and PYRQA
toolbox by Rawald for Python (Rawald et al., 2017). Further
toolboxes can be found at www.recurrence— plot.tk. Code
to reproduce the analyses above and Fig. 8 are provided in
accompanying code tutorial, section Fig. 8: recurrence quan-
tification analysis.

Additional considerations
Appropriate controls

Note that we have not systematically suggested appropri-
ate statistical controls for each analytical technique. This is
because many of the suggestions for each technique are not
unique. Specifically, when dealing with time series analyses,
there are a few approaches common to all techniques. All
of these approaches center around shuffling data or creating
surrogate data, but it is the level of data shuffling that needs to
be considered carefully. For example, one could shuffle the
labels of conditions of interest, or the pupil time series. Shuf-
fling condition, trial, or participant labels is certainly a safe
approach, as long as there is a balance between the labels to
be shuffled. Shuffling, permuting, or phase scrambling pupil
time series data, on the other hand, poses a variety of potential
pitfalls.

As has been discussed throughout this paper, pupil sig-
nals may display larger-scale temporal dependencies such
as auto-correlation or 1/f spectral behavior. Simply scram-
bling (“randomly permuting”) a pupil time series will give
the same distribution of values (mean and variance) in the
surrogate time series, but will ruin the spectral properties
of the original signal. Comparison to such a surrogate dis-
tribution would be to conclude that the true pupil data
contains correlated noise or temporal structure. To make
more complex comparisons, different types of surrogate dis-
tributions should be used. Some possible approaches include
amplitude adjusted Fourier transform surrogates or wavelet
iterative amplitude adjusted Fourier transform surrogates.
However, even these methods may not be appropriate for
certain types of synchronization-based analyses, in which
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case inter-subject surrogates, cyclic phase permutation, twin
surrogates, or time-shifted surrogates may be more ideal. We
encourage readers to consult Lancaster et al. (2018) for an in-
depth review of these, and more, surrogate techniques. The
assumed null hypothesis of each surrogate technique, as well
as instructions for implementation, are provided.

Data sets

To become familiar with the analysis techniques presented
above, and to answer new scientific questions which rely on
them, researchers need not collect new data. Examples of
websites to search for pre-existing, publicly available, pupil
data include OpenNeuro.org, the Open Science Framework
(osf.io), or Google Dataset Search (https://datasetsearch.
research.google.com/). To assist readers in the beginning of
this search, we present a non-exhaustive list of 30 pupil data
sets: Grenzebach et al. (2021); Bishop et al. (2021); Pajkossy
and Racsmany (2019); Kooijman et al. (2021); Winter et
al. (2021); Mathot et al. (2017); Scheepers et al. (2016);
Urai (2016); Pelagatti et al. (2020); Lehmann et al. (2019);
Chapman and Hallowell (2020); Rozado (2019); Wahn et al.
(2016); Nakakoga et al. (2020); Kucewicz (2021); Colizoli
etal. (2018b); Moeller et al. (2021); Pavlov et al. (2021); Gee
et al. (2017b); Zhao et al. (2020); Lee et al. (2019, 2021);
Ribeiro and Castelo-Branco (2021); Clewett et al. (2019);
Hanke et al. (2016); Bianco et al. (2021); Madore (2020);
Keung (2020); Keitel et al. (2021). These data sets were
collected during a range of experimental tasks (e.g., audi-
tory multistability, digit span, bandit task, decision-making,
object-tracking, etc.), sometimes in conjunction with other
ocular or physiological measures (e.g., photoplethysmogra-
phy, EEG, intracranial EEG, MRI), in a range of contexts
(e.g., across consecutive days, during string quartet perfor-
mance, while watching the movie Forest Gump, in a clinical
environment, etc.).

By using such pre-existing data, the time, money, and
energy spent collecting new data sets may be invested in
acquiring analytic skills. New questions can be answered
from pre-existing data sets. We encourage researchers to
make it a habit to first search for pre-existing data sets with
which they may be able to answer their research questions and
to pre-register their planned analyses related to their research
questions before accessing said data sets.

