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Abstract
Researchers conduct meta-analyses in order to synthesize information across different studies. Compared to standard
meta-analytic methods, Bayesian model-averaged meta-analysis offers several practical advantages including the ability to
quantify evidence in favor of the absence of an effect, the ability to monitor evidence as individual studies accumulate
indefinitely, and the ability to draw inferences based on multiple models simultaneously. This tutorial introduces the concepts
and logic underlying Bayesian model-averaged meta-analysis and illustrates its application using the open-source software
JASP. As a running example, we perform a Bayesian meta-analysis on language development in children. We show how to
conduct a Bayesian model-averaged meta-analysis and how to interpret the results.
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The standard method for aggregating empirical results across
several studies is meta-analysis. Typically, the statistical
analysis is conducted in the classical or frequentist framework
(e.g.,Viechtbauer, 2010). However, Bayesian meta-analysis
offers several advantages and has recently gained increasing
interest in psychological science (e.g., van Erp, Verha-
gen, Grasman, & Wagenmakers, 2017; Nieuwenstein et al.,
2015; Rouder, Haaf, Davis-Stober, & Hilgard, 2019). One
Bayesian approach that seems particularly suited for meta-
analysis is Bayesian model averaging (e.g., Gronau et al.,
2017; Haaf, Hoogeveen, Berkhout, Gronau, & Wagenmak-
ers, 2020; Scheibehenne, Gronau, Jamil, & Wagenmakers,
2017; Vohs et al., 2021). Here we present a tutorial on how
to conduct Bayesian model-averaged meta-analysis with
the user-friendly statistical software package JASP (JASP
Team, 2020).

Fixed effects versus random effects

Two key questions in every meta-analysis are whether
there is evidence for an overall effect across studies and
whether there is heterogeneity among study effects. To
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address these two questions, different statistical models for
aggregating effect sizes across studies have been proposed.
In the meta-analytic literature, these different approaches
are consistently referred to as the fixed-effects1 model and
the random-effects model. Let δi be the true effect size of
the ith study and μ be the overall true effect size in the
population. In the fixed-effects model, a single true effect
size is estimated, which is assumed to be identical for all
studies. This model can be expressed as δi = μ. In contrast,
in the random-effects model, every study is assumed to have
its own unique true effect size, albeit one that is likely to
be similar in magnitude to that from the other studies. So,
δi follows some distribution g(), which in most cases is a
normal distribution with mean μ and standard deviation τ

(i.e., the amount of heterogeneity), δi ∼ Normal(μ, τ 2).
Note that the fixed-effects model is obtained as a special
case of the random-effects model by assuming that the true
effect sizes have no variance (τ = 0).

When considering both fixed-effects and random-
effects models, we can distinguish the four hypotheses
shown in Fig. 1. Typically, the analyst first assesses the
heterogeneity of study effects using heterogeneity statistics
and then commits either to the fixed-effects model or to

1We acknowledge that the “fixed-effects” terminology is confusing,
as the meta-analytic interpretation of the term “fixed-effects” differs
from the definition of fixed effects in other modelling approaches in
the statistics literature (Gelman & et al, 2005). Although we believe
this meta-analytic model should rather be referred to as a “common-
effect” model, in this paper we follow the standard terminology for
meta-analysis.
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the random-effects model (Huedo-Medina, Sánchez-Meca,
Marı́n-Martı́nez, & Botella, 2006)2. After making this
commitment, the analyst usually proceeds with testing the
null hypothesis that the overall effect is zero, H0:μ= 0. The
issue with this two-step approach, however, is that there
may be considerable uncertainty in the initial decision on
whether to rely on the fixed-effects models or on the
random-effects models.

In practice, random-effects meta-analysis recently has
been preferred (Serghiou & Goodman, 2019) and rec-
ommended (Hunter & Schmidt, 2000) over fixed-effects
meta-analysis. The reason for this preference is the default
assumption that studies entered in a meta-analysis must be
different, and therefore, heterogeneity of effect sizes must
be accounted for. While fixed-effects meta-analysis indeed
leads to bias and too narrow confidence intervals in the pres-
ence of heterogeneity (Hunter & Schmidt, 2000), there are
situations where fixed-effects meta-analysis might be the
better choice (Borenstein, Hedges, Higgins, & Rothstein,
2010). First, if the studies included in the meta-analysis are
direct replications or stem from the same lab, the fixed-
effects assumptions might be more appropriate (Olsson-
Collentine, Wicherts, & van Assen, 2020). Second, if the
number of studies included in the meta-analysis is small,
then study heterogeneity τ might not be precisely estimated
leading to biases (Hedges & Pigott, 2004). For a more com-
plete discussion of the advantages and disadvantages of the
two approaches, please see (Borenstein et al., 2010).

We argue that the issue is not with the assumptions
made by any of the two models, but with the a priori
decision to consider only one of the models, whether or
not heterogeneity statistics are used for making this choice.
If the researcher chooses the fixed-effects model for null-
hypothesis testing even though the random-effects model
is also somewhat plausible, then the evidence for an effect
is usually overestimated and true study heterogeneity is
underestimated (i.e., it is assumed to be zero; Stanley &
Doucouliagos, 2015). Likewise, if the researcher chooses
the random-effects model for null-hypothesis testing even
though the fixed-effects model is also somewhat plausible,
then the evidence for an effect is often underestimated

2Although the use of heterogeneity statistics is common practice,
these tests often have low power and are therefore not recommended
as a basis for deciding between the fixed-effects and the random-
effects model (Stijnen, White, & Schmid, 2020). One advantage of
Bayes factors is that they allow one to discriminate between ‘evidence
of absence’ and ‘absence of evidence’. In the latter case (i.e., BF
∼ 1), we can say that the data are inconclusive. Note that such a
conclusion cannot be drawn based on p values where the two cases
are confounded. Furthermore, one of the major benefits of Bayesian
model-averaging is that we may often not have enough data to
conclude with certainty whether there is heterogeneity, but Bayesian
model-averaging accounts for this uncertainty even if the data are
inconclusive.

and true study heterogeneity is overestimated (Stanley &
Doucouliagos, 2015). To address this issue, the analyst
needs to take model uncertainty into account. This can be
achieved by Bayesian model averaging (Hinne, Gronau,
van den Bergh, & Wagenmakers, 2020; Hoeting, Madigan,
Raftery, & Volinsky, 1999; Heck & Bockting, 2021; Kaplan
& Lee, 2016).

Bayesianmodel averaging

A Bayesian model-averaged meta-analysis considers the
evidence for all four relevant models illustrated in
Fig. 1: The fixed-effects null hypothesis, the fixed-effects
alternative hypothesis, the random-effects null hypothesis,
and the random-effects alternative hypothesis (for a recent
extension see Maier, Bartoš, & Wagenmakers, 2022). By
considering the uncertainty regarding these four statistical
models simultaneously, it is possible to obtain the overall
evidence for the null vs. the alternative hypothesis and
the overall evidence for the existence vs. absence of
heterogeneity. Moreover, the approach provides overall
estimates for the parameters μ and τ by aggregating across
the four models weighted by their plausibility. In Bayesian
meta-analysis, model averaging has been successfully
applied in several applications (Gronau et al., 2017; Haaf
et al., 2020). For statistical details we refer the reader to
Gronau et al. (2021).

