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Abstract
Measures of face-identification proficiency are essential to ensure accurate and consistent performance by professional
forensic face examiners and others who perform face-identification tasks in applied scenarios. Current proficiency tests rely
on static sets of stimulus items and so cannot be administered validly to the same individual multiple times. To create a
proficiency test, a large number of items of “known” difficulty must be assembled. Multiple tests of equal difficulty can
be constructed then using subsets of items. We introduce the Triad Identity Matching (TIM) test and evaluate it using item
response theory (IRT). Participants view face-image “triads” (N = 225) (two images of one identity, one image of a different
identity) and select the different identity. In Experiment 1, university students (N = 197) showed wide-ranging accuracy
on the TIM test, and IRT modeling demonstrated that the TIM items span various difficulty levels. In Experiment 2, we
used IRT-based item metrics to partition the test into subsets of specific difficulties. Simulations showed that subsets of
the TIM items yielded reliable estimates of subject ability. In Experiments 3a and b, we found that the student-derived IRT
model reliably evaluated the ability of non-student participants and that ability generalized across different test sessions. In
Experiment 3c, we show that TIM test performance correlates with other common face-recognition tests. In summary, the
TIM test provides a starting point for developing a framework that is flexible and calibrated to measure proficiency across
various ability levels (e.g., professionals or populations with face-processing deficits).

Keywords Triad Identity Matching test · Perceptual face identification test · Face matching test · Item response theory

Face identification is a critical element of law enforcement
and criminal justice in the United States and abroad. This
important task is carried out by professional forensic face
examiners. Therefore, it is incumbent on the justice system
to ensure that professional face examiners exhibit optimal
performance on face-identification tasks and that their
proficiency is sustained over time. However, limited work
has been done to develop tests that enable the assessment of
proficiency (a person’s internal ability for face identification
which can be inferred from their accuracy on a test) across
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time. To address this, we propose a novel framework that
enables face-identification testing across time and across
individual ability levels.

Reliable measures of proficiency at different points
in time are desirable for several reasons. For example,
individuals in professions that require them to make face
identification decisions (e.g., forensic face examiners in
law enforcement) will often participate in training courses
designed to improve their accuracy (Towler et al., 2019).
Proficiency measures gathered over time can gauge the
effectiveness of these training programs (e.g., scores before
vs. after training) (Towler et al., 2019; Towler, Keshwa,
Ton, Kemp, &White, 2021; Towler, White, & Kemp, 2014).
Also, these measures can be used to assess the effects
of experience and age on proficiency to assure sustained
proficiency over time. To measure accuracy at different time
points, we need to conceptualize a proficiency test in terms
of multiple subsets of equal difficulty.

We were motivated by the special problems of forensic
examiners due to their role in social justice and safety.
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However, to develop the framework, we studied the skills
of people from the general population (e.g., undergraduates
and employees from the National Institute of Standards
and Technology), with the goal of developing a test that
can be applied across a wide range of participant abilities.
This variability would make the test applicable to people
of high ability (e.g., super-recognizers, Noyes & O’Toole,
2017; Ramon, Bobak, & White, 2019; Young & Noyes,
2019), as well as to clinical populations in which individuals
exhibit atypical face processing skills, for example, autism
spectrum disorders (Dawson, Webb, & McPartland, 2005)
and schizophrenia (Marwick & Hall, 2008).

A proficiency test should have two properties. First, it
should support the creation of multiple subsets of equal
difficulty. Subsets are needed, because a single test cannot
be taken more than once. Repeated exposure to the same
faces can inflate identification accuracy via familiarity
effects (Roark, O’Toole, Abdi, & Barrett, 2006). This
repeated exposure is highly problematic when evaluating
training programs, because it can appear as if a test taker’s
general skills have improved, when increased accuracy is
due to familiarity with the stimuli.

Previous studies (e.g., Towler et al., 2019; Towler
et al. 2021) have addressed this issue by separating
existing face-matching tests (e.g., Glasgow Face Matching
Test Mackenzie, Jennifer, & Isabel, 2015, Burton, White,
& McNeill, 2010; Expertise in Facial Comparison Test
[EFCT], White, Phillips, Hahn, Hill, & O’Toole, 2015) and
image sets (e.g., Good, Bad, and Ugly [GBU], Phillips et al.,
2012) into subsets of equal difficulty. Face matching is
the most commonly used task for assessing the proficiency
of professional face examiners. In these tests, individuals
compare two face images (e.g., security camera image vs.
mugshot) and must indicate whether the images show the
same person or different people. The tests require either
a binary response (“same” or “different” person) (e.g.,
GFMT) or a response rating (e.g., -2: Sure they are the
different, +2: Sure they are the same) (e.g., EFCT). In
one example of subsetting existing tests, Towler et al.
(2019) measured individuals’ performance on GFMT and
GBU sub-tests before and after training to evaluate the
effectiveness of 11 professional training courses. Similarly,
in a later study, Towler et al. (2021) employed EFCT subsets
to examine the effect of diagnostic feature training (i.e.,
training to rely on ears and facial marks) on face matching
performance.

Second, a proficiency test should be calibrated. That is,
it should contain stimulus items of “known” difficulty that
can be stratified into graded difficulty levels. Consequently,
subsets can be tailored to individuals of specific ability
levels by sampling items (without replacement) of specific
difficulty levels. This method enables the elimination of
items that are too easy or too difficult for a targeted ability

group. To build a calibrated test that can be separated into
subsets of equal difficulty requires a large pool of items
occupying a wide range of difficulty levels.

In previous applications, the difficulty of individual face-
matching items were derived from human performance
(e.g., proportion of test takers who have endorsed a cor-
rect response to the given item). As mentioned, common
face-matching tests require identification decisions to be
expressed via binary or rated response options. Although
feasible, measuring item difficulty based on individuals’
binary or rated face-identification decisions can be con-
founded by potential response bias (i.e., a user’s internal
tendency to select one response category over another).
Bias can be due to the observer’s internal decision crite-
rion (Macmillan & Creelman, 2005; Prins et al., 2016),
differential use of the Likert-type scale (Hu et al., 2017;
Phillips et al., 2018), or to situational factors such as the
perceived cost of certain types of incorrect decisions (iden-
tify or fail to identify). It is important to note that response
bias at the level of an individual item cannot be controlled
by signal detection measures, because an item is either
a same-identity or different-identity item. The former can
generate hits, but not false alarms; the latter can generate
false alarms, but not hits.

