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Abstract
Statistical methods generally have assumptions (e.g., normality in linear regression models). Violations of these assump-
tions can cause various issues, like statistical errors and biased estimates, whose impact can range from inconsequential to 
critical. Accordingly, it is important to check these assumptions, but this is often done in a flawed way. Here, I first present 
a prevalent but problematic approach to diagnostics—testing assumptions using null hypothesis significance tests (e.g., the 
Shapiro–Wilk test of normality). Then, I consolidate and illustrate the issues with this approach, primarily using simulations. 
These issues include statistical errors (i.e., false positives, especially with large samples, and false negatives, especially with 
small samples), false binarity, limited descriptiveness, misinterpretation (e.g., of p-value as an effect size), and potential 
testing failure due to unmet test assumptions. Finally, I synthesize the implications of these issues for statistical diagnostics, 
and provide practical recommendations for improving such diagnostics. Key recommendations include maintaining aware-
ness of the issues with assumption tests (while recognizing they can be useful), using appropriate combinations of diagnostic 
methods (including visualization and effect sizes) while recognizing their limitations, and distinguishing between testing and 
checking assumptions. Additional recommendations include judging assumption violations as a complex spectrum (rather 
than a simplistic binary), using programmatic tools that increase replicability and decrease researcher degrees of freedom, 
and sharing the material and rationale involved in the diagnostics.

Keywords  Statistical assumptions · Assumption checks · Statistical diagnostics · Null hypothesis significance testing · 
Graphical methods · Visualization

Introduction

Statistical assumptions

Statistical methods, like hypothesis tests and regression 
models that are often used in the behavioral sciences, 
generally involve various assumptions. For example, lin-
ear models generally involve the assumption that their 

residuals1 (i.e., the differences between observed and 
predicted values) are normally distributed (i.e., have a 
Gaussian distribution). This assumption also applies to 
common statistical tests that are special cases of linear 
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1  This assumption actually pertains to the models’ errors, which can-
not be directly observed, and which are therefore estimated using the 
residuals (Barker & Shaw, 2015; Bilon, 2021; Cook & Weisberg, 
1999; Knief & Forstmeier, 2021; Pek et  al., 2018). Accordingly, 
throughout the paper, we will discuss this and related assumptions in 
the context of residuals, rather than errors. However, this approach 
has some flaws, like the problem of supernormality, where residuals 
appear to be normal even if the errors are not normal, particularly in 
small samples (Gnanadesikan, 1997; Weisberg, 2005). Such issues led 
to the development of various types of residuals, like recursive residu-
als, which may sometimes be better suited for diagnostic purposes 
than raw residuals (Hawkins, 1991; Kianifard & Swallow, 1996).
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models, like the t-test and ANOVA, as well as to methods 
that extend these models, like linear mixed-effects models 
(Barker & Shaw, 2015; Casson & Farmer, 2014; Hox et al., 
2018; Knief & Forstmeier, 2021; Pole & Bondy, 2012; 
Poncet et al., 2016; Rochon et al., 2012; Vallejo et al., 
2021; Winter, 2019). Furthermore, it can apply to other 
quantitative methods, including inferential statistics, like 
confidence intervals (Alf & Lohr, 2007), and descriptive 
statistics, like mean and standard deviation (Al-Hoorie & 
Vitta, 2019). Additional information about this and other 
assumptions, particularly in the context of linear regres-
sion, appears in Appendix 1.

Violations of these assumptions can cause various issues, 
like statistical errors and biased estimates, whose impact 
can range from inconsequential to critical (Barker & Shaw, 
2015; Ernst & Albers, 2017; Gel et al., 2005; Hayes & Cai, 
2007; Hu & Plonsky, 2021; Knief & Forstmeier, 2021; 
Poncet et al., 2016; Rosopa et al., 2013; Schmidt & Finan, 
2018; Troncoso Skidmore & Thompson, 2013; Vallejo 
et al., 2021; Zuur et al., 2010). Accordingly, it is recom-
mended to consider the assumptions of statistical methods 
when using those methods, and to use statistical diagnostics 
to determine whether any assumptions are violated, and if 
so then how they are violated and to what degree (Barker & 
Shaw, 2015; Casson & Farmer, 2014; Gel et al., 2005; Hox 
et al., 2018; Osborne & Waters, 2003; Poncet et al., 2016; 
Schmidt & Finan, 2018; Tay et al., 2016; Zuur et al., 2010). 
When violations are detected, the diagnostics can also drive 
the decision of what to do; common options include switch-
ing methods (e.g., to robust non-parametric ones), trans-
forming the data (e.g., by taking its logarithm), or sticking 
to the original analysis (Casson & Farmer, 2014; Pek et al., 
2018; Pole & Bondy, 2012; Vallejo et al., 2021).

Motivation for this paper

As discussed above, checking assumptions is crucial to 
ensuring the validity of statistical analyses.

However, the way assumptions are currently checked 
is often flawed, due to issues like the use of statistical 
tests in a way that is likely to involve false positives, and 
these issues persist despite having been mentioned in vari-
ous previous works (Anderson et al., 2001; Bilon, 2021; 
Cumming, 2014; Di Leo & Sardanelli, 2020; Ernst & 
Albers, 2017; Gelman & Stern, 2006; Knief & Forstmeier, 
2021; Kozak & Piepho, 2018; Lakens, 2021; Rosnow & 
Rosenthal, 1989; Tijmstra, 2018; Wasserstein & Lazar, 
2016; Winter, 2019; Zuur et al., 2010). Furthermore, lack 
of awareness and understanding of these issues contributes 
to the currently insufficient use and reporting of assump-
tion checks in the scientific literature (Hoekstra et al., 
2012; Hu & Plonsky, 2021; Nielsen et al., 2019; Nimon, 

2012).2 For example, a review and empirical analysis by 
Hu and Plonsky (2021) suggest that assumption checks are 
likely reported in under 25% of studies in social-science 
fields like linguistics, psychology, and education, and that 
many of these reports are lacking (e.g., because they men-
tion only some of the relevant checks). This is supported 
by other research in the social sciences, such as a study 
by Ernst and Albers (2017), who found that in psychology 
research involving linear regression, only 2% of studies 
were both transparent and correct in reporting assumption 
checking, and a further 6% were transparent but incor-
rect. This is also supported by research in other fields, like 
medicine (e.g., Nielsen et al., 2019), though more research 
is needed in order to determine the exact rate of reporting, 
especially to understand how it varies across fields and 
whether it is increasing over time (Hu & Plonsky, 2021).

One reason for the persistence of the issues with assump-
tion checks is insufficient statistical literacy among research-
ers, so a possible partial solution is to develop relevant 
resources on proper assumption-checking, which researchers 
can learn from (Hu & Plonsky, 2021; Loewen et al., 2014). 
There are already, as noted above, many works that men-
tioned these issues. However, they are generally limited, in 
the sense that they either do so only briefly and in passing 
(e.g., Winter, 2019), focus on only one or some of these 
issues (e.g., Tijmstra, 2018), and/or discuss these issues out-
side the context of statistical diagnostics (e.g., Gelman & 
Stern, 2006). Furthermore, some works (e.g., Bilon, 2021) 
present these issues from a technical perspective (e.g., using 
equations), which readers may struggle to understand and 
translate into practice, especially if they lack a strong quan-
titative background, as is often the case (Hu & Plonsky, 
2021). All this is not meant to criticize these works, which 
simply had a different focus (e.g., exploring a single issue), 
but is rather meant to point out an existing and important 
gap in the literature.