In Bayesian statistics, the strength of evidence for
statistical models is quantified by how well the different
models can predict the observed data (Jeffreys, 1961; Kass
& Raftery, 1995; Myung & Pitt, 1997). The predictive
performance of a model is the marginal likelihood, that is,
the prediction for the observed data averaged over the prior
distribution of the parameters (Rouder & Morey, 2019).
The marginal likelihood can be denoted as p(data | model).
The ratio of one marginal likelihood over another is called
the Bayes factor (BF; Etz & Wagenmakers, 2017, Jeffreys,
1961). For instance, a Bayes factor of the random-effects
model over the fixed-effects model is

BFrf = p(data | Hrandom)

p(data | Hf ixed)
. (1)

If the Bayes factor is, for example, equal to 6 this value
indicates that the data are six times more likely under the
random-effects model than under the fixed-effects model.
Conversely, a BFrf equal to 1/6, or approximately 0.17,
indicates that the data support the fixed-effects model,
as the data are six times less likely under the random-
effects model than under the fixed-effects model. The Bayes
factor informs us of the direction of evidence (i.e., which
model made the better predictions) and the strength of that
evidence (i.e., how much better the predictions are).
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Fig. 1 Explanation of the four meta-analytic models. The figures show the true effect sizes for six studies (y-axis) in accordance with the models.
The x-axis depicts the study effect size δi

Bayes factors are particularly suitable for addressing
the two key meta-analytic questions, as they are able to
quantify evidence for and against the presence of an overall
effect as well as heterogeneity. Although Bayes factors
typically consider two models, Bayesian model-averaging
allows the inclusion of multiple models with the so-called
inclusion Bayes factor (Gronau et al., 2021). To understand
the inclusion Bayes factor, we rearrange the terms of Bayes’
theorem to focus on an additional interpretation of the Bayes

factor. Instead of taking the ratio of marginal likelihoods as
in Eq. 1, we look at the relative change in beliefs about the
models before observing the data to after observing data.
The Bayes factor can then be expressed as

BFrf = p(Hrandom) | data)

p(Hf ixed) | data)

/p(Hrandom)

p(Hf ixed)
, (2)

where p(Hrandom) and p(Hf ixed) denote the prior model
probabilities for the random- and fixed-effects model, i.e.,
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a probability that represents one’s prior belief about the
uncertainty of a model before seeing any data (Jeffreys,
1961; Kass & Raftery, 1995; Myung & Pitt, 1997),
and p(Hrandom) | data) and p(Hf ixed) | data) denote the
posterior model probabilities of the random- and fixed-
effects model, i.e., a probability that represents one’s belief
about the uncertainty of a model after seeing data. The
change in belief is quantified by dividing the posterior odds

p(Hrandom) | data)
p(Hf ixed ) | data) by the prior odds p(Hrandom)

p(Hf ixed )
, and we can

also use this interpretation for the model-averaged inclusion
Bayes factor.

The inclusion Bayes factor for effect size compares all
models that assume an effect to be present (i.e., fixed-effects
H1 and random-effects H1) to all models that assume an
effect to be absent (i.e., fixed-effects H0 and random-effects
H0), that is

BF10 = p(H1,f ixed) | data) + p(H1,random) | data)

p(H0,f ixed) | data) + p(H0,random) | data)

/p(H1,f ixed) + p(H1,random)

p(H0,f ixed) + p(H0,random)
. (3)

Similarly, the inclusion Bayes factor for heterogeneity
compares all models that assume effect sizes vary across
studies (i.e., random-effects H0 and random-effects H1) to

all models that assume study effect sizes are identical (i.e.,
fixed-effects H0 and fixed-effects H1), that is

BFrf = p(H0,random) | data) + p(H1,random) | data)

p(H0,f ixed) | data) + p(H1,f ixed) | data)

/p(H0,random) + p(H1,random)

p(H0,f ixed) + p(H1,f ixed)
. (4)

Hence, one can examine the overall evidence for the
presence or absence of an effect and of heterogeneity,
without first having to select a subset of models.

Besides the evidence for the presence or absence of an
overall effect μ, researchers may be interested in its size
(i.e., how large is the treatment effect, assuming it exists?).
In Bayesian statistics, parameter estimates like μ come from
a posterior distribution, which according to Bayes’ theorem
can be expressed as

p(μ | data) = p(data | μ)p(μ)

p(data)
, (5)

where p(data | μ) is the likelihood of the data given
parameter μ, p(data) is the marginal likelihood of the data
under the model, and p(μ) is the prior distribution for μ,
i.e., a probability distribution that represents one’s prior
belief about the size and uncertainty of μ before seeing any
evidence (Jeffreys, 1961; Kass & Raftery, 1995; Myung &
Pitt, 1997). The uncertainty of the parameter estimates are
typically represented as a credible interval, which represents
the posterior probability that the parameter estimate lies
within said interval. For example, a 95% credible interval
means that there is a posterior probability of 95% that the
true parameters falls within this interval. Note the difference
to a classical frequentist 95% confidence interval, which
means that if one were to calculate confidence intervals
for an infinite number of repeated samples, 95% of these
intervals would include the true parameter.

Model-averaging is useful here as well. Specifically, the
fixed-effects H1 provides an estimate for μ (τ is assumed
zero) and the random-effects H1 provides estimates for both
μ and τ . When there is uncertainty concerning these two

models, Bayesian model-averaging yields a single estimate
of μ that is a weighted average of the estimates from the two
rival models, with the largest weight assigned to the model
that predicted the data best.3

To illustrate the advantages of the Bayesian model
averaging approach, consider the meta-analysis conducted
by Gronau et al. (2017). This meta-analysis concerned
the effect of “power posing” on felt power. The analysis
included six preregistered studies that measured self-
reported felt power after participants adopted a high-power
body posture in the experimental condition and a low-
power body pose in the control condition. The forest plot
in Fig. 2 shows the medians of the posterior distributions
together with the 95% highest density intervals for all effect
size estimates.4 The right-hand side of the figure shows
the Bayes factors in favor of the alternative directional
hypothesis H+ and the p value.

It is clear from the results that the individual studies do
not provide much evidence for the presence of an effect
when considered separately. The individual Bayes factors
are close to 1 and thus do not strongly support either the null
or the alternative hypothesis, although two of the six studies
have a significant p value. However, all of the effect-size
estimates indicate a positive effect. The fixed-effects Bayes
factor is BF+0 = 89.57 and thus indicates strong evidence
in favor of a positive effect. The Bayes factor for the
random-effects model also indicates evidence for a positive
effect, but the strength of evidence is considerably lower,

3The model-averaged estimate of τ is not yet available in JASP.
4A 95% highest density interval (HDI) is the smallest interval that
contains 95% of the posterior distribution.
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Fig. 2 Forest plot for the Bayesian model-averaged meta-analysis by Gronau et al. (2017). Shown are the estimated effect sizes per study (points)
and the estimates of the overall effect sizes per model (fixed-effect, random-effects, and model-averaged; diamonds). The corresponding Bayes
factors and p values are given on the right. Figure available at http://tinyurl.com/kz2jpwb under CC license https://creativecommons.org/licenses/
by/2.0/

BF+0 = 9.37. Instead of drawing a conclusion based on
the fixed-effects comparison only or based on the random-
effects comparison only, model averaging takes the model
uncertainty into account and yields in-between evidence, in
this case, BF+0 = 33.14. The model-averaged effect size
point estimate is μ = 0.22, 95% HDI [0.09, 0.34].

Advantages and challenges

Compared to a standard classical meta-analysis, a Bayesian
model-averaged meta-analysis offers several advantages.
First of all, the Bayesian analysis allows evidence to
be quantified for two or more hypotheses. Hence, it is
possible to determine the degree to which the data support
a certain hypothesis over another. Specifically, one may
obtain evidence in favor of the null hypothesis (when it
outpredicts the alternative hypothesis), evidence in favor
of the alternative hypothesis (when it outpredicts the
null hypothesis), and absence of evidence (when both
hypotheses predict the data about equally well; Keysers,
Gazzola, & Wagenmakers, 2020). In contrast, the p value
from classical methods cannot discriminate evidence of
absence from absence of evidence.

