
https://doi.org/10.3758/s13428-023-02062-z

Automatic discovery and description of human planning strategies

Julian Skirzyński1,2 · Yash Raj Jain1 · Falk Lieder1

Accepted: 6 January 2023
© The Author(s) 2023

Abstract
Scientific discovery concerns finding patterns in data and creating insightful hypotheses that explain these patterns.
Traditionally, each step of this process required human ingenuity. But the galloping development of computer chips and
advances in artificial intelligence (AI) make it increasingly more feasible to automate some parts of scientific discovery.
Understanding human planning is one of the fields in which AI has not yet been utilized. State-of-the-art methods for
discovering new planning strategies still rely on manual data analysis. Data about the process of human planning is often used
to group similar behaviors together. Researchers then use this data to formulate verbal descriptions of the strategies which
might underlie those groups of behaviors. In this work, we leverage AI to automate these two steps of scientific discovery. We
introduce a method for automatic discovery and description of human planning strategies from process-tracing data collected
with the Mouselab-MDP paradigm. Our method utilizes a new algorithm, called Human-Interpret, that performs imitation
learning to describe sequences of planning operations in terms of a procedural formula and then translates that formula to
natural language. We test our method on a benchmark data set that researchers have previously scrutinized manually. We
find that the descriptions of human planning strategies that we obtain automatically are about as understandable as human-
generated descriptions. They also cover a substantial proportion of relevant types of human planning strategies that had
been discovered manually. Our method saves scientists’ time and effort, as all the reasoning about human planning is done
automatically. This might make it feasible to more rapidly scale up the search for yet undiscovered cognitive strategies that
people use for planning and decision-making to many new decision environments, populations, tasks, and domains. Given
these results, we believe that the presented work may accelerate scientific discovery in psychology, and due to its generality,
extend to problems from other fields.

Keywords Automatic scientific discovery · Decision-making · Planning · Interpretable strategy discovery · Process-tracing

Introduction

Scientific discovery is a product of scientific inquiry
that allows generating and corroborating new insightful
hypotheses. In the early days, scientific discovery was seen
as a prescriptive method for arriving at new knowledge, by
gathering information and refining it with new experiments
(see Bacon’s Novum Organum (Bacon, 1878) or Newton’s
Philosophiae Naturalis Principia Mathematica (Newton,
1687)). The more established philosophical tradition argued

� Julian Skirzyński
julian.skirzynski@tuebingen.mpg.de

1 Max Planck Institute for Intelligent Systems,
Tübingen, Germany

2 University of California, San Diego, CA 92093, USA

that there exists a clear demarcation between the so-
called context of discovery and the context of justification
(Whewell, 1840; Reichenbach, 1938; Popper, 1935). The
former would be a product of a logically unfathomable
mental process: the “eureka” moment, that, if anything,
could be rather studied by psychology. The latter would
concern the proper verification and justification of the
discovered theory, and would indeed have a formal
structure. However, such an account leaves scientists at
the mercy of having a eureka moment. This division was
thus challenged. Kuhn (1962), for instance, saw scientific
discovery as a complex process of paradigm changes, where
increasing amounts of findings that disagree with the current
paradigm lead to its change. Importantly for this work,
this division was also challenged by early work on AI for
problem-solving (Simon & Newell, 1971; Simon, 1973).
Therein, the discovery was understood as searching the
problem space from the initial state representing current

/ Published online: 30 May 2023

Behavior Research Methods (2024) 56:1065–1103

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-023-02062-z&domain=pdf
http://orcid.org/0000-0002-7422-4176
mailto: julian.skirzynski@tuebingen.mpg.de

knowledge to the desired goal state. The states transition
from one to another by applying simple operators with a
predefined meaning. The process of finding the shortest
sequence of applied operators would create rules that could
later be looked at by a human to determine what search
heuristic has been used. The found search heuristic would
determine the method for scientific discovery. Regardless of
whether you agree with the distinction between discovery
versus justification, these works showed that some steps
involved in scientific discovery can be automated. Further
work in such automation moved beyond the philosophical
debate, with the main motivation becoming to aid scientists
in their research (Addis et al., 2016).

In this article, we introduce a computational method
for assisting scientists in studying human planning. Under-
standing how people plan is a difficult and time-consuming
endeavor. Previous efforts to figure out which strategies and
processes people use to make decisions and plan usually
entailed manual analysis of the data (Payne, 1993; Willem-
sen & Johnson, 2011; Callaway et al., 2017; Callaway et al.,
2020). The very act of finding the strategies has been thus
left to researchers’ ingenuity to discover the right patterns
in the data. Moreover, previous work has largely failed to
characterize people’s strategies in detail (but see Jain et al.,
2022; Agrawal et al., 2020; Peterson et al., 2021). Our
method substantially simplifies that process by using an
algorithm called Human-Interpret. Human-Interpret auto-
matically discovers and describes human planning strate-
gies externalized in process-tracing experiments. It achieves
that by resorting only to a dictionary of logical primi-
tives and their natural language counterparts that capture
basic actions in those experiments. Human-Interpret imi-
tates the input information-gathering operations in terms
of procedural logic formulas and translates these formulas
into natural language with the input dictionary. Our method
runs Human-Interpret a number of times and selects among
the strategies it found by applying a majority heuristic. To
evaluate our method and, particularly, the Human-Interpret
algorithm, we applied it to a planning task where people
spend resources on inspecting nodes in a graph in order to
find the most rewarding path to traverse. Our method gen-
erated descriptions of 4 human planning strategies for that
task that were on par with the descriptions created through
laborious manual analysis by Jain et al. (2022). Moreover,
despite representing only a fraction of all strategies, the
found strategies covered half of the relevant cases. Given
these results, we believe that the presented work has the
potential to facilitate scientific discovery in psychology and
perhaps scientific discovery in general. Scientists can now
use the help of AI not only for testing their hypotheses
about how people make decisions but also for generating
them. To apply our approach to new problems, such as
multi-alternative risky-choice (Lieder et al., 2017; Peterson

et al., 2021), it suffices to run new planning externalization
studies and create a new dictionary of logical primitives.

The outline of the article is as follows: We begin by
providing background information and summarizing related
work pertaining to our method and the benchmark prob-
lem used in “Background and related work”. In the next
section, we describe the whole pipeline of our method for
the automatic discovery and description of human planning
strategies. “Evaluating our method for discovering human
planning strategies” shows the results of our test on
the benchmark problem where we compare our auto-
mated pipeline with a standard manual approach. Lastly,
“General discussion” discusses opportunities for applying
our method and directions for future work.

Background and related work

In this section, we detail how AI was used in scientific
discovery as well as in scientific discovery for decision
making and planning specifically. Additionally, we present
the methodology used to measure planning adapted in
our studies and a state-of-the-art approach for discovering
human planning strategies that we compared to. Lastly,
we also describe an important part of our framework for
automatic scientific discovery, which is an algorithm that
describes planning strategies in an interpretable way by only
using demonstrations of these strategies.

Research on automating scientific discovery

One line of research involves the field of computational
scientific discovery (Džeroski et al., 2007; Sozou et al.,
2017) which models the discovery problem mathematically
and advances the discovery of laws or relations using
artificial intelligence (AI). BACON (Langley et al., 1987),
for instance, was a system for inducing numeric laws
from experimental data. Having dependent and independent
variables, it created taxonomies of these variables by
clustering equally-valued dependent variables and defining
new variables as products or ratios of independent variables.
Then, Langley et al. (1983) created GLAUBHER that was
formulating qualitative laws over the categories in the
taxonomy, and STAHL which produced structural theories
based on the data leading to anomalous behavior of existing
theories (c.f. Kuhn, 1962). Addis et al. (2016) suggested
representing theories as programs and using genetic search
for best theories. Other systems such as PHINEAS, COAST
or IDS are described at length in a review paper by Shrager
& Langley (1990). An overview work by Džeroski et al.
(2007) shows an extension of this field to mathematical
modeling: the background knowledge is represented as
generic processes, the data takes the form of time-series,

1066 Behavior Research Methods (2024) 56:1065–1103

and discovery takes place by deriving sets of explanatory
differential equations.

Another line of research that used AI to help scientists
in their endeavors was automatic experimental design. This
approach follows the mathematical foundations of design
optimization, in which the expected information gain of an
experiment defines its usefulness in testing a hypothesis
(Myung et al., 2013). Vincent & Rainforth (2017) used this
approach to automate the creation of intertemporal choice
experiments and risky choice experiments. Ouyang et al.
(2016, 2018) went a step further and created a system
to automatically find informative scientific experiments
in general. Their method expected a formal experiment
space, expressed in terms of a probabilistic program
as input, and returned a list of experiments ranked by
their expected information gain. The experiment that
was the highest on that list would provably provide
the most information to differentiate between competing
hypotheses. Foster et al. (2019) further refined the
whole idea by introducing efficient expected information
gain estimators.

Using artificial intelligence to understand
human planning

The case for using AI in the quest of understanding human
planning has been clearly made for one-shot decision-
making scenarios (Agrawal et al., 2020; Bhatia & He, 2021;
Peterson et al., 2021). Agrawal et al. (2020) fit simple
models to the data and optimized them with respect to the
regret obtained by comparing simple models’ predictions
to overly complex models’ predictions. After the simple
models’ predictions converged to those of the complex
models, they were used as a proper formalization of one-
shot human decision strategies. Peterson et al. (2021)
employed artificial neural networks to search for theories of
one-shot decision-making. At first, they created a taxonomy
of theories that expressed relations between available
decision items (such as gambles, and whether the gambles
are dependent or independent), and which covered the entire
space of possible decision-making theories. Subsequently,
they used neural networks to express those theories by
imposing different constraints on those networks. The
authors gathered a very large data set of human decisions
and determined which theory is the best fit based on
the networks’ performance. Very recent works started
going beyond one-shot decision making and showed the
utility of machine learning for studying multi-step decision
making, i.e. planning. We are aware of 2 such endeavors.
Fang et al. (2022) suggest using the data set of human
decisions and training machine learning classifiers to learn
the association between features extracted from the data

(e.g. reaction time), and the decision strategy provided as
the label. Benchmark tests with SVM and KNN models
showed that this approach is able to correctly discover
strategies such as take-the-best. In the paper we compare
to, Jain et al. (2022) defined a computational method
that assigns planning strategies to human decision data
through Bayesian inference. Here, we go further than all the
mentioned articles. Although we also consider the issue of
i) discovering detailed human multi-step decision strategies
(planning strategies), ii) we aim to discover those strategies
from data automatically without creating the initial model,
whether a complex black-box model (Agrawal et al., 2020),
a taxonomy of decision-making theories (Peterson et al.,
2021), or a set of possible planning strategies (Fang et al.,
2022; Jain et al., 2022).

Methods for measuring how people plan

People’s planning for years has been an elusive process
that lacked principled analysis tools. To study planning,
psychologists firstly focused on one-step decisions and
most often relied on educated guesses, i.e. self-constructed
mathematical models of human behavior that captured the
relationship between inputs and outputs of decision-making
(Abelson & Levi, 1985; Westenberg & Koele, 1994; Ford
et al., 1989). These methods were not error-proof because
they sometimes fit conflicting models equally well to the
same data or were too limited to capture the whole decision-
making process (Ford et al., 1989; Riedl et al., 2008).
To mitigate these drawbacks, scientists have developed
process-tracing methods that captured the process used in
decision-making by also analyzing the context in which
each of the steps was taken before reaching a decision
(Payne et al., 1978; Svenson, 1979). Among multiple
process-tracing paradigms, such as verbal protocols (e.g.
in Newell et al. 1972) or conversational protocols (e.g. in
Huber et al., 1997), some process-tracing paradigms were
computerized and followed human choices by facing people
with artificial tasks which required them to take a series of
actions before making the final decision. One such process-
tracing paradigm called the Mouselab (Payne et al., 1988)
paradigm which is used for one-step decision-making tasks
was later adapted for studying planning under the name
of Mouselab-MDP (Callaway et al., 2017) paradigm. Since
we used this methodology in our framework for automatic
scientific discovery for planning, we now introduce the
Mouselab and Mouselab-MDP paradigms in more detail. At
the end, we also introduce a state-of-the-art approach for
scientific discovery for planning that uses Mouselab-MDP
called the Computational Microscope. Since it relies on the
manual analysis of data, we treat it as a baseline throughout
this paper.