The goal of the present paper is to address this gap, and 
to consequently improve the way assumption checking is 
conducted. Specifically, the paper expands on previous 
work in several ways. First, it aggregates the key common 
issues with assumption checking, to discuss all of them 
in one place. Furthermore, it illustrates these issues in a 

2  It is unclear to what extent the issue is that assumptions are not 
checked, as opposed to being checked but not reported (Hu & Plon-
sky, 2021). Nevertheless, the low rates of reporting—and especially 
of correct reporting—suggest there is a lack of understanding of the 
importance of assumption checking, and of how to do it properly 
(Hoekstra et  al., 2012; Hu & Plonsky, 2021; Nielsen et  al., 2019; 
Nimon, 2012). In addition, even when assumptions are checked cor-
rectly, a lack transparency regarding the checks (i.e., due to lack of 
reporting) can cause issues for researchers who try to interpret, com-
pare, or replicate a study's analyses (Ernst & Albers, 2017; Hu & 
Plonsky, 2021).



828	 Behavior Research Methods (2024) 56:826–845

1 3

manner that is meant to be intuitive and non-technical, 
in order to make the material accessible to diverse audi-
ences, including those who have only limited statistics 
expertise but nevertheless use statistical methods in their 
work (Hu & Plonsky, 2021). Finally, it takes advantage of 
the aforementioned aggregation of these issues, in order 
to synthesize generalizable practical recommendations for 
improving assumption checking, which again should be 
accessible to diverse audiences.

The present paper therefore aims to serve as a resource 
that can be used in several key ways. First, it can be used 
by researchers to learn how to conduct better statistical 
diagnostics, and also to explain the rationale behind their 
diagnostic approach to readers and reviewers, by serving 
as a comprehensive reference. In addition, this paper may 
also be used by reviewers and editors, who can use it to 
guide the statistical diagnostics of authors, by mentioning 
it during the review process, and potentially also listing it 
as a methodological resource in the submission guidelines 
of journals (Hu & Plonsky, 2021; Loewen et al., 2014). 
Finally, it can also be used for pedagogical purposes, for 
example by educators who wish to direct their students to 
an accessible paper that explains how to conduct statistical 
diagnostics. This aligns with calls to improve the current 
state of statistical diagnostics in research (Hu & Plonsky, 
2021; Nielsen et al., 2019; Nimon, 2012). This also aligns 
with the goal of Behavior Research Methods (BRM) to 
publish, among other things, “tutorials alerting readers 
to avoidable mistakes that are made time and time again” 
(Brysbaert et al., 2020, p. 1), in order to make research 
“more effective, less error-prone, and easier to run” (ibid.).

Brief overview of assumption testing

It is often recommended to test the assumptions of statistical 
methods before using them, using null hypothesis signifi-
cance tests (NHST, sometimes referred to in this context as 
numerical tests). For example, when assessing the normality 
of residuals, a common recommendation is to use the Shap-
iro–Wilk test (Gel et al., 2005; Ghasemi & Zahediasl, 2012; 
Knief & Forstmeier, 2021; Mishra et al., 2019; Rochon et al., 
2012). Generally, when this approach is used, if the resulting 
p-value of the test is < .05, then the residuals are considered 
significantly non-normal (i.e., the null hypothesis that the 
data is normally distributed is rejected), meaning that the 
assumption of normality is considered to be violated.

This approach to checking assumptions can be appeal-
ing for various reasons. For example, it involves a sin-
gle well-established threshold (generally p < .05), which 
reduces some of the arbitrariness and researcher degrees 
of freedom when using such checks (Wicherts et  al., 

2016).3 Second, it relies on the NHST framework, which 
many researchers are familiar with and are already using 
extensively in other parts of their work (Tijmstra, 2018; 
Troncoso Skidmore & Thompson, 2013; Veldkamp, 2017). 
Finally, it involves tests that are generally easy to imple-
ment from a programmatic perspective, and that are often 
reported automatically by certain software, so researchers 
may have the results of these tests available to them by 
default (Hoekstra et al., 2012).

However, as will be shown in the next section, there are 
various issues with this approach, which can cause serious 
problems for those who use it.

Issues with testing assumptions

The following subsections illustrate the key issues with 
using assumption tests for diagnostics of statistical methods. 
These issues include statistical errors, false binarity, limited 
descriptiveness, misinterpretation, and potential testing fail-
ure due to unmet test assumptions.

Statistical errors

Testing assumptions can cause both false positives (i.e., type 
I errors) and false negatives (i.e., type II errors), as shown 
below.

False positives occur when a test incorrectly leads to the 
conclusion that there is an assumption violation, in cases 
where there is no such violation. For example, this can 
happen if the test incorrectly leads to the conclusion that 
a certain distribution is non-normal, in a situation where 
it is actually normal (and should be normal). This issue is 
especially common with large samples, where even tiny, 
random, and inconsequential deviations from an expected 
distribution often lead to statistically significant differences 
from that distribution (Bilon, 2021; Bishara et al., 2021; 
Kozak & Piepho, 2018; Mishra et al., 2019).

This issue is illustrated in Fig. 1. The plots it contains 
show that, as the sample size increases (going from left to 
right), the distribution of the randomly generated samples 
approaches normality, as indicated by the observed distri-
bution (the blue shaded area) aligning with an expected 

3  However, it does not eliminate these issues entirely. For example, 
researchers may need to choose between multiple available tests, such 
as the Shapiro–Wilk test and the Kolmogorov-Smirnov (K-S) test, 
where the K-S test generally has lower power to detect non-normality 
(Ghasemi & Zahediasl, 2012; Steinskog et  al., 2007). Furthermore, 
researchers also be faced with many other alternatives to choose 
from, which can also lead to different results, such as the Lilliefors 
test, the Anderson–Darling test, and the Jarque-Bera test (Das & 
Imon, 2016; Ghasemi & Zahediasl, 2012; Pole & Bondy, 2012; Stein-
skog et al., 2007).
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normal distribution (the orange line). However, these plots 
also show that as the sample size increases—and the sam-
ple approaches normality—the p-value of the associated 
assumption test decreases. Paradoxically, this means that 
the smallest sample (N = 50), which is the least normal, 
might be interpreted as the only sample where the normal-
ity assumption is not violated (since p > .05). Conversely, 
the medium sample (N = 500), which is closer to normality, 
might be interpreted as non-normal (but somewhat border-
line, since p = .044), and the largest sample (N = 5000), 
which is closest to normality, might be interpreted as entirely 
non-normal (since p < .001).

This figure demonstrates that, although increasing the 
sample size is generally beneficial to statistical analyses, 
it can cause issues when testing assumptions, since large 
samples are likely to appear to be significantly different from 
expected distributions according to NHST (Bilon, 2021; 
Bishara et al., 2021;Kozak & Piepho, 2018 ; Mishra et al., 
2019). This size-significance paradox of assumption testing 
can lead to unwarranted lack of confidence in results from 
large and “overpowered” samples, where minor assumption 
violations may be incorrectly interpreted as worse than they 
are (Bishara et al., 2021; Kozak & Piepho, 2018).