To illustrate how response bias complicates item
difficulty measures, let’s consider a face-identification task
with binary response options (i.e., “same” or “different”
identity). When uncertain about an identification decision,
an observer with a conservative response bias will exhibit
a greater tendency to respond “different identity” in
comparison to an observer with a liberal response bias.
Considered from the perspective of item difficulty, a
conservative response bias results in greater accuracy for
different-identity pairs than for same-identity pairs. Thus,
different-identity pairs would appear (incorrectly) to be
easier than same-identity pairs (Hu et al., 2017). The
opposite is true for liberal observers. Alternately, when a
response rating is made on a Likert scale, item difficulty
would be gauged by relative “confidence” for same- versus
different-identity items. For instance, a same-identity pair
that receives a response of +1 (Think they are the same)
would be assumed to be more difficult than a same-
identity pair that receives a response of +2 (Sure they are
the same).

Consequently, for identity-matching tasks, observer cri-
terion and item-difficulty measures are co-dependent.
This is true regardless of whether participants make
binary or rated responses. This is a serious problem
for cases in which groups of participants are com-
pared. Specifically, when there are group-based differ-
ences in response bias (e.g., students, forensic examiners),
item difficulty comparisons across groups are not valid
(Hu et al., 2017).
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Previous studies do, in fact, show group-based differ-
ences in the use of response scales. Forensic examiners,
compared to untrained undergraduates, concentrate their
responses in the middle of the scale (less certain), thereby
avoiding “high confidence” responses at extreme ends of
the scale (Hu et al., 2017; Phillips et al., 2018). Examin-
ers may adopt this strategy to avoid the repercussions of
high-confidence misidentifications in forensic face settings.
This compromises the validity of item-difficulty measures
applied across groups of individuals (e.g., forensic examin-
ers, students). Again, from the perspective of item difficulty,
many items would be found to be more difficult for exam-
iners (higher-ability individuals) than for students (lower-
ability individuals) (Hu et al., 2017; White et al., 2015),
when instead the item-difficulty measure is driven by the
differential use of the scale by the two populations. One the-
oretical approach to measuring item difficulty directly is to
use item response theory (IRT, Lord [1980]). Before pre-
senting the main part of the study, we first introduce IRT for
assessing item difficulty and participant ability.

Item response theory

In recent research on face perception (Cho et al., 2015;
Sunday, Lee, & Gauthier, 2018; Thomas et al., 2018;
Wilmer et al., 2012), IRT has been proposed as a method
for test evaluation and ability assessment. IRT is a
psychometric theory used to model the association between
face-identification decisions (participant responses to items)
and face-identification ability.

IRT encompasses a group of latent variable models that
link item responses (e.g., face-identification judgment) to
a single latent variable (e.g., face-identification ability)
(Rizopoulos, 2006). In the case of dichotomous items (the
response can be correct or incorrect), IRT models are used
to compute the probability of a correct response endorsed
by the ith participant on the j th item. An IRT model is fit to
item responses and is expressed as follows:

P(xij=1|θi) = cj + (1 − cj )g{αj , (θi − βj )}, (1)

where xij represents the response status (1= correct, 0=
incorrect) of the ith participant on the j th item, θi denotes
the participant latent score (e.g., ability), cj denotes the
item guessing parameter, αj denotes the item discrimination
parameter, and βj denotes the item difficulty parameter. The
slope of the line (αj ) determines the item’s sensitivity to
changes across the latent scale (the steeper, the better at
discriminating participants of a different ability levels). Item
difficulty (intercept) (βj ) determines the location on the
latent scale that yields a 0.5 probability of correct response.
The lower asymptote of the line (cj ) is used to represent
a correct answer endorsed by guessing. In this paper, we
considered the one-parameter logistic model (Rasch model,

Wright [1977]), where αj is constrained to a value of 1,
and cj is constrained to a value of 0. However, additional
models are available for estimating these parameters for
dichotomous items (Rizopoulos, 2006). The two-parameter
logistic model estimates both βj and αj , while keeping cj

constrained to a value of 0. The three-parameter logistic
model computes estimates for all three item parameters (αj ,
βj , and cj ).

IRT offers a promising route for testing identification
ability, because it provides estimates of ability based on the
properties of items. Also, IRT has several features that are
critical for developing a face-identification test. We consider
these in turn. First, IRT provides measures of participant
ability and item difficulty that occupy the same scale 1

and can be compared directly to one another (De Ayala,
2013). This property is particularly valuable for building
assessment tools that are intended to capture specific levels
of face-identification ability. As illustrated in Fig. 1, this
important feature enables the user to infer each participant’s
probability of responding to a specific item correctly, given
their respective position on the ability scale.

Second, IRT provides item-difficulty measures that are
independent of the participant sample (De Ayala, 2013).
Concomitantly, IRT provides ability measures that are
independent of the item sample and can be generalized to
the participants’ true skill level (De Ayala, 2013).

Third, IRT provides precision measurements at the
individual participant ability level. This feature of IRT
enables evaluation of the test for assessing people of
different ability via the Test Information Function (De
Ayala, 2013; Wilmer et al., 2012). The peak of this
function corresponds to the participant ability level that
is best suited for evaluation with the test. For example,
IRT can assess the efficiency of existing assessment tools
for diagnosing individuals with impaired face recognition
(Cho et al., 2015).

In previous studies, IRT was used to evaluate the quality
of face-recognition tests (Cho et al., 2015), to isolate face-
recognition ability from other abilities (Wilmer et al., 2012),
and to assess item bias towards certain demographic groups
(Sunday et al., 2018). These previous studies assessmemory
for faces. IRT has not yet been applied to face-identification
tasks that are based on perception (without memory
requirements) (see Supplemental Materials, Fig. 1). These
perceptual abilities are tapped in forensic identification
(e.g., identity matching). Here, we use IRT to analyze the
results of face-identification tests that rely on perceptual
abilities.

Specifically, our goal for this study was to develop a
face-identification test that enables testing across time and

1Following conventions used in the IRT literature, we refer to this as
the “Theta scale,” henceforth labeled θ .
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Fig. 1 A Example of IRT subject and item scale. Item difficulty (β)
and subject ability (θ) occupy the same latent scale ranging from low
(easy item, poor ability) to high (difficult item, high ability). By con-
vention, this shared scale is labeled (θ). In the model used in this
paper, average ability is defined as 0. One exemplar subject (magenta
square) is used to represent average ability. If a subject’s estimated
ability (square) is greater than the estimated difficulty of an item (cir-
cles), the subject has an above-chance probability to answer the given
item correctly. This can be seen more clearly when the probability of

a correct response is plotted as the function of subject ability. B For
example, a subject with average ability (dotted line, θ=0) has an above-
chance probability (.94) of endorsing a correct response to Item A
(B, β = -2.72) and below-chance probability (.30) of endorsing a cor-
rect response to Item B (C, β = 0.86). C Exemplar items (circles) and
subjects (squares) plotted along the ability and difficulty scale. The
index consists of items and subjects ranked by difficulty and ability,
respectively

across ability levels. To achieve this goal, first we propose a
three alternative forced choice (3-AFC) face-identification
test (the Triad Identity Matching [TIM] test). A 3-AFC
paradigm can be used to construct calibrated subsets of
items, because it allows for item difficulty estimates that
circumvent the response bias issues of existing tests.
Therefore, the second step was to use IRT to measure the
psychometric properties of the TIM test. Item-difficulty
scores extracted from the IRT modeling were used to
create subsets of stimulus items that can be partitioned
into equal difficulty levels or stratified into various graded
difficulty levels (“easy” or “difficult”). To date, no study
has considered the usefulness of IRT for evaluating the
psychometric properties of face-matching tasks.