Second, a Bayesian model-averaged meta-analysis natu-
rally accommodates the uncertainty across multiple candi-
date models. This is particularly likely to be advantageous
when the number of studies is small, such that no single
model is dominant. In these cases, the Bayesian method pre-
vents the overconfidence that comes from eliminating the
model-selection step (Hinne et al., 2020), both with respect
to models themselves and with respect to their parameters.
The classical meta-analysis, however, does not provide a

straightforward method to produce model-averaged param-
eter estimates (O’Hagan & Forster, 2004 p. 174; but see
Burnham & Anderson, 2002).

Third, a Bayesian model-averaged meta-analysis allows
researchers to monitor the evidence as studies accumulate indef-
initely (Rouder, 2014; Scheibehenne, Jamil, & Wagen-
makers, 2016; Wagenmakers, Gronau, & Vandekerckhove,
2018). Usually, the sampling plan in meta-analyses is not
under the control of an experimenter, and this means that
classical methods are vulnerable to the problem of multiple
comparisons (but see Schnuerch & Erdfelder, 2020).

Finally, a Bayesian model-averaged meta-analysis enables
researchers to take into account prior knowledge. This
prior knowledge may reflect expectations concerning effect
size (Vohs et al., 2021) or heterogeneity (van Erp et al.,
2017). In addition, the theory under scrutiny often implies a
certain direction of the effect – for instance, the theory
may stipulate it to be positive. In Bayesian inference, this
substantive knowledge can be accommodated by adjusting
the prior distribution. Including more detailed knowledge in
the prior distribution allows for a more diagnostic test. Classical
statistics cannot accommodate detailed prior knowledge.

Bayesian model-averaging for meta-analysis is a rela-
tively new methodology, and consequently, it has yet to be
included in popular statistics programs. The method has
recently been implemented in the R package metaBMA
(Heck, Gronau, and Wagenmakers, 2019). However, many
students and researchers in the social sciences rely on
statistical software with a point-and-click graphical user
interface. In the present paper, we showcase a recent imple-
mentation of Bayesian model-averaged meta-analysis in
JASP, which relies on the metaBMA R package. The soft-
ware JASP is an open-source statistics program with an
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intuitive graphical user interface (e.g., JASP Team, 2020;
Love et al., 2019; Ly, van den Bergh, Bartoš, & Wagen-
makers, 2021; Wagenmakers et al., 2018). We explain how
Bayesian model-averaged meta-analysis can be conducted,
interpreted, and reported.

Example: pointing and language
development

In a classical meta-analysis comprised of 12 studies with
a total of 319 children, Colonnesi et al. (2010) exam-
ined the concurrent relation between pointing (indicating
something with one’s finger) and language development. The
results of each study are summarized in Table 1.

The Colonnesi et al. (2010) meta-analysis showed a large
overall effect size that was also statistically significant (r =
.52, z = 8.80, p < .001). Moreover, a test of homogeneity
indicated that the hypothesis of homogeneity could not be
rejected at the α = .05 level (i.e., Q(9) = 15.53, p = .077).
Based on these results, Colonnesi et al. (2010) concluded
that there was a strong concurrent relationship between
the pointing gesture and language development for infants.
In the next section, we show how to conduct and interpret
a Bayesian model-averaged meta-analysis of the data from
Colonnesi et al. (2010) in JASP.

Implementation in JASP

Before proceeding with the analysis, we first need to
load the data file in JASP. The .jasp file containing the
data used in this example together with the analysis input

Table 1 Results for the 12 studies included in the Colonnesi et al.
(2010) meta-analysis on the concurrent relation between pointing and
language development

r SE N

Murphy (1978) 0.310 0.186 32

Bates et al. (1979) 0.250 0.213 25

Dobrich & Scarborough (1984) 0.400 0.229 22

Harris et al. (1995) 0.700 0.567 6

Mundy & Gomes (1998) 0.320 0.218 24

Morales et al. (2000) 0.500 0.229 22

Rowe (2000) 0.640 0.154 45

Franco & Gagliano (2001) 0.720 0.186 32

Fasolo & d’Odorico (2002) 0.490 0.156 44

Rodrigo et al. (2006) 0.510 0.444 8

Locke (2007) 0.820 0.406 9

Rowe & Goldin-Meadow (2008) 0.610 0.146 50

Note. Data retrieved from http://metalab.stanford.edu/

and output are available at https://osf.io/84gbu/. The data
file must contain a column with effect sizes and another
column with the corresponding standard errors, with each
row corresponding to a specific study. Alternatively, the
standard error column can be replaced with two columns
for the lower and upper bound of a 95% confidence
interval of the effect size. In this case, standard errors
are computed internally assuming a normal distribution as
sampling distribution. An optional column with study labels
can be used to customize tables and figures.

JASP assumes that the effect size measure is scaled in
such a way that zero corresponds to the null effect and the
measure can take on any value on the real line. This is
the case for many common effect size measures in social
science such as Cohen’s d, Hedges’ g, Fisher’s z, and the
log odds ratio (LOR). Other effect-size measures should be
transformed prior to the analysis. For example, on the odds-
ratio scale, a value of 1 corresponds to the null effect (i.e.,
no change in the odds). In this case, a log transformation of
each study’s odds ratio and the corresponding standard error
can be used to obtain effect sizes on the right scale (i.e.,
LOR). Similarly, in correlational research, it is common
to use the Pearson correlation coefficient r as a measure
of effect size. While r = 0 indeed corresponds to the null
hypothesis, correlation coefficients are restricted to the
interval from −1 to 1. Our meta-analytic models assume
that effect sizes can range from minus to plus infinity
(i.e., they have full support). Therefore, it is necessary
to transform each study’s correlation coefficient and the
associated standard error to Fisher’s z, the standardized
correlation coefficient. In our example, the reported effect
sizes and corresponding standard errors are in terms of the
Pearson correlation coefficient r . Appendix A shows how
JASP can be used to transform r to z.

Having transformed the data to the right scale, we
proceed to activate the ‘Meta-Analysis’ module. To do so,
we navigate to the top right of the JASP application and
click on the large blue ‘+’ sign (not shown) and select the
‘Meta-Analysis’ module. A meta-analysis button is added
to the ribbon; selecting it shows the option ‘Bayesian Meta-
Analysis’. Selecting the ‘Bayesian Meta-Analysis’ option
produces the graphical user interface shown in Fig. 3.

Prior settings

The typical workflow in JASP is to drag the relevant
variables into the appropriate boxes using the mouse cursor
– which yields immediate output – and only then adjust the
default settings of an analysis. However, here we examine
and adjust the prior settings first. Figure 4 shows the input
fields that allow analysts to specify the relative plausibility
of different values for effect size and heterogeneity before
having seen the data – in other words, prior distributions.
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Fig. 3 JASP screenshot of the input panel for the Bayesian meta-analysis module. The variables from the data file are listed in the top-left box and
can be moved to the appropriate boxes on the top-right. Below the data input boxes are various options for inference and displaying results. More
detailed options are available under the drop-down subsections Prior, Plots, and Advanced

For the overall effect size μ, the default prior distribution
in JASP is a Cauchy distribution with location 0 and scale
0.707: μ ∼ Cauchy(0, 0.707) (cf. Morey and Rouder,
2018). When choosing a prior, it is important to take into

account the scaling of the effect size (Haaf & Rouder,
2021). In particular, the Cauchy prior with scale 0.707 is
commonly applied to the Cohen’s d scale (Gronau et al.,
2021); however, we have used a Fisher’s z transformation,

Fig. 4 JASP screenshot of the prior distribution options for effect size and heterogeneity in the Bayesian meta-analysis module
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Fig. 5 Prior distributions for the Bayesian meta-analysis of the studies identified by Colonnesi et al. (2010) on the concurrent relation between
pointing and language development. Left panel: μ ∼ Cauchy(0, 0.354). Right panel: τ ∼ Inv-Gamma(1, 0.075). Note that these priors are on the
Fisher’s z scale, with values about twice as small as Cohen’s d values. Figures from JASP

and Fisher’s z values are about twice as small as Cohen’s
d values. Hence, we specify a zero-centered Cauchy
distribution on μ with a scale of 0.707/2 = 0.354: μ ∼
Cauchy(0, 0.354).