1067Behavior Research Methods (2024) 56:1065–1103

Mouselab

The Mouselab (Payne et al., 1988) paradigm is one of the
first computerized process-tracing paradigms. Its goal is
to externalize some aspects of cognitive processes taking
part in decision-making by engaging people in information
acquisition that helps them reach a decision. Mouselab
was developed to study multi-alternative risky choice. To
do so, it presents participants with an initially occluded
payoff matrix whose entries can be (temporarily) revealed
by clicking on them. An i, j entry of the n × m payoff
matrix either hides a value for bet i under outcome j

or, in the case of the first row, hides a probability for
outcome j . The values are expressed in terms of dollars
and they indicate the payoff a participant is expected to
obtain after selecting gamble i and having outcome j to
occur. Participants’ task is to choose one of the available
i − 1 gambles based on the information they gathered
by revealing the entries of the matrix. The sequence of
clicks externalizes a participant’s decision-making process
by showing which information they considered. Using the
Mouselab paradigm, scientists were able to discover that
people choose strategies adaptively (Payne et al., 1988).
Despite its usefulness, however, Mouselab is inappropriate
to study planning as selecting one gamble does not affect
future gambles. Mouselab-MDP was developed to mitigate
this shortcoming.

Mouselab-MDP

The Mouselab-MDP paradigm is a generalization of the
Mouselab process-tracing paradigm in which a participant’s
information-acquisition actions affect the availability of
his or her future choices (Callaway et al., 2017). By
doing so and offering a way to externalize information
acquisition, Mouselab-MDP is suitable to study human
planning. Concretely, a single decision about choosing a
gamble is replaced with a Markov Decision Process (MDP;
see Definition 1), and the payoff matrix is replaced with a
graphical representation of the MDP, a directed graph with
initially occluded nodes.

Definition 1 (Markov Decision Process) A Markov deci-
sion process (MDP) is a tuple (S,A, T ,R, γ) where S is a
set of states; A is a set of actions; T (s, a, s′) = P(st+1 =
s′ | st = s, at = a) for s �= s′ ∈ S, a ∈ A is a state transi-
tion function; γ ∈ (0, 1) is a discount factor; R : S → R is
a reward function.

Clicking on the node reveals a numerical reward or
punishment hidden underneath it (see Fig. 1). In the most
commonly used setting of the Moueslab-MDP paradigm,
a participant’s goal is to find the most rewarding path for

Fig. 1 The Mouselab-MDP environment we used in the paper. The
environment is a connected graph of nodes (grey circles) that hide
rewards or punishments. The number hidden underneath a node can
be uncovered by clicking on it and paying a small fee. The goal is to
traverse a path starting in the black node and ending in a node at the
highest level so that the sum of rewards along the way minus the cost
of clicking was as high as possible

an agent to traverse from the start node to one of the
terminal nodes (nodes without any out-going connections),
by minimizing the number of clicks (each click has an
associated cost). This formulation was used in a number
of papers that studied human planning strategies (Griffiths
et al., 2019; Callaway et al., 2020) and led to the creation of
cognitive tutors that help people plan better (Lieder et al.,
2019; Lieder et al., 2020), the creation of new, scalable and
robust algorithms for hierarchical reinforcement learning
(Kemtur et al., 2020; Consul et al., 2021), and helped in
creating one of the first tools for analyzing human planning
in more detail (Jain et al., 2022).

Categorizing planning strategies
via the Computational Microscope

The Mouselab-MDP paradigm gives information about
the planning processes used by people (Callaway et al.,
2020; Callaway et al., 2017). Past research, similar to the
research on describing human decision-making, employed
formal planning models (i.e. strategies) to describe the
planning processes of people, and evaluated those models
on data from experiments with human participants, e.g.
(Botvinick et al., 2009; Huys et al., 2012; Huys et al.,
2015; Callaway et al., 2018; Callaway et al., 2020).
Researchers have come up with a number of planning
models people could hypothetically use, including classic
models of planning such as Breadth First Search, Depth
First Search, models that use satisficing, etc. Recently, Jain
et al. (2022) created a new computational pipeline in which

1068 Behavior Research Methods (2024) 56:1065–1103

a set of manually created planning strategies are given as
input to a computational method, called the Computational
Microscope, to fit them to human planning data. In more
detail, the method takes process-tracing data generated
using the Mouselab-MDP paradigm and by using Bayesian
inference, categorizes the planning operations from trials
of the Mouselab-MDP paradigm into a sequence of these
planning strategies. One of its features is that to categorize
a trial, it incorporates all the information from all the trials
before and after it. The authors of the paper performed a
manual inspection of all the process-tracing data (clicks)
that participants made in each trial. They first found similar
click sequences based on the trials and the features of the
trial and then created generalized strategies that replicated
these click sequences. This led to the creation of a set of
79 strategies.

One of the drawbacks of their method is the amount
of time it took them to manually go through all the
participants’ data and the scalability of their approach.
Since our method aims to develop a method for automatic
interpretation of the process-tracing data, which includes the
automatic discovery of the planning strategies, we treat their
set of planning strategies and their approach as a baseline to
compare our framework to.

Finding interpretable descriptions of formal
planning strategies (policies): AI-Interpret

Part of our framework utilizes a variant of an algorithm
developed to interpret reinforcement learning (RL; see
Definition 2) policies: AI-Interpret (Skirzyński et al., 2021).

Definition 2 (Reinforcement learning) Reinforcement
learning (RL) is a class of methods that perform iterations
over trials and evaluation on a given MDP in order to find
the optimal policy π∗ which maximizes the expected reward
(Sutton & Barto, 2018). A deterministic policy π is a func-
tion π : S → A that controls an agent’s behavior in an
MDP and a nondeterministic policy π is a function π :
S → Prob(A) that defines a probability distribution over
the actions in the MDP. The reward rt represents the quality
of performing action at in state st . The cumulative return of
a policy is a sum of its discounted rewards obtained in each

step of interacting with the MDP, i.e. Gπ
t =

∞∑
i=t

γ t rt for

γ ∈ [0, 1]. The expected reward J (π) of policy π is equal
to J (π) = E(Gπ

0).

In contrast to existing methods for interpretability
in RL that generate complex outputs: decision trees
with algebraic constraints (Liu et al., 2018), finite-state
automata (Araki et al., 2019), or programs (Verma et al.,
2018) to represent policies, AI-Interpret generates simple

and shallow disjunctive normal form formulas (DNFs;
equivalent to decision trees, see Definition 3) that express
the strategy in terms of pre-defined logical predicates.

Definition 3 (Disjunctive Normal Form) Let fi,j , h : X →
{0, 1}, i, j ∈ N be binary-valued functions (predicates) on
domain X . We say that h is in disjunctive normal form
(DNF) if the following property is satisfied:

h(x) = (f1,1(x) ∧ ... ∧ f1,n1((x)) ∨ ... ∨
(fm,1((x) ∧ ... ∧ fm,nm((x)) (1)

and ∀i, j1 �= j2, fi,j1 �= fi,j2 . In other words, h is a
disjunction of conjunctions.

Studies presented by Skirzyński et al. (2021) show that
transforming this output into flowcharts, which use natural
language instead of predicates, is easily understood by
people, and can even help in improving their planning
skills. Moreover, AI-Interpret is an imitation learning
method (see Definition 4) and interprets policies via their
demonstrations. Due to these reasons, we decided to use
it in order to achieve our goal: find descriptions of
human planning strategies by using data from process-
tracing experiments.

Definition 4 (Imitation learning) Imitation learning (IL) is
the problem of finding a policy π̂ that mimics transitions
provided in a data set of trajectories D = {(si, ai)}Mi=1 where
si ∈ S, ai ∈ A (Osa et al. 2018).

On a high level, AI-Interpret uses 4 inputs. If S is a set of
states and A is a set of actions in a given environment, AI-
Interpret accepts a data set of demonstrations (state-actions
pairs) D = {(si , ai)}Ni=1, si ∈ S, ai ∈ A generated by some
policy π . Additionally, it also accepts the set of predicates
L that act as feature detectors. Those feature detectors
evaluate to T rue or False depending on the action to be
taken and the current state, i.e. f : S × A → {0, 1}.
On top of that, AI-Interpret uses a parameter d denoting
the maximum depth of the DNF (decision tree), and the
ratio of the expected rewards α. AI-Interpret uses D and
L to find DNF formula ψ of size at most d. Formula ψ

is required to induce policy πψ with an expected reward
of at least α of π ’s expected reward. AI-Interpret achieves
that by transforming each state-action pair in D into a
vector of predicate valuations and clustering the set of these
vectors into coherent groups of behaviors. In each iteration,
the clustered vectors are used as positive examples for a
DNF learning method, and suboptimal state-action pairs
generated by looking at possible actions in existing states,
serve as negative examples. The DNF learning method is
called Logical Program Policies (LPP; (Silver et al., 2020)).

1069Behavior Research Methods (2024) 56:1065–1103

LPP defines a prior distribution for the predicates in L,
and uses the MAP estimation and decision-tree learning
methods to find the most probable DNF formulas that accept
the positive examples and reject the negative examples. AI-
Interpret uses LPP to find DNF ψ that achieves the expected
reward defined by α and has depth limited by d. In case of a
failure, it removes the least promising cluster (the smallest
weighted posterior) to try to describe the remaining data.

A newmethod for discovering and
describing human planning strategies

We created a method that enables (cognitive) scientists
to generate descriptions of human planning strategies
using data from sequential decision-making experiments
conducted with the Mouselab-MDP paradigm (Callaway
et al., 2020; Callaway et al., 2017). As illustrated in Fig. 2,
our method comprises the following steps: 1) collecting and
pre-processing process-tracing data on human planning, 2)
setting up a vocabulary of logical predicates that can be used
to describe people’s strategies, 3) running our new algorithm
10 times to automatically discover strategies possibly
used by people, 4) applying a choice heuristic to select
which of those strategies are accurate. Importantly, during
strategy discovery, our algorithm automatically describes
the found strategies as step-by-step procedures. The first
four subsections describe each of these four steps in turn.
We also detail the algorithm itself. The last section reports
on the technical details of setting up the initial code base for
our pipeline and can be skipped.

Data collection and data preparation

To use our method for discovering human strategies, the
data collected in the experiments is required to meet
certain criteria. Firstly, the experiment has to externalize
people’s planning by using computerized process-tracing
paradigms for planning (see “Externalization” in Fig. 2).
In our benchmark studies we used the Mouselab-MDP
paradigm (Callaway et al., 2020; Callaway et al., 2017),
since to our knowledge, it is the only such paradigm that
is available so far. To study one-shot decision-making,
on the other hand, one could use the standard Mouselab
paradigm (Payne et al., 1988), ISLab (Cook & Swain,
1993), MouseTrace (Jasper & Shapiro, 2002) or other
similar environments. Secondly, the experiments need to
gather participants’ planning operations that we define
as sequences of state-action pairs generated by each of
the participants. The states are defined in terms of the
information that the participant has collected about the
task environment. The actions are the information-gathering
operations that the participant performs to arrive at their

plan. Thirdly, the gathered planning operations should be
saved in a CSV file that would additionally contain labels
of the experimental block they came from (e.g. ‘train’ or
‘test’) and labels corresponding to participant id. In our
case, this data was separated into distinct CSVs and custom
Mouselab-MDP functions extracted states, actions, blocks,
and ids from them into a new (Python) object. The result of
this process is visually presented in Fig. 2 as the “Planning
operations” arrow.

Creating the Domain Specific Language

Humans build sentences by using words (and build words
by using phonemes). In order to automatically build
descriptions of strategies used by people in the planning
process-tracing experiments, we also need a vocabulary of
some primitives. Due to the algorithmic setup of the method
introduced in this section, here, the required set of primitives
comprises logical predicates. Following Skirzyński et al.
(2021) whose method is an important part of our pipeline,
the predicates serve as feature-detectors and are formally
defined as mappings from the set of state-action pairs to
booleans, that is f : S × A → {0, 1}. Practically, the
predicates describe the state s ∈ S, the action a ∈ A, or
the particular characteristic that action a has in state s. For
instance, predicate is observed(s,a) might denote
that node number a in the Mouselab MDP paradigm has not
yet been clicked and its value is hidden in state s. Later, this
predicate could be used to define a very simple DNF that
allows clicking all the nodes that have not yet been clicked,
i.e. not(is observed(s,a)). The second step in our
pipeline thus considers creating a set of predicates that
describe the process-tracing environment. Further in the
text, we will call that set of predicates the Domain Specific
Language (DSL). Setting up the DSL is visually presented
in Fig. 2 as “DSL creation”, and as we discussed, occurs
after externalizing human planning.