The following text is organized into four sections. In Section
“TIM test construction”, we describe the TIM test construc-
tion. In Section “Experiment 1 - normative performance
on the TIM test” we provide data from univer-
sity students on the TIM test and evaluate the test
using IRT, along with traditional measures of item
difficulty and subject accuracy (proportion cor-
rect). In Section “Experiment 2 - creating subsets
of customized difficulty” we demonstrate how IRT can
be used to guide the construction of equally difficult
subsets, and provide comparisons between ability esti-
mates computed from the subsets of items and the full
test. In Section “Experiment 3 - Generalizability of the
TIM test” we examine the generalizability of the TIM test

across a different group of participants, across separate
experimental sessions, and across different commonly
used face-recognition tests. In Section “General discussion
and conclusion”, we conclude with the contributions and
limitations of this work.

TIM test construction

We created the TIM test, a 3-AFC test, consisting of image
triads: two same-identity images and one different-identity
image. Participants determine which of the images depicts
the different-identity (“odd-one-out”) (Fig. 2). A total of
225 triads were created using 675 images sampled from
the Good, Bad, and Ugly Face Challenge Dataset (Phillips
et al., 2012). Images were taken in frontal view and varied in
illumination, expression, and participant appearance (e.g.,
accessories and hair).

To avoid ceiling effects, triads were constructed to
minimize the similarity of images that showed the same
identities. The different-identity image in the triad was
chosen to be as similar as possible to one of the same-
identity images (Fig. 2). Images for triads were selected
using data from VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015). We selected this algorithm, because it proved
comparable in ability to students in a face identity matching
test (cf. A2015, Phillips et al. [2018]). Here, we used the
top-level face descriptors from the algorithm to compute
similarity scores between images. In what follows, for any
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Fig. 2 Stimuli screening paradigm. Image pairs were divided into
same-identity and different-identity pairs. Then, different-identity
pairs were ranked from similar to dissimilar using similarity scores
obtained from a deep convolutional neural network (VGG-face,
(Parkhi et al., 2015)). All different-identity pairs were demographically
constrained (“yoked”) so that only the same-race and same-gender
pairs remained. Next, for each identity, only the different-identity pair

with the largest similarity score was chosen. For each identity within a
different-identity pair, a same-identity image with the lowest similarity
was selected. The identity with the lowest same-identity pair similarity
score was selected to be part of the triad. Therefore, each triad con-
sisted of the most similar different-identity pair and the most dissimilar
same-identity pair for that identity

identity pair A and B, a triad includes two images of
one identity (A0 and Ai) and one image of a different
identity (B0).

Figure 2 shows a more detailed account of the following
step-wise process for triad construction.

1. Image pairs were divided into same- and different-
identity pairs.

2. Similarity scores were used to rank pairs of different-
identity images from the most to the least similar.

3. The different-identity image pair (Ai , Bj ) with the
largest similarity score was selected.

4. Similarity scores were also used to rank same-identity
images (Ai , Aj ) from the most to the least similar. The
least similar image was chosen to complete the triad.
Each identity appeared in 2 to 35 face images sampled
from the GBU dataset (average image per identity =
15.47).

Therefore, each triad consisted of different-identity pairs
that are similar and a same-identity pair that is dissimilar
(A0, Ai , and B0). By design, the algorithm should perform
poorly on the triads. We verified the difficulty of the TIM
test for the algorithm, as follows. We treated VGG-face as
a participant and simulated the 3-AFC face identification
task. The odd-one-out decision was made using the

algorithm-generated similarity scores. For each triad, the
two images with the highest similarity were judged as
the same identity and the remaining image was selected
as the odd-one-out. The selection was compared to the
ground truth and the proportion correct was calculated.
The result showed systematically incorrect performance
(proportion correct = .1378) for the algorithm, thereby
supporting the use of similarity scores from VGG-face
(Parkhi et al., 2015) to construct highly challenging
triads.

Experiment 1 - normative performance
on the TIM test

In Experiment 1, we demonstrate that the TIM test can
capture a large range of student performance and individual
item accuracy. In addition, we show that using IRT-based
parameters we can obtain item difficulty and participant
ability measures on the TIM test. First, student performance
was evaluated on the full set of TIM stimuli. Individual
student baseline accuracy was calculated as the proportion
of correct responses. Second, we employed IRT modeling
(Rasch model, Wright [1977]) to evaluate the psychometric
properties of the test.
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Fig. 3 A One-parameter logistic model fit to 225 items and 197
participants. Item difficulty (orange) and participant ability (black)
estimates are plotted on the same scale. B The test information func-
tion is the reciprocal of the standard error of the estimated construct

(θ ) and is commonly used to indicate the degree of measurement pre-
cision for any ability score. The results suggests that the TIM test is
most informative for ability scores ranging between low to average. C
The standard error of the estimated construct (θ )

Methods

Participants A total of 203 undergraduate students from
The University of Texas at Dallas (UTD) participated in
this study. Data collection took place during the Spring
2019 (77 participants) and (early) Spring 2020 (126
participants) semesters. Participants were recruited through
The School of Behavioral and Brain Sciences online sign-
up system and were compensated with research exposure
credits. Participants were required to be at least 18 years
of age and have normal- or corrected-to-normal vision.
Two participants were excluded due to software error
(data collection impediment) and four participants were
excluded due to missing data (overwritten data files). The
final data included 197 participants (140 female, 55 male,
and two indicated “other”), ranging from age 18 to 36
(average age = 20.23). All aspects of the study were
in accordance with the UTD Institutional Review Board
protocol.

Procedure For each participant, data collection took place
in a single experimental session and included the full TIM
test (225 items), followed by a demographic survey admin-
istered via Qualtrics (Qualtrics, 2013)2. The experiment was
programmed using PsychoPy v1.84.2 (Peirce, 2007). For
each trial, a triad was presented for 3.5 s. Response time
was not limited and no feedback was provided. Trial order
and image position within a triad were randomized across
participants.

2Certain commercial equipment, instruments, or materials are
identified in this paper to foster understanding. Such identification
does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best available for
the purpose.

