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Abstract
In structural equation modeling, when multiple imputation is used for handling missing data, model fit evaluation involves 
pooling likelihood-ratio test statistics across imputations. Under the normality assumption, the two most popular pool-
ing approaches were proposed by Li et al. (Statistica Sinica, 1(1), 65–92, 1991) and Meng and Rubin (Biometrika, 79(1), 
103–111, 1992). When the assumption of normality is violated, it is not clear how well these pooling approaches work with 
the test statistics generated from various robust estimators and multiple imputation methods. Jorgensen and colleagues 
(2021) implemented these pooling approaches in their R package semTools; however, no systematical evaluation has been 
conducted. In this simulation study, we examine the performance of these approaches in working with different imputation 
methods and robust estimators under nonnormality. We found that the naïve pooling approach based on Meng and Rubin 
(Biometrika, 79(1), 103–111, 1992; D3SN) worked the best when combining with the normal-theory-based imputation and 
either MLM or MLMV estimator.

Keywords  Structural equation modeling · Robust estimator · Nonnormality · Missing data · Multiple imputation · Pooling · 
Test statistic

Model fit evaluation is a critical aspect in structural equa-
tion modeling (SEM). In recent decades, model fit evalua-
tion with difficult data, such as nonnormal data or incom-
plete data, have received extensive attentions (e.g., Satorra 
& Bentler, 1994; Yuan & Hayashi, 2006). When data are 
skewed or kurtotic, the normality assumption of the pop-
ular estimators (e.g., maximum likelihood, a.k.a., ML) in 
SEM is violated, resulting in biased standard errors and 
inappropriate likelihood ratio test statistics and therefore 
distorted model fit indices that are based on the test statis-
tic (e.g., Browne, 1984; Curran et al., 1996; Olsson et al., 
2000). A well-known solution is to use one of the robust 
ML-based estimators to mitigate the impact of nonnormal-
ity (e.g., MLM, MLMV, MLR; Satorra & Bentler, 1994; 
Yuan & Bentler, 2000; Asparouhov & Muthén, 2005; Aspa-
rouhov & Muthén, 2010; Maydeu-Olivares, 2017). These 
robust estimators use a sandwich-like covariance matrix of 
parameters to obtain corrected standard errors; they also 
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produce adjusted test statistics for more accurate statistical 
inferences.

Most of these robust estimators were developed based on 
complete data. The presence of missing data adds another 
layer of difficulty. For missing nonnormal data, only MLR 
can be directly applied. Studies show that MLR (a.k.a, 
robust full information maximum likelihood, robust FIML, 
or RFIML) can generally yield unbiased point and standard 
error estimates with certain types of missing nonnormal data 
(e.g., Enders, 2001). However, it has been found that MLR 
could generate inflated type I errors in many conditions (e.g., 
Liu & Sriutaisuk, 2020; Savalei & Bentler, 2009). Missing 
nonnormal data can also be handled using  multiple imputa-
tion (MI). A typical MI takes three steps. In the first step, it 
generates multiply imputed data sets, in which missing val-
ues are filled in using a certain imputation model (i.e., impu-
tation step). Second, it runs the analysis model with each 
imputed data set (i.e., analysis phase). In the end, the results 
from all imputed data sets are pooled to produce the final 
results (i.e., pooling step). One advantage of MI is that it fills 
in missing values in multiply imputed data so that the com-
plete-data-based estimation methods can be applied. This 
allows the use of other robust estimators, such as MLMV, 
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which was found to be superior to MLR with complete data 
(Maydeu-Olivares, 2017). However, the challenge of using 
MI with robust estimators is that even though the point and 
standard errors estimates can be easily pooled after imputa-
tion (Rubin, 1987), the pooling approaches for the chi-square 
test statistics remain less clear in the literature.

Two pooling approaches, from Li et al. (1991) and Meng 
and Rubin (1992) for the chi-square test statistics, have 
received some attention in recent years. These two methods 
are referred to as  D2 and  D3, respectively, in the missing 
data literature (e.g., Enders, 2010; Schafer, 1997). Enders 
and Mansolf (2018) examined the performance of  D3 in the 
missing normal data context. They found that the values 
and type I error rates of chi-square test statistics from  D3 
were comparable to those from FIML with certain types of 
missing data, but  D3 tended to have lower power. Liu and 
Sriutaisuk (2020) focused on the performance of  D2 for ordi-
nal data with least-squares estimators. They revealed that  D2 
could work appropriately for ordinal variables if the analysis 
model also contained other completely observed variables, 
or variables with little missingness that correlated with the 
incomplete ordinal variables. Jorgensen et al. (2021) imple-
mented these pooling approaches and their variations in the 
R package semTools1. However, none of these approaches 
has been well evaluated for missing nonnormal data with 
robust ML-based estimators.

This article aims to fill the gap in the literature and provide 
guidance to substantive researchers in the case when MI is used 
for missing data handling and when adjustment for nonnormality 
is necessary. We organize the rest of the article in the following 
manner. We first introduce the background of the study, includ-
ing three adjusted test statistics from different robust ML-based 
estimators with complete nonnormal data; two imputation strate-
gies for missing nonnormal data; and four pooling approaches 
and their implementations with adjusted test statistics. Next, we 
describe the design and results of a simulation study that com-
pared 24 combinations of robust estimators, imputation methods 
and pooling approaches (3×2×4), under a variation of condi-
tions. We conclude the article with a discussion of the results 
and guidelines for substantive researchers.