As one can notice, creating an appropriate Domain
Specific Language is a non-trivial task that is important to
the success of the whole method. The process of creating
the DSL usually entails studying the structure of the task
and the strategies people are thought to use in that task.
For instance, if we were to create a DSL for a multi-
alternative risky choice environment (such as Mouselab
from “Mouselab”) we would first adhere to the existing
knowledge of the various decision strategies people are
thought to use in this task (Payne, 1993) and the elementary
operations they are composed of (Bettman et al., 1990).
Inspecting those strategies would help us determine the
primitives needed to describe them, and these primitives
would serve as initial predicates of the constructed DSL. In
the case of risky choice, we would focus on characterizing
information-gathering operations. Furthermore, we would

1070 Behavior Research Methods (2024) 56:1065–1103

Externalization

Planning

...

DSL creation

...
STRATEGY N:

STRATEGY 1:

MAJORITY
HEURISTIC

Translation

...

...

Bayesian model
selection

Planning operations

DNF2LTL

AI Interpret

Clustering to K clusters
if K < K_max

Run 10 times
K = 1

K += 1

Aggregate
models from

10 runs

Store model
otheriwse

Fig. 2 Diagram representing our method for discovering and describ-
ing human planning strategies. The method assumes externalizing
human planning first and gathering human planning operations in an
experiment. Then it assumes creating a Domain Specific Language
(DSL) to describe the environment in which participants made deci-
sions. Afterward, the method assumes running Human-Interpret, an
algorithm that automatically extracts and describes possible strategies
used by people. Human-Interpret starts by performing clustering on
the gathered data to create mathematical representations of planning
strategies – policies. Then, it uses the AI-Interpret (Skirzyński et al.,

2021) algorithm supplied with the constructed DSL and the found
policies to discover formulaic descriptions of the strategies. Later,
it transforms the formulaic descriptions into procedural instructions
expressed in linear temporal logic and translates linear temporal logic
formulas into natural language. Human-Interpret gradually increases
the number of clusters and uses Bayesian model selection to output
the best set of strategies it found. To generate the final result, our
method assumes running Human-Interpret 10 times and applying a
choice heuristic on 10 outputted sets

1071Behavior Research Methods (2024) 56:1065–1103

study the environment itself to expand the DSL with new
primitives that described the properties of the environment.
Those predicates could describe the gambles (e.g., most
promising, second most promising, least explored, most
explored, etc.) and the attributes (e.g., most informative
one, one we know least about, etc.). By following this
process, we would obtain a DSL with multiple predicates,
some of which would stand for primitives known to be
useful in describing people’s planning heuristics, and some
would denote characteristics of the environment that were
yet unused. The algorithm’s task would be to combine these
primitives in one description so that they fit the sequences
of planning operations externalized in the experiments.

Obtaining interpretable descriptions of human
planning strategies via Human-Interpret

The third step of our method assumes using the algorithm
for discovering interpretable descriptions of people’s plan-
ning strategies. This algorithm finds a set of planning strate-
gies people used based on the data from process-tracing
experiments and then generates interpretable descriptions of
those strategies in the form of procedural formulas. Since
the AI-Interpret method of Skirzyński et al. (2021) plays
a vital role in our pipeline, we call this new algorithm
Human-Interpret.

Big picture

Human-Interpret is an algorithm that discovers human plan-
ning strategies externalized in a process-tracing paradigm
in the form of natural language descriptions. As illustrated
in Fig. 2, Human-Interpret clusters the participants’ click
sequences. It then applies the AI-Interpret algorithm to each
cluster separately. AI-Interpret creates logical formulas that
describe the planning strategies, and Human-Interpret trans-
lates those logical formulas into procedural descriptions in
natural language. To maximize the likelihood of the final
set of strategies obtained through this process, Human-
Interpret also iterates through a higher and higher number
of strategies to discover and eventually performs Bayesian
model selection (Raftery, 1995) over the runs with respect
to human data (see the transitions labeled “Run 10 times”
and “Bayesian model selection” in Fig. 2). Technically, in
each run, Human-Interpret executes 4 subroutines.

Firstly, Human-Interpret uses human data to generate
demonstrations for AI-Interpret. It does so by clustering
human data into an input number of subsets represented
as policies and sampling those policies. Demonstrations
obtained that way take the form of representative sequences
of information-gathering actions (clicks) paired with knowl-
edge states in which they were performed (states) (see the
transition labeled as “Clustering to K clusters” that goes

from the sequence of planning operations (si , ai)
N
i=1 to the

set of clusters in Fig. 2).
Secondly, Human-Interpret utilizes AI-Interpret to build

descriptions of the sampled demonstrations. See the arrow
labeled as “AI-Interpret” in Fig. 2 to visualize this process:
AI-Interpret takes demonstrations from the clusters (middle
left) and describes them using the created DSL (upper right)
to output a number of flowcharts/DNF formulas describing
planning strategies found in the demonstrations (middle
right). The way in which these algorithms operate makes
them robust to imperfections of the DSL. That is, even a
highly incomplete DSL created according to the recipe from
“Creating the Domain Specific Language” would likely
result in approximate descriptions of some strategies. The
reason is that AI-Interpret selects the subset of planning
operations that are the easiest to describe with the existing
DSL. Hence, although constructing the DSL does require
human intelligence and domain knowledge, the robustness
of our algorithm makes creating an appropriate DSL simpler
than it would otherwise be.

Thirdly, Human-Interpret enhances the interpretability of
the found formulas using the method from Becker et al.
(2022) and turns the formulas into procedural descriptions
mimicking the linear temporal logic formalism (see arrow
“DNF2LTL” in Fig. 2 and consult Definition 5).

Definition 5 (Linear Temporal Logic) Let P be the set
of propositional variables p (variables that can be either
true or false), let ¬,∧, ∨ be standard logical operators
for negation, AND, and OR, respectively, and let X,U,W
be modal operators for NEXT, UNTIL, and UNLESS,
respectively. Linear temporal logic (LTL) is a logic defined
on (potentially infinite) sequences of truth assignments of
propositional variables. LTL formulas are expressions that
state which of the variables are true, and when they are true
in the sequences. Whenever this agrees with the actual truth
assignment in an input sequence, then we say that a formula
is true.

Formally, for α and β being LTL formulas, we define a
formula to be expressed in LTL inductively: ψ is an LTL
formula if ψ ∈ P (ψ states that one of the variables is true in
the first truth-assignment in the sequence), ψ = ¬α (ψ is a
negation of an LTL formula), ψ = α ∨β (ψ is a disjunction
of two LTL formulas), ψ = α∧β (ψ is a conjunction of two
LTL formulas), ψ = Xα (ψ states that LTL formula α is
true starting from the next truth-assignment in the sequence)
or ψ = αUβ (ψ states that LTL formula α is true until
some truth-assignment in the sequence where LTL formula
β becomes true).

Fourthly, Human-Interpret expresses the found procedu-
ral descriptions in natural language. It does so by translat-
ing each predicate into a sequence of words, abiding by

1072 Behavior Research Methods (2024) 56:1065–1103

Table 1 Explanation of the parameters used by Human-Interpret and other methods utilized by Human-Interpret

Algorithm Parameter Explanation

Human-Interpret exp id Name of the experiment for which the clusters of state-action pairs
will be created. The name is used to identify proper folders with
the data.

num participants Number of participants whose data from the experiment to
consider.

block Part of the experiment from which the data is taken (e.g. ’test’).
Depends on which identifiers have been used in the experiment.

max num clusters The maximum number of probabilistic (EM) clusters to create.

criterion Criterion for performing Bayesian model selection on models with
differing numbers of clusters.

num trajs Number of sequences of planning operations generated by the EM
clusters used to find the descriptions of the clusters.

L Domain Specific Language of predicates to create descriptions
from.

DICT Predicate to natural language expression dictionary.

Expectation-Maximization features Set of functions which defines features in the environment for
externalizing planning. The features are used by the softmax
models that symbolize the EM clusters. Might be related or
unrelated to the DSL.

tolerance Minimum change in the likelihood of the state-action sequences’
assignment to EM clusters that allows further iterations of the EM
algorithm.

change tolerance Minimum relative change between the likelihood in the previous
and current iteration that allows further iterations of the EM
algorithm.

AI-Interpret interpret size, ai tolerance, num rollouts,
num ai clusters

See Skirzyński et al. (2021).

expert reward Average reward of the optimal policy in the environment

max divergence The maximum difference in formula-induced policy’s expected
reward and the mean reward of the interpreted policy measured
proportionally to the expert reward

predicate-to-expression translations and syntax rules prede-
fined in a special predicate dictionary. We represent this step
by the arrow “Translation” in Fig. 2.

The pseudo-code for Human-Interpret can be found in
the Algorithm 1 box; the explanation of its parameters is
shown in Table 1.

Examples

Consider the following two examples to better understand
the workflow of Human-Interpret: Assume we are searching
for planning strategies used by humans in the Mouselab
MDP visible in Fig. 3a) and b).

The planning operations sequences we observed – so
the nodes clicked to uncover rewards – are represented by
numbers written next to the click arrows. The sample click
sequences visible in the figures start with the node labeled

as 1, the next element is the node labeled as 2, then 3, 4,
etc. To relate to our pipeline shown in Fig. 2, the figures
show planning operations externalized in a process-tracing
paradigm, the Mouselab-MDP. Assume we observed multi-
ple click sequences as in Fig. 3a) and b), and the clustering
step resulted in 2 policies that were able to reproduce
them. The click sequences seen in the figures can thus
additionally serve to visualize the output of the clusters
from the clustering step in Fig. 2. Assume we further cre-
ated a Domain Specific Language that includes predicates
describing the nodes, and the attributes of the clicks on the
nodes. Relevant predicates that evaluated to true when node
number i was clicked are written below i in Fig. 3a) and
b). As we can see, in Fig. 3a) the first 3 clicks activated
predicate is root, i.e. they considered clicking the nodes
of the MDP closest to the start, black node. Similarly,
in Fig. 3b) the first clicks activated is leaf predicate

1073Behavior Research Methods (2024) 56:1065–1103

Algorithm 1 Pseudocode for the Human-Interpret algorithm.

(nodes furthest to the black node), whereas predicate
is max observed evaluated to False for all but for the
last node in the sequence when a big reward was observed.
In all cases, predicate is observed evaluated to False,
i.e. each click was made on a node that has not been
clicked yet. Human-Interpret uses multiple sequences of
planning operations generated by the clusters alongside the
predicates activated in each step of the sequences and runs
AI-Interpret. AI-Interpret outputs a DNF formula for each
cluster to capture the dynamics of the sequences. Assume
that for Fig. 3a) the output was (not(is observed)
and is root and not(all roots observed))

OR (not(is observed) and all roots
observed).

Since clicks other than the first 3 for sequences such
as the one in Fig. 3a) activated many predicates, and only
the predicate not(is observed) evaluated to T rue

for all of them, AI-Interpret found the best possible DNF
formula that agreed with all the elements in the sequences.
For cluster that generated sequences as the one in Fig. 3b),
the found DNF formula was not(is observed) and
is leaf and not(is max observed). This DNF
captures that the click sequences always started with click-
ing the leaf nodes and terminated whenever the maximum

1074 Behavior Research Methods (2024) 56:1065–1103

Fig. 3 Sample sequences of planning operations externalized in the
Mouselab-MDP paradigm. Numbers below the click arrows denote the
ordering of the planning operations (clicks), whereas the predicates

written below the numbers denote relevant elements of the Domain
Specific Language active when using a given planning operation

value was observed. In the next step, Human-Interpret uses
an algorithm created by Becker et al. (2022) to transform
the DNF formulas into linear temporal logic formulas.
For the provided DNF formulas, the output would be
not(is observed) and is root and UNTIL
all roots observed THEN True UNTIL IT
STOPS APPLYING (the expression after THEN captures
complete uncertainty) and not(is observed) and
is leaf UNTIL is max observed. Finally, Human-
Interprets translates the procedural descriptions into natural
language by making use of a predefined dictionary. The
final output we would get for our examples if we used the
dictionary same as in this paper would be 1. Click on the
nodes satisfying all of the following conditions: they are
unobserved roots. Repeat this step until all the roots are
observed. 2. Terminate or click on some random nodes and
then terminate. Repeat this step as long as possible. for the
first cluster exemplified by the click sequence in Fig. 3a)
and 1. Click on the nodes satisfying all of the following
conditions: they are unobserved leaves. Repeat this step
until the previously observed node uncovers a 48. for the
second cluster exemplified by the sequence in Fig. 3b).