Analysis and results

Baseline performance Performance was measured as the
proportion of items answered correctly. Chance perfor-
mance was 0.33. Participant accuracy was well above
chance (M= 0.69, SD= 0.11, Mdn= .70) and ranged from
0.37 to 0.89. Item accuracy (proportion of participants who
answered each item correctly) varied widely, ranging from
.17 to .97 (M= .69, SD= .17,Mdn= .72).

IRT modeling We employed IRT modeling to evaluate the
psychometric properties of the TIM test (see Fig. 3). A
one-parameter logistic model (Rasch model, Wright [1977])
was fit to the data employing Expectation Maximization
(EM). All aspects of IRT modeling were conducted in R,
using the mirt package v1.29 (Chalmers et al., 2012). A
scree test (Beaton, Fatt, & Abdi, 2014) was used to evaluate
the dimensionality of the data and to ensure that the TIM
test measured a single latent variable (face-identification
ability). Model fit was assessed using the root mean square
error of approximation (RMSEA), Akaike information
criterion (AIC), and Bayesian information criterion (BIC).
A RMSEA of .6 and below is considered a good model fit.

Scree test results indicated unidimensional data. Results
also indicated a good fit for the one-parameter logistic
model (RMSEA = 0, AIC = 47195.18, BIC = 47937.19).
Figure 3A shows fitting responses of 197 participants on
225 triads. Triad difficulty spanned −3.81 to 1.67, and
participant ability spanned −1.53 to 1.29. An efficient
proficiency test should capture accurate estimates of
proficiency for different ability groups. To simulate this, we
show that IRT models built from groups with high (low)
ability individuals can accurately measure the proficiency
of groups with low (high) regardless of differences
in abilities (see Supplemental Materials, IRT Modeling
Generalizability and Fig. 2).
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The Test Information Function (TIF) Curve illustrates
how well the TIM test can evaluate participant ability
across different levels of ability. The peak of the TIF
Curve (Fig. 3B) indicates that the amount of information
(I) provided by the test reaches a maximum (I = 47.11)
at θ = -0.99. Note that I has a maximum at an ability
score slightly below average (θ = 0). The TIF is a standard
measure in IRT. However, the amount of precision with
which the test measures different levels of ability can also be
conveyed using more common psychological measures such
as standard error (SE) of the estimated construct (Fig. 3C).
The SE curve is the inverse of the TIF. In agreement with the
TIF curve, results indicate that the test provides participant-
ability estimates with greatest precision (lowest SE) at θ =
-0.99. 3

Experiment 1 discussion

The TIM test captured a large range of student performance
and individual item accuracy. Moreover, the TIM item
distribution occupies a range of difficulty that exceeds the
lowest and highest ability scores exhibited by our sample
of university students. These results suggest that TIM test
offers a range of item difficulty that is large enough to
prevent ceiling or floor effects in individuals from the
general population. Additionally, the items located at each
extreme of the difficulty distribution may be useful to test
individuals with ability levels below and above that of our
present sample. Also, the test was particularly informative
for participants with ability slightly below average.

Experiment 2 - creating subsets
of customized difficulty

In Experiments 2a and 2b, we show that equally chal-
lenging TIM subsets can be used to estimate participant
ability as effectively as using the full 225-item test. Equally
difficult subsets are crucial for recruitment and training
purposes, particularly in applied scenarios (forensic facial
examination). Furthermore, item subsets of graded diffi-
culty are needed for testing participant groups of different
ability. In Experiments 2a and 2b we examined whether
TIM subsets produce estimates of participant performance
(proportion correct and ability score) that are consistent with
those derived from the full TIM test. This was tested in
Experiment 2a by using subsets designed to target differ-
ent ranges of participant ability (three “Easy” subsets for

3Baseline performance on an initially smaller sample size (N = 76),
(M= 0.68, SD= 0.11, Mdn= 0.69), was comparable to our final sample
size (N = 197). Item difficulty measures also were correlated across
participant sample sizes [proportion correct: r = .97, p <.0001; β: r =
.97, p <.0001].

lower-ability individuals and three “Difficult” subsets for
higher-ability individuals), and in Experiment 2b by using
subsets occupying the full range of item difficulty.

General methods for Experiments 2a and 2b

Human data and IRT modeling All analyses were carried
out using the university student data collected in Exper-
iment 1 and the one-parameter logistic model trained in
Experiment 1.

Creating subsets For Experiment 2a, the TIM test items
(n = 225) were partitioned into six 36-item subsets
as follows: First, items were ranked from most easy to
most difficult based on item-difficulty measures derived
from the one-parameter logistic model. Second, the ranked
items were median split into an easy and a difficult set.
Finally, items from each easy and difficult set were sampled
randomly (without replacement) to create three “Easy”
subsets (E1, E2, and E3) and three “Difficult” subsets (D1,
D2, and D3). For Experiment 2b, the TIM test items (n =
225) were partitioned into a total of three 72-item subsets of
average difficulty (S1, S2, and S3). Each subset was created
by combining one “Easy” and one “Difficult” subset (i.e.,
E1 and D1; E2 and D2, E3 and D3). Descriptive statistics
for subset difficulty are reported in Table 1.

Results for Experiments 2a

Baseline accuracy Here, we demonstrate that human accu-
racy is consistent across subsets of equal difficulty, and
that performance on both “Easy” and “Difficult” sets is
indicative of performance on the full TIM test. Baseline per-
formance was measured as the proportion of items answered
correctly for each subset. Descriptive statistics of human

Table 1 Descriptive statistics for item difficulty (β) for the subsets in
Experiments 2a and 2b

Subset M SD Mdn

Experiment 2a

Easy 1 − 1.72 .47 − 1.66

Easy 2 − 1.72 .67 − 1.48

Easy 3 − 1.84 .64 − 1.67

Difficult 1 − .30 .55 − .30

Difficult 2 − .23 .60 .41

Difficult 3 − .18 .55 − .17

Experiment 2b

Set 1 − 1.01 0.87 − 1.03

Set 2 − 0.97 0.98 − 1.00

Set 3 − 1.01 1.03 − 1.03
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Table 2 Descriptive statistics for participant accuracy (proportion
correct) on the subsets in Experiments 2a and 2b

Subset M SD Mdn

Experiment 2a

Easy 1 .83 .11 .83

Easy 2 .82 .12 .83

Easy 3 .84 .11 .86

Difficult 1 57 .14 .58

Difficult 2 .55 .14 .56

Difficult 3 .54 .14 .53

Experiment 2b

Set 1 0.70 .11 .71

Set 2 .68 .12 .69

Set 3 .69 .11 .69

performance are reported in Table 2 and plotted as a vio-
lin plot in Fig. 4A. As expected, accuracy was higher for
the “Easy” subsets than for the “Difficult” subsets. In addi-
tion, we compared proportion correct on the subsets against
proportion correct on the full test. Pearson product-moment
correlation results indicated a strong positive relationship
between the full TIM item bank and each subset of items (r
= .81 - .88)(see Fig. 4B). Comparisons across “Easy” sub-
sets showed a moderate positive relationship, ranging from
(r = .71) to (r = .77). Comparisons across “Difficult” sub-
sets showed a moderate positive relationship, ranging from
(r = .68) to (r = .71).