Conversely, the second type of statistical errors that 
assumption tests can cause—false negatives—occur when 
a test incorrectly leads to the conclusion that there is no 
assumption violation, in cases where there is one. For exam-
ple, this can happen if the test leads to the conclusion that a 
certain distribution is normal (or more accurately, not signif-
icantly non-normal), in a situation where it is not. This issue 
is especially common with small samples, where even sub-
stantial and systematic deviations from an expected distribu-
tion may not be statistically significant, due to insufficient 

statistical power (i.e., insufficient ability to detect such devi-
ations at a statistically significant level) (Kozak & Piepho, 
2018; Mishra et al., 2019).

This issue is illustrated in Fig. 2. The plots that it con-
tains show three samples with substantial deviations from 
normality—due to noise, skewness, and bimodality—as 
indicated by the shape of the observed distributions (blue 
shaded area). However, in all these cases, the samples might 
be interpreted as normal based on the associated assumption 
test (since p > .05).

Accordingly, assumption testing can also lead to unwar-
ranted confidence in small and underpowered samples, 
where the tests are sometimes unable to detect even strong 
assumption violations.4 Together with the issue of false posi-
tives, this ironically means that, according to assumption 
tests, large and normal sample can sometimes be seen as 
non-normal, whereas small and non-normal samples can 
sometimes be seen as normal.

False binarity

Assumption tests generally involve a hard threshold (or cut-
off), so assumption violations are determined only based on 
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Fig. 1   General background: The x-axis indicates standardized values 
(mean = 0, standard deviation = 1); the y-axis indicates value den-
sity (e.g., 0.2 means 20% of observations have this value). The orange 
line indicates the expected density for a normal distribution; the blue 
shaded area indicates the observed density for the samples. p-values 
are from Shapiro–Wilk normality tests. Specific background: Each 
sample was randomly generated using identical settings to have a 

roughly normal distribution with random noise. Samples differ in size, 
which increases from 50 → 500 → 5000 (left-to-right). Note that the 
leftmost panel is not truncated, but because it has fewer observations, 
by chance none are more than 1.8 SD below the mean. Takeaway: As 
sample size increases, the observed distribution approaches normal-
ity but the p-value decreases, illustrating the risk of false positives in 
assumption testing, especially in large samples

4  Note that a “strong” violation (e.g., substantial deviation from nor-
mality) does not necessarily entail “strong” consequences for analy-
sis. For example, in a simulation study, Knief and Forstmeier (2021) 
found that “Gaussian models are robust to non-normality over a wide 
range of conditions, meaning that p-values remain fairly reliable 
except for data with influential outliers judged at strict alpha levels. 
Gaussian models also performed well in terms of power across all 
simulated scenarios. Parameter estimates were mostly unbiased and 
precise except if sample sizes were small or the distribution of the 
predictor was highly skewed.” (p. 2576).
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whether p < .05, in a binary (or dichotomous) way. This can 
lead to completely different interpretations of the data based 
on inconsequential differences in p-values (Gelman & Stern, 
2006; Greenland et al., 2016; Halsey, 2019; Wasserstein & 
Lazar, 2016). For example, as shown in Fig. 3, if the result of a 
normality test is p = .051, then the sample might be considered 
“normal” (or more accurately, not “significantly” non-normal), 
whereas if the result is p = .049, then the sample might be con-
sidered “significantly” non-normal, even though the difference 
between these values is functionally meaningless.5

In addition, this binary thinking also compresses a diverse 
spectrum of possible assumption violations into a narrow 
false dichotomy. This simplistic view of assumption viola-
tions ignores potential nuances, such as that there are differ-
ent types of violations (as was shown in Fig. 2 and will be 
shown in the next subsection), as well as different magni-
tudes of violations. This issue with magnitude is illustrated 
in Fig. 4, where, for example, the bottom-right plot appears 
substantially more non-normal than the bottom-left plot, 
but both may simply be considered as “non-normal” based 
on an assumption test (since p < .05 in both cases). Note 
that this plot also illustrates an associated issue with using a 
hard threshold in assumption tests, since the bottom-left and 

bottom-right plots are both categorized as non-normal, even 
though the distribution of the bottom-left plot is more simi-
lar to that of the top-right plot (which is not non-normal).

Limited descriptiveness

Assumption tests, particularly when used with a binary mind-
set, generally only indicate whether the distribution at hand 
is “significantly” different from some expected distribution 
(Greenland et al., 2016; Wasserstein & Lazar, 2016). However, 
this does not indicate much about how different the distribu-
tion is from expected (in terms of magnitude), as was shown 
in Fig. 4, or in what way the distribution is different, as was 
shown in Fig. 2. This latter issue is further illustrated in Fig. 5, 
which contains three plots, each representing a sample that 
deviates significantly from normality (due to noise, skewness, 
and bimodality, as indicated by the shape of the observed dis-
tributions). Here, the assumption tests detect the assumption 
violation (unlike in Fig. 2, where they failed to do so), but do 
not provide any further information about its nature, since all 
tests merely indicates that p < .001.

The informativeness of graphical methods compared to 
numerical methods is also illustrated in Anscombe's quartet 
(Anscombe, 1973) and the Datasaurus dozen (Matejka & 
Fitzmaurice, 2017), which appear in Appendix 2. These are 
collections which show how data with very different distri-
butions can have the same summary statistics (e.g., mean, 
SD, and correlation).

Misinterpretation

The results of assumption tests can be misinterpreted due to 
issues that commonly occur when people interpret the results 
of NHST (Gelman & Stern, 2006; Greenland et al., 2016; 
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Fig. 2   General background: The x-axis indicates standard-
ized values (mean = 0, standard deviation = 1); the y-axis indi-
cates value density (e.g., 0.2 means 20% of observations have this 
value). The orange line indicates the expected density for a normal 
distribution; the blue shaded area indicates the observed density for 
the samples. p-values are from Shapiro–Wilk normality tests. Spe-

cific background: The first sample (left-to-right) is normally dis-
tributed but noisy, the second is skewed, and the third is bimodal 
(N = 30 in all samples). Takeaway: Despite the substantial devia-
tions from normality, the tests do not detect non-normality, illus-
trating the risk of false negatives in assumption testing, especially 
in small samples