Human-Interpret would repeat these steps across all runs
that consider different total numbers of clusters, say from
1 to 10, and employ Bayesian model selection to decide
which set of strategies has the highest score under selected
Bayesian criterion (e.g. marginal likelihood). This set would
become the final output of the algorithm.

Clustering planning operations into planning strategies

Human-Interpret begins the process by extracting plan-
ning strategies out of sequences of planning opera-
tions gathered in the process-tracing experiment. Let

D = {(τ1i)
K1
i=1, (τ2i)

K2
i=1 . . . , (τMi)

KM

i=1} denote the set of
planning operations belonging to M participants where
τji = ((s

ji
l , a

ji
l))L

ji

l=1 is the i-th sequence of planning
operations generated by participant j , and Lji is its
length. Human-Interpret utilizes the Expectation Maximiza-
tion (EM) (Dempster et al., 1977; Moon, 1996) algorithm
to fit a probabilistic clustering model to the state-action
sequences in D and extracts k planning strategies (the clus-
ters π1, π2...., πk). Each planning strategy corresponds to a
softmax policy of the form given in Eq. 2.

πi(a | s, wi) = exp(f(s, a)ᵀwi)

T∑

k=1
exp(f(s, ak)ᵀwi)

(2)

Each softmax policy (πi) is represented by weights wi

assigned to P different features f = [φ1, φ2, . . . , φP] of the
state-action pair where φi : S × A → Xφ . These features
were partially derived from the DSL and partially hand-
designed. There were 19 of them and they can be found
in Appendix A.4. The aim of the EM algorithm is to find
the planning strategies by clustering the click sequences in
D into k clusters, with each cluster being represented by
some softmax policy πi . It does this by optimizing the set
of weights W = (w1, w2,, wk) that maximize the total
likelihood (M) of the click sequences under all the clusters.
M is described in Eq. 3.

M(D | W) =
k∑

i=1

∑

C∈D

∑

(s,a)∈C

πi(a | s, wi) (3)

After obtaining the policies represented by the weights
W , they are discretized to form new uniform policies (πi)
as described in Eq. 4 that assign a uniform probability to
actions with the highest probability according to πi , that is

1075Behavior Research Methods (2024) 56:1065–1103

to optimal actions. Policies πi are then used to create a data
set of demonstrations D = {(si , ai)}Li=1 which contains L

planning operations generated through some fixed number
of rollouts.

πi(a | s) =
⎧
⎨

⎩

0, if πi(s, a) �= max
k≤P

π(s, ak)

1/|{ai : πi(s, ai) = max
k≤P

π(s, ak)}| otherwise
(4)

Finding formulaic descriptions of planning strategies

After computing policies πi and generating the data set
of demonstrations D, Human-Interpret essentially runs AI-
Interpret (Skirzyński et al., 2021). The only modification
to the AI-Interpret algorithm that is introduced by Human-
Interpret relates to the fact that the input demonstrations
no longer represent the optimal policy, but some, often
imperfect policy mimicking humans: πi (further called the
interpreted policy). Because of that, the expected reward
for policies induced by candidate formulas cannot make at
least α of the expected reward for the interpreted policy
(see the Background section), since it leads to errors.
For instance, in a situation when the interpreted policy
achieves a reward of R, and the optimal policy achieves
a reward of 100R, a formula that induces a policy with
reward 50R meets the criterion defined by α, but is a
poor approximation to πi . Because of that, Human-Interpret
uses divergence instead of the expected reward ratio. If πf

is a policy induced by formula f found by AI-Interpret
and πopt is the optimal policy for the studied environment
(here, the Mouselab MDP), Human-Interpret computes the
divergence of f as the ratio between the difference in
rewards for the interpreted policy πi and πf , and the
expected reward of the optimal policy, i.e. div(πf) =
J (πf)−J (πi)

J (πopt)
. Consequently, Human-Interpret searches for

solutions whose size is limited by d and for which the
divergence is at most α (see the Background section). Note
that introducing that modification requires the modeler,
or the algorithm, to compute the optimal policy for the
environment or at least know its approximation.

Extracting procedural descriptions from logical formulas

The output produced by the modified AI-Interpret algorithm
we defined above is a DNF formula f ∗. Following the
finding that procedural descriptions are easier to grasp
for people than flowcharts (Becker et al., 2022), Human-
Interpret uses the method presented in Becker et al.
(2022) to transform f ∗ into a logical expression written in
linear temporal logic. The DNF2LTL algorithm described
in Becker et al. (2022) produces such an expression by
separating the DNF into conjunctions and finding the

dynamics of their changes in truth valuations using the
initial set of demonstrations inputted to AI-Interpret. The
output, which we will call a procedural formula, separates
the conjunctions with NEXT commands and instructs to
follow each conjunction until some condition occurs unless
another condition occurs. The conditions are chosen among
the predicates or 2-element disjunctions of predicates from
the DSL introduced in “Creating the Domain Specific
Language”, or simply read (for the UNTIL condition) “until
it applies”, which denotes a special logical operator. Since
the output formula might be overly complex after that
process, in the next step the algorithm prunes some of
the predicates appearing in the conjunctions. Concretely,
predicates are greedily removed one by one so as to increase
the probability of people’s planning operations under the
strategy described by the shortened formula.

Translating to natural language

Once the procedural formulas are generated, it is possible to
obtain fully understandable descriptions of human planning
strategies by transforming the predicates and the operators
appearing in the formulas into natural language. In our case,
the procedural formulas are expressed in natural language
by using a predefined predicate-to-expression dictionary that
provides a direct translation for each predicate (as a sequence
of words), and controls which words should be added, and
in what order, to mimic the meaning of LTL operators.

Bayesian model selection

Human-Interpret uses Bayesian model selection according
to Bayesian inference with a uniform prior on the number of
clusters (Kass & Raftery, 1995). In more detail, it considers
K runs of human data clustering and cluster description,
where the output of run i posits the existence of i clusters
and establishes model i. Each cluster for a model is defined
as a mixture of two policies. The first policy is induced
by the procedural description constructed for the cluster.
The second policy serves as an error model. These two
policies assign a uniform probability to actions allowed
and disallowed by the procedural description constructed
for the cluster, respectively. The weights assigned to both

1076 Behavior Research Methods (2024) 56:1065–1103

policies are cluster-dependent free parameters with prior
sampled using Beta functions where alpha and beta are
hyperparameters (i.e., εi ∼ Beta(α, β) and εi ∈ [0, 1]).
Mathematically, the clustering model P(τ) for a sequence
of planning operations τ = (si , ai)

T
i=1, for K clusters

represented by K policies π1, . . . , πK , and for K error
models π1, . . . , πK took the following form:

P(τ | ε) =
K∑

i=1

1/K ∗ Pi(τ ; εi) (5)

=
K∑

i=1

1/K ∗
T∏

j=1

(
εi ∗ πi(sj , aj)

+(1 − εi) ∗ πi(sj , aj)
)

. (6)

Human-Interpret selects the best model using the equa-
tions above according to the input Bayesian criterion: either
the marginal likelihood, the Bayesian Information Crite-
rion (BIC) (Konishi & Kitagawa, 2008), or the Akaike
Information Criterion (Vrieze, 2012).

Heuristically choosing strategies used by people

In the last step of our method, we aggregate the results of
10 runs performed by Human-Interpret, i.e. 10 Bayesian-
optimal sets of strategies, and select the final output.
In order to do that, we employ the majority heuristic.
According to the heuristic, a strategy belongs to the output,
if it was discovered in at least 7 of the models/runs.
Otherwise, it is most likely noise. Our heuristic uses 7 as
the majority criterion since it was found to maximize the
accuracy of our method during evaluation (see “Measuring
the reliability of our computational method ”).

Technical details regarding using our method

Here, we present technical details connected to installing
and using our method for discovering and describing
human planning strategies. We equipped the initial code
base written in Python 3.6 with 1) data from 4 planning
experiments ran in different versions of the Mouselab-
MDP paradigm, 2) a Domain Specific Language (DSL)
of logical primitives used to generate procedural formulas,
and 3) a dictionary of predicate-to-expression entries for
transforming a formula into natural language. Each of these
elements is either a parameter or a hyperparameter of
Human-Interpret. A description of the experiments can be
found in Jain et al. (2022), whereas the DSL is detailed
in Appendix A.2 and contained in one of the files in
the code base, similar to the dictionary. Thanks to the
initial values for those parameters, it is possible to use our
method without performing prior research. Moreover, one

may extend our research by slightly modifying the DSL or
running Human-Interpret on a different data set. The steps
involved in setting up the whole method are as follows:

1. Download data needed in the pipeline and the source
code for Human-Interpret by cloning the appropriate
GitHub repository using the command:

git clone https://github.com/
RationalityEnhancement/
InterpretableHumanPlanning.git

The repository includes four data sets that are
contained in the folder data/human. Refer to
Jain et al. (2022) for a detailed description of the
experiments they come from.

2. Access the root directory of the downloaded source
code and install the needed Python dependencies:

pip3 install -r requirements.txt

3. Run Human-Interpret on either of the available data sets
by typing

python3 pipeline.py ...run
<r> ...experiment id <name>
...max num strategies <max>
...num participants <num p>
...expert reward <exp rew>
...num demos <demos> ...begin

Parameter run is the run id of the call to the func-
tion. Then, experiment id corresponds to the name
of the experiment that resulted in one of the four data
sets. As written in Table 1, max num strategies
quantifies the maximum number of strategies that could
exist in the data set and should be described; param-
eter expert reward defines the maximum reward
obtainable in the Mouselab MDP defining each of the
experiments; num participants state that the data
of the first <num> participants should be extracted
from the data set; num demos controls how many
strategy demonstrations to use in Human-Interpret;
begin controls which model to begin with (how
many clusters to consider in the first model to then
incrementally increase that number thus defining con-
secutive models). The available names, number of all
tested participants, and corresponding expert rewards
are provided in the readme file included in the source
code. The output of this command is saved in the
interprets procedure folder in a text file named
according to the following structure (and smaller files
without the prefix):

BEST strategies <name> <max> <num p>
<demos> run<run>.

The files contain procedural formulas describing the
clusters, their natural language descriptions, and a set
of statistics associated with those descriptions (e.g.

1077Behavior Research Methods (2024) 56:1065–1103

section*.34
section*.34

how well they fit the experimental data, how big they
are, etc.)

4. To reproduce the exact set of strategies from this paper,
run the following code for i in 1:10:

python3 pipeline.py
...run i ...experiment v1.0
...max num strategies 17 ...begin
17 ...num participants 0
...expert reward 39.97 ...num demos
128

Information regarding other parameters available for
tuning the Human-Interpret algorithm can be found
in Table 1 and in file pipeline.py. The set of
logical primitives serving for our DSL may be accessed
by navigating to RL2DT/PLP/DSL.py. Finally, the
dictionary is included in file translation.py. To apply
our method to different problems consult pipeline.py,
README.md, “Data collection and data preparation”, and
“Creating the Domain Specific Language”.

Evaluating our method for discovering
human planning strategies

In this section, we evaluate the reliability of our method on
data from a planning externalization experiment that utilized
the Mouselab-MDP paradigm. We measure reliability
threefold. First, we analyze the quality of all the strategies
that Human-Interpret discovered automatically. Second,
we measure the observational error of the final set of
strategies outputted by our method with respect to strategies
discovered through laborious manual inspection of the
same data set. Third, we compare the performance of
our computational method to the manual method. The
first subsection focuses on the setup of our method:
it describes the planning experiment, the vocabulary of
logical primitives, and the parameters for Human-Interpret.
The second subsection numerically describes all of the
discovered strategies. The third subsection measures the
observational error of our method. The last subsection
compares our method to the manual method.

Setup of the benchmark problem

Planning experiment

In our benchmark problem, we used a process-tracing
experiment on human planning conducted according to the
Mouselab-MDP paradigm (see “Mouselab-MDP”), namely
the first experiment presented in Jain et al. (2022). This
experiment (which we will refer to as the increasing
variance experiment) used the Mouselab-MDP environment

shown in Fig. 1 where the rewards hidden underneath the
nodes were different in every trial but were always drawn
from the same probability distribution. The nodes closest
to the spider’s starting position at the center of the web
had rewards sampled uniformly from the set {−4, −2, 2, 4}.
Nodes one step further away from the spider’s starting
position had rewards sampled uniformly from the set
{−8, −4, 4, 8}. Finally, the nodes furthest away from the
starting position of the spider harbored rewards sampled
uniformly from the set {−48, −24, 24, 48}. The fee for
clicking a node to uncover its reward was 1. The 180
participants who took part in this experiment were divided
into 3 groups that differed in what kind of feedback was
provided during the trials. The control group received no
feedback. The second group received feedback on their first
move. The third group received feedback on every click
they made that was designed to teach them the planning
strategy that is optimal for the task environment. There
were always 2 blocks: a training block and a test block,
with 20 trials in the training block and 10 trials in the test
block. As stated in the previous sections, the experiment
utilized the Mouselab-MDP process-tracing paradigm and
operationalized people’s planning strategies in terms of the
clicks (planning operations) they performed.