IRT-based estimates of ability Here, we demonstrate that
the TIM test and the one-parameter logistic model trained
in Experiment 1 produce consistent estimates of participant
ability with different test sizes. Specifically, we show that
smaller subsets of TIM items converge to give similar
estimates of participant ability. This analysis was carried
out as follows. First, for a given item subset (e.g., Easy 1),
we retrieved the responses for all participants in Experiment
1 (n = 197). Next, the responses (e.g., Easy 1: 197
participants x 36 items) were projected to the model trained
in Experiment 1 (full set of TIM items: 197 participants
x 225 items). This resulted in a new set of ability scores,
estimated by the model trained on the full set of items and
using responses to a selected set of items (e.g., Easy 1).
These steps were repeated for each item subset. Finally,
the ability scores estimated from each item subset were
compared to the ability scores estimated using the full
TIM test (Experiment 1). Results indicated strong positive
correlations between participant ability estimated from the
full test and participant ability estimated from the subsets,
which ranged from (r = .58) to (r = .87) (see Fig. 5). This
range of results is as expected and is consistent for an IRT
model that fits well.

Fig. 4 A Violin plots of participant accuracy (proportion correct)
on each item subset. The empty circles represent the accuracy
of individual participants on each item subset, the colored dots
represent the item subset mean, the black dots represent the item
subset median. B Pearson correlation between participant accuracy
(proportion correct) on the full TIM test and all subsets. The Full TIM
test was highly correlated with all six item subsets. All comparisons
are significant at the 0.01 level

To evaluate the level of precision with which the
“Difficult” and “Easy” subsets estimate participant ability,
we plotted standard error of the ability estimate for each
participant on each subset in Fig. 5B. Overall, standard
error estimates were lower for all three difficult subsets,
which suggests that these three difficult subsets provide
more reliable measures of ability.

Results for Experiments 2b

Baseline accuracy In Experiment 2b, we repeated the
analyses reported in Experiment 2a using Sets 1, 2, and 3.
As expected, participant performance (proportion correct)
was comparable across the three sets and the TIM test (see
Table 2). We compared proportion correct on the three sets
against proportion correct on the full test. Pearson product-
moment correlation results indicated a strong positive
relationship between the full TIM item bank and each subset
of items (r = .94) (see Fig. 6A). Comparisons across all
sets showed a strong positive relationship, ranging from (r
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Fig. 5 A Pearson correlation between participant ability on the full
TIM test and all subsets. All comparisons are significant at the 0.01
level. B Standard error of the ability estimate for all participants on all
subsets

= .82) to (r = .84). This range of results is as expected and
is consistent for an IRT model that fits well.

IRT-based estimates of ability We repeated the analyses
reported in Experiment 2a using Set 1, Set 2, and Set 3. As
expected, the results showed a strong positive relationship
between participant ability estimated from the full test
and participant ability estimated from the subsets (r =
.94). Additionally, the results showed a strong positive
relationship between participant ability estimated across
subset ranging from (r = .81) to (r = .84) (see Fig. 7A).
Standard error estimates were comparable across subset
(see Fig. 7B). Consistent with the results pertaining to
the full test (Experiment 1), the TIM subsets provide
measures of proficiency with the highest level of precision
for participants with ability slightly below average (see
Fig. 7B)

Experiment 2 Discussion

In Experiment 2, we provide a proof of principle of
the validity of sub-sampling TIM items for evaluating
individual proficiency. In Experiment 2a, we created six
36-item subsets of specific challenge levels (three “Easy”
subsets and three “Difficult” subsets) intended to target
different ranges of participant ability. The subsets provided
measures of proficiency that were consistent with measures
derived from the entire TIM test (225-item set). In addition,
we demonstrate the usability of IRT for providing precision
measurements for individual ability estimates. Using this
feature, we show that the “Difficult” subsets yielded
measures of individual ability that were more reliable
(smaller error rate) than those estimated using the “Easy”
subsets. The results indicate also that all subsets yielded
the most reliable ability estimates for participants ranging
between low to average ability. In Experiment 2b, we
repeated these analyses using three 72-item sets of average

Fig. 6 A Violin plots of participant accuracy (proportion correct) on each item subset. The empty circles represent the accuracy of individual
participants on each item subset, the colored dots represent the item subset mean, the black dots represent the item subset median. B Pearson
correlation between participant accuracy (proportion correct) on the full TIM test and all subsets
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Fig. 7 A) Pearson correlation between participant ability on the full TIM test and all subsets. All comparisons are significant at the 0.01 level. B)
Standard error of the ability estimate for all participants on all subsets

difficulty. Consistent with Experiment 2a, participant-
ability estimates were consistent across test size (72-item
sets and full TIM test). Moreover, the three subsets provided
precision measures comparable to using the entire TIM
test. Together, these findings suggest that the 225-item
TIM test is a viable tool for creating subsets, with known
difficulty and precision properties, aimed at evaluating
individual performance across different points in time. This
methodology can be used for evaluating ability increases
that result from training programs, by administering subsets
of equal difficulty before and after training sessions. This
methodology can be used also for assessing stability in
ability across time in the absence of training. Further
research is required to test the usability of specific challenge
level for specific trainee groups.

Experiment 3 - Generalizability
of the TIM test

In Experiment 3, we evaluated the generalizability of
the TIM test. We examined generalizability in terms of
participant population (Experiment 3a), generalizability in
performance across testing session (Experiment 3b), and
comparability with established face-matching and face-
memory tests (Experiment 3c). We begin by demonstrating
that the TIM test results remain consistent across a different
population of human observers (federal employees versus
university students) and different experimental setting
(National Institute of Standards and Technology [NIST]
versus UTD). In what follows, we show that the test
occupied a large range of human and item accuracy, and
that non-student participants can be evaluated on TIM
subsets using an IRT model trained on a more common

and accessible participant sample (university students) and a
larger set of items (full TIM test) (Experiment 3a). Next, we
evaluated participants across two separate testing sessions
(using two equally difficult tests) and demonstrated that
individual performance varies less across testing sessions
than across tests (Experiment 3b). Lastly, we demonstrate
that human ability estimated using the TIM test is correlated
with human performance on commonly used tests of face-
matching and face-memory ability (Experiment 3c).

General Methods for Experiment 3a, 3b, and 3c

Experiments 3a, 3b, and 3c, were conducted across two
separate testing sessions separated by approximately one
week. Each testing session included a selection of face-
recognition ability tests. We begin by introducing the
general methods employed across all three experiments.