For heterogeneity τ , the default prior is an inverse gamma
with shape 1 and scale 0.15, τ ∼ Inv-Gamma(1, 0.15).
This prior was proposed by Gronau et al. (2017) based
on an empirical review of effect-size heterogeneity by van
Erp et al. (2017). As before, this prior distribution needs
to be adjusted to take into account that our values are on
the Fisher’s z scale. Consequently, we assign τ an inverse
gamma distribution with shape 1 and scale 0.075: τ ∼
Inv-Gamma(1, 0.075). These priors can be plotted to assess
whether the distributions represent the analyst’s beliefs, that
is, whether most prior mass is placed on reasonable values.
The prior distributions specified above are shown in Fig. 5.

The default results

With the priors specified on the correct scale, we can
proceed to conduct the analysis. We place the effect
size variable ‘z’ in the Effect Size box, the standard
error variable ‘z SE’ in the Effect Size Standard
Error box, and the study label variable ‘study’ in the
Study Labels box. Doing so immediately starts an
analysis. As shown in Fig. 3, by default this analysis relies
on model averaging. Researchers may change this setting
and instead opt for a fixed-effects or a random-effects meta-
analysis only. Moreover, the random-effects model can be
constrained to a nested model in which all of the true effect
sizes across studies (i.e., the random effects) are either
positive or negative, thus resembling a stronger version of
the more common one-sided hypothesis that the average
effect size is positive or negative (Rouder et al., 2019).5

5A detailed example of this analysis is demonstrated in Appendix B.

Researchers may retain the default setting of Bayesian
model averaging when they are unwilling to fully commit,
from the outset, to either the fixed-effects model or the
random-effects model. Below we continue to discuss the
results obtained from model-averaging.

Posterior estimates per model

Table 2 presents the main results: the posterior distribution
for μ and τ per model and the corresponding Bayes factors.
The columns ‘Mean’, ‘SD’, ‘Lower 95% Credible Interval’
and ‘Upper 95% Credible Interval’ summarize the posterior
distribution for either μ or τ . For instance, the first row
shows that the posterior mean for μ in the fixed-effects
model is 0.578 (on Fisher’s z scale), with a standard
deviation of 0.061 and a 95% credible interval that ranges
from 0.461 to 0.698. The fixed-effects model assumes τ =0,
so no posterior distribution is shown. The BF10 = 5.625e +
19 value indicates that the data are 5.625 · 1019 times more
likely under the fixed-effects H1 than under the fixed-
effects H0 – overwhelming evidence for the presence of an
effect if a fixed-effects model is assumed.

For the random-effects model, the posterior distribution
for μ is similar to that of the fixed-effects model. In
addition, the random-effects model also features a posterior
distribution for τ . The BF10 value of 38,503.011 on the
second row indicates that the data are about 38,500 times
more likely under the random-effects H1 than under the
random-effects H0. This is still overwhelming evidence for
the presence of an effect, but considerably less so than that
obtained under a fixed-effects assumption. On the third row,
the BF10 value of 0.854 indicates that the data are about
1/0.854 ≈ 1.17 times more likely under the fixed-effects
H1 than under the random-effects H1. In other words, under
the assumption that the effect is present, the data provide
almost no evidence for the assertion that the effect is either
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Table 2 Posterior estimates per model for the Bayesian meta-analysis of the studies identified by (Colonnesi et al., 2010) on the concurrent
relation between pointing and language development

95% Credible Interval

Mean SD Lower Upper BF10

Fixed effects μ 0.578 0.061 0.461 0.698 5.625e+19

Random effects μ 0.572 0.071 0.427 0.708 38503.011

τ 0.096 0.067 0.019 0.270 0.854a

Averaged μb 0.575 0.067 0.438 0.700 83574.393

τ c 0.854

Table from JASP

Note. μ and τ are the group-level effect size and standard deviation, respectively
aBayes factor of the random effects H1 over the fixed effects H1
bPosterior estimates are based on the models that assume an effect to be present. The Bayes factor is based on all four models: fixed- and
random-effects H1 over the fixed- and random-effects H0.
cModel-averaged posterior estimates for τ are not yet available, but will be added in the future

fixed or random. This is more informative than the results
of the classical frequentist analysis, which indicated that
the null hypothesis of homogeneity could not be rejected
(p = .077).

The fourth row shows, first, a summary of the model-
averaged posterior distribution for μ. The averaging here
occurs over the fixed-effects H1 and the random-effects H1,
that is, the models that assume μ to be present. This model-
averaged distribution for μ falls in between the posterior
under the fixed-effects H1 and the posterior under the
random-effects H1. The fourth row also shows the model-
averaged Bayes factor for the presence of an effect; with
BF10 = 83, 574.393 this Bayes factor falls in between that
from the fixed-effects comparison and the random-effects
comparison.

Model probabilities and effect sizes

Apart from the main output table, two additional tables are
available upon demand. The first table shows the prior and
posterior model probabilities; Table 3 provides the results

Table 3 Prior and posterior model probabilities for the Bayesian
model-averaged meta-analysis of the studies identified by Colonnesi
et al. (2010) on the concurrent relation between pointing and language
development

Prior Posterior

Fixed H0 0.250 9.587e-21

Fixed H1 0.250 0.539

Random H0 0.250 1.197e-5

Random H1 0.250 0.461

Table from JASP

for the Bayesian meta-analysis of the studies identified
by Colonnesi et al. (2010). The fixed-effects and random-
effects null models both have a posterior model probability
close to zero, indicating that a null effect is highly unlikely.

Table 4 Observed and estimated effect sizes (i.e., Fisher’s z) per
study for the Bayesian model-averaged meta-analysis of the studies
identified by Colonnesi et al. (2010) on the concurrent relation
between pointing and language development

Estimated

Observed Meana Lowera Uppera

Murphy (1978) 0.321 0.521 0.255 0.712

Bates et al. (1979) 0.255 0.517 0.213 0.720

Dobrich &
Scarborough
(1984)

0.424 0.551 0.300 0.753

Harris et al. (1995) 0.867 0.583 0.328 0.849

Mundy & Gomes
(1998)

0.332 0.532 0.258 0.734

Morales et al. (2000) 0.549 0.570 0.339 0.782

Rowe (2000) 0.758 0.622 0.440 0.848

Franco & Gagliano
(2001)

0.908 0.645 0.456 0.936

Fasolo & d’Odorico
(2002)

0.536 0.565 0.368 0.742

Rodrigo et al. (2006) 0.563 0.574 0.306 0.828

Locke (2007) 1.157 0.612 0.379 0.919

Rowe & Goldin-
Meadow (2008)

0.709 0.613 0.441 0.818

Table from JASP
aPosterior mean and 95% credible interval estimates from the random-
effects model
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Among the two remaining alternative models, the fixed-
effects H1 has received just a little more support from the
data than the random-effects alternative model, meaning
that the posterior probability for the fixed-effects H1 edges
out that for the random-effects H1 (i.e., 0.539 vs. 0.461).
The fact that the two posterior probabilities are so similar
indicates that, after having seen the data, there remains

considerable uncertainty about the presence or absence
of study heterogeneity, which may be due to the small
number of studies. Because of this uncertainty it is prudent
to quantify evidence for or against an overall effect by
averaging across the fixed and random-effects models.