5  As Rosnow & Rosenthal (1989, p. 1277) state: “…surely, God 
loves the .06 nearly as much as the .05. Can there be any doubt that 
God views the strength of evidence for or against the null as a fairly 
continuous function of the magnitude of p?” This reflects the continu-
ous—rather than binary—nature of p-values, as well as the fact that 
although the associated threshold of .05 is widely adopted, it is also 
arbitrary (Gelman & Stern, 2006; Greenland et al., 2016). Essentially, 
this issue means that a tiny quantitative difference in p-value leads to  
a disproportionate qualitative difference in analyses, as going from p =  
.051 to p = .049 means that the distribution is suddenly considered 
“non-normal.”
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Fig. 3   General background: The x-axis indicates standard-
ized values (mean = 0, standard deviation = 1); the y-axis indi-
cates value density (e.g., 0.2 means 20% of observations have this 
value). The orange line indicates the expected density for a normal 
distribution; the blue shaded area indicates the observed density for 
the samples. p-values are from Shapiro–Wilk normality tests. Spe-

cific background: Each sample (N = 500) was randomly generated 
to have a normal distribution with slightly more noise than the pre-
vious (left-to-right). Takeaway: Based on assumption tests with a 
hard threshold (p < .05), the normality of these samples is classi-
fied differently, even though the differences in normality between 
the samples are tiny
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Fig. 4   General background: The x-axis indicates standardized val-
ues (mean = 0, standard deviation = 1); the y-axis indicates value 
density (e.g., 0.2 means 20% of observations have this value). The 
orange line indicates the expected density for a normal distribution; 
the blue shaded area indicates the observed density for the samples. 
p-values are from Shapiro–Wilk normality tests. Specific back-
ground: Each sample (N = 500) was randomly generated to have a 

normal distribution, with substantially more noise going from left-
to-right and then top-to-bottom. Takeaway: Assumption tests with a 
hard threshold (p < .05) designate the top plots as “normal” (or more 
accurately, as not non-normal) and the bottom plots as non-normal, 
but do not capture substantial differences in distributions within each 
group (e.g., the increased non-normality in the bottom-right plot 
compared to the bottom-left one)
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Lakens, 2021; Wasserstein & Lazar, 2016). For example, 
the result of tests might be misinterpreted as suggesting that 
there is a substantial difference between p = .051 and p = 
.049 in the Shapiro–Wilk test, even though this difference is 
generally meaningless (Gelman & Stern, 2006; Wasserstein 
& Lazar, 2016), as was shown in the previous sub-section 
on false binarity. Similarly, the resulting p-value might be 
incorrectly interpreted as an effect size, for instance if people 
assume that a low p-value from the Shapiro–Wilk test (e.g., 
p < .001) indicates strong non-normality (Wasserstein & 
Lazar, 2016). In addition, non-significant results might be 
misinterpreted as indicating that a sample is “significantly” 
normal, even though the associated test only shows that we 
cannot reject the null hypothesis that the distribution is nor-
mal (Greenland et al., 2016; Wasserstein & Lazar, 2016).

Potential testing failure due to unmet test 
assumptions

In addition to the aforementioned issues with assumptions 
tests, which pertain primarily to statistical significance, 
another issue is that the tests themselves can have various 
assumptions. This adds further complexity to the diag-
nostics, as well as more room for error, since researchers 
can neglect to account for these added assumptions.

To illustrate this, we will look at another common 
assumption; that a model’s residuals have constant vari-
ance (Casson & Farmer, 2014; Cook & Weisberg, 1983; 
Hayes & Cai, 2007; Rosopa et al., 2013; Schmidt & Finan, 
2018; Zuur et al., 2010). As with the normality assumption, 
testing this assumption can also lead to various issues, like 
false negatives. This is illustrated by the right plot in Fig. 6, 
where the test fails to detect a clear pattern of non-constant 

variance, which is indicated by the curved shape of the line 
and systematic—rather than random—distribution of the 
residuals around it.

A potential reason for this issue, beyond sample size, is that 
the commonly used Breusch–Pagan test of constant variance 
itself has assumptions, including normality of residuals, viola-
tions of which can cause failure to detect non-constant vari-
ance (Barker & Shaw, 2015; Cribari-Neto & Zarkos, 1999; 
Halunga et al., 2017; Waldman, 1983). This is illustrated in 
Fig. 7, where, despite clear visual patterns of non-constant 
variance (as indicated by the regression line being curved and 
having the residuals distributed systematically around it), the 
associated Breusch–Pagan test fails to detect the violation, 
partially due to the violation of the normality assumption.

A path forward

In the previous section, we saw the key issues associated 
with assumption testing. In this section, we will see practical 
recommendations for improving statistical diagnostics, espe-
cially in light of the aforementioned issues.

Beware the issues with assumption testing

One way to minimize the issues that we saw with assumption 
tests is to account for these issues when using such tests. 
For example, to avoid false binarity when interpreting the 
results of a Shapiro–Wilk test, remember that the p-value is 
measured on a continuous spectrum (e.g., there is little dif-
ference between p = .051 and p = .049). In addition, to mini-
mize these issues, you should consider them when deciding 
whether to use assumption tests in the first place, as there are 
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Fig. 5   General background: The x-axis indicates standard-
ized values (mean = 0, standard deviation = 1); the y-axis indi-
cates value density (e.g., 0.2 means 20% of observations have this 
value). The orange line indicates the expected density for a normal 
distribution; the blue shaded area indicates the observed density 
for the samples. p-values are from Shapiro–Wilk normality tests. 

Specific background: The first sample (left-to-right) is normally 
distributed but noisy, the second  sample is skewed, and the third 
is bimodal (N = 3000 in all samples). Takeaway: The assumption 
tests indicate that there is non-normality in all three samples, but 
do not reveal the substantially different ways in which the samples 
are non-normal
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cases where it is preferable to replace or supplement them 
with alternative checks, as discussed next.

Use visualizations in statistical diagnostics

When seeing the issues with assumption tests, we also saw 
how graphical methods, like residual plots, can help reduce 
or avoid these issues, and consequently improve statistical 
diagnostics. This means that you will often benefit from 
using graphical methods in your diagnostics, as has also 
been noted by others (Bilon, 2021; Hox et al., 2018; Knief 
& Forstmeier, 2021; Kozak & Piepho, 2018; Winter, 2019; 
Zuur et al., 2010).

In addition, using such diagnostics is becoming easier 
than ever, and in many cases is as easy as using assumption 
tests. This is illustrated in Fig. 8, which shows how a range 

of relevant visual assumption checks can be generated with 
a simple function in R.6

When using graphical methods, there is the question 
of how to conduct graphical inference (or visual statisti-
cal inference), which involves drawing conclusions about 
statistical properties using visualizations (Hullman & Gel-
man, 2021; Loy, 2021; Majumder et al., 2013; Wickham 
et al., 2010). In the present context, a key question is how 
to judge the severity of assumption violations, in order to 
determine whether a certain visual pattern deviates enough 
from expected to merit a response. Though the question of 
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Fig. 6   Background: Each scatterplot shows the square root of the 
absolute values of standardized residuals in a simple regression 
model (N = 100), as a function of their scaled fitted values. Each 
plot also contains a corresponding smoothed regression line, with a 
grey band for the 95% CI. Constant variance is indicated by a flat and 

horizontal line, with residuals spread randomly around it. p-values are 
from Breusch–Pagan tests. Takeaway: There is clear non-constant 
variance in the right plot, since the line is heavily curved and the 
residuals are systematically distributed around it, but the associated 
assumption test fails to detect this
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Fig. 7   Background: The left plot shows a constant-variance check, 
for the model with non-constant variance shown in Fig. 6. The right 
plot shows a normality check for this model (based on the paradigm 

described in Figs. 1, 2, 3, 4 and 5). Takeaway: The violation of the 
normality assumption hinders the ability of the Breusch–Pagan test to 
detect the non-constant variance

6  The ease of use of these turnkey tools—where you only need to 
provide the data and potentially choose some basic settings—might 
help increase the rate of assumption checking over time.
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graphical inference is under active consideration (Hullman 
& Gelman, 2021), and though there is no perfect method 
for this, there are nevertheless some methods that can help.