Domain Specific Language (DSL) and translation dictionary

We adopted the DSL of predicates from our work on AI-
Interpret which was also conducted on Mouselab-MDP
environments (Skirzyński et al., 2021). Generally, the DSL
consisted of over 14000 predicates generated according
to hand-made context-free grammar. The predicates were
defined on state-action pairs, where states were represented
as Python objects capturing the uncovered and covered
rewards in the Mouselab-MDP, and each action denoted the
ID of the node to be clicked. The predicates described the
current state of the Mouselab-MDP or the actions available
in that state. The state is described in terms of the clicked
nodes, the termination reward, and other properties. The
actions are described in graph theoretic terms, such as the
depth of the clicked node, whether it is a leaf node, whether
its parents or children have been observed, and so on.
The DSL included two crucial second-order predicates: the
among predicate asserts that a certain condition (given by
a first-order predicate) holds among a set of nodes defined
by another first-order predicate, and the all predicate asserts
that all the nodes satisfying a certain condition also satisfy
another condition. Detailed descriptions of the predicates in
the DSL we used are available in Appendix A.2.

The dictionary we used for translating the resulting
procedural formulas is an adapted version of the dictionary
from Becker et al. (2022). In our dictionary, we changed
natural language translations of most predicates to use graph

1078 Behavior Research Methods (2024) 56:1065–1103

theoretic jargon (such as leaves, roots, etc.). Moreover, our
translations always begin with “Click on the nodes satisfying
all the following conditions:” if there are any non-negated
predicates in the formula and list the non-negated predicates
as conditions. The difference with the original dictionary
is also that more complex predicates (such as those which
included other predicates as their argument) are broken
down into 2 or more conditions, whereas in the original
dictionary each predicate has its unique translation. More
details on how the translation was created can be found in
our project’s repository in the translation.py file.

Parameters for the Human-Interpret algorithm

To run Human-Interpret, we used the default parameters
for the AI-Interpret algorithm, the DSL described in the
previous section, the data from all of the participants in
the experiment described in “Planning experiment” (that is
180), and data from both blocks of the experiment (i.e., the
training block and the test block). We ran Human-Interpret
with 1-20 clusters and had it perform model-order selection
according to the BIC. The model selection was set to
disregard clustering models for which Human-Interpret was
unable to produce a description for all clusters. Our rationale
for doing so was that models that do not describe all the
clusters are not useful for the purpose of understanding
human planning. The DSL we used and the predicates
we used for the DNF2LTL algorithm can also be found
in Appendix A.2 and A.3. All parameters are listed in
Table 5 in Appendix A.1. The more elusive parameters, such
as interpret size or num trajs were selected based on the
simulations and interpretability experiments presented by
Skirzyński et al. (2021).

Measuring the reliability of Human-Interpret

Method

To assess the reliability of Human-Interpret, we ran
clustering and description subroutines of Human-Interpret
21 times to output 21 maximum BIC models and analyzed
each subset of 10 models with respect to the ground truth,
i.e. the strategies found by Jain et al. (2022). In total, the
runs found 21 distinct strategies (found in Appendix A.5),
where 10 of the 21 strategies were rediscovered with respect
to the manual analysis by Jain et al. (2022). Since every
strategy outputted by Human-Interpret is represented in
terms of a cluster of planning operations and the policy
mixture describing the cluster, we measured the average of
the mean likelihood per planning operation in the clusters
under the policy mixtures assigned to the unique strategy.
For comparison purposes, we additionally measured the
likelihoods under two additional methods: the random

method represented by a policy that always assigns the same
probability to all possible planning operations (including
termination), and the Computational Microscope (Jain et al.,
2022) whose policies are programmatic versions of the
strategies Jain et al. (2022) discovered manually.

Technical specification

We performed our benchmark tests on a computing cluster
equipped with Intel-based CPU nodes with 1TB of RAM
and 64 cores, and NVIDIA V100 GPU accelerators with
16 GB HBM2 and 30 GB of RAM. Our implementation of
Human-Interpret was predominantly CPU-based and relied
on multi-threading. Hence, a single job made use of only 1
GPU unit and 1 CPU core. Thanks to the cluster, however,
we were able to use parallelization and run all jobs with a
different number of clusters (21 * 20 = 420 jobs) in parallel.

Results

Figure 4 shows the aggregated results of the runs by
reporting the average improvement in the mean likelihood
over the random method of both Human-Interpret and
the Computational Microscope across all the discovered
strategies. As it can be seen, the planning operations are
over twice as better fitted to the strategies that represent
them than if they were assigned at random. Unsurprisingly,
the same planning operations are also better fitted to
the manually found strategies from the Computational

Fig. 4 Improvement over the random strategy in terms of the standard
mean likelihood per planning operation for 3 methods: Human
Interpret, the Computational Microscope, and a random method that
always assigns equal probability to all possible actions. The listed
strategies are those found in the initial 21 strategy models. The bars
show improvement in terms of the mean likelihood per planning
operation. Background colors encode whether a strategy was chosen
as ground truth (green) or not (grey)

1079Behavior Research Methods (2024) 56:1065–1103

Table 2 Error statistics for the output of our method with respect to the manually discovered ground truth

Run F-1 score precision recall accuracy stability variability

Mean 0.53 ± 4e−5 0.8 ± 2e−4 0.4 ± 0 0.67 ± 0 0.795 ± 1e−3 1.45 ± 1e−3

Median 0.53 0.8 0.4 0.67 – –

The mean run represents a run with average statistics, whereas the median run represents a run with median values for all the statistics. The
numbers after the ± sign indicate standard errors

Microscope than to the ones automatically discovered by
Human-Interpret.

Measuring the reliability
of our computational method

Method

The output of our method depends on how the outputs
of the 10 runs of Human-Interpret are aggregated. The
majority heuristic used to perform this aggregation has one
parameter: the number of runs that have to agree on a
discovered strategy. Therefore, we evaluated the reliability
and reproducibility of our method using cross-validation.
This involved splitting the set of all 10-run subsets into a
training set that contained 70% of all 300 thousand subsets
and a test set that contained the remaining 30% (about 100
thousand subsets). We selected the value of the parameter
by maximizing the following accuracy metric on the
training set:

acc(S) = |b ∈ B : b ∈ G| + |b /∈ B : b /∈ G|
|S| , (7)

where G is the ground truth, S is the set of all strategies, and
B is the set of strategies discovered by our computational
method. The parameter value that optimized the method’s
accuracy on the training set was 7. We then evaluated
the method’s performance with the chosen parameter value
on the test set. We measured the method performance
using four standard metrics from signal detection theory:
accuracy, precision, recall, and F1 score (McNicol, 2005). A
method’s precision is the proportion of strategies discovered
by our method that correspond to the ground truth strategies,
whereas recall defines the proportion of the total number of
the ground truth strategies our method discovers. Formally,
the precision prec, recall rec and F1 measures are
defined as

prec(S) = |b ∈ B : b ∈ G|
|B| , (8)

rec(S) = |b ∈ B : b ∈ G|
|G| , (9)

F1(S) = 2 · prec(S) · rec(S)

prec(S) + rec(S)
. (10)

We chose F1-score as the secondary measure of reliability
because it emphasized the number of true positives. Lastly,
we also measure the stability of our method by estimating
the proportion of runs that output the median result we
report here, and its variability that quantifies how many
strategies are in the difference set if 2 outputs are different.

Results

As summarized in Table 2, our method has high precision
of 80%, moderately high accuracy of 67%, and rather
low recall of 40%. The F1-score of 0.53 indicates that
the method presents good reliability. The stability of our
method is equal to 79.5%, meaning that there is roughly an
80% chance of generating the same results when the method
is run twice. If the results are different, however, they differ
by 1.45 strategies on average. We will refer to this statistic
as the method’s variability. The most common example of
non-zero variability in our tests was that the smaller set
was missing one strategy or that each set contained one
strategy that was missing from the other one. The standard
errors are mostly null, meaning that all these estimates are
robust. Jointly, these numbers mean that around 80% out
of all strategies discovered by our computational method
is actually used by people in planning, and these strategies
represent slightly below half of all the ground truth
strategies Human-Interpret can currently discover. Using the
example of the median run of our method with respect to
the F1-score, it discovers 5 strategies where 4 are actually
used by people, and 1 represents noise. The stability and
the variability of the method indicate this is a representative
output. We discuss how relevant the discovered strategies
are in the next section.

Evaluating and comparing strategies discovered
by our computational method to strategies
discovered throughmanual inspection

In this section, we show the descriptions of human planning
strategies discovered in the median run of our method, list
their statistics, and compare them to the strategies that Jain
et al. (2022) found through manual inspection. In this and
the following sections, we address the discovered strategies
as Strategy i for i ∈ [21] relating to the numeration

1080 Behavior Research Methods (2024) 56:1065–1103

Fig. 5 Plot showing the quality of strategies found by our method,
measured as the fit per operation (FPO), depending on their size.
Strategies are labeled on the x-axis via their unique ID (see Table 3
for a reference). The width of the bar corresponds to the size of the
cluster representing the strategy. The height of the bar corresponds to
the FPO measure. The red line indicates the average FPO across all
clusters. The green color indicates strategies that belong to the ground
truth, whereas the grey color indicates noise

introduced in Fig. 5. Some statistics on the strategies are
reported with the standard error.

Ground truth strategies Human-Interpret outputted
descriptions for 5 strategies seen in Table 3: Strategies 1, 2,
4, 6, and 21. Four of those strategies concur with the ground
truth; only Strategy 6 is a false positive. The 4 rediscovered
strategies jointly account for 51.3% of people’s planning
operations (Jain et al., 2022). Exactly 2 of the 4 strategies:
Strategy 2 and Strategy 4, are mentioned as one of the
most frequent according to Jain et al. (2022). There is one
more frequent strategy that our method did not discover.
However, our analysis of Strategy 1 indicates that manual
analysis heavily underrepresented its frequency (Jain et al.,
2022). It is because the average fit per planning operation
(FPO) is significantly higher under this strategy than under
the strategy assigned by the Computational Microscope.
Since Strategy 1 is a special case of Strategy 4, and Strategy
4 has a frequency of over 36% in the manual analysis, we
suspect that many planning operations assigned to Strategy
1 were labeled as Strategy 4 by the manual analysis. Hence,
Strategy 1 was underrepresented despite the fact it seems to
be often used by people.

Noisy strategies When it comes to the noisy strategies not
represented in the ground truth, our method returned 1
such output. This output represents a particular behavior
of Human-Interpret, namely an oversimplification of the
strategies caused by the data selection process. Strategy 6,
despite being very similar to one of the manually found
strategies, lacks an early termination constraint. It was

discovered in this form due to the operation selection
process implemented by Human-Interpret (through AI-
Interpret) where certain planning operations are removed
from the set to simplify creating a description. Relevant
data was hence likely removed and the strategy eventually
became too specific: it considered only a subset of the
planning operations. Since the strategy was chosen even
after running Human-Interpret multiple times and applying
the majority heuristic, the removed data must have been
indescribable with the current DSL.