Participants A total of 58 federal employees from the
NIST participated in Experiment 2. Data were collected
from August 2019 to March 2020. Participants were
recruited verbally and via flyers posted throughout the NIST
Gaithersburg campus. Two participants were removed from
the final analysis due to computer error. The final sample

Table 3 Participant demographic (age composition)

Age group N

18 to 29 6

30 to 39 15

40 to 49 9

50 to 59 20

60 plus 6
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included 56 participants (30 female, 26 male). The majority
of participant self-identified as White (n = 42), other
participants identified as Asian (n = 7), Black or African
American (n = 5), Native Hawaiian or Other Pacific
Islander (n = 1) and mixed-race (n = 1). Four participants
identified as Hispanic or Latino and 52 did not identify
as Hispanic or Latino. Age composition of the participant
sample can be found in Table 3.

Stimuli and material This experiment used five tests
including two subsets of the TIM test, two established
face-matching tests (GFMT, Burton et al., 2010; black-
box test, Phillips et al., 2018), and a standard face-
memory test (Cambridge Face Memory Test [CFMT], long
form, Duchaine & Nakayama 2006, Russell, Duchaine,
& Nakayama, 2009). We sampled two 75-item subsets
from the original 225-item TIM test to reduce participant
fatigue. To ensure equal difficulty across the two subsets,
we employed item-difficulty measures obtained from IRT
modeling in Experiment 1. To do this, we ranked the 225
TIM test items from least to most difficult and excluded
the 4 least difficult items. Next, using the 221 remaining
TIM test items, we sampled 75 items randomly, without
replacement for each subset.

The black-box test (Phillips et al., 2018) was chosen,
because it has been tested previously on individuals with
a wide range of abilities. The test consists of 20 highly
challenging face-matching items. Each item displays two
face images of the same identity (n = 12) or different
identities (n = 8). All items displayed frontal-view face
images. The task is to determine if the image pairs display
the same or different identities using a seven-point scale
(+3: Sure they are the same, -3: Sure they are different).

The GFMT (Burton et al., 2010) was selected, because
it is considered a common benchmark for face-matching
ability. It includes 40 face-matching items (20 same-identity
image pairs and 20 different-identity image pairs). The task
is to determine if the image pairs display the same or
different identities using binary response options (same or
different).

The CFMT (Duchaine & Nakayama, 2006) was selected,
because it is considered a common benchmark for
measuring the ability to identify faces based on memory.
It consists of a “learning phase” and a “testing phase”.
The learning phase requires the participants to inspect six
unfamiliar target faces carefully for memorization. Target
faces are presented in one of two possible ways: a) all six
face-images in one array or b) separately and consecutively.
The testing phase consists of a three-alternative forced
choice recognition task, whereby the task is to select the
target face among two other novel faces. The CFMT long
form includes 72 items from the original CFMT distributed
into three testing blocks (see Duchaine & Nakayama, 2006)

and an additional block including 30 very difficult items
(Russell et al., 2009). The fourth block in this test was
designed to detect higher levels of face-recognition ability
(e.g., super-recognizers).

Procedure Participants completed a total of five tests across
two sessions. The tests were divided into two sets: Set A and
Set B. Set A included TIM Subset 1, the black-box test, and
the GFMT. Set B included TIM Subset 2 and the CFMT.
Sets were counterbalanced such that half the participants
completed Set A in session 1 (and Set B in session 2) and
half completed Set B in session 1 (and Set A in session 2) 4.

During the first session, participants reviewed the
consent form with a NIST researcher. The participant was
then assigned randomly to either Set A or Set B. At the end
of the first session, the participant completed a demographic
questionnaire. Participants returned for the second session
approximately 1 week later (a minimum interval of one
week) to complete the second set of tests.

The procedures for the TIM Subset 1 and Subset 2 were
the same as for the full item set in Experiment 1. For the
GFMT, participants viewed the image pairs and were asked
to determine if the pair depicted the same person or different
people. On each trial, the images were displayed for 30 s.
Participants were given unlimited time to respond. For the
black-box test, participants viewed image pairs for up to 30
s and were asked to rate the similarity on a seven-point scale
(+3: Sure they are the same, -3: Sure they are different).
Participants were given unlimited time to respond. For
CFMT, participants memorized images for 3 or 20 s. Then,
they were presented with three images and asked to identify
the face that they had seen before.

Experiment 3a: Generalizability across
participant population

Human Performance. Participant performance was evalu-
ated using two 75-item TIM subsets. We demonstrate that
the two TIM subsets occupy a large range of human and
item accuracy and that human performance was generaliz-
able across subsets.

Participant accuracy was measured as the proportion of
items answered correctly and was above chance (.33) for
Subset 1 (M= .67, SD= .11, Mdn= .67) and Subset 2 (M=
.68, SD= .11, Mdn= .69). Accuracy ranged between 0.41
and 0.91 and between 0.41 and 0.89, for Subset 1 and
2, respectively. We compared participant accuracy on TIM
Subset 1 and Subset 2 using a paired sample t-test. Results
indicated no significant difference (t(55)= -0.59, p = 0.56,
95% CI:[-0.03, 0.02]).

4One participant took the set out of order.
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Item accuracy was measured as the proportion of
participants who answered a given item correctly. For TIM
Subset 1, accuracy was above chance (M= 0.67, SD=
0.16, Mdn= 0.68) and ranged between 0.23 and 0.96. For
TIM Subset 2, accuracy was above chance (M= 0.68, SD=
0.18, Mdn= 0.71) and ranged between 0.25 and 0.98. We
compared item accuracy on TIM Subset 1 and Subset 2
using an independent sample t-test. Results indicated no
significant difference (t(145.81)= -0.25, p = 0.8, 95% CI:[
-0.06, 0.05]).

Model. We applied IRT modeling and show that the
test captures a large range of participant ability and item
difficulty. More important, we demonstrate that a model
trained on university students and a model trained on non-
university students provide comparable ability estimates
for non-student individuals. This suggest that non-student
participants can be evaluated using smaller sets of items
and a model trained on larger data derived from university
students.

We trained a one-parameter logistic model (NIST model)
to evaluate the psychometric properties of the 150-item TIM
test using data from NIST employees. The TIM Subsets 1
and 2 were combined into one set of 150 items. A one-
parameter logistic model was fit to the data from the 56
NIST participants and 150 items, hereinafter referred to
as the NIST model. Results indicated a good fit for the
model (RMSEA = 0 , AIC = 9462.686 BIC = 9768.514).
Participant ability ranged between -0.97 and 1.14 and item-
difficulty ranged between -4.13 and 1.26.