The second on-demand table shows the observed and
estimated effect sizes per study; Table 4 provides the results

Fig. 6 Forest plot for the studies identified by Colonnesi et al. (2010) on the concurrent relation between pointing and language development.
Observed per-study effect sizes (i.e., Fisher’s z) with 95% confidence intervals are shown in black; estimated per-study effect sizes with 95%
credible intervals are shown in gray. Figure from JASP
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for the Bayesian meta-analysis of the studies identified
by Colonnesi et al. (2010). The estimated effect sizes are
summarized by their posterior means and 95% credible
intervals. Note that the estimated per-study effect sizes are
closer to the average effect size (i.e., μ = 0.575) than the
observed effect sizes. This shrinkage effect can also be
appreciated visually through a forest plot, which is the topic
of the next section.

Forest plot

A standard forest plot shows the observed effect sizes plus
confidence intervals per study ordered in rows. On the left,
study labels indicate the study. In the middle, points with
error bars illustrate the effect size and confidence interval
of each study. On the right, the exact values of the effect
size and confidence interval are displayed. Underneath the

Fig. 7 Cumulative forest plot for the studies identified by Colonnesi et al. (2010) on the concurrent relation between pointing and language
development. Each consecutive row shows the model-averaged estimate of μ (with a 95% credible interval) after adding the associated study to
the analysis. The bottom row shows the result for the complete data set. Figure from JASP
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study-specific information are the results from the meta-
analysis.

In addition to the standard forest plot, which show the
observed effect sizes per study, JASP also offers the option
to display the estimated effect sizes per study. Figure 6 shows
a forest plot with observed per-study effect sizes in black
and estimated per-study effect sizes in gray. The estimated
effect sizes are shrunk towards the group mean (cf. Table 4).
The meta-analytic estimates for the fixed, random, and
averaged models are shown at the bottom of the figure.
The averaged estimate is a weighted mean of the fixed and
random-effects estimates where the weighting is determined
by the posterior probability of the two H1 models.

Cumulative forest plot

The cumulative forest plot shows how the posterior model-
averaged estimates are updated as studies are added to the
analysis one-by-one. Figure 7 shows the cumulative forest
plot for the Colonnesi et al. (2010) example. The studies
are placed in chronological order, such that the posterior
distributions reflect the increase in knowledge as the studies
come in over time. In JASP, the row order of the data
provides the order in which the studies are added to the
cumulative forest plot. The top row shows the posterior
estimate based on two studies, as this is the minimum number
for a random-effects meta-analysis (and therefore also for
model-averaging). The bottom row shows the posterior
estimate based on the complete data set, with all studies
included. As the studies accumulate, the posterior distribution
for the mean effect size μ narrows, indicating an increase in
confidence regarding the plausible values for μ.

Prior and posterior plots

Two other plots shows the prior and posterior distribution
for the overall effect size and the study heterogeneity

parameters; Fig. 8 provides the results for the Bayesian
meta-analysis of the studies identified by Colonnesi et al.
(2010).

These plots can be used to gauge how much the data
have changed the relative plausibility of the different
parameter values. In addition, the posterior distributions
provide a more complete picture of the uncertainty than
the numerical summary using the posterior mean and 95%
credible interval. The left panel shows, at a glance, that
the Fisher’s z effect size is highly likely to lie in the
range from 0.4 to 0.8; note that expressed in terms of
Cohen’s δ, the effect would be about twice as small.
The right panel shows that the posterior distribution for
heterogeneity τ is somewhat more narrow than the prior
distribution, but has not changed markedly. This reflects
our finding above that the Bayes factor for the fixed- vs.
the random-effects model is close to one, meaning that we
cannot draw any conclusions about the variance of effect
sizes. The right-skew of the posterior distribution arises
because the heterogeneity parameter is bounded from below
by zero; this is a prominent feature of the distribution
that is difficult to appreciate from a numerical summary
alone.

Sequential analyses

We consider two sequential analyses, in which the analysis
outcome is updated one study at a time. The order in
which the studies are added is given by the rows in the
data set; the most natural organization is chronologically.
These sequential analyses are conceptually similar to the
cumulative forest plot, except that the analysis outcome is
not an effect-size estimate, but rather the evidence (i.e., the
Bayes factor) or belief (i.e., posterior probabilities) for the
different models.

First, Fig. 9 shows the flow of evidence, that is,
the development of the Bayes factors as the studies

Fig. 8 Posterior distributions (solid lines) and prior distributions (dotted lines) for the Bayesian meta-analysis of the studies identified by Colonnesi et al.
(2010) on the concurrent relation between pointing and language development. Left panel: prior and posterior distribution on effect size (for the
fixed effects, random effects, and model-averaged alternative models). Right panel: prior and posterior distribution on heterogeneity (for the
random effects alternative model). Figures from JASP
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Fig. 9 The flow of evidence: model-averaged meta-analytic Bayes factor sequential analyses for effect size (left panel) and heterogeneity (right
panel). Data are based on the studies identified by Colonnesi et al. (2010) on the concurrent relation between pointing and language development.
The panels show how evidence accumulates when studies are added one-by-one. Panels from JASP

accumulate.6 The left panel shows the model-averaged
Bayes factor for the presence vs. absence of an effect. Every
study increases the strength of evidence in favor of there
being an effect; after six studies, the Bayes factor already
exceeds 100. The right panel shows the model-averaged
Bayes factor for heterogeneity vs. homogeneity. The Bayes
factor remains close to one throughout the study series,
meaning that the data are almost completely uninformative
with respect to the presence of heterogeneity.

Second, Fig. 10 shows the flow of belief, that is, the
development of posterior model probabilities as studies
accumulate. For the first few studies, the fixed-effects
alternative hypothesis is preferred. After seven studies, the
fixed-effects alternative hypothesis and the random-effects
alternative hypothesis are about equally plausible, and this
situation remains unchanged as the remaining studies are
added one-by-one. After including six studies, both the
fixed-effects null-hypothesis and the random-effects null-
hypothesis have posterior model probabilities near zero and
are effectively out of contention.

Advanced settings

Figure 11 shows the GUI for the advanced settings. The
prior model probabilities concern the fixed-effects H0, the
fixed-effects H1, the random-effects H0, and the random-
effects H1. If, before seeing the data, there is good reason to
believe that any of these models are less likely than others,
their prior probabilities may be changed instead of using
the default value of 0.25. For example, when one believes
that the random-effects models are twice as plausible as the
fixed-effects models, the prior model probabilities of the
fixed-effects H0 and H1 can be set to 0.167, and the prior

6Similar as for the cumulative forest plot, a random-effects (or
model-averaged) meta-analysis requires at least two studies. When the
number of studies is one, the sequential plots indicate a Bayes factor
of one.

model probabilities of the random-effects H0 and H1 can
be set to 0.333. The four prior probabilities should add to
1. If this is not the case, JASP will rescale the values to
enforce this restriction. Note that changing the prior model
probabilities may affect the value of the inclusion Bayes
factor (for details see Gronau et al. 2021, Appendix).

Under estimation settings, there are options to
change the behavior of the Markov chain Monte Carlo
(MCMC) routine. MCMC is a sampling method that allows
one to estimate a posterior distribution by drawing a large
number of randomly generated values from this distribution.
We need MCMC procedures in Bayesian estimation because
posterior distributions are often difficult if not impossible
to derive analytically. The samples in a Markov chain are
generated sequentially, where each sample depends on the
previous sample but not on the samples before that. Because

Fig. 10 The flow of belief: sequential analysis of posterior model
probabilities for the four meta-analytic models. Data are based on
the studies identified by Colonnesi et al. (2010) on the concurrent
relation between pointing and language development. The lines show
how the posterior model probabilities fluctuate when studies are added
one-by-one. Figure from JASP
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Fig. 11 Advanced settings for the Bayesian meta-analysis. See text for details

of this dependence, the initial samples need to be ignored,
often called ‘burn-in’ or ‘warm-up’, as the starting point
of the chain may not be representative of the posterior
distribution (for a gentle introduction to MCMC, see van
Ravenzwaaij, Cassey, and Brown, 2018). When estimation
problems occur, it may help to increase the number of
chains, burn-in samples, and iterations. Furthermore, JASP
offers an option to show the convergence diagnostic R-hat
for the parameter estimates of the fixed- and random-effects
model, and the individual-study effect-size estimates. R-hat
is the potential scale reduction statistic, where a value close
to 1 indicates that the MCMC chains have converged, more
specifically, a value smaller than 1.05 can be seen as an
indicator of convergence, although a more conservative cut-
off of 1.01 has been proposed (Vehtari, Gelman, Simpson,
Carpenter, & Bürkner, 2021).