Adjusted test statistics

MLM and MLMV

The likelihood ratio test statistic of ML follows a chi-square 
distribution under the assumption of normality. Let 𝜃̂ and 

∼

� 
denote the parameter estimates of the structure model and 

saturated model, respectively, then the likelihood ratio test 
statistic is defined as

where l
(
𝜃̂
)
 is the maximized log-likelihood under the struc-

tured model, and l
(

∼

�

)

 is the corresponding log-likelihood 

of the saturated model (Savalei & Bentler, 2005). When the 
normality assumption is violated, the chi-square distribution 
can no longer be used as the reference for the likelihood ratio 
test statistic. Satorra and Bentler (1994) proposed a robust 
estimator that produces a mean-adjusted test statistic for 
nonnormal data. We refer it to as MLM to keep consistence 
with the term used in popular SEM software programs, such 
as Mplus (Muthén & Muthén, 1998–2017) and lavaan (Ros-
seel, 2012), even though the default settings of MLM in 
these programs may differ (Savalei & Rosseel, 2021). In 
lavaan, the MLM adjusted chi-square test statistic is given 
by

w h e r e  d  i s  t h e  d e g r e e  o f  f r e e d o m , 
Û

E
= Ŵ − ŴΔ̂
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of the complete data expected information matrix for the 
structured model (Mplus uses saturated model here) and 
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||
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 . ∼�  is the asymptotic covariance matrix under the 
asymptotic distribution free (ADF) assumption (Browne, 
1984). With this adjustment, the mean of TMLM is equal to 
the mean of a �2

d
 . The distribution of TMLM is not exactly �2

d
 , 

but it works well approximately (Savalei, 2014). 
Asparouhov and Muthén (2010) described a variation of 

TMLM, which is known as the mean-and-variance adjusted 
test statistic or scaled-and-shifted test statistic (denoted 
TMLMV), and can be obtained from popular software pack-
ages, such as Mplus and lavaan, with the MLMV estima-
tor. TMLMV adjusts T with a scale parameter (a) and a shift 
parameter (b).
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 MLM and MLMV only deal with complete nonnormal 
data. MI creates the possibility of MLM and MLMV being 
implemented and evaluated in the context of missing non-
moral data.
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1 These functionalities will be moved to the new package lavaan.mi 
written by the same authors at the time of publication or soon after.



1231Behavior Research Methods (2024) 56:1229–1243	

1 3

MLR

Another popular robust estimator in SEM is termed MLR 
(a.k.a. robust full information maximum likelihood, robust 
FIML, or RFIML in missing data literature). MLR can be seen 
as an extension of FIML. It is widely available in SEM soft-
ware packages (e.g., Mplus and lavaan) and can be directly 
applied to data with or without missingness. The MLR test 
statistic is a mean-adjusted test statistic and can take a variety 
of forms (Savalei & Rosseel, 2021). One most used form 
(default in Mplus and lavaan) is based on Asparouhov and 
Muthén (2005). Let’s use β̂ = 𝛽

(

θ̂

)

 to denote the vector 
including all non-redundant elements in the covariance matrix 
and the means under the structure model, and 

∼

β represents the 
vector of those elements under the saturated model. Then, Â

β
 

and 
∼

A
β
 denote the negative “second derivative of the log-

likelihood” ( A
β
 , see Eq. 4) evaluated at β̂ and 

∼

β, respectively.

We also use B̂
β
 and 

∼

B
β
 to denote the outer product of the 

“first derivative of log-likelihood” with itself ( B
β
 , see Eq. 5) 

evaluated at B̂ and 
∼

B, respectively.

Then the MLR test statistic is written as

where d is the degrees of freedom. This form is asymp-
totically equivalent to the T∗

2
 statistic in Yuan and Bentler 

(2000). Recent research examined the performance of TMLR 
with complete nonnormal data (Maydeu-Olivares, 2017) and 
missing nonnormal data (Liu & Sriutaisuk, 2020). They both 
found that TMLR tended to produce inflated type I error rates 
in various conditions.

Multiple imputation strategies for missing 
data

Missing data mechanisms

Data can be missing through different processes. Rubin 
(1976) summarized these processes into three missing data 
mechanisms: missing completely at random (MCAR), miss-
ing at random (MAR), and missing not at random (MNAR). 
MCAR and MAR are also known as ignorable mechanisms, 
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under which missing data on a variable is unrelated to any 
variables in the data (completely at random) or only related 
to the observed variables (at random). Under ignorable miss-
ing data mechanisms, the missing information can be well 
recovered using modern missing data techniques, such as 
FIML and MI. MNAR, on the other hand, is the non-ignora-
ble mechanism, for missing data on a variable is determined 
by the unobserved values of the missing data themselves; 
and to recover missing information, one needs to explic-
itly model the missing data generation process. We assume 
ignorable missingness in this study.