One such method is to use visual aids, like confidence inter-
vals that are overlain on plots, to add information regarding 
the certainty associated with the visual patterns. Examples of 
this were shown in Fig. 8 (e.g., in the homogeneity of vari-
ance plot), where they were generated automatically by the 
performance package in R. A similar approach is utilized in the 
R qqtest package, which generates self-calibrating QQ-plots 
that visually incorporate sampling variation into the display 
(Oldford, 2016). Furthermore, it is sometimes beneficial to 
supplement visualizations with numerical aids, including effect 
sizes and statistical significance (as will be discussed in the 
next two sub-sections), since they may provide complemen-
tary information that aids the judgment and decision-making 
process (Flatt & Jacobs, 2019; Hartig, 2021).

Another method you can use is the lineup protocol, (Buja 
et al., 2009; Loy, 2021; Majumder et al., 2013; Wickham et al., 
2010). This involves generating (e.g., using simulation) a ran-
dom set of similar distributions that do not contain the assump-
tion violation of interest (e.g., residual non-normality), and 
then checking if you and others can identify the plot containing 
the original data out of the ones containing the data without a 
violation. The less able people are to identify the original plot, 
the less likely it is that it involves a substantial violation (Buja 
et al., 2009; Loy, 2021; Majumder et al., 2013; Wickham et al., 
2010). This protocol—as well as the Rorschach protocol which 
is mentioned next—can be implemented using programmatic 
tools like the nullabor package in R (Wickham et al., 2010).

In addition, to better understand how to judge visual pat-
terns, it could help to look at relevant examples that are used 
to illustrate the presence/absence of violations, for example 
in package documentation (e.g., of the R DHARMa package, 
which is discussed in the next sub-section), or in other instruc-
tional sources (e.g., Winter, 2019). When doing this, you can 
also use the Rorschach protocol, by examining randomly gen-
erated plots in which assumptions are not violated (e.g., with-
out non-normality). This can help calibrate your expectations 
regarding the variability that such plots can involve, to reduce 
the tendency to view random patterns in the data as assump-
tion violations (Buja et al., 2009; Wickham et al., 2010).

Furthermore, when assessing visual patterns, you can ask 
for input from other individuals (Majumder et al., 2013). In 
doing so, you should prioritize input from those with exper-
tise in interpreting such plots, who may be able to judge 
them better, and try to not reveal the goals of the research 
or any previous judgments of the visual patterns until after 
these individuals provided their input, to minimize potential 
bias (Veldkamp, 2017; Wicherts et al., 2016).

Finally, once you make a decision regarding a visual 
assumption check, you should describe your rationale, for 
example by explaining which visual patterns you found 

concerning and why. You should also share the relevant 
plots (as supplementary material if necessary), in order to 
be transparent and ensure that other researchers can see these 
visualizations and apply their own judgment to them.

Use effect sizes in statistical diagnostics

There are situations where you can benefit from using numeri-
cal measures of effect size in your diagnostics, to help identify 
assumption violations and quantify their magnitude. Such effect 
sizes are not currently commonly used for the two main assump-
tions that were discussed so far in the paper (normality and con-
stant variance), but can be used for other important assumptions.

A key example of this appears in the context of Pois-
son regression models, a type of generalized linear model 
(GLM), used for working with count data (Forthmann & 
Doebler, 2021; Green, 2021; Winter, 2019).7 The Poisson 
distribution assumes that the mean and the variance of the 
data are equal (i.e., that there is equidispersion), but this 
assumption is often violated (Coxe et al., 2009). This can be 
either due to overdispersion, when the variance is bigger than 
expected, or underdispersion, when the variance is smaller 
than expected (Brooks et al., 2017; Forthmann & Doebler, 
2021). Overdispersion leads to underestimated (i.e., liberal) 
standard errors, p-values, and confidence intervals, while 
underdispersion leads to overestimated (i.e., conservative) 
standard errors, p-values, and confidence intervals (Brooks 
et al., 2017; Forthmann & Doebler, 2021). Accordingly, it is 
important to check dispersion when using Poisson models, 
and based on the results of these checks, researchers may, 
for example, choose to use alternative methods, like negative 
binomial models (Brooks et al., 2017, 2019; Winter, 2019).

One way to check dispersion is to use the testDisper-
sion function in the DHARMa package in R (Hartig, 2021), 
which compares the variance of a model’s observed residu-
als against the variance of its expected residuals (as deter-
mined based on simulations).8 This outputs a p-value for the 

7  Count data can be equal only to zero or positive integers (i.e., it can 
take values like 0, 1, 2, 3…) (Green, 2021; Winter, 2019). It is used to 
model things like the number of speech errors in a text (Winter, 2019), 
the number of publications of a researcher (Forthmann & Doebler, 
2021), or the number of times someone exercises per week (Green, 
2021).
8  For more information on this approach to diagnostics of GLMs and 
GLMMs (generalized linear mixed models), see the DHARMa docu-
mentation (Hartig, 2021). The documentation also demonstrates how 
visualizations can complement the dispersion test. One example of this 
is by showing a histogram of expected variance values based on simula-
tions, which can help to see how different the observed variance is from 
the expected. Another example of this is by showing a QQ plot of the 
residuals, which can help to visually assess dispersion and other potential 
issues (like deviation from normality). The DHARMa documentation also 
shows how these diagnostics can be generated through a few simple func-
tions in R, in a similar way to how checks for LMs can be generated using 
the performance package, as was shown in the previous sub-section.



835Behavior Research Methods (2024) 56:826–845	

1 3



836	 Behavior Research Methods (2024) 56:826–845

1 3

dispersion test, together with a dispersion ratio as an effect 
size, where a ratio > 1 indicates overdispersion, while a ratio 
< 1 indicates underdispersion.

In a large-scale simulation (N = 150,000) with a Pois-
son model, this function outputted the following results: 
ratiodispersion = 0.98, p < .001. Relying only on the p-value 
would suggest that there is a statistically significant deviation 
from the expected dispersion, but will not reveal whether 
the problem is overdispersion or underdispersion, or what is 
the magnitude of the deviation from the expected dispersion. 
However, looking at the associated effect size (the disper-
sion ratio) reveals that there is underdispersion (since the 
ratio < 1), and more importantly, that this deviation from the 
expected dispersion is very small (since the dispersion ratio 
is very close to 1) (Hartig, 2021).

A related issue with Poisson models is zero-inflation, 
which occurs when count data contains more zeros than 
expected (Brooks et al., 2017, 2019). This issue can cause 
biased parameter estimates, and can be addressed using solu-
tions like zero-inflated models (Brooks et al., 2017, 2019; 
Green, 2021; Harrison, 2014).

One way to check for this issue is to use the testZeroIn-
flation function in the DHARMa package, which is similar 
to the testDispersion function (Hartig, 2021). This func-
tion compares the observed number of zeros with expected 
number of zeros (based on simulations). It outputs a p-value 
for the associated test, together with a ratio of observed to 
expected zeros as an effect size, where a ratio < 1 indicates 

that the observed data has fewer zeros than expected, while a 
ratio > 1 indicates that it has more zeros than expected (i.e., 
has zero-inflation).