Under Bayes factor computation one may
select either Integration or Bridge sampling
(e.g., Gronau et al., 2017; Gronau, Singmann, & Wagen-
makers, 2020). The bridge sampling method is slower and
less precise than the numerical integration method; however,
the integration method is not robust under extreme priors

or data (e.g., very high prior precision, very small stan-
dard error; see also Heck et al., 2019). When one chooses
bridge sampling for computing the Bayes factor, one may
rerun the analysis a few times to gauge the robustness of
the estimated posterior probabilities. For the analysis of the
Colonnesi et al. (2010) data we used the default advanced
settings.

Prior robustness analysis

The JASP implementation above shows that the Bayesian
model-averaged meta-analysis requires two prior settings:
the prior model probabilities of the four models (fixed-
effects H0, fixed-effects H1, random-effects H0, and
random-effects H1) and the prior parameter distributions
for the overall effect size μ and the study heterogeneity
τ . When there is uncertainty about these prior settings, we
recommend conducting a prior robustness analysis, that is,
trying out other reasonable prior settings and see how this
impacts the results. In this section, we illustrate how one
can perform a prior robustness analysis using the example
above.

Table 5 Posterior model probabilities for four different prior model probabilities settings

p(H) Favors

Probability Hypothesis None Null Random Fixed

p(H) Fixed H0 0.250 0.333 0.167 0.333

Fixed H1 0.250 0.167 0.167 0.333

Random H0 0.250 0.333 0.333 0.167

Random H1 0.250 0.167 0.333 0.167

p(H | data) Fixed H0 9.587e-21 1.917e-20 6.563e-21 1.246e-20

Fixed H1 0.539 0.539 0.369 0.701

Random H0 1.197e-5 2.393e-5 1.638e-5 7.773e-6

Random H1 0.461 0.461 0.631 0.299

Note. The results of our main analysis are highlighted in bold
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Table 6 Model-averaged effect size estimates for four prior model probabilities settings

95% Credible Interval

p(H) Favors Mean SD Lower Upper BF10

None μ 0.575 0.067 0.438 0.700 83574.393

Null μ 0.575 0.066 0.442 0.702 83574.393

Random μ 0.574 0.068 0.437 0.705 61038.702

Fixed μ 0.577 0.063 0.452 0.700 128645.776

Note. μ is the group-level effect size. Posterior estimates are based on the models that assume an effect to be present. The Bayes factor is based
on all four models: fixed- and random-effects H1 over the fixed- and random-effects H0. The results of our main analysis are highlighted in bold

Prior model probabilities

So far, we used equal prior model probabilities, that is, a
prior probability of 0.25 for each of the four models. This
resulted in posterior model probabilities of almost zero for
the null models and about equal probabilities for the alterna-
tive models, see Table 3. To see how sensitive the results of
the Bayesian model-averaged meta-analysis are to the prior
model probabilities, we can conduct the same analysis with
different reasonable prior model probabilities. Thus, we
have to adjust the prior model probabilities in the advanced
settings in JASP. For example, we could see what happens
if the null models are twice as likely a priori as the alter-
native models, or if the random-effects models are twice as
likely a priori as the fixed-effects models, or vice versa.

Table 5 shows the posterior model probabilities for
different settings of prior model probabilities. We see that
the posterior probabilities are similar when assuming equal
prior probabilities and when assuming prior probabilities
that favor the null models. However, when the prior model
probabilities favor either the fixed- or the random-effects
model, the posterior probabilities show the same pattern
for the alternative models (while the posterior probabilities
for the null models remain close to zero). This effect
of the prior probabilities on the posterior probabilities is
expected here since the data provide no evidence for or
against heterogeneity. Thus, for all prior model probabilities
settings, our conclusion would be that the alternative models

are more likely than the null models. However, which
alternative model (fixed-effects H1 or random-effects H1)
has a higher posterior probability depends on the prior
settings.

Moreover, Table 6 shows that the overall effect size
estimate μ is similar for all four prior settings. The
only relevant difference concerns the inclusion Bayes
factor, which does not change when assuming either prior
probabilities favoring none or the null model. However,
compared to the default model probabilities, the inclusion
Bayes factor is about 1.4 times smaller for the prior
probabilities favoring the random-effects model and about
1.5 times larger for the prior probabilities favoring the
fixed-effects model. This means that the fixed-effects model
has obtained more evidence for an effect compared to the
random-effects model. However, for all these prior model
probabilities settings, our conclusion regarding μ would be
the same: There is considerable evidence for an effect. Note
that in cases where the amount of evidence is generally
smaller, a difference by a factor of 1.5 could result in a
different interpretation of the inclusion Bayes factor.

Prior distributionμ

In the example, we used the prior distribution of the
overall effect size μ ∼ Cauchy(0, 0.354), see Fig. 4. To
see whether the results of the meta-analysis are robust
against the choice of this prior distribution, we can try out

Table 7 Posterior model probabilities for three different prior distributions of μ

p(H | data)

Hypothesis p(H) Cauchy(0, 0.177) Cauchy(0, 0.354) Cauchy(0, 0.707)

Fixed H0 0.25 1.512e-20 9.587e-21 8.765e-21

Fixed H1 0.25 0.537 0.539 0.542

Random H0 0.25 1.887e-5 1.197e-5 1.094e-5

Random H1 0.25 0.463 0.461 0.458

Note. The results of our main analysis are highlighted in bold
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Table 8 Model-averaged effect size estimates for three different prior distributions of μ

95% Credible Interval

Prior Mean SD Lower Upper BF10

Cauchy(0, 0.177) μ 0.571 0.066 0.440 0.698 53002.651

Cauchy(0, 0.354) μ 0.575 0.067 0.438 0.700 83574.393

Cauchy(0, 0.707) μ 0.580 0.065 0.451 0.706 91413.823

Note. μ is the group-level effect size. Posterior estimates are based on the models that assume an effect to be present. The Bayes factor is based
on all four models: fixed- and random-effects H1 over the fixed- and random-effects H0. The results of our main analysis are highlighted in bold

different reasonable distribution settings. For instance, one
may assume a less informed, wider prior distribution such as
μ ∼ Cauchy(0, 0.707), or a more informed, narrower prior
distribution such as μ ∼ Cauchy(0, 0.177). Table 7 shows
the posterior model probabilities for the three different prior
distributions of μ which are all very similar.

We expect the prior distribution for μ to have the most
impact on the effect-size estimates. Table 8 shows that, as
expected, the wider the prior distribution, the larger the
estimate for μ, and the larger the Bayes factor. However,
these differences are relatively small and do not change the
substantive conclusions.