Multiple imputation based on normality (MI‑NORM)

Let’s focus on MI. For nonnormal continuous data, one 
imputation strategy is to ignore nonnormality and use 
regular MI methods as if the data are normal. We refer 
to these types of methods as normal-theory-based MI or 
MI-NORM. MI-NORM can be implemented using either 
of two algorithms: joint modeling (JM; Schafer, 1997) 
and expectation-maximization with bootstrapping (EMB; 
Honaker et al., 2011). The two algorithms are theoreti-
cally equivalent as they both impute missing values on 
multiple variables simultaneously based on multivariate 
normality. We employed EMB in this study. EMB first 
uses the bootstrapping technique to repeatedly draw sam-
ples of the same size (with replacement) from the original 
sample and obtains the ML estimates of the mean and the 
covariance matrix through the expectation-maximization 
algorithm in each bootstrap sample. These estimates are 
then used to impute missing data. Interested readers are 
referred to Dempster et al. (1977) and Efron and Tibshi-
rani (1986) for more information about the EM algorithm 
and bootstrapping.

Multiple imputation based on predictive mean 
matching (MI‑PMM)

We can also account for nonnormality by using MI strate-
gies that rely less on the normality assumption. One such 
strategy is to impute missing values using the predictive 
mean matching (PMM) method implemented through the 
so-called MICE algorithm. MICE (a.k.a., multiple imputa-
tion by chained equations; van Buuren, 2007; van Buuren 
& Groothuis-Oudshoorn, 2011) does not impute missing 
data on multiple variables simultaneously, instead, it can 
individually specify the imputation model for each incom-
plete variable, and iteratively predict missing values on 
each variable conditional on the current values of the other 
variables. The flexibility of MICE makes it possible to 
adopt a variation of imputation models to accommodate 
missing data with different distributions. Predictive mean  

∼ ∼

∼

∼

¯1

∼
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matching (PMM) is one of these imputation models. Itera-
tively, it predicts all values on each incomplete variable 
based on the current values of the other variables, then 
fills in the missing values on the variable by randomly 
drawing a  “nearest” neighbor (i.e., one of candidate 
donors) on the same variable. PMM can have different 
versions depending on its computational settings, such as 
how to predict values on incomplete variable, and how 
to determine the “nearest” neighbors and the number of 
candidate donors. PMM has been found to be a reasonable 
MI method with nonnormal data in various scenarios (e.g., 
Di Zio & Guarnera, 2009; Kleinke, 2017; Morris et al., 
2014), however, no study has examined its performance 
in producing the test statistic in SEM.

Pooling approaches for test statistic

D2 and its variations

Li et al. (1991) proposed an approach of pooling m Wald chi-
square tests to generate a final significance test statistic. The 
pooled statistic produced from this approach is referred to as 
the D2 statistic in the missing data literature (e.g., Enders, 
2010; Schafer, 1997). Let T

W
 be the arithmetic average of m 

Wald test statistics ( TWt, t = 1, 2, …m):

Then, the D2 statistic is given by:

where ARIV1 is an estimate of the average relative increase 
in variance with k degrees of freedom and can be computed 
as follows.

where 
√

T
w

 is the average of m square root of TWt. The D2 
statistic approximates an F distribution with k degrees of 
freedom for the numerator and v degrees of freedom for the 
denominator, where

Li et al. (1991) mentioned that the type 1 error rate of 
the D2 statistic can be quite sensitive to the fraction of miss-
ing information (FMI), which is a measure of the impact 
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of missing data on the sampling variability of a parameter 
estimate (Enders, 2010).

D2 can be easily implemented with SEM models, as 
it can directly pool m Wald-like chi-square test statistics 
from m imputed data sets (Jorgensen et al., 2021). There-
fore, when a robust estimator is used in SEM analysis, the 
adjusted chi-square test statistics can be directly pooled 
using the D2 approach. Liu and Sriutaisuk (2020) investi-
gated the performance of D2 for confirmatory factor analy-
sis (CFA) models with ordinal items. They found that the 
D2 method could adequately pool the adjusted chi-square 
test statistics unless all items are incomplete in the CFA 
model. The most influential factors to its performance 
were the number of response categories, factor loadings, 
and sample size. However, to our knowledge, no published 
study has examined how D2 performs with on nonnor-
mal continuous items in SEM. In this study, we examined 
D2 and two of its variations. One is denoted by D2A (i.e., 
Asymptotic D2), which is simply the product of D2 and its 
numerator degree of freedom that transforms an F statis-
tic to a chi-square asymptotically, so it could be further 
used to compute model fit indices. As it is an asymptotical 
method, we expect that it requires a large sample size to 
perform well. The other is D2ASN (i.e., asymptotic scaled 
naïve D2), which pools the naïve (unadjusted) test statistic 
across m imputations using D2A first and apply the average 
scale parameter (and shift parameter) to the pooled naïve 
test statistic. It is also an asymptotical method and can be 
directly used for computing model fit indices. Note that 
D2ASN is only available as chi-square because the scale/
shift parameters cannot be applied to F.

D3 for nonnormal data

Another approach of pooling the test statistics is known as 
the Meng and Rubin’s (1992) approach or D3 in the miss-
ing data literature (e.g., Enders, 2010; Schafer, 1997). The 
D3 approach involves three steps. It first takes the average 
of the likelihood ratio test statistics across m imputations.

where the likelihood ratio test statistic (TLR) compares the 
log-likelihood values from the structured and saturated mod-
els. In the second step, the two models are re-estimated with 
their model parameters constrained to the pooled values, and 
the averaged likelihood ratio test statistic across imputations 
is computed again ( T

Constrained
 ). Finally, the pooled likeli-

hood ratio test statistic is calculated as follows.