In a large-scale simulation (N = 150,000) with a Pois-
son model, this function outputted the following results: 
ratioobserved_to_expected_zeros = 1.01, p < .001. Again, relying 
only on the p-value would suggest that there is a statisti-
cally significant deviation from the expected number of 
zeros. However, this will not reveal whether there are more 
or fewer zeros than expected (despite the name of this 
function, it tests both possibilities by default), or how big 
the deviation is. Looking at the associated effect size (the 
ratio of observed to expected zeros) reveals that there are 
more zeros than expected in the model (since the ratio 
> 1), but that this deviation from the expected ratio is 
again very small (since the ratio is very close to 1) (Har-
tig, 2021).

Finally, another example of a numerical effect size that 
can be used in statistical diagnostics is the variance infla-
tion factor (VIF). It quantifies the severity of collinearity (or 
multicollinearity) in regression models, where a higher VIF 
indicates greater collinearity, and consequently greater infla-
tion in the standard errors of the coefficients (Alin, 2010; 
Dormann et al., 2013). VIF is often shown using plots like 
the one in Fig. 9, which provide a visual representation of 
this numeric measure.

Remember that assumption tests can be useful

As we saw previously, assumption tests have certain 
limitations, such as that they do not provide information 
about the way in which observed distributions differ from 
expected. Nevertheless, assumption tests can sometimes 
be useful, primarily when they complement other types of 
assumption checks (Flatt & Jacobs, 2019; Hartig, 2021).

Fig. 8   Diagnostics for a regression model, generated using the per-
formance package in R (Lüdecke et  al., 2021), by simply running 
check_model(model_name). These checks are for linearity, homo-
geneity of variance (i.e., constant variance), collinearity, influential 
observations, and normality of residuals; for more details, see the 
package’s documentation
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Fig. 9   An example collinearity check for a multiple regression model, where a higher VIF indicates greater collinearity
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A key example of this appears in statistical diagnostics 
of Poisson models, which, as discussed in the previous 
sub-section, should generally be checked for overdis-
persion and underdispersion by calculating the relevant 
effect size (dispersion ratio) (Hartig, 2021). When doing 
this, it can sometimes be beneficial to run an associated 
significance test for the difference between the observed 
and expected dispersion—while considering the sample’s 
size—as this can help assess whether a certain deviation 
from expected might be due to chance (Hartig, 2021).

In addition, assumption tests can also be beneficial 
when used for initial diagnostics. For example, tests can 
be used in this manner when generating a large number of 
models (e.g., hundreds or thousands), which may be infea-
sible to assess visually; in such situations, the assumption 
tests may be used to identify a subset of models that are 
more likely to have issues, and these models can then be 
inspected visually. As with the assessment of dispersion, 
here too it is possible to use further statistics when assess-
ing the results from the assumption tests, and particularly 
effect size (where available) and sample size.

When using assumption tests in this and other capaci-
ties, it is important to remember the issues that they can 
involve (e.g., false negatives), and to make sure that you 
are minimizing the risks of those issues (e.g., by consid-
ering whether your samples are large enough for tests to 
detect non-normality). This also involves considering the 
assumptions that these tests have, and choosing tests that 
are most appropriate for your situation.

In addition, when deciding whether and how to use 
assumption tests, you should consider other relevant fac-
tors, including how concerned you are over false positives/
negatives, and how you want to balance the validity of your 
analyses with the time spent checking their assumptions. 
For example, if you need to run diagnostics on a large num-
ber of models (e.g., 100) for a preliminary analysis where 
you are not concerned about false positive/negatives, then 
you might decide that for your specific purposes it is better 
to use automated assumption tests rather than visual checks. 
Alternatively, if you are conducting diagnostics and are 
more concerned over false negatives than false positives 
(e.g., since you can visually assess any models of concern), 
then you may change your p-value threshold to reflect this 
(e.g., from .05 to .10), while again also considering factors 
such as the size of your samples (Bishara et al., 2021).

Finally, note that it may be beneficial to use equiva-
lence tests in this context, rather than traditional NHST. 
Such tests “examine whether the hypothesis that there are 
effects extreme enough to be considered meaningful can be 
rejected” (Lakens et al., 2018, p. 260). They add flexibility 
to the diagnostic process, by enabling researchers to set the 
quantitative bounds involved in rejecting the hypothesis, 

based on relevant evidence. In the context of normality, for 
example, using these tests can lead people to move from 
asking “can we reject the hypothesis that the data are nor-
mally distributed?”, to asking “is this distribution consistent 
enough with a normal distribution for our present purposes?”

Remember that visualizations and effect sizes are 
imperfect

Despite the potential benefits of using visual checks and 
effect sizes in statistical diagnostics, it is important to 
remember that they have limitations.

One limitation of visual checks is that they may not 
detect certain issues. For example, the panel of assumption 
checks for linear models that was shown in Fig. 8  is not 
expected to detect dependence between observations (e.g., 
due to the presence of multiple data points per partici-
pant). Furthermore, people sometimes fail to notice issues 
that are evident in visualizations (e.g., non-normality), due 
to errors in judgment (Bishara et al., 2021; Fisch, 1998). 
This issue may be worse in small samples (e.g., just 10 
observations), where it can be harder to interpret visual 
patterns with confidence (Cook & Weisberg, 1983; Weiss-
gerber et al., 2016). The opposite issue can also occur, 
when people overinterpret visual patterns. For example, 
this can involve believing that a certain residual pattern 
is indicative of substantial non-normality, when in reality 
it is merely the result of some trivial noise. Psychologi-
cally, the tendency to see such patterns in random noise 
can be considered a form of apophenia (Wickham et al., 
2010), and can be attributed to causes like Gestalt princi-
ples (Dixon, 2012).

Another limitation of visual checks is that they can have 
misleading results in some cases. For example, as Cook and 
Weisberg (1983) note, using residual plots to check for con-
stant variance can wrongly seem to indicate that there is 
non-constant variance if the density of the points is uneven 
along the x-axis, since areas with higher density generally 
also have a greater spread on the y-axis, due to the increased 
number of observations.

Another issue with visual checks is the subjectivity 
involved in the interpretation of visual patterns, which can 
cause issues like biased interpretation of results (Bishara 
et al., 2021). Furthermore, there is often arbitrariness in the 
choice of which graphical methods to use. For example, vis-
ual normality checks can be performed using many methods 
other than the density plots that were used in this paper, 
including histograms, boxplots (also called box-and-whisker 
plots), and normal quartile plots (also called Q-Q plots) 
(Das & Imon, 2016; Mishra et al., 2019; Pole & Bondy, 
2012). Moreover, many of these methods have various set-
tings that can influence their interpretation, like bin size in 
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histograms and the opacity of points in dot plots (Correll 
et al., 2019). Similarly to the choice of which assumption 
tests to use, the choice of which graphical methods to use 
increases the researcher degrees of freedom (Gelman & 
Loken, 2014; Simmons et al., 2011; Wicherts et al., 2016). 
This, in turn, can lead to issues like selecting a method 
because it supports one’s hypotheses rather than because it 
is the most appropriate method to use, for instance due to an 
unconscious confirmation bias (Veldkamp, 2017; Wicherts 
et al., 2016).