Quantitative analysis of the strategies Here, we report
descriptive statistics about the complexity of the automat-
ically generated descriptions, the frequencies of the dis-
covered strategies, how well they corresponded to the EM
clusters, and how well they explain the sequences of plan-
ning operations they are meant to describe. These statistics
suggest that our method enables us to find reasonable solu-
tions of a very promising quality, especially considering
that our method discovered those strategies without any
labeled training examples or human feedback. On average,
the discovered descriptions agreed with the softmax mod-
els of the clusters on 84% ± 8% of the planning operations.
That quantity, which we call the formula-cluster fit (FCF) is
defined as the average of two proportions. The first one is
the proportion of planning operations generated according
to the inferred description that agreed with the choices of the
corresponding softmax model. The second one is the equiv-
alent proportion obtained by generating the demonstrations
according to the softmax models and then evaluating them
according to the descriptions. In both cases, we performed
10000 rollouts. Further, the average likelihood of the plan-
ning operations within the clusters reached 70% ± 11% of
the likelihood that would have been achieved if all planning
operations perfectly followed the descriptions. We call that
proportion the fit per operation (FPO). The quality of indi-
vidual cluster descriptions, as measured in terms of the FPO,
is depicted in Fig. 5. Since the average measurements over
all clusters do not take into account the importance of clus-
ters, we decided to perform the same computations using
cluster size-dependent weighted averages. As larger clusters
represent the most often used strategies, and these are the
strategies we are predominantly interested in from a psycho-
logical standpoint, weighted averages capture the measured
statistics with higher accuracy. After weighing our statistics
we found that the descriptions achieved a similar formula-
cluster fit (FCF) of 86% ± 4%, and the fit per planning
operation (FPO) of 66% ± 3%. We also tried excluding the
unique cluster describing the random policy, which trivially
achieves the FPO of 1, which caused the average to drop
to 62% ± 3%. Those results suggest that the more accu-
rate estimate of the fit with respect to planning operations is

1081Behavior Research Methods (2024) 56:1065–1103

Table 3 The strategies discovered by applying our computational method to the benchmark problem

ID Strategy descriptions Statistics

FR FCF FON FPO C N

4

Description: 16.7% 0.88 0.86 0.75 5 10

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved leaves.

Repeat this step until all the leaves are observed or the previously
observed node uncovers a 48.

Summary: Explore final outcomes until observing +48

Manual counterpart: Search for the best possible final outcome 36.6%

1

Description: 31% 0.98 0.89 0.77 13 10

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

2. Unless the previously observed node uncovers a 48, in which
case stop at the previous step, click on a node satisfying all of
the following conditions:

– it is an unobserved leaf.

click in this way under the condition that:

– the previously observed node was its sibling.

3. GOTO step 1 unless all the leaves are observed or the previously
observed node uncovers a 48.

Summary: Explore final outcomes until observing +48 sibling by
sibling.

Manual counterpart: Explore final outcomes with a preference
for nodes in the same sub-tree of the root

0.36%

21

Description: 4.3% 0.53 1.0 1.0 1 10

1. Terminate or click on some random nodes and then terminate.
Repeat this step as long as possible.

Summary: Random planning.

Manual counterpart: Random planning. 1.2%

2

Description: Do not click. 22.6% 1.0 0.46 0.26 1 9

Summary: No planning.

Manual counterpart: No planning 13.2%

6

Description: 6.3% *0.73 0.61 0.36 7 9

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved leaves.

Click in this way as long as:

– the previously observed node was their sibling.

Repeat this step as long as possible.

Summary: Explore all final outcomes sibling by sibling

Manual counterpart: – –

The strategies are listed along side their ID, their automatically generated description, the summary we created by hand, and the name (or
numbers) of the corresponding strategy (strategies) discovered manually by Jain et al. (2022). FR denotes the frequency of the strategy; FCF
(fit cluster-formula) averages two proportions: formula demonstrations agreeing with the softmax clusters and vice-versa measured using 10000
demonstrations; FON (fit optimal-non-optimal) quantifies how often people’s planning operations in the cluster agreed with the description; FPO
(fit per operation) is the ratio between the average likelihood per planning operation belonging to the cluster and the average likelihood per
planning operation for the (policy induced by the) cluster’s description; C, which stands for complexity, is the number of individual predicates
in the description; N is the number of clusters with the given description. Frequency (FR) is the only statistic measured for the manually found
strategies. The statistics are averaged across all models in the median run of our method

1082 Behavior Research Methods (2024) 56:1065–1103

closer to 65%, whereas the fit with respect to the formulas
is indeed around 85%.

Quantitative comparison against the manual method Gen-
erally, our method outputted 5 strategies that cover 51%
of the ground truth planning operations and describe them
almost 3 times better than chance. In the case of the manual
inspection performed by Jain et al. (2022), the results were
higher, and the average improvement was almost 4 times
as high as the random method across 79 strategies. It has
to be noted, however, that our method analyzed only up to
20 clusters (thus strategies) contrary to Jain et al. (2022).
Hence, the strategies discovered through our method were
more coarse. Despite that limitation, our method managed
to achieve a good accuracy score of 67%, all within mere
20 days, which included problem analysis and DSL creation
(around 2 weeks), running the code (around 5 days), and
analyzing the results (around 1 day). In contrast, it took Jain
et al. (2022) about 120 days to finish their manual analy-
sis. This means that our method could have accelerated the
process of strategy discovery by over 3 months – 100 days
– compared to manual inspection. Jointly, these results sug-
gest that our method can be used to speed up research on the
strategies of human planning and decision-making. A more
detailed summary of the comparison between the perfor-
mance of our automated strategy discovery and description
method with the manual approach by Jain et al. (2022) can
be found in Table 4.

Table 4 Comparison between our method for automatically finding
and describing human planning strategies and the manual approach by
Jain et al. (2022)

Method

Statistic Automatic analysis Manual analysis

Runtime 20 days 120 days

Discovered strategies 5 79

Accuracy 0.67 1

Success rate 81% 100%

Ground truth represented 51% 100%

Likelihood per click 0.31 ± 0.06 0.43 ± 0.04

Times as good as random 2.99 ± 0.7 3.93 ± 0.61

Runtime is the number of days it took to generate the result.
Discovered strategies counts how many strategies were generated
by the method. Accuracy measures the accuracy of the method
according to Eq. 7. Success rate is the proportion of sequences of
planning operations that the method eventually described. Ground
truth represented measures the ground truth proportion of planning
operations that are represented by the ground truth strategies
discovered by the method. Likelihood per click is the average
likelihood per a planning operation. Times as good as random
quantifies the improvement in average likelihood per operation over
the random model which assigns equal probability to all actions that
are possible in a given step

General discussion

The main contribution of our research is automating the
process of scientific discovery in the area of human
planning. By using our method, scientists are no longer left
at the mercy of their own ingenuity to notice and correctly
interpret the right patterns in human behavior; instead, they
can rely on computational methods that do so reliably.
Concretely, we developed the first method for the automatic
discovery and description of human planning strategies.
Our method’s pipeline comprises 4 steps: The first step
is to run an experiment that externalizes human planning
operations. The second step is to create a Domain Specific
Language (DSL) of logical predicates that describe the task
environment and the planning operations. The third step is
to run the generative imitation learning algorithm that we
created and present in this paper, called Human-Interpret.
Human-Interpret discovers the strategies externalized in
the experiment by creating generative softmax models (the
generative step) and describes them by procedural rules
formulated in the DSL by imitating their rollouts (the
imitation learning step). Finally, the fourth step is to apply
a heuristic on the output produced by Human-Interpret to
choose the final set of strategies.

Advantages

Human-Interpret is the first-ever automatic method that
can discover that people use previously unknown planning
strategies and what they are. This is a step towards
leveraging artificial intelligence to facilitate scientific
discovery in research on human planning and decision-
making. The main benefits of this approach are that it is
more objective, potentially capable of discovering strategies
that human researchers might overlook, and that it can be
applied to many large data sets that human researchers do
not have the capacity to analyze manually. The following
paragraphs summarize the strengths of our method in
more detail.

Reliability The tests we ran on a benchmark planning
problem revealed that the reliability of our method is
comparable to that of a manual human analysis when
it comes to the most frequent strategies. Firstly, the
automatically discovered strategy descriptions were clear
and understandable (see Table 3), mimicking the rigor and
clarity of man-made descriptions. Secondly, the overall
accuracy of our method was good, reaching 67% while
keeping precision as high as 80%. This means that the
strategies found by our method were highly likely to be
actually used by people. Finally, our automated approach
found 2 out of 3 most important, frequently used strategies
assuming the division from Jain et al. (2022), and provided

1083Behavior Research Methods (2024) 56:1065–1103

evidence to label one additional strategy as relevant. The
one remaining important strategy was not expressable with
the current DSL (we explain that in paragraph Imperfect
DSL), and hence was not outputted. These results indicate
that our method discovered almost the same set of important
strategies as scientists did despite working with almost no
human supervision. Reliability of our method with respect
to less frequent strategies likely requires improvements in
the created DSL, as well as running Human-Interpret with
many more clusters.

Time complexity Applying our computational method was
much faster than manual human analysis. It took us
approximately 6 days before we obtained the final output
via Human-Interpret and heuristic analysis of its output,
whereas studying human planning without the aid of AI
took about 120 days. We hence sped up the whole process
20 times. If we additionally included the time needed to
set up a proper DSL (refer to “Domain Specific Language
(DSL) and translation dictionary” to see how it was created),
the total time would accrue to 20 days. This is still a 6-
fold improvement over the manual analysis. We also expect
that for new problems, the reported time connected to
creating the DSL would not be exceedingly different. The
reason is that by building a DSL for the Mouselab-MDP
we already cover a wider variety of problems: the problems
we can represent concern deliberate decisions that involve
selecting, processing, and integrating multiple pieces of
information. Since that description applies to the majority of
problems in the domain of planning, our DSL may serve as
a basis for their study, and be simply extended. As extending
existing work is much faster than creating something new,
we think this process would not last longer than in our
case. When it comes to the time required to run Human-
Interpret itself, it could differ depending on the size of the
considered problem.1 In general, however, Human-Interpret
can currently handle reasonably sized Mouselab-MDPs and
if one is ready to sacrifice the possibility of discovering a
larger number of strategies by selecting fewer clusters, it
can even run in less than 3 days. Analyzing the output of
Human-Interpret takes no longer than 1-2 days, irrespective
of other parameters.

Generality As we mentioned in the previous paragraph, our
method could, in principle, be extended to a wide range
of (sequential) decision problems. For instance, consider
playing chess. If we wanted to inspect human strategies in
chess, the process-tracing paradigm would have to record
the sequence of moves and countermoves the player is
considering while deciding what to do next. To achieve

1For a more detailed discussion of this issue, see the Computational
complexity paragraph of the next section.

this, we could provide the player a second chessboard and
ask them to use it to play through what might happen
depending on which move they choose next. The belief
state of the metalevel MDP would encode the sequence
of moves and positions the player has considered up to
a given time. The predicates would encode features that
predict how uncertain the player should be about alternative
moves’ potential. This would include how often they have
simulated playing the move, how many steps they looked
ahead, and how much the most recent simulations have
changed the player’s estimate of the move’s quality (cf.
Russek et al., 2022). The design of those predicates could
also be informed by how grandmasters represent chess
positions (e.g., Chase and Simon, 1973; McGrath et al.,
2021). The experiment would ask chess players to use
the second chessboard to select which moves to analyze
in what order before selecting the best move on the first
chessboard. We could then apply Human-Interpret to their
externalized planning operations. Human-Interpret would
learn interpretable strategies that procedurally described
which moves to think about, depending on how they are
related to the current position and the player’s previous
planning operations. We might thereby discover the clever
planning strategies that enable chess players to efficiently
identify excellent moves.

Summary The main benefit of using the introduced pipeline
is that it is more objective than visual inspection. Moreover,
from a long-term perspective, our automatic method is
a promising step toward leveraging artificial intelligence
to accelerate scientific discovery in research on decision-
making and planning. Rather than trying to manually
discover one strategy at a time, our method makes
it possible to run many large experiments with many
different environments and discover the most representative
strategies people use across those environments at once.
A scientist interested in human planning could then invest
his or her resources to other components of their research
while waiting for the computations to finish. Afterward,
they could either start inspecting the data in search of more
detailed strategies or use the found strategies as hypotheses
to test in experimental studies. Further, our method is more
objective than the subjective and potentially biased manual
approach. Strategies and their descriptions are assigned
based on mathematical likelihood and they are provably
optimal under such probabilistic criteria, whereas people
could introduce strategies based on their preconceptions and
imperfect knowledge. Computers can tirelessly apply our
rigorous, systematic procedure to all trials of all participants
of numerous data sets. Our systematic, objective method
might thereby be able to discover important strategies that
scientists might otherwise overlook; one example thereof
is Strategy 1 in Table 3 which likely belongs to the

1084 Behavior Research Methods (2024) 56:1065–1103

set of frequently used strategies, but the manual analysis
incorporated most of it to its generalization (Strategy 4).

Limitations

A major limitation of our method is that it was unable
to rediscover all the strategy types documented by Jain
et al. (2022). In this section, we discuss the underlying
bottlenecks and other limitations of our method.