(12)T
LR

=
1

m

m
∑

t=1

T
LRt
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Fig. 1   The structural equation model for data generation

where k is the number of parameter constraints, and ARIV2 
is another estimate of the average relative increase with k 
degrees of freedom.

D3 assumes normality. Enders and Mansolf (2018) con-
ducted a comprehensive simulation to evaluate the application 
of D3 in SEM with normal items. They found the pooled test 
statistics produced from D3 were comparable to those from 
FIML in terms of type I error rate, even though D3 was less 
efficient. However, it was still not clear in the literature how D3 
would perform with nonnormal missing items. D3 can be also 
applied to nonnormal items. One can pool the naïve (unscaled) 
test statistic across m imputations using D3 first and apply the 
average scale parameter (and shift parameter) to the pooled test 
statistic. We refer to this approach as D3SN (i.e., scaled naïve 
 D3). Similar to D2ASN, D3SN is only available as chi-square. This 
approach has not been systematically evaluated in SEM.

Simulation study

We conducted a simulation study to compare the perfor-
mance of 24 strategies that involve the choices of robust 
estimators (MLR, MLM, and MLMV), imputation meth-
ods (MI-NORM and MI-PMM), and test statistic pooling 
approaches (D2, D2A, D2ASN, and D3SN) to deal with missing 
nonnormal data.

(13)D3 =
T
Constrained

k
(
1 + ARIV2

)

(14)ARIV2 =
m + 1

k(m − 1)

(
T
LR

− T
Constrained

)

Population model

We generated data from a three-factor SEM model 
(Fig. 1). Similar models are commonly seen in the SEM 
literature (e.g., Bollen, 1989; Enders, 2001; Enders & 
Mansolf, 2018; Palomo et al., 2007). In this population 
model, the three paths between latent variables were 
set at 0.4, 0.286, and 0.286, respectively. The variance/
residual variances of the three latent variables η1, η2, and 
η3 were set at 0.490, 0.412, and 0.378, respectively. All 
loadings were 1 and all residual variances on the items 
were set at 0.51.

Design factors

Several factors were considered to vary in this simulation 
design, including sample size, missing data proportion, 
missing data mechanism, degree of nonnormality, and 
misspecification. We considered two analysis models: 
correct (i.e., non-misspecified) and misspecified mod-
els. The correct model was the same as the population 
model. In the misspecified model, we constrained the 
path coefficient from η1 to η3 at zero, following Enders 
and Mansolf (2018). Levels of sample size and missing 
data proportion were selected based on previous simula-
tion studies and cases commonly seen in SEM. Specifi-
cally, we examined three sample sizes (n): small (150), 
medium (300) and large (600); and two missing data pro-
portions (mp): small (15%) and large (30%). The other 
factors are explicitly described below.
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Nonnormality

For a univariate normal distribution, nonnormality can be 
measured using skewness (S) and kurtosis (K). The skewness 
of a normal distribution equals zero; a non-zero skewness 
indicates the asymmetry of a distribution about its mean. 
A kurtosis that deviates from 3 (or an excess kurtosis that 
deviates from 0) implies a flatter or more peaked distribu-
tion than a normal distribution. In this study, we generated 
nonnormal items following the method proposed by Foldnes 
and Olsson (2016) at three levels: mild (S = 1.5, K = 3), 
moderate (S = 2, K = 7), and severe (S = 3, K = 21). These 
levels of nonnormality were commonly seen in both simula-
tion studies (e.g., Enders, 2010; Savalei & Falk, 2014) and 
applied research (Curran et al., 1996). The same level of 
nonnormality was applied to all items in each replication.

Missing data mechanism

Missing data were generated on the first two items for each 
latent factor (i.e.,  X1,  X2,  X4,  X5,  X7 and  X8) under one 
of three missing data mechanisms: MCAR, MAR-Head, 
and MAR-Tail. Under MCAR, missing data were randomly 
imposed so that every individual data point has the same 
probability of being missing. For MAR, we assumed that 
different missing data patterns were determined by differ-
ent combinations of the complete items (i.e., weighted sum 
of  X3,  X6, and  X9; weights = 0 or 1 for). Specifically, for 
a subject who had incomplete items that loaded onto only 
one factor (e.g., η1), the probability of missingness was only 
determined by the value of the complete item from the same 
factor (e.g., 1 ×  X3 + 0 ×  X6 + 0 ×  X9 =  X3); for a subject 
who had incomplete items from more than one factors (e.g., 
η1 and η2), the probabilities of missingness were determined 
by the sum scores of the complete items from those factors 
(e.g., 1 ×  X3 + 1 ×  X6 + 0 ×  X9 =  X3 +  X6). MAR-Head 
and MAR-Tail data were generated based on two different 
logistic distribution functions associated with the weighted 
sum scores. For MAR-Tail missingness, subjects with higher 
weighted sum scores had a higher probability to have miss-
ing values. In contrast, under MAR-Head, higher weighted 
sum scores resulted in lower probability of missingness.