We examined whether a one-parameter logistic model
trained on university students can be used to estimate
participant ability for a separate sample of participants
(NIST employees). To do this, we treated the TIM Subsets
1 and 2 as a single 150-item set. Ability scores for
NIST participants were estimated using two models. The
first set of ability scores was estimated using the NIST
model trained in Experiment 3. The second set of ability
scores was estimated using the UTD-trained model from
Experiment 1. Specifically, we projected the responses of
all NIST participants (56 participants, 150 items) onto the
UTD model trained on 197 university students and 225
items. A Pearson’s product-moment correlation was used
to compare the two sets of ability estimates computed for
the NIST participants. Results indicate a strong significant
correlation (r(54)=.99, p < .001, 95% CI [0.9999, 0.9999]).
Figure 8 illustrates the ability estimated by the NIST
model against the ability estimate by the UTD model. It
is important to note that the data points fall above the
identity line, indicating that the ability estimates are slightly
underestimated by the UTD model in comparison to the
NIST model. This result is expected given that the data
points illustrated pertain to the same sample of participants
used to train the NIST model. Overall, these results

Fig. 8 Ability scores for NIST participants estimated by the NIST
model (Y-axis) and estimated by the UTD model (X-axis). Each
point represents a NIST participant. Black dots located above the
identity line (blue) of the plot indicates that the UTD model slightly
underestimates participant ability in comparison to the NIST model

suggest that a model trained on university student data
can generalize to participants from a different population
(federal employees), who have been tested in a different
experimental setting (NIST).

Group comparisons. Next, we examined whether the two
groups of participants produced similar ability measures.
All ability scores were estimated using the UTD model
trained in Experiment 1. Specifically, NIST ability scores
were estimated by projecting the responses of all NIST
participants (56 participants, 150 items) to the UTD model.
All UTD participant ability scores were obtained from
Experiment 1. Participant-ability estimates were compared
using a Wilcoxon rank sum test. Results indicate no
significant difference (W = 4976, p = 0.2642). Figure 9
illustrates the ability-scores estimated by the UTDmodel for
each group of participants using the 150-item set. Overall,
these results indicate that the two sets of participants do not
differ in terms of face-matching ability.

Fig. 9 Ability scores estimated by the UTD model for NIST
participants (left) and UTD participants (right). Each dot represents a
participant
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Experiment 3b: generalizability across test session

Generalizability of the TIM test can be measured, also, by
its ability to consistently yield similar results across days.
In practice, proficiency subsets should yield similar results
at different time points (when no training is involved). To
examine the natural variability of individual performance
across time, NIST participants completed two equally
difficult tests across two separate testing sessions. We
also examine the variability in individual performance
across the two equally difficult tests using UTD student
data from Experiment 1. We demonstrated that individual
performance varies less (naturally, in the absence of
training) across testing sessions than across tests.

Specifically, we examined NIST and UTD individuals
performance on two 75-item sets, henceforth referred to as
Subsets 1 and 2. As noted, NIST participants completed
Subsets 1 and 2 in different testing sessions separated
by 1 week. The order in which the item subsets (1
and 2) were administered was counterbalanced over test
sessions. UTD participants completed the full TIM test in
a single session (Experiment 1). Figure 10 shows ability
estimates derived from Subset 1 and 2. We conceptualized
the problem as the follows: The performance of NIST
participants across subsets and across testing sessions, was
used to estimate variance over a change in session and test
(σ 2

�S�T ). Similarly, the performance of UTD participants
across subsets on the same session was used to estimate
variance over a change in test (σ 2

�T ). Finally, variance across
time (σ 2

�S) was solved as described in Eq. 2

σ 2
�S = σ 2

�S�T − σ 2
�T (2)

We estimated variance over a change in session and test
(σ 2

�S�T ) using the data fromNIST participants and the UTD
model trained in Experiment 1. Specifically, we produced a
set of ability scores associated with each Subsets 1 and 2,
separately, by projecting NIST-participant responses to each
item onto the model. Next, we computed the variance over a
change in session and test as the variability in the difference
between participant-ability estimates derived from Subsets
1 and 2. Variance over a change in session and test resulted
in a value of 0.40. We estimated variance over a change
in test (σ 2

�T ) using the data from UTD participants. To do
this, we followed the same steps used to compute σ 2

�S�T
5. Results indicated that variance over a change in test is
equal to 0.31. Finally, we estimated variance over a change
in session using Eq. 2. Variance over a change in session
resulted in a value of 0.25. Overall, the results suggest that

5Note that ability estimates for UTD participants were computed by
projecting a set of responses that were used to train the same model
(UTD model, Experiment 1)

Fig. 10 Ability scores for NIST participants (dots) and UTD
participants (triangle) derived from Subset 1 plotted against ability
scores derived from Subset 2. All ability measures were estimated
using the UTD model trained in Experiment 1

human participants vary moderately, and that they vary more
across tests than across testing session.

Experiment 3c: comparability in performance across
common face-recognition tests

In this section, we demonstrate that face-matching ability
estimated from a TIM subset (150-item subset) can serve
as an indicator of performance for common face-matching
(GFMT and black-box test) and face-memory (CFMT) tests.
Additionally, we show that the relationship between the
TIM test and the CFMT falls on the higher end of the range
of correlation coefficient found for other face-matching
tests (Balsdon, Summersby, Kemp, & White, 2018; Bobak,
Hancock, & Bate, 2016; Fysh, 2018; McCaffery, Robertson,
Young, & Burton, 2018; Robertson, Black, Chamberlain,
Megreya, & Davis, 2020; Verhallen et al., 2017; Wilmer
et al., 2012)

First, the TIM Subsets 1 and 2 were combined into one
set of 150 items. We computed Pearson product–moment
correlations to examine the relationship between individual
performance across all tests. We measured individual
accuracy on the GFMT and CFMT tests as proportion
correct. We measured individual accuracy on the black-box
test as the AUC. To estimate individual ability from the 150-
item set (TIM test), we projected the responses of all NIST
participants onto the UTD model trained in Experiment
1. Pearson’s product–moment correlation results indicated
a significant and moderate relationship between the 150-
item TIM test and the face-matching tests [GFMT: r(54)=
0.45, p < .001, 95% CI [ 0.21, 0.64], black-box test r(54)=
0.45, p < .001, 95% CI [ 0.22, 0.64]. Also, Pearson’s
product–moment correlation results indicated a significant
and moderate relationship between the 150-item TIM test
and the CFMT (r(54)= 0.59, p < .001, 95% CI [0.39, 0.74]).
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Moreover, results indicated a moderate correlation between
the black-box test and the GFMT (r(54)= 0.42, p = .001,
95% CI [0.18, 0.61]) and a weak correlation between the
black-box test and the CFMT (r(54)= 0.38, p = .003, 95%CI
[0.14, 0.59]). Lastly, results indicated a moderate correlation
between the CFMT and the GFMT (r(54)= 0.57, p <

.001, 95% CI [0.36, 0.72]). The findings indicate that the
relationship between the TIM test and other tests falls within
the same range of correlation coefficients found in previous
work (Balsdon et al., 2018; Bobak et al., 2016; Fysh, 2018;
McCaffery et al., 2018; Robertson et al., 2020; Verhallen
et al., 2017; Wilmer et al., 2012). Overall, these findings
suggest that ability estimates derived from the TIM test can
indicate performance on more common tasks such as face
matching (e.g., GFMT, black-box test) and memory-based
face recognition (e.g., CFMT).