Imperfect clustering The softmax clusters did not always
contain planning operations that fit well together. For
instance, the No planning Strategy 2 had a poor fit score
of 0.26 with respect to people’s planning operations (FPO),
although the fit between the description and the cluster
softmax model (FCF) was virtually perfect (1.0). This
means the description was an accurate representation of
the Human-Interpret cluster and the poor FPO came from
incompatible planning operations. Most likely, the softmax
strategies could not capture the underlying logic of the
clusters, as planning operations clustered together by the
generative part of Human-Interpret were too diverse.

Incomplete DSL Our analysis indicates that the DSL we
used was incapable of capturing all of the strategies, which
was the most evident in the case of the 3rd most important,
frequent planning strategy from Jain et al. (2022) called
“Consecutive second maximum strategy”. This strategy was
used in around 6% of the trials of the planning experiment.
It observes the final outcomes in a random order but
stops planning after it encounters two outcomes with the
second-highest reward consecutively. The reason it was not
discovered by our method was that the DSL did not include
a predicate that described the second-highest reward.

Disregarding evidence for some planning strategies
Table 3 shows differences in the coverage (FR) between
the same strategies found by our pipeline and manual
analysis. The main discrepancy is that the automatically
discovered strategies have a higher frequency than the
human-discovered strategies. Besides Strategies 1 and 4
which we believe to be improperly represented by the man-
ual analysis, those differences stem from the simplification
inherent to our method and used by AI-Interpret – it finds
a description that fits some subset of the elements. Note
that since the softmax clusters represent human planning
operations when a demonstration (planning operation) of
the softmax cluster is rejected by the algorithm, a human
operation that corresponded to this demonstration (e.g.
it followed the same planning principle) is also rejected.
A rejection of a cluster-generated planning operation in
AI-Interpret might occur in two situations: 1) either it is
indescribable due to the imperfect DSL, or 2) it differs from

other operations generated by the softmax cluster due to the
imperfect clustering. In fact, we computed that AI-Interpret
utilized only 67% of the cluster-generated planning oper-
ations to find the descriptions. A part of human planning
operations was thus also rejected when finding a descrip-
tion, but still counted towards the coverage of the strategy.
Based on our measure of the quality of the discovered
descriptions with respect to human planning operations, i.e.
the FPO which was as high as 70%, the upper bound for the
number of human planning operations that were completely
disregarded by Human-Interpret is probably around 30%.
This issue might be solved in future work by studying more
clusters and improving the DSL.

Computational complexity One of our method’s limitations
is that it requires a considerable amount of compute time.
Because the required amount of time increase with the
maximal number of clusters considered by the method,
the method’s computational complexity is a bottleneck to
how many strategies can be discovered within a given
amount of time. From the preliminary runs we tried and
other gathered data, we suspect it would take about 4
times longer to run our code with up to 80 clusters. As
much as this is still manageable, our experiments served
mainly as a proof of concept, and thus we decided on
fewer clusters. In fact, we believe that even though we
did not manage to find strategies that are as fine-grained
as the manually found ones due to computation time
concerns, Human-Interpret can be scaled to a larger number
of clusters. In our initial runs, the code took about 40
days before terminating. After optimizing our code using
hashing and parallelization, the required amount of compute
time dropped to 5 days. The remaining computational
bottlenecks concern i) clustering sequences of planning
operations via the EM algorithm (up to 2.5 days), ii)
evaluating all the predicates in the DSL on all the states
from the demonstrated sequences (up to 1 hour per cluster),
iii) computing DNF formulas based on this evaluation (up
to 1 hour per cluster). Further code optimization in those
areas may improve the time complexity of the method to an
even larger degree. However, our method’s computational
complexity will likely remain a limiting factor for some
practical applications.

Bias towards fewer strategies. We strove for a balance
between parsimony and expressiveness of our strategies by
introducing the complexity parameters (preferring smaller
decision trees in AI-Interpret, limiting their size). It is
possible that by foregoing these parameters, we could
discover a larger number of strategies. They could, however,
be less interpretable, not always distinct, and sometimes
try to explain the randomness inherent to some human
decision-making.

1085Behavior Research Methods (2024) 56:1065–1103

Future work

Tackling the limitations As stated above, the main limita-
tions of our method are imperfect softmax clustering, an
incomplete DSL, and the computational bottlenecks of AI-
Interpret. We could improve the clustering by imposing
a no-diversity penalty on the models. Hypothetically, this
would make the softmax models as different as possible and
they could thus capture more diverse kinds of behaviors,
for instance as in Eysenbach et al. (2018). Alternatively, we
could obtain a better clustering by incorporating a different
method for choosing which number of softmax clusters is
optimal. Here, we used the maximum marginal likelihood
or the highest BIC to differentiate between competing mod-
els (understood as numbers of clusters), but there might be
better ways for accounting for model complexity, such as
performing cross-validation. We see improving the DSL as
an iterative refinement process in which we would add the
necessary predicates to the DSL, check the results of run-
ning our computational method with the new DSL against
the manual analysis, identify missing predicates, if any, and
then return to the first step. Just a few iterations of this pro-
cess should render a DSL capable of describing most of the
strategies used by people in the Mouselab-MDP environ-
ment. We elaborate on this approach in more detail below.
Both of those enhancements, however, would not be feasible
without first making our computational method run faster.
Thus, upgrading the implementation of AI-Interpret should
be one of the first next steps.

Designing a Human-in-the-Loop version of Human-
Interpret As mentioned in the previous paragraph,
Human-Interpret failed to find one of the relevant strate-
gies due to an incomplete DSL. Specifying a sufficiently
expressive DSL is a general challenge for all applications
of Human-Interpret. One potential remedy could be to first
write an extensive version of the DSL that accounts for
many, perhaps redundant predicates, and then use genetic
algorithms (Kuhn & Johnson, 2019) to find a subset of the
DSL that allows Human-Interpret to obtain the highest aver-
age likelihood. However, because this approach requires
many iterations, this may be intractable with the current
computational limitations of Human-Interpret. An iterative,
human-in-the-loop version of Human-Interpret could be a
more tractable remedy. To help the user refine the DSL, the
algorithm could highlight trials that were difficult to clas-
sify. The user could then investigate those trials and update
the DSL accordingly for a subsequent run. One possible
way of achieving this is monitoring the percentage of trials
whose average likelihood is not substantially different under
the automatically ascribed strategy than under the random
strategy. This could be formalized as the average planning
operation likelihoods differing by less than δ. We call this

property δ-similarity. Let Pi denote the proportion of δ-
similar trials for iteration i. Assuming P0 is 1 and all the
trials are trivially assigned to the random strategy with no
DSL, then whenever Pi−1 − Pi < ε for some non-negative
ε after the change in the DSL, then the algorithm could
output the final set of strategies. Otherwise, the algorithm
could output all δ-similar trials from iteration i for the user
to analyze and find possible missing predicates that capture
the poorly described behavior. Otherwise, the algorithm
could output δ-similar trials from iteration i for the human
to analyze and find possible missing predicates that capture
the poorly described behavior. This version of the algorithm
would include substantial human input and two additional
hyperparameters: δ ∈ [0, 1] for measuring fit relative to the
random policy, and ε ∈ [0, 1] for measuring improvement
in the likelihood between iterations. We hence call it (δ, ε)-
Human-Interpret. The current version of Human-Interpret
is a special case of this generalization, that is (δ, 1)-Human-
Interpret which always stops after the initial setup of the
DSL and does not focus on δ-similar trials.

Merging Human-Interpret with the Computational Micro-
scope Besides ameliorating the performance of our
method, a worthwhile future work direction is to combine
the strategy discovery method presented in this article with
our computational process-tracing method for measuring
which planning strategy each participant used on each trial
of the experiment – the Computational Microscope (Jain
et al., 2022). We hypothesize that our method could serve
to establish the basic set of strategies one could use as
input to the microscope. Then, a human planning sequence
could be automatically assigned to one of the automatically
discovered strategies, instead of the manually discovered
strategies. In this way, automatic strategy discovery might
make it possible to speed up the development of equiva-
lent computational process-tracing methods for other tasks
and domains and to improve the repertoire of strategies that
those methods use to describe the temporal evolution of
people’s cognitive strategies.

Researching other scenarios Finally, future work should
seek to apply our method for the automatic discovery and
description of human strategies to other scenarios. The
methodology we presented in this paper can be easily
extended to decision-making in other domains, such as risky
choice, intertemporal choice, and multi-attribute decision-
making (Lieder et al., 2017). Our method could thereby
help distill the existing process-tracing data on these tasks
(Mouselab and eye-tracking) into detailed process models
of the specific heuristics people use to make those kinds
of decisions. It would likely lead to the discovery of new
heuristics and a more mechanistic understanding of some of
the heuristic processes that are already known. It would also

1086 Behavior Research Methods (2024) 56:1065–1103

help decision researchers go beyond studying individual
decision strategies to automatically identify the entire
toolbox of all strategies that decision-makers have available.
Our method could additionally be used to accelerate the
slow process of strategy discovery because it could be
simultaneously applied to process-tracing data from many
different types of decision environments. In that way, we
could also gain insights into how the types of heuristics
people use differ across different environments. Because
our approach is rather general, we believe it has the potential
to accelerate scientific discovery in several areas of the
cognitive and behavioral sciences.

Appendix A

A.1: Human-Interpret parameters

Table 5 lists the values of the parameters of the Human-
Interpret method that we used in our benchmark planning
environment (the Mouselab MDP). The goal of the
benchmark test was to discover and describe strategies used
in this environment by people.

A.2: Defining the Domain Specific Language

Our Domain Specific Language consisted of a number of
logical predicates. Every predicate we defined accepts (at

Table 5 Values for the parameters of Human-Interpret that were used
in the benchmark test

Parameter Value

exp id v1.0

num participants 180

block train & test

num clusters 20

num demos 128

L See “Appendix A.2”

features See “Appendix A.4”

tolerance 1e−4

change tolerance 1e−5

interpret size 5

ai tolerance 0.025

num rollouts 10000

num ai clusters 4

expert reward 39.97

max divergence 0.2

threshold 0.5

allowed predicates See “Appendix A.3”

redundant predicates See “Appendix A.3”

least) two arguments: (belief) state of the environment b and
computation/action c. In our case, the state relates to the list
of expected values of nodes in the Mouselab MDP, whereas
the computation is the number of the node to click, with 0
reserved for termination. The Mouselab MDP we used in
the benchmark test had the form of a tree, hence a lot of
the predicates made use of notions used for the tree graph
structures. The meaning of the predicates, presented below
in alphabetical order, is the following:

A

all(b,c,pred1,pred2) : All the nodes in the MDP that
satisfy pred1 also satisfy pred2.

among(b,c,pred1,pred2) : This node is among all the nodes
in the MDP that satisfy pred1 and inside that set it also
satisfies pred2.

are branch leaves observed(b,c) : This node has
successor leaves which are all observed.

are leaves observed(b,c) : All leaf nodes have been
observed.

are roots observed(b,c) : All nodes on level 1 have
been observed.

D

depth(b,c,d) : This node lies on level d.

H

has best path(b,c,list) : This node lies on a path for
which the sum of expected rewards is the highest for the
paths on which other nodes in list lie.

has child highest value(b,c,list) : This node has a
child with an observed value that is higher than any other
observed child’s value for the nodes from list .

has child highest level value(b,c) : This
node’s child has the maximum possible value on its level.

has child lowest value(b,c,list) : This node has a
child with an observed value that is lower than any other
observed child’s value for the nodes from list .

has child lowest level value(b,c) : This node’s
child has the minimum posible value of its level.

1087Behavior Research Methods (2024) 56:1065–1103

has largest depth(b,c,list) : This node is the deepest
in the tree among the nodes from list .

has leaf highest value(b,c,list) : This node has a
successor that is a leaf with an observed value that is higher
than any other observed successor-leaf’s value for the nodes
from list .

has leaf highest level value(b,c) : This node
leads to an uncovered leaf that has the maximum possible
value on its level.

has leaf lowest value(b,c,list) : This node has a
successor that is a leaf with an observed value that is lower
than any other observed successor-leaf’s value for the nodes
from list .

has leaf lowest level value(b,c) : This node
leads to an uncovered leaf that has the minimum possible
value on its level

has most branches(b,c,list) : This node belongs to the
largest number of paths among the nodes in list .

has parent highest value(b,c,list) : This node has
a parent with an observed value that is higher than any other
observed parent’s value for the nodes from list .

has parent highest level value(b,c) : This
node’s parent has the maximum possible value on its level.

has parent lowest value(b,c,list) : This node has a
parent with an observed value that is lower than any other
observed parent’s value for the nodes from list .

has parent lowest level value(b,c) : This
node’s parent has the minimum possible value of its level.

has root highest value(b,c,list) : This node has an
ancestor on level 1 with an observed value that is higher than
any other observed 1st-level ancestor’s value for the nodes
from list .

has root highest level value(b,c) : This node ca
n be accessed through an observed node on level 1 which
has the highest value on level 1.

has root lowest value(b,c,list) : This node has an
ancestor on level 1 with an observed value that is lower than
any other observed 1st-level ancestor’s value for the nodes
from list .

has root lowest level value(b,c) : This node can
be accessed through an observed node on level 1 which has
the minimum value on level 1.

has smallest depth(b,c,list) : This node is the
shallowest in the tree among the nodes from list .