For each of the 24 strategies, we examined their per-
formance in 108 fully crossed conditions (2 models × 3 
sample sizes × 2 missing data proportions × 3 degrees of 
nonnormality × 3 missing data mechanisms). In each con-
dition, we generated 1000 replicated samples, and evalu-
ated empirical type I error rate and power for the correct 
and misspecified models, respectively. For the correct 
model, we computed the type I error rate as the propor-
tion of replicated samples with a significant test statistic 
(p < 0.05). Conventionally, a type I error rate below 0.1 
has been considered “acceptable”. In addition, following 

Bradley's (1978) “liberal criterion”, we considered a type 
I error rate “accurate” if it is between 0.025 and 0.075. 
Empirical power was computed in the same manner for the 
misspecified model. We only report the values of empiri-
cal power in the conditions where the type I error rates 
from the correct model fell within the “accurate” range.

Data were generated using R (R Core Team, 2022) follow-
ing the Foldnes & Olsson, (2016) method. MI-NORM and 
MI-PMM were implemented using the R packages Amelia 
(Honaker et al., 2011) and mice (van Buuren & Groothuis-
Oudshoorn, 2011; with 20 burn-in and five donors), respec-
tively. For both imputation methods, 20 imputed data sets 
were generated. All pooling procedures were implemented 
through R package semTools (Jorgensen et al., 2021)2.

Results

Correct model

Complete data

We first assessed the type I error rates produced by different 
estimation methods given data were complete. We expected 
that these results could later help us partial-out the impact of 
estimation methods when examining the impacts of imputa-
tion method and pooling approaches with incomplete data. 
Figure 2 shows the average type I error rates across replica-
tions generated from three estimation methods (columns of 
the panels), three degrees of nonnormality (rows of the pan-
els), and three sample sizes (on x-axis in each panel). The 
solid horizontal line represents the nominal type I error rate 
of 0.05. The two dotted horizontal lines represent the limits 
of the “accurate” range of type I error rate, 0.025 and 0.075. 
We found that MLR test statistic only worked marginally 
well with the large sample size (600) and mild nonnormal-
ity. It generated severely inflated type I error rates in all 
other conditions. In contrast, type I error rates from MLM 
and MLMV were more appropriate across sample sizes and 
degrees of nonnormality.

Incomplete data

Overall patterns Figure 3 contains violin plots and shows 
average type I error rates across replications with incomplete 
data generated from three estimation methods (columns of 
the panels), four pooling approaches (rows of the panels) and 
two imputation methods (on x-axis in the panels). The violin 

2 The imputation-related functionality in semTools package will be 
moved to the new package lavaan.mi written by the same authors at 
the time of publication or soon after.



1235Behavior Research Methods (2024) 56:1229–1243	

1 3

Fig. 2   Type I error rate with complete data

plot is analogous to the boxplot that illustrates the central 
tendency and variability of data. In addition, the violin plot 
depicts the frequency density of data distribution, that is, 
the thicker parts indicate that data occur more frequently, 
i.e., higher frequency; and the thinner parts reflect lower 
frequency. In Fig. 3, each dot is the average type I error 
rate across replications within one design cell. Each “vio-
lin” shows the distribution of 54 dots (3 sample sizes × 2 
missing data proportions × 3 degrees of nonnormality × 3 
missing data mechanisms). The same as in Fig. 2, the solid 
horizontal line and two dotted horizontal lines represent type 
I error rates of 0.05, 0.025 and 0.075, respectively. Because 
the poor performance of MLR with complete data has been 
already observed, it is not surprising that MLR type I error 
rates with missing data also demonstrated much larger 
variability than those produced from MLM and MLMV, 
regardless of the imputation methods or pooling approaches. 
For both MLM and MLMV, the two scaled-naïve pooling 
approaches (i.e.,  D2ASN and  D3SN) show smaller variabilities 
(see the four panels in the bottom-right corner in Fig. 3), 

implying more stable performance than the other two  D2 
methods (i.e.,  D2 and  D2A). Comparing the two imputation 
methods, we found that MI-PMM tended to generate lower 
type I error rates than MI-NORM. Next, we will further look 
inside the four bottom-right panels.

MLM with  D2ASN and  D3SN To further examine the type I error 
rates produced by the pooled MLM test statistics, we organ-
ized the results in two nine-panel figures. Figure 4 contains 
results for MLM test statistics pooled through  D2ASN. The 
rows of the panels represent the three degrees of nonnor-
mality. The columns are three missing data mechanisms, 
MCAR, MAR-Head, and MAR-Tail. The X and Y axes in 
each panel are sample size with missing data proportion 
and type I error rate, respectively. The two missing imputa-
tion methods are displayed using two different shapes in the 
panels. We found the type I error rates based on MI-NORM 
were most inflated with mild nonnormality (> 0.1) and to 
a lesser extent with moderate nonnormality (> 0.075). As 
data became more severely nonnormal, the inflated type I 
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Fig. 3   Type I error rate with incomplete data

error rates shrunk to a reasonable range. MI-PMM worked 
the best when missing data were MCAR. Under MAR, its 
performance fluctuated largely across conditions. Generally, 
it tended to yield deflated type I error rates under MAR-
Head and inflated type I error rates under MAR-Tail. These 
results indicate that the MLM with  D2ASN is not an ideal 
approach, unless data were missing completely at random 
(MCAR) with non-severe nonnormality, and MI-PMM was 
used for imputation.