Further, by using multiple data sets to address the same
research question(s), larger trends and more robust models
may be observable than what could be expected from indi-
vidual data sets collected in specific contexts and tasks. Of
course, there are disadvantages: the researcher does not have
control over or access to all variables that may be relevant
for the new research question, or the dataset documentation

may have gaps which require contacting the original research
team, etc. Nonetheless, the potential benefits to the environ-
ment, mitigation of human risk, time, and cost are well worth
the effort, especially when such effort may afford novel sci-
entific insights.

For those planning to collect new data, we recommend
following the suggestions of Kelbsch et al. (2019). Though
their suggestions are tailored more so to the study of the
pupillary light response, the basic, standardized reporting
procedures recommended (recording hardware, participant
information, stimulus information, etc.) would benefit all
subfields of pupillometry. In the spirit of open science, we
urge researchers to release their data (and code) with their
research articles, and to see data set creation as an impor-
tant scientific output in its own right. Such data sets should
be organized in a stable and standardized way. To date,
there is no agreed upon data file structure for eye-tracking
data sets, though the BIDS data format (Gorgolewski et al.,
2016), has recently been proposed to be extended to eye-
tracking data (see BEP020: https://bids.neuroimaging.io/
get_involved.html); however, it is not yet officially imple-
mented. Data set sharing enables reproducibility and future
scientific insights unimaginable to the original researcher at
the time of data collection. It reduces waste and redundancy,
and also allows scientists working in less privileged institu-
tions (where the recording of pupil data may not be possible)
to contribute to the advancement of knowledge.

Discussion

In outlining the psychological and neural underpinnings of
changes in pupil size, as well as the variety of innovative ways
to pre-process and analyze pupil data, we hoped to introduce
researchers to pupillometry, or to reinvigorate their interest in
it, and to show the potential application of dynamic, signal-to-
signal analysis techniques to a variety of research questions.
We have discussed a range of linear and non-linear, temporal
and spectral techniques, all of which may prove particularly
useful in certain contexts with certain questions. In describ-
ing these methods and their example use cases, we aimed
at encouraging researchers to choose their analysis tech-
nique(s) pre-hoc, that is within a hypothesis-driven approach.
A pupil pre-processing and analysis pipeline logically derives
from an adequate understanding of the signal being mea-
sured (“Introduction”), the potential artifacts present in the
signal (“Pre-processing pupil data”), and the type of anal-
ysis most applicable to one’s research question (“Analysis
techniques”).

For researchers completely new to pupillometry, tools
like PuPl (Kinley & Levy, 2021), CHAP (Hershman et al.,
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2019), GazeR (Geller et al., 2020), and PyTrack (Ghose
et al., 2020) provide a starting point for epoched pupil-
lometry analyses (see “A brief review of epoch-based
approaches”). They also bring the research community
one step closer to unified pre-processing and analysis
pipelines. However, they do not implement all possible
pre-processing considerations, nor the signal-to-signal anal-
yses discussed above. Nonetheless, one could use such
tools for basic pre-processing and then apply the more
complex methods of interest using the software sugges-
tions above and/or custom-written code. We hope that
the code tutorial associated with this paper provides a
useful starting point for researchers interested in mov-
ing towards dynamic time-series-based, signal-to-signal,
analysis techniques.

In general, code should not be the barrier to entry for any
analyses discussed in this review, as a variety of packages
exist for all listed purposes, at least as a starting point, if
not an off-the-shelf solution. Thus, it is our opinion that the
more pressing and fundamental challenge lies in understand-
ing how each of the pre-processing or analysis techniques one
applies transform the data. That is to say, a conceptual under-
standing is of foremost importance to ensure that an appro-
priate method is applied in an appropriate way. At times, the
default parameters of a built-in function may not be appropri-
ate for a given set of data; it is therefore also critical to read
the documentation of the functions being used and choose
appropriate parameters (e.g., the order of a filter, the window
size of a moving correlation or Fourier transform, etc.).

The scientific insights one can gain are generally lim-
ited by the methodological techniques available. While much
has already been learned from pupillometry, we believe
that methodological advances with respect to both recording
equipment and analysis techniques will continue to move the
field of pupillometry forward and enable discovery of pre-
viously unidentifiable patterns or effects. We hope that the
analysis techniques described here will enable researchers to
more easily pursue such insights. We believe that the field as
a whole will benefit as we move towards shared data, code,
and conceptual understanding.
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