Experiment 3 Discussion

The goal of Experiment 3 was to evaluate the generaliz-
ability of the TIM test across participant groups and across
testing time, and to evaluate its comparability to commonly
used face recognition assessment tools. Overall, our find-
ings indicate that the psychometric properties of the test
remain consistent across a different group of participants
(university students from UTD and federal employees from
NIST) and a different testing setting (UTD laboratory and
NIST laboratory). We also demonstrated that an IRT model
trained on the full TIM test and a large sample of univer-
sity students can be used to evaluate NIST employees using
a smaller item set. This experiment also provides a proof
principle of the applicability of the TIM test and IRT for
assessing changes in individual ability across time. Finally,
we demonstrate that face-matching ability estimated from
the TIM test is correlated with performance on commonly
used face-matching and face-memory tests.

General discussion and conclusion

The objective of this study was to refine the current state
of face identification testing by developing a framework
for creating proficiency tests. This framework relies on
IRT to calibrate item difficulty in relation to participant
ability, thereby enabling the selection of subsets of items
that can be combined in systematic ways to create tests of
specified difficulty. These item subsets can be tailored for
testing individuals of specific ability levels and for testing
professionals who are busy and may only be able to spare
time for short tests. Multiple tests of equal difficulty can be
used also to detect changes in ability (e.g., from training,
experience, or age). Because items are not reused in multiple
tests, proficiency improvements can be detected without

confounding factors that result from repeated exposure to
the same faces.

Using this framework, we introduce the TIM test, which
includes items that span a range of difficulty from very
easy (97% of participants endorsed a correct response
to the item) to very challenging (17% of participants
endorsed a correct response to the item). This range of
difficulty supports the assessment of participant abilities
close to random performance (accuracy of 37%) to high
ability (accuracy of 89%). The TIM test was designed to
address longstanding response bias issues in traditional face
identification tests due to the use of rating scales and binary
decision choices. Response bias poses a particularly vexing
problem when comparing across groups of different ability
who use the scale in different ways. The TIM test stimuli
and materials that support the framework (de-identified data
and code to build the student-based one-parameter model)
can be obtained for research use.6 The framework and
results we present provide a general foundation for future
research that connects to basic theory in the psychology of
face recognition, as well as to testing in research and applied
scenarios.

It has become increasingly clear in the psychological
literature that successful face identification requires two
important skills. The first is the need to discriminate highly
similar faces (i.e., “telling people apart”)—long considered
the basis for human expertise with faces (Diamond &
Carey, 1986). The second, is the ability to perceive
identity constantly across multiple face images that vary
in appearance and image conditions (e.g., expression,
viewpoint, illumination), such as “telling faces together”
(Andrews, Jenkins, Cursiter, & Burton, 2015; Jenkins,
White, Van Montfort, & Burton, 2011). The constructed
triads used in the TIM test implicitly test both skills
simultaneously. In particular, the triads evaluate both the
ability to “tell people together” and “tell people apart” with
stimuli constructed to be challenging for both tasks.

The framework developed in this study, combined with
the TIM test we introduce, provides a path for building
calibrated face-identification tests. To establish a general
baseline and proof of concept, the current study was limited
to university students and federal employees. Although
simulation results (see Supplemental Materials) offer prima
facie evidence that the test transferred well between students
of higher and lower ability, this should be verified explicitly
with other populations. Future research should focus on
evaluating the TIM test for non-student populations such as

6Images used in the TIM test are available by license from the
University of Notre Dame. R code to fit the one-parameter logistic
model and run the analysis, de-identified participant responses, as well
as PsychoPy experimental code will be made available by the UTD
research team at OSF website.
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forensic examiners, super-recognizers, forensic specialists,
and prosopagnosics.

One motivation for developing this framework concerned
the challenges of measuring item difficulty in test paradigms
such as identity matching. These paradigms allow for user
response bias in the form of rating scales or binary choice
decision options and are some of the most commonly used
in forensic practice. A requirement of an efficient face
identification proficiency test is to provide measures of
ability that can translate to people’s proficiency for applied
settings. Therefore, it is important to verify that measures of
proficiency gleaned from a 3AFC test, such as the TIM test,
accurately predict performance in identity-matching tasks.

Finally, expecting that the TIM test can spur extensive
research in the face-identification community, we make the
test available online to researchers. Other researchers can
test individuals using the full set of items or the subsets of
items used here to estimate the abilities of individuals. This
supports easy comparison with the student data we report
here. Using the existing model, researchers can project their
data to estimate ability for other populations of interest, or
they can merge their data to create a new model.

In anticipating the future of calibrated face-identification
tests, future research should build on the approach proposed
here and examine more complex IRT models (e.g., two
and three-parameter model’ Birnbaum [1968]). We based
our study on the one-parameter logistic model, which
do not model participant guessing and assumes all items
have equal discrimination parameters. More general IRT
models were developed to handle both conditions. These
models would offer a deeper understanding on participants’
ability and item difficulty and contribute to designing well-
calibrated proficiency tests. Understanding the nature of
participant ability and item difficulty would offer a starting
point for developing adaptive face identification tests (e.g.,
Computerized Adaptive Tests).

Although this study focused on face identification,
nothing in our framework is specific to facial comparisons.
Researchers and practitioners can apply our work to
disciplines that perform comparisons, for example, latent
fingerprint, speaker, and iris identification. Our method has
the potential to provide multiple forensic disciplines with
the tools to create calibrate proficiency tests.

TIM test availability

The TIM test will be made available for research purposes,
without cost, by license from the University of Notre
Dame. Specifically, researchers will be able to access
all TIM test images from a repository, provided by the
University Notre Dame, after signing a license in which
they agree to the conditions of use. This process ensures

that all individuals who wish to use the test accept
responsibility for adhering to participant protections and
protecting participant privacy. Other materials (R code to
run the analysis, de-identified student data, and PsychoPy
experimental code) will be made available by the UTD
research team at OSF website. https://osf.io/yruvk/?view
only=4e4ae41ae25c4b4cba113a62660df231

Supplementary Information The online version contains supple-
mentary material available at https://doi.org/10.3758/s13428-023-
02092-7.
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