We depict results of MLM test statistics pooled through 
 D3SN in Fig. 5, using the same structure as Fig. 4. The MI-
NORM results were more reasonable. The type I error rates 
generally hovered around the upper limit of the “accurate” 
range (i.e., 0.075), and all of them fall within the “accept-
able” range (< 0.1). The performance of MI-PMM was 
dependent on the missing data mechanism. Under MCAR, 
the type I error rates hovered around the lower limit of the 
“accurate” range (i.e., 0.025); under MAR-Head, all type I 
error rates dropped below the 0.025 cutoff. When missing 
data were MAR-Tail, the type I error rates were comparable 

to those from MI-NORM, which hovered around the upper 
limit of the “accurate” range (i.e., 0.075). The results in 
Fig. 5 indicates that MLM with  D3SN was more desirable 
when working with the normality-based MI, especially when 
sample size was medium to large and missing data were not 
MAR-Tail. MI-PMM tended to produce more “marginally 
accurate” or “lower-than-accurate” type I error rates.

MLMV with  D2ASN and  D3SN With MLMV, the performance 
of imputation methods and the pooling approaches show 
different patterns than those with MLM. Figures 6 and 7 
are used to illustrate these new patterns. Figure 6 contains 
the results for MLMV test statistics pooled through  D2ASN. 
MI-NORM generally worked adequately, especially with 
moderate nonnormality; with mild nonnormality, type I 
error rates could exceed the upper limit of the “accurate” 
range (0.075) and even the “acceptable” limit (0.1) when n 
= 600 and mp = 0.3; when data were severely nonnormal, 
type I error rates decreased and fell around the lower limit 
of the acceptable range (0.025). MI-PMM only worked 
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well in a small set of conditions, in which nonnormality 
was mild under MCAR, or under MAR-Tail when missing 
date proportion was small.

Figure 7 shows the type I error rates generated from 
MLMV with  D3SN. Similar to the findings in the previ-
ously discussed situation, MI-NORM was generally supe-
rior to MI-PMM. Different from the patterns found with 
 D2ASN, however, in this case MI-NORM worked the best 

with mildly nonnormal data or under MAR-Tail. With 
moderate and severe nonnormality, type I error rates from 
MI-NORM could be marginally “accurate” or slightly 
below 0.025 under MACR or MAR-Head, typically with 
small to medium sample sizes. In contrast, MI-PMM 
worked well only for MAR-Tail, when nonnormality was 
mild, sample size was large, or missing data proportion 
was small.

Fig. 4  Type I error rate produced from MLM and  D2ASN

Fig. 5  Type I error rate produced from MLM and  D3SN
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Misspecified model

Complete data

As noted, when there is misspecification in the analytic 
model, the empirical power of the test statistic is defined 

as the proportion of replications in which the misspecified 
model is rejected. In Table 1, we report values of empiri-
cal power with complete data only for MLM and MLMV, 
as MLR failed to produce “accurate” type I error rates in 
most conditions (see Fig. 2). It shows that MLMV gener-
ally required larger sample sizes than MLM to achieve a 

Fig. 6  Type I error rate produced from MLMV and  D2ASN

Fig. 7  Type I error rate produced from MLMV and  D3SN
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desirable power (i.e., 0.8), however, the differences between 
their power values became smaller as the sample size 
increased, or as the nonnormality became less severe.

Incomplete data

The same as in compete data results, we examined empiri-
cal power of the strategies only in the conditions where they 
could generate “accurate” type I error rates for the correct 
model. Given the results we obtained earlier, there were only 
four strategies that produced “accurate” type I error rates in 

a majority of conditions: MLM or MLMV combining with 
 D2ASN or  D3SN, using MI-NORM. Table 2 shows that the 
MLM generally has higher empirical power than MLMV; 
and  D2ASN almost always possessed higher empirical power 
than  D3SN. The power values of all strategies were most 
impacted by sample size, followed by missing data propor-
tion and degree of nonnormality, but they did not vary too 
much across missing data mechanisms. Larger sample size 
not only raised power but also reduced differences in power 
across conditions/methods. The smallest power values (< 0.1) 
were found with small sample size (150) and large missing 
date proportion (30%), with moderate or severe nonnormal-
ity. Higher power values were found with large sample size, 
less amount of missing data, and less severe nonnormality. 
Compared to complete data results, there were noticeable 
decreases in power even with a small amount of missingness.

Additional simulation results with plain ML

The results obtained from the robust ML estimators (MLM/
MLMV) with missing data show an interesting pattern that 
the type I error rates were more inflated with mild nonnormal 
data than those with more severe nonnormal data, especially 
for MI-NORM and  D2ASN (see Figs. 4 and 6). This calls 
into question whether it would be wiser to pool the naïve 
(unscaled) test statistics without any robust adjustment with 

Table 1  Power to detect misspecification with complete data

The empty cells indicate conditions with inaccurate type I error rates

Nonnormality and n MLM MLMV

Mild 150 0.23 0.13
300 0.44 0.36
600 0.79 0.76

Moderate 150 0.23 0.10
300 0.42 0.26
600 0.81 0.74

Severe 150 0.24 --
300 -- 0.23
600 0.75 0.58

Table 2  Power to detect misspecification with missing data through MI-NORM with MLMV