Prior distribution τ

We can also try other reasonable prior distributions
for the heterogeneity that are more and less informed.
In the example, we used the prior distribution of the
heterogeneity τ ∼ Inv-Gamma(1, 0.075), so a wider, less
informed distribution would be τ ∼ Inv-Gamma(1, 0.150),
and a narrower, more informed distribution is τ ∼
Inv-Gamma(1, 0.038). Table 9 shows the posterior model
probabilities for these three prior distributions of τ . When
the prior distribution becomes wider, the fixed-effects
alternative model has a higher and the random-effects
model a lower posterior probability. This is expected as
a wider prior means that there is less prior probability
for heterogeneity (compared to narrower priors), which is
part of the random-effects model. Furthermore, Table 10

shows the estimates and Bayes factors for τ . Even though
the estimate for heterogeneity τ is largest for the widest
prior (τ = 0.130), the 95% credible interval shows more
uncertainty. The Bayes factor for the widest prior indicates
that the data are about 1/0.665 ≈ 1.53 times more likely
under the fixed-effects H1 than under the random-effects
H1, which can be interpreted as anecdotal evidence for
the fixed-effects model. Thus, with this wider prior for
heterogeneity, the results slightly favor the fixed-effects
over the random-effects alternative model, which indicates
that the results are sensitive to the prior settings. However,
the difference in evidence is still too small to change our
conclusion.

Example report

In this section, we provide an example report of our
Bayesian meta-analysis for the data by Colonnesi et al.
(2010). We follow van Doorn and colleagues’ suggestions
for transparent reporting of Bayesian analyses (van Doorn
et al., 2021).

To investigate the relationship between pointing and
language development, we conducted a Bayesian model-
averaged meta-analysis using data from Colonnesi et al.
(2010). This analysis features four models or hypothe-
ses: (1) the fixed-effects null-hypothesis; (2) the fixed-
effects alternative hypothesis; (3) the random-effects null-
hypothesis; and (4) the random-effects alternative hypothe-
sis. We analyzed the data with JASP (JASP Team, 2020). An

Table 9 Posterior model probabilities for three different prior distributions of τ

p(H | data)

Hypothesis p(H) Inv-Gamma(1, 0.038) Inv-Gamma(1, 0.075) Inv-Gamma(1, 0.150)

Fixed H0 0.25 9.109e-21 9.587e-21 1.074e-20

Fixed H1 0.25 0.512 0.539 0.604

Random H0 0.25 6.161e-6 1.197e-5 2.341e-5

Random H1 0.25 0.488 0.461 0.396

Note. The results of our main analysis are highlighted in bold
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Table 10 Heterogeneity estimates for three different prior distributions of τ

95% Credible Interval

Prior Mean SD Lower Upper BFrf

Inv-Gamma(1, 0.038) τ 0.069 0.059 0.010 0.227 0.952

Inv-Gamma(1, 0.075) τ 0.096 0.067 0.019 0.270 0.854

Inv-Gamma(1, 0.150) τ 0.130 0.070 0.035 0.302 0.655

Note. τ is the group-level standard deviation. The inclusion Bayes factor is the random effects H0 and H1 over the fixed effects H0 and H1. The
results of our main analysis are highlighted in bold

annotated .jasp file, including plots, tables, data, and input
options, is available at https://osf.io/84gbu/.

Descriptive summary

Table 1 summarizes the data from each of the 12 studies,
and Fig. 6 shows the associated forest plot. All studies have
a positive Fisher’s z score, with values ranging from 0.255
to 1.157.

Testing for heterogeneity

Firstly, we examined the inclusion Bayes factor for
heterogeneity. This Bayes factor pits the two random-effects
hypotheses against the two fixed-effects hypotheses. All
four hypotheses were given a prior probability of 0.25
(Table 3), reflecting a position of prior impartiality. The
Bayes factor indicated that there is little evidence for the
presence or absence of study heterogeneity. Specifically,
BFrf = 0.85 (Table 2), which means that the data are
approximately equally likely under the random-effects
hypotheses and the fixed-effects hypotheses.

Testing for overall effect size

Secondly, we examined the inclusion Bayes factor for
effect size. This Bayes factor pits the two alternative
hypotheses against the two null hypotheses. As in the test
for heterogeneity, all four hypotheses were given a prior
probability of 0.25. The results are shown in Table 3. There
is decisive evidence for the presence of an effect, BF10 =
83, 574.39, which means that the data are over 83,000 times
more likely under the effect-present hypotheses than under
the effect-absent hypotheses.

Parameter estimation

Finally, we discuss the results of parameter estimation.
For the estimation of heterogeneity, the across-study
standard deviation τ was given an inverse gamma prior

distribution, τ ∼ Inv-Gamma(1, 0.075). Under the random-
effects alternative hypothesis, the posterior mean of the
heterogeneity parameter τ equals 0.096 with a 95% credible
interval ranging from 0.019 to 0.270. The large width of the
credible interval indicates that there remains considerable
uncertainty about the degree of heterogeneity across studies.

For effect-size estimation, we assumed a Cauchy
distribution with μ ∼ Cauchy(0, 0.354) as a prior for
the parameter μ (i.e., Fisher’s z). Because the data did
not provide convincing evidence for preferring either the
fixed-effects or the random-effects model, we average the
posterior distribution of μ over both models.

Figure 8 shows the posterior distributions for all models.
The model-averaged posterior falls in between the posterior
distributions of the fixed-effects and the random-effects
model. The fixed-effects posterior mean μ is equal to 0.578,
95%CI[0.461, 0.698], and the random-effects posterior
mean μ is equal to 0.572, 95%CI[0.427, 0.708]. Note
that the credible interval for the random-effects model is
somewhat more uncertain then the fixed-effects model. The
mean of the model-averaged posterior distribution for μ

is equal to 0.575 with a 95% credible interval that ranges
from 0.438 to 0.700 (see Table 2). Although there is some
uncertainty about the exact size of the effect, it is almost
certainly very large: in terms of Cohen’s d, the point
estimate of effect size is 1.214 with a 95% central credible
interval ranging from 0.904 to 1.517.

Prior sensitivity

To check whether these results are robust to alternative,
reasonable prior settings, we conducted a prior robustness
analysis with different prior model probabilities and prior
distributions. With different prior model probabilities, the
posterior model probabilities ranged from 0.369 to 0.701 for
the fixed-effects alternative model and from 0.299 to 0.631
for the random-effects model, depending on which model
was favored in the prior settings. Moreover, the posterior
estimates for the effect size μ were similar, ranging from
0.575 to 0.577, with inclusion Bayes factors ranging from
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61,039 to 128,646. With different prior distributions for
μ, the posterior estimates for the effect size were similar,
ranging from 0.571 to 0.580, with inclusion Bayes factors
ranging from 53,002 to 91,413. Finally, with different prior
distributions for τ , the posterior estimates for heterogeneity
varied slightly, ranging from 0.069 to 0.130, with inclusion
Bayes factors ranging from 1.050 to 1.527.

Conclusions

In this tutorial, we demonstrated how to conduct a Bayesian
meta-analysis in the open-source statistical software JASP.
We explained the basic concepts underlying Bayesian model
averaging for meta-analysis, the required data structure,
and the available settings. Most importantly, we described
how to interpret the results from a Bayesian model-
averaged meta-analysis in order to draw valid substantive
conclusions.

The present paper also highlights the advantages of
Bayesian inference for meta-analysis compared to the
classical frequentist approach. First, the Bayesian analysis
allows researchers to quantify the strength of evidence
for one model over another. In our example, the classical
analysis did not allow us to distinguish between evidence
for the absence of heterogeneity vs. the absence of
evidence, whereas the Bayesian analysis showed that there
was absence of evidence. By simultaneously taking into
account both the random-effects model and the fixed-effects

model, Bayesian model-averaging incorporates the inherent
uncertainty associated with the model-selection process.
Second, Bayesian analyses seamlessly extent to scenarios in
which the studies come in over time, necessitating a study-
by-study update of knowledge. This ability is manifested in
the cumulative forest plot and in the sequential plots that
show the flow of evidence and the flow of the posterior
model probabilities.

Overall, this paper shows that JASP provides a conve-
nient and efficient way to perform a Bayesian meta-analysis.
The software facilitates a straightforward interpretation of
the results even for researchers who are not (yet) experts on
Bayesian inference and statistics.