Finally, visual checks may also be infeasible in some 
cases. For example, this can be the case if you need to deal 
with a very large number of models (e.g., 5000), which may 
take too long for you to assess visually.

Effect sizes also have various limitations when used in 
statistical diagnostics. For example, consider the VIF, which 
was mentioned previously as a measure of effect size for 
collinearity. One issue with VIF is that it is often interpreted 
using arbitrary rules of thumb, for instance when a VIF of 4 
or 10 is considered to indicate the presence of “severe” col-
linearity, which merits a change to analyses (O’Brien, 2007). 
This can lead to a similar issue with false binarity as the p 
threshold of .05 (as discussed in §3.2), for instance if a VIF 
of 4.01 is viewed as indicating severe collinearity, while a 
VIF of 3.99 does not.

Furthermore, VIF values are often considered in isolation, 
based only on their magnitude, but other factors, like sample 
size, also play a key role in determining how substantial the 
impact of collinearity is on associated statistical inferences 
(O’Brien, 2007).9 In addition, the influence of collinearity 
should be considered in the context of the inferential goals 
of the analysis. As Belsley et al. (2004, p. 116) note:

… for example, if an investigator is only interested in 
whether a given coefficient is significantly positive, and 
is able, even in the presence of collinearity, to accept 
that hypothesis on the basis of the relevant t-test, then 
collinearity has caused no problem. Of course, the 
resulting forecasts or point estimates may have wider 
confidence intervals than would be needed to satisfy a 
more ambitious researcher, but for the limited purpose 
of the test of significance [initially] proposed, collinear-
ity has caused no practical harm… These cases serve 

to exemplify the pleasantly pragmatic philosophy that 
collinearity doesn’t hurt so long as it doesn’t bite.

Finally, another issue with VIF is that it merely quantifies 
the degree of collinearity present in the data, but does not 
say anything about what type of collinearity exists (Alin, 
2010), which is reminiscent of the issue of limited descrip-
tiveness of assumption tests discussed in §3.3. This is prob-
lematic, since different types of collinearity may necessitate 
different responses. For example, Iacobucci et al. (2016) 
show that using mean centering reduces what they refer to 
as “micro” collinearity, but not “macro” collinearity.

All this does not mean that visual checks and effect sizes 
should be avoided in statistical diagnostics, but rather that 
they should be used with appropriate caution, similarly to 
other statistical methods, like assumption tests.

Use proper terminology

Because of the issues associated with assumption testing, 
it is important to draw a clear terminological distinction 
between testing and checking assumptions. Specifically, 
the term “assumption testing” should only be used to refer 
to the testing of assumptions using statistical tests (e.g., 
the Shapiro–Wilk test). Conversely, the term “assumption 
checking” can be used to refer to all forms of assumption 
checks, including statistical tests, as well as visualizations 
and numerical assessments of effect sizes.

In addition to enabling a more nuanced discussion of sta-
tistical diagnostics, drawing this distinction will help empha-
size the importance of considering more than just statistical 
significance when checking assumptions. Doing this may, 
in turn, help prevent certain cases where people are told 
to “test” their assumptions, and interpret this as meaning 
that they should only use statistical tests in their diagnostics. 
This is particularly relevant for researchers with a limited 
statistical background, who are less likely to understand the 
issues with assumption tests, and who comprise a substantial 
portion of those who use statistical methods in practice (Hu 
& Plonsky, 2021).

Key practical recommendations

Based on the material discussed in the paper so far, the fol-
lowing are key practical recommendations for conducting 
statistical diagnostics:

	 1.	 Remember the potential issues with assumption checks 
when deciding whether/how to use them, and when 
interpreting their results.

9  As O’Brien (2007, p. 675) notes: “…unless the collinearity is per-
fect, increasing the sample size (using more cases of the same sort) 
will reduce the variance of the regression coefficients” and “When 
the focus is on the variance of a regression coefficient and the sta-
bility of result: the sample size, the proportion of the variance in the 
dependent variable associated with the independent variables, the 
variance of the independent variable whose coefficient is of concern, 
and the multi-collinearity of the independent variable of concern with 
the other independent variables are all important.”
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	 2.	 Prefer the most appropriate type of assumption check 
to use in your particular situation (e.g., visualization 
over a test), even if other methods are more common.

	 3.	 Use a combination of diagnostic methods where appro-
priate (e.g., significance testing initially, followed by 
visualization).

	 4.	 Draw a terminological distinction between assump-
tion testing (which involves only statistical tests) and 
assumption checking (which can involve statistical 
tests, as well as other methods, including visualiza-
tion and numerical effect sizes).

	 5.	 Prefer using existing programmatic tools for diagnostics, 
and using their default settings, unless you have a com-
pelling reason to do otherwise. This can make the diag-
nostic process easier to implement, more replicable, and 
more comparable across studies, while also reducing 
researcher degrees of freedom (Gelman & Loken, 2014; 
Simmons et al., 2011; Wicherts et al., 2016). Examples 
of relevant tools include the performance and DHARMa 
R packages, whose use was demonstrated earlier.

	 6.	 Explain the rationale behind your diagnostic process, 
including what you checked, how, and why, and how 
you interpreted the results. When doing this, acknowl-
edge any important limitations and arbitrariness in 
your process, for example if there were other reason-
able methods you could have used.

	 7.	 Share all the material that you used in the diagnostics, 
like the code that you used and the resulting plots. It 
may be best to do this as part of online supplementary 
material, particularly if space constraints would other-
wise prohibit you from sharing important information 
(Hu & Plonsky, 2021).

	 8.	 Judge assumption violations as a complex spectrum, 
rather than a simplistic binary. This means that you 
should consider not only whether there is a violation, 
but also what the violation is, what caused it, how 
severe it is, and how it affects your particular analyses, 
while also considering factors like the robustness of 
your methods to this type of violation, the size of your 
sample, and your inferential goals. You may realize 
that your method is robust enough or the violation is 
minor enough that nothing needs to be done, especially 
when analyzing large samples, which are usually—
but not always—more robust to violations (Casson & 
Farmer, 2014; Ernst & Albers, 2017; Fagerland, 2012; 
Ghasemi & Zahediasl, 2012; Knief & Forstmeier, 
2021; Kozak & Piepho, 2018; Lumley et al., 2002; 
Pole & Bondy, 2012; Poncet et al., 2016; Schmidt & 
Finan, 2018; Tijmstra, 2018). This is often the case, for 
example, with violations of normality (Knief & Forst-
meier, 2021) or collinearity (O’Brien, 2007). You may 
also realize that even if the violation is substantial, it 
does not affect the goals of your particular analyses. 

For example, if the goal of an analysis is mainly infer-
ence of the regression line, rather than prediction of 
individual data points, then the normality assumption 
might not be important (Gelman et al., 2022).

	 9.	 Remember that statistical diagnostics cannot detect all 
the potential issues in statistical methods. For example, 
such diagnostics cannot, in many cases, detect key issues 
with the validity of the model specification (e.g., omitted-
variable bias) or with the representativeness of the sample 
(e.g., systematic biases in the sampling process). However, 
these issues can be far more important than issues with 
normality and constant variance (Gelman et al., 2022), as 
mentioned in Appendix 1. Accordingly, it is important to 
consider such issues before running your analyses, even 
if you cannot check them using formal methods. Another 
example of such an issue are inappropriate causal interpre-
tations of regression results, which might only be identi-
fied by doing things like assessing the language used to 
present results (Bordacconi & Larsen, 2014).