The empty cells indicate conditions with inaccurate type I error rates

Nonnormality MCAR MAR-Head MAR-Tail

MLM MLMV MLM MLMV MLM MLMV

D2ASN D3SN D2ASN D3SN D2ASN D3SN D2ASN D3SN D2ASN D3SN D2ASN D3SN

Mild n = 150, mp = 0.15 - - 0.13 0.11 0.20 0.18 0.12 0.09 0.24 - 0.15 0.12
n = 150, mp = 0.3 - - 0.16 0.09 - 0.12 0.14 0.06 - - 0.15 0.10
n = 300, mp = 0.15 - 0.35 0.34 0.29 0.39 0.34 0.32 0.26 0.39 0.37 0.32 0.29
n = 300, mp = 0.3 - 0.27 - 0.20 - 0.23 - 0.18 - 0.29 0.30 0.23
n = 600, mp = 0.15 0.61 0.64 0.63 0.62 0.61 0.61 0.61 0.59 0.62 0.63 0.63 0.64
n = 600, mp = 0.3 - 0.51 - 0.49 - - - 0.44 - - - 0.51

Moderate n = 150, mp = 0.15 0.21 0.19 0.09 - 0.18 0.16 0.09 - 0.23 0.20 0.09 0.10
n = 150, mp = 0.3 - 0.11 0.09 0.04 - 0.09 0.07 0.03 - - 0.10 0.08
n = 300, mp = 0.15 0.34 0.32 0.26 - 0.35 0.31 0.25 0.20 0.36 0.35 0.24 0.23
n = 300, mp = 0.3 - 0.21 0.22 0.13 - 0.20 0.20 - - 0.27 0.22 0.18
n = 600, mp = 0.15 0.62 0.63 0.61 0.57 0.62 0.63 0.62 0.57 0.64 0.65 0.63 0.61
n = 600, mp = 0.3 - 0.50 0.48 0.43 - 0.44 0.46 0.35 - 0.55 0.51 0.48

Severe n = 150, mp = 0.15 0.18 - - - 0.14 0.15 - - - - 0.08 0.08
n = 150, mp = 0.3 0.10 0.09 - 0.04 0.09 0.08 - 0.03 - - 0.07 0.06
n = 300, mp = 0.15 0.31 0.32 0.18 0.15 0.27 0.24 - - 0.36 0.36 0.20 0.17
n = 300, mp = 0.3 0.23 0.21 0.13 - 0.15 0.11 - - - 0.29 0.17 0.14
n = 600, mp = 0.15 0.54 0.54 0.46 0.44 0.52 0.53 0.46 0.42 0.59 0.61 0.50 0.48
n = 600, mp = 0.3 0.43 0.45 0.36 0.29 0.35 0.33 0.28 0.22 - 0.50 0.42 0.38
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mild nonnormality. Therefore, we conducted additional sim-
ulations to examine how the plain (i.e., non-robust) ML work 
when S = 1.5, and K = 3. Figure 8 depicts the type I error 
rates obtained from plain ML with MI-NORM or MI-PMM 
combining with  D2ASN or  D3SN, across different missing data 
mechanisms, sample sizes, and missing data proportions. We 
found that with plain ML, type I error rates were “accurate” 
only when  D3SN were used under MCAR (see the bottom left 
panel of Figure 8). In the conditions where the type I errors 
were more likely to be inflated with MLM/MLMV (Figs. 4 
and 6), using plain ML did not seem to be a better choice.

Empirical example

To illustrate these strategies, we used a data set retrieved 
from the Fragile Families and Child Well-Being 
Study (FFCWS; Reichman et  al., 2001). Inspired by 

Marchand-Reilly & Yaure (2019), we focused on the rela-
tions among three latent variables that were similar to the 
population model in the simulation study: parents’ rela-
tionship at child’s age 5 (η1) predicted child’s internalizing 
behaviors at age 5 (η2), and both η1 and η2 predicted child’s 
internalizing behaviors at age 15 (η3). Table 3 shows the 
descriptive statistics of the indicators. We selected a sub-
sample of 940 subjects with no missing values, and then 
imposed 15% missingness on one indicator of each latent 
variable under MAR-Tail (i.e., more missing data occurred 
in the tail). The correct model was fitted to this incomplete 
data set.

The chi-square values produced from the examined strate-
gies are shown in Table 4. We did not include D2 because it 
produces F statistic rather than chi-square. We found that MI-
PMM generally underestimated the chi-square statistic. The 
combination of MI-NORM, MLMV, and  D3SN produced the 
chi-square statistic closest to that from the complete data.

Fig. 8  Type I error rates produced from plain ML with  D2ASN and  D3SN for mildly nonnormal data only

Table 3  Empirical example: Descriptive statistics

Construct Indicator Min Max Skewness Excess Kurtosis Missingness

Parents relationship at age 5 (η1) Co-parenting quality  (x1) 2.17 4 –2.01 5.2 Yes
Relationship quality  (x2) 1.22 4.11 –0.93 0.91 No

Child’s internalizing behaviors at age 5 (η2) Anxious/depressed  (x3) 1 2.56 1.47 2.88 Yes
Withdrawn/depressed  (x4) 1 2.14 1.24 1.66 No

Child’s internalizing behaviors at age 15 (η3) Anxious/depressed  (x5) 1 3 1.9 4.4 Yes
Withdrawn/depressed  (x6) 1 3 1.78 2.93 No
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Discussion

We conducted a simulation study to investigate the perfor-
mance of 24 combinations of different robust estimators, 
missing data imputation methods, and pooling approaches. 
Our focus was the empirical type I error rate and power of 
the pooled test statistics with nonnormal items. The goal 
of the study is to uncover the optimal combination of these 
techniques that can help substantive researchers make a 
series of decisions when dealing with missing nonnormal 
data in SEM.