Appendix A: Transforming data in JASP

JASP allows the transformation of variables through the
‘create computed column’ functionality. There are two ways
to compute a new column: either by using a drag-and-drop
formula interface or by writing R code. In this section we
explain how to use both methods to obtain the Fisher’s z

transformed coefficients and standard errors.
The Fisher’s z transformation of the correlation coeffi-

cient r is given by

z = 1

2
ln

(
1 + r

1 − r

)
.

Fig. 12 JASP spreadsheet data view for the Colonnesi et al. (2010) meta-analysis. Clicking the ‘+’ sign on the top right activates the ‘create
computed column’ functionality
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Fig. 13 The JASP pop-up menu that initiates the creation of a
computed column. Users are asked to name the new column and
determine the method of computation (i.e., R or the drag-and-drop
interface)

The corresponding standard error of Fisher’s z depends
only on study sample size n:

1√
n − 3

.

In order to create a computed column, we can click on the
‘+’ symbol next to the final column on the top right in the
data spreadsheet view (cf. Fig. 12). The resulting pop-up
menu, shown in Fig. 13, asks us to name the new column
and select the method of computation.

Transforming data with the drag-and-drop interface

The JASP drag-and-drop interface is activated by selecting

the hand-pointer icon from the JASP pop-up menu
shown in Fig. 13. The drag-and-drop interface, shown in
Fig. 14, presents the spreadsheet variables to the left, a range
of frequently used functions to the right, and a series of
relational operators on top.

In order to apply the Fisher’s z transform to the correla-
tions, we first scroll down the function list and find the for-
mula for the Fisher’s z transformation, denoted ‘fishZ(y)’.
We drag and drop the formula to the input window and
drop it. We then drag and drop the correlation variable
r into the brackets of the function in the input window.
Clicking ‘Compute column’ will then make the Fisher’s z

transformed variable appear in the data spreadsheet view.

Transforming data with the R interface

In order to apply the Bayesian meta-analysis, it is also
necessary to obtain the standard error on the Fisher’s z

scale. The relevant formula 1/
√

n − 3 can be put together
using the operators shown on top of Fig. 14, but here we
demonstrate how to obtain the Fisher’s z standard errors
using R code. First we select the R symbol in the pop-up
menu shown in Fig. 13. This activates an input window,

Fig. 14 The JASP drag-and-drop interface to transform correlation coefficients r to the Fisher’s z scale

Fig. 15 The JASP R interface to obtain standard errors on the Fisher’s z scale
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Fig. 16 JASP spreadsheet data view for the Colonnesi et al. (2010) meta-analysis showing the Fisher’s z transformed variables

shown in Fig. 15, that accepts R code. The column names
can be used as variables in the R code.7 Entering the
formula and clicking ‘Compute column’ makes the Fisher’s
z transformed variable appear in the data spreadsheet view.

Figure 16 shows the data view with the newly computed
columns. After the transformations are complete one can
conduct the Bayesian model-averaged meta-analysis as
explained in the main text.

Appendix B: Constrained random-effects

In addition to Bayesian model-averaged meta-analysis we
also implemented a second Bayesian method for meta-
analysis in JASP using ordinal constraints, which also
relies on the metaBMA package (Heck et al., 2019). This
approach is based on Rouder et al. (2019) and Haaf and
Rouder (2021), and we refer interested readers to these
papers for a detailed introduction. The key idea is that
psychological theories often distinguish between negative,
zero, and positive effects. This distinction poses a problem
for conventional meta-analysis. For example, suppose we
want to meta-analyze a set of studies on the mere exposure
effect where half the studies have a large positive effect
corresponding to the notion that repeatedly encountering
an item leads to increased liking of the item, and half
the studies have a large negative effect corresponding to
the notion that repeatedly encountering an item leads to

7Only columns with measurement level ‘Scale’ can be used. The
measurement level of a variable can be adjusted by clicking on the icon
in the column header.

decreased liking of the item. The meta-analytic average of
this analysis might be close to zero. Yet, we cannot interpret
the average in any meaningful way as it does not describe
any of the included studies well.

Motivated by the concern that qualitatively different
outcomes correspond to different psychological processes
we may first want to answer the question whether all true
study effects are qualitatively the same, that is, all effects are
in the same direction, or that some effects are qualitatively
different, that is, they are in opposite directions. If all
true effects are plausibly in the same direction, then the
average across these effects is much more interpretable as
an overall effect of a common phenomenon. This issue is
also discussed in the clinical literature as quantitative vs.
qualitative interactions (Gail & Simon, 1985; Pan & Wolfe,
1997).

To answer the question whether all studies show an
effect in the same direction we may conduct a constrained
random-effects analysis in JASP (this analysis is also
included in the .jasp file available at https://osf.io/84gbu/).
The first step is to choose the option constrained random
effects in the user interface of the Bayesian meta-analysis
module (Fig. 3). We may then also indicate whether
the expected direction of effects is positive or negative.
Dependent on this choice JASP will perform a model
comparison between a model where all effect sizes are
constrained to be positive (or negative), and the fixed-
and random-effects models described before. As part of
this analysis, users can again choose from several plots
including forest plots, and prior and posterior plots, as well
as several tables including the model probabilities table and
the study effect sizes table. Additionally, it is possible to
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Table 11 Posterior estimates per model

95% Credible Interval

Mean SD Lower Upper BF10

Fixed effects μ 0.578 0.059 0.463 0.695 1.125e+20

Ordered effects μ 0.572 0.070 0.433 0.709 1.515e+20a

τ 0.097 0.065 0.019 0.258 1.347b

Random effects μ 0.571 0.071 0.429 0.707 9.611e+19

τ 0.097 0.067 0.019 0.263 0.854b

Note. μ and τ are the group-level effect size and standard deviation, respectively
aBayes factor of the ordered effects H1 over the fixed effects H0. The Bayes factor for the ordered effects H1 versus the unconstrained (random)
effects H1 model is 1.576
bBayes factor of the (unconstrained/constrained) random effects H1 over the fixed effects H1

conduct the analysis as a sequential analysis. Because these
outputs are quite similar to the outputs described in the main
text, here we will limit the explanation to the main results.

Table 11 contains the main results of the constrained
random effects analysis, and it is similar to Table 2. The
table shows the posterior estimates per model and Bayes
factors to compare the different models of the analysis with
each other. The estimates of μ are quite similar across
models, and so are the estimates of τ from the ordered-
effects and the random-effects models.

The Bayes factors are shown in the last column. To
properly interpret them it is necessary to again understand
which models are considered in this analysis. The models
considered here are the fixed-effects H0 and H1, the
ordered-effects H1 where all study effects are constrained to
be positive, and the random-effects H0 and H1. The Bayes
factor in the first row of Table 11 is the evidence for the
fixed-effects H1 over the fixed-effects H0; because we do
not include the ordered-effects H0 for model comparison,
the Bayes factor in the second row is the evidence for the
ordered-effects H1 over the fixed-effects H0; the Bayes
factor in the third row is the evidence for the ordered-
effects H1 over the fixed-effects H1; the Bayes factor in
the fourth row is the evidence for the random-effects H1

over the random-effects H0; and lastly, the Bayes factor in
the fifth row is the evidence for the random-effects H1 over
the fixed-effects H1. From these results we can see that the
overall preferred model is the ordered-effects H1, but it is
only preferred over the fixed-effects H1 by 1.347 to 1, and
over the random-effects H1 by 1.576 to 1. We may therefore
interpret the analysis as inconclusive. The data seemingly do
not provide much evidence for the case that all studies have
a positive effect, nor do they provide evidence for qualitative
differences. The only thing we can conclude with certainty
from this analysis is that there is a positive overall effect as
evidenced by the large Bayes factors for the H1 over the H0

for all models.
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