	10.	 Remember that assumption checks cannot guarantee 
that your analyses are correct. Rather, they provide evi-
dence—which you then assess—regarding the presence 
and severity of certain assumption violations. As such, 
they can only increase your confidence that your analy-
ses are not grossly wrong, or provide you with infor-
mation regarding what kind of issues they suffer from 
(Faraway, 2016; Hartig, 2021; Winter, 2019). In this 
regard, it helps to remember Box’s aphorism that “All 
models are wrong but some are useful” (Box, 1979, 
p. 202), and his recommendation to worry selectively: 
“Since all models are wrong the scientist must be alert 
to what is importantly wrong” (Box, 1976, p. 972).

Conclusions

When using statistical methods like linear models, you should 
generally check if and how their assumptions are violated. 
This is because assumption violations can have various conse-
quences, so assessing assumptions is crucial to deciding whether 
and how to proceed with analyses. A common way to do this is 
to use statistical tests, like the Shapiro–Wilk test of normality, 
but as shown in the present paper, this approach involves various 
potential issues, including statistical errors (false positives and 
false negatives), false binarity, limited descriptiveness, misinter-
pretation (e.g., of p-values as effect sizes), and potential testing 
failure due to unmet test assumptions.

Despite this, assumption tests can sometimes be beneficial. 
However, the aforementioned issues mean that if assump-
tion tests are used, then this should be done with caution, and 
generally to supplement visualization and/or numerical effect 
sizes, though these types of assumption checks also have limi-
tations. In addition, assumption checks can also be improved 
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by following other practical guidelines which were outlined in 
the paper, including explaining the rationale behind the diag-
nostic process, sharing all the relevant material, and judging 
assumption violations as a complex spectrum.

Appendices

Appendix 1: Assumptions of linear 
regression models

The following is a brief summary of the key assumptions of 
simple linear regression models. It is based primarily on the 
description of Gelman et al. (2022, pp. 153–155), who also 
ranked the assumptions in the following (decreasing) order 
of importance:

1.	 Validity. The data should map to your research ques-
tion, by (i) having an outcome that accurately reflects 
the phenomenon of interest, (ii) including all relevant 
predictors in the model, and (iii) the model generalizing 
to all cases to which it will be applied.

2.	 Representativeness. The sample should be representa-
tive of its parent population, primarily in terms of the 
distribution of the response variable given the predictors 
in the model.

3.	 Additivity and linearity. The deterministic component of 
the model should be a linear function of its separate pre-
dictors. Addressing violations of this can involve things 
like adding interactions or transforming the data.

4.	 Independence of errors. The model’s errors should be inde-
pendent of one another. Addressing violations of this can 
involve things like using mixed-effects models. Note that 
this and the other assumptions involving errors are checked 
by examining the model’s residuals, which approximate 
the errors, since they cannot be observed directly (Cook & 
Weisberg, 1999; Knief & Forstmeier, 2021).

5.	 Equal variance of errors. The variance in the errors 
should be constant across all levels of the independent 
variables (i.e., along the regression line) (Barker & Shaw, 
2015; Winter, 2019). This means that the conditional var-
iance of the response variable is the same for all obser-
vations (Cribari-Neto & Zarkos, 1999; Fox, 2022). This 
assumption is also called constant variance, homogeneity 
of variance, and homoscedasticity. It is contrasted with 
unequal variance, which is also called non-constant vari-
ance, heterogeneity of variance, and heteroscedasticity.

6.	 Normality of errors. The errors should be normally 
distributed. Note that this applies only to the errors, so 
while the conditional distribution of the response as a 
function of the predictors should be normal, the raw 
response and predictors can be non-normal.

An important caveat is that there is variability in the 
literature in terms of which assumptions are discussed 
and how, due to things like varied conventions across 
fields. For example, a list of regression assumptions in 
Fox (2022) explicitly mentions most of the mathemati-
cal assumptions listed above (linearity, constant vari-
ance, normality, and independence), but not additivity, 
and not the conceptual assumptions (validity and repre-
sentativeness). Alternatively, in econometrics, the focus 
and framing of the discussion often revolves around the 
Gauss-Markov assumptions, and includes concepts like 
exogeneity, auto-correlation, and omitted-variable bias 
(Belsley et al., 2004; Verbeek, 2008).

In addition, there are two other important caveats about 
these assumptions. First, certain issues that are important 
to consider in statistical diagnostics are not always consid-
ered assumptions. For example, while Fox (2022) mentions 
lack of (perfect) collinearity as an assumption, Gelman et al. 
do not, although they do discuss collinearity as a potential 
issue elsewhere in their text. Similarly, although Fox does 
not mention lack of outliers as an assumption, he does dis-
cuss outliers as a potential issue elsewhere in his text. The 
second  caveat is that other types of models can have other 
assumptions, like the equidispersion assumption of Pois-
son GLMs, which was discussed in the paper (Coxe et al., 
2009).

Appendix 2: Informativeness of graphical methods

In addition to the simulations that were shown in the body 
of the paper, another way to illustrate the potential benefits 
visualization in statistical analyses is through datasets that 
demonstrate how data with very different distributions can 
have the same summary statistics. Included below are two 
such datasets— Anscombe's quartet and the Datasaurus 
dozen—which are often used for this purpose.

Anscombe's quartet

Appendix Fig. 10 contains plots of Anscombe's quartet 
(Anscombe, 1973), showing four datasets with very differ-
ent distributions of observations, but functionally identical 
summary statistics. These datasets demonstrate how visu-
alization can be useful for detecting many common types of 
assumption violations (Cook & Weisberg, 1999; Hox et al., 
2018; Winter, 2019); for example, dataset 2 reveals a pattern 
of non-linearity.

Data for the plots came from the anscombe dataset in 
base R (R Core Team, 2021), which is based on Anscombe 
(1973).
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Fig. 10   Plots of Anscombe's quartet (Anscombe, 1973). The observa-
tions (green points) are distributed very differently across each data-
set. However, despite this, the mean and SD of each variable are the 

same across the datasets, as are the regression equations (represented 
by the blue line) and corresponding R2
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Datasaurus dozen

Appendix Fig. 11 contains plots of the Datasaurus dozen 
(Matejka & Fitzmaurice, 2017), showing 13 (i.e., a baker’s 
dozen) datasets with very different distributions of observa-
tions but functionally the same summary statistics.

Data for the plots came from the datasauRus package in 
R (Davies et al., 2022), which is based on the datasets from 
Matejka and Fitzmaurice (2017) and the original Datasaurus 
by Cairo (2016).

Summary Statistics (all plots)
mean x =  54.3

SD x =  16.8
mean y =  47.8

SD y =  26.9
corr. r(x,y) =  −0.07 to −0.06

Fig. 11   The Datasaurus dozen (Matejka & Fitzmaurice, 2017). The datasets in all the plots—including the dinosaur—have functionally identi-
cal summary statistics.
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