With complete nonnormal data, we found that MLR 
produced largely inflated type I error rates in almost all 
conditions. In contrast, MLM and MLMV performed quite 
well in controlling type I error rate. These results echo the 
findings of Maydeu-Olivares (2017), which inspired us to 
further investigate the viability of MLM and MLMV in the 
missing data context. Unlike MLR, the two other estima-
tors MLM and MLMV do not directly work with missing 
data. To circumvent this obstacle, we incorporated another 
technique, multiple imputation (MI), which can help make 
use of MLM and MLMV for missing data.

With missing nonnormal data, several options are avail-
able to implement the three steps in MI: imputation, analy-
sis, and pooling. Comparing between the two imputation 
methods, we found that the normal-theory-based imputa-
tion method (MI-NORM) generally produced larger type 
I errors than MI-PMM. Their comparative performance, 
however, was dependent on the selections of the other 
approaches in the following steps. In the analysis step, 
when MLR was used, neither MI-NORM nor MI-PMM 
worked well, as large variabilities in type I error rates were 
observed across conditions, and the type I error rates were 
drastically affected by factors such as sample size, miss-
ing data mechanism and missing data proportion, no mat-
ter which pooling approach was used. We exclude MLR in 
further discussion for this reason. MLM and MLMV, on the 
other hand, led to smaller variabilities in type I error rates 
across conditions or both MI-NORM and MI-PMM, espe-
cially when they were in conjunction with  D2ASN or  D3SN 
in the pooling step. Comparing between MLM and MLMV, 
we found that MLM generally produced “acceptable” type 

I error rates (< 0.1) with a few exceptions, while MLMV 
yield more “accurate” type I error rates (0.25–0.75). MLM, 
however, produce higher values power in general, regardless 
of the pooling approaches. This finding also aligned with 
the complete data results. When it came to the comparison 
among the four pooling approaches with MLMV, we found 
that the approaches that directly pooled the robust (adjusted) 
test statistics  (D2 and  D2A) were not viable options, as the 
type I error rates still largely fluctuated across conditions. 
The naïve pooling approaches  (D2ASN and  D3SN) tended to 
be superior, as their type I error rates were more clustered 
around the “accurate” region (0.25–0.75). More specifically, 
with  D2ASN and  D3SN, MI-NORM produced more accurate 
type I error rates; while MI-PMM tended to yield nearly 
zero type I error rates, implying that it would likely lack the 
power to detect model misspecifications.

Among the 24 examined strategies, two clearly outper-
formed the others in controlling the type I error rate within a 
reasonable range. These strategies use MI-NORM for impu-
tation,  D3SN for pooling, and either MLM or MLMV in the 
analysis phase. The strategy with MLM generally produced 
accurate type I errors with medium or larger samples; and 
inflated type I errors could be observed with small samples. 
Using MLMV instead, it would be less likely to produced 
inflated type I errors in all conditions; and the type I error 
rates could be too low for moderate or severe nonnormality, 
and therefore this strategy possessed lower statistical power. 
However, as we have discovered, larger sample size could 
reduce the differences in power among conditions/methods. 
Under conditions with accurate type I error rates, one might 
expect that the power difference would become negligible 
as sample size increases.

This simulation study explored how the current available 
options in semTools (Jorgensen et al., 2021) work in pool-
ing the test statistics with different robust estimators and 
MI methods. To keep our study in a manageable scope, we 
focused on continuous nonnormal data with three ML-based 
robust estimators and two MI methods. Future research 
could compare strategies for ordinal data, e.g., those with 
ML- vs. least-squares-based estimators for ordered five-
category data, to examine a common debate in practice for 
choosing whether to treat ordinal variables as continuous 

Table 4  Empirical example: Chi-square values from the examined strategies under MAR-Tail

NORM multiple imputation based on normality; PMM multiple imputation based on predictive mean matching

Complete data D3SN D2ASN D2A

NORM PMM NORM PMM NORM PMM

MLR 28.76 29.32 23.76 33.84 22.20 34.22 22.74
MLM 28.45 33.28 24.49 27.13 24.83 28.10 24.88
MLMV 27.93 27.90 19.06 26.32 13.73 27.78 14.19
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or make a latent-response assumption. Moreover, we only 
used one population model and investigated a single type 
of misspecification (same as in Enders & Mansolf, 2018). 
The empirical power of these methods could be further 
explored by considering more complex model and differ-
ent types and locations of misspecification. In addition, we 
only examined one version of MI-PMM. Change in com-
putational settings may alter the performance of MI-PMM. 
Other types of MI methods may also be worth considering 
in future studies. As noted in Enders and Mansolf (2018), 
a restrictive imputation method (using a structured model) 
may be helpful to improve power. Finally, practical fit indi-
ces, such as RMSEA, CFI and TLI, were not included in 
this study. The pooling approaches for these indices involve 
more methodological details and warrant further research.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02088-3.
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