I

is ancestor max val(b,c) : One of the ancestors of
this node is uncovered and has the maximum possible value
in the MDP.

is leaf(b,c) : This node is a leaf.

is max in branch(b,c) : This node lies on a path with
an uncovered maximum possible value in the MDP.

is 2max in branch(b,c) : This node lies on a path with
2 uncovered maximum possible values in the MDP.

is observed(b,c) : This node was already clicked and is
observed.

is on highest expected value path(b,c) : This
node lies on a path that has the highest expected value.

is positive observed(b,c) : There is a node with a
positive value observed.

is previous observed max(b,c) : The previously
observed node uncovered the maximum possible value in
the MDP.

is previous observed max leaf(b,c) : The previ-
ously observed node is a leaf and it uncovered the maximum
possible value in the MDP.

is previous observed max level(b,c) : The pre-
viously observed node uncovered a maximum possible
value on that level.

is previous observed max nonleaf(b,c) : The
previously observed node isn’t a leaf and it uncovered the
maximum possible value in the MDP.

is previous observed max root(b,c) : The previ-
ously observed node lies on level 1 and it uncovered the
maximum possible value in the MDP.

is previous observed min(b,c) : The previously
observed node uncovered the minimum possible value in the
MDP.

1088 Behavior Research Methods (2024) 56:1065–1103

is previous observed min level(b,c) : The pre-
viously observed node uncovered a minimum possible value
on that level.

is previous observed parent(b,c) : The previ-
ously observed node is the parent of this node.

is previous observed sibling(b,c) : The previ-
ously observed node is one of the siblings of this node.

is root(b,c) : This node is one of the nodes on level 1.

is successor max val(b,c) : One of the successors of
this node is uncovered and has the maximum possible value
in the MDP.

O

observed count(b,c,n) : There are at least n observed
nodes.

T

termination return(b,c,e) : The expected reward
after stopping now is ≥ e.

The DSL we used for studying Mouselab MDP policies
was generated through a probabilistic context-free grammar
with the following format:

Listing 1 Probabilistic context-free grammar that generates the
predicates used by AI-Interpret and in consequence by Human-
Interpret. Probability of each production is uniform with respect to the
non-terminal symbol on its left hand-side Listing 1 (continued)

1089Behavior Research Methods (2024) 56:1065–1103

Listing 1 (continued)

Listing 1 (continued)

A.3: Defining redundant
and allowed predicates

The redundant predicates parameter of Human-
Interpret controls which predicates are to be removed from
the DNF formula before it is turned into linear temporal
logic formula. The allowed predicates parameter
specifies which predicates are considered for the until and
unless conditions. We used the following values:

allowed predicates = [All predicates derived from

GENERAL PRED in the CFG above, is max in branch,

are branch leaves observed]
redundant predicates = [All predicates of the type all

(b,c,pred1,pred2), allowed predicates]

1090 Behavior Research Methods (2024) 56:1065–1103

A.4: Defining features
for the softmaxmodels

The generative models created in the generative step of the
Human-Interpret algorithm take form of softmax functions
shown in Eq. 2. Those function are defined on a set of
features derived from the Mouselab MDP in a given (belief)
state b while taking a given computation/action c (node to
click). We used the following features in the benchmark test:

C

count observed node branch(b,c) : What is the
minimum of the number of observed nodes on branches that
pass through the given node.

D

depth count(b,c) : What is the number of observed
nodes on the same depth as the given node.

depth(b,c) : What is the depth of the given node.

G

get level observed std(b,c) : What is the standard
deviation for the values of observed nodes at the same level
as the given node.

H

hp 0(b,c) : Does the path that the node lies on has a value
greater than 0.

I

immediate successor count(b,c) : What is the
number of observed children of the given node.

is leaf(b,c) : Is the given node a leaf or not.

is previous max(b,c) : Did the previously observed
node uncover the maximum possible value in the MDP or
not.

is root(b,c) : Is the given node a root or not.

M

most promising(b,c) : Whether the given node lies on
the path with the highest expected reward or not.

O

observed height(b,c) : What is the maximum number
of consecutively observed nodes on the path of the given
node, starting from its children.

P

parent observed(b,c) : Whether the parent of the
given node is observed or not.

previous observed successor(b,c) : Whether the
previously observed node was the parent of the given node
or not.

S

second most promising(b,c) : Whether the given
node lies on the path with the second highest expected
reward or not.

siblings count(b,c) : What is the number of observed
siblings of the given node.

soft satisficing(b,c) : What is the expected reward
of terminating now and traversing the most promising path.

successor uncertainty(b,c) : What is the total
standard deviation for the children of the given node.

T

termination constant(b,c) : The value of this
feature is 0 for the termination action and is -1 for all the
nodes.

U

uncertainty(b,c) : What is the total standard devi-
ation for the nodes on the same depth as the given
node.

A.5: Benchmark test results

As mentioned in the main text, the 21 runs of Human-
Interpret returned a set of 21 unique strategies. Here,
we extend Table 3 from the main text, and in Table 6
present all of the discovered strategies alongside their
LTL formulas. Note that sometimes strategies discovered
in different runs differed by 1 predicate (e.g. depth(3)
vs. is leaf) and so we listed equivalent predicates in
brackets.

1091Behavior Research Methods (2024) 56:1065–1103

Table 6 Strategies found in the median combined 10-run of Human-Interpret listed with their ID from the main text

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

1

Summary: Search for the best possible outcome sibling by sibling.

Description: 32.3% 0.98 0.91 0.84 21 Y

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

2. Unless the previously observed node uncovers a 48, in which
case stop at the previous step, click on a node satisfying all of the
following conditions:

– it is an unobserved leaf.

click in this way under the condition that:

– the previously observed node was its sibling.

3. GOTO step 1 unless all the leaves are observed or the previously
observed node uncovers a 48.

LTL formula: among(not(is observed) and is leaf)
AND NEXT among(not(is observed) and is leaf)
and is previous observed sibling UNLESS
is previous observed max leaf LOOP FROM among
(not(is observed) and is leaf) UNLESS
(are leaves observed or is previous observed
max leaf)

2

Summary: No planning.

Description: Do not click. 24.6% 1 0.51 0.41 20 Y

LTL formula: False UNTIL IT STOPS APPLYING

3

Summary: Click all immediate outcomes.

Description: 4.2% 1 0.74 0.61 3 Y

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved roots.

Repeat this step as long as possible.

LTL formula: among(not(is observed) and is root)
UNTIL IT STOPS APPLYING

4

Summary: Search for the best possible outcome.

Description: 17.2% 0.88 0.87 0.79 21 Y

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved leaves.

Repeat this step until all the leaves are observed or the previously
observed node uncovers a 48.

LTL formula: among(not(is observed) and
is leaf) UNTIL (are leaves observed or
is previous observed max leaf)

1092 Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

6

Summary: Click all final outcomes sibling by sibling.

Description: 33.5% 0.74 0.65 0.47 18 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

2. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

– the previously observed node was its sibling

3. GOTO step 1.

LTL formula: among(not(is observed) and is leaf)
AND NEXT among(not(is observed) and is leaf)
and is previous observed sibling
LOOP FROM among(not(is observed) and is leaf)

Description:

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved nodes that lead to leaves whose value is
different from -48

– they are located on the highest level considering the unobserved
nodes that lead to leaves whose value is different from -48.

Repeat this step until a node with a positive value is observed or
the previously observed node uncovers a -48.

2. Click on a node satisfying all of the following conditions:

– it is an unobserved node that leads to a leaf whose value is
different from -48

– it is located on the highest level considering the unobserved
nodes that lead to leaves whose value is different from -48

– it is the previously observed node was its sibling.

3. GOTO step 1 unless all the leaves are observed or all the roots are observed.

LTL formula: among(not(has leaf lowest level value)
and not(is observed) : has largest depth) UNTIL
(is positive observed or is previous observed min level(3))
AND NEXT among(not(has leaf lowest level value)
and not(is observed) : has largest depth)
and is previous observed sibling
LOOP FROM among(not(has leaf lowest level value)
and not(is observed) : has largest depth) UNLESS
(are leaves observed or are roots observed)

5

Summary: Best first search.

Description: 3.8% 0.63 0.67 0.64 7 Y

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved nodes

– they have parents with the highest values considering the
parents of other unobserved nodes.

Repeat this step as long as possible.

LTL formula: among(not(is observed) :
has parent highest value) UNTIL IT STOPS
APPLYING

1093Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

7

Summary: Depth first search.
Description: 9.1% 0.84 0.72 0.6 7 Y
1. Click on a node satisfying all of the following conditions:

– it is an unobserved node
– it has a parent with the lowest value considering the parents

of other unobserved nodes.
2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots
– they have parents with the highest values considering the

parents of other unobserved non-roots.
Repeat this step as long as possible.

3. GOTO step 1.
LTL formula: among(not(is observed) :
has parent [lowest|highest] value)
AND NEXT among(not(is observed) and
not(is root) : has parent highest value)
UNTIL IT STOPS APPLYING
LOOP FROM among(not(is observed) :
has parent [lowest|highest] value)

7

Summary: Depth first search.
Description: 9.1% 0.84 0.72 0.6 7 Y

1. Click on a node satisfying all of the following conditions:
– it is an unobserved node
– it has a parent with the lowest value considering the parents

of other unobserved nodes.
2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots
– they have parents with the highest values considering the

parents of other unobserved non-roots.
Repeat this step as long as possible.

3. GOTO step 1.
LTL formula: among(not(is observed) :
has parent [lowest|highest] value)
AND NEXT among(not(is observed) and
not(is root) : has parent highest value)
UNTIL IT STOPS APPLYING
LOOP FROM among(not(is observed) :
has parent [lowest|highest] value)

9

Summary: Click on a node and all its successors. Repeat or terminate.
Description: 4% 0.58 0.84 0.73 5 Y
1. Click on a random node or terminate.
2. Click on the nodes satisfying all of the following:

– they are unobserved non-roots
– they have parents with the lowest (highest) values considering

the parents of other unobserved non-roots.
Repeat this step as long as possible.

3. GOTO step 1.
LTL formula: True AND NEXT among(not(is observed)
and not(is root) : has parent [lowest|highest] value)
UNTIL IT STOPS APPLYING GO TO True

1094 Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

8

Summary: Depth first search until finding the best final outcome.

Description: 6.0% 0.92 0.71 0.71 1 Y

1. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

Click in this way under the condition that:

– the previously observed node uncovered something else than a 48.

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the parents
of other unobserved non-roots.

Repeat this step as long as possible.

3. GOTO step 1 unless all the leaves are observed or the previously
observed node uncovers a 48.

LTL formula: among(not(is observed)
:
has parent [lowest|highest]] value)
and not(is previous observed max leaf)
AND NEXT among(not(is observed) and
not(is root) : has parent highest value)
UNTIL IT STOPS APPLYING
LOOP FROM among(not(is observed) :
has parent [lowest|highest] value) and
not(is previous observed max leaf)

11

Summary: Depth first search on a random branch.

Description: 3.8% 0.75 0.63 0.63 1 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the parents
of other unobserved non-roots.

Repeat this step as long as possible.

LTL formula: among(not(has child lowest level value)
and not(is observed) : has parent [lowest|highest] value)
AND NEXT among(not(is observed) and
not(is root) : has parent highest value) UNTIL
IT STOPS APPLYING

14

Summary: Click all immediate outcomes and continue at random.

Description: 2% 0.68 0.99 0.98 4 N

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved roots.

Repeat this step until all the roots are observed.

2. Terminate or click on some random nodes and then terminate.
Repeat this step as long as possible.

LTL formula: among(not(is observed) and is root)
UNTIL are roots observed AND NEXT True UNTIL
IT STOPS APPLYING

1095Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

16

Summary: Click a random path or a branch.

Description: 5.7% 0.55 0.47 0.34 3 N

1. Click on a node satisfying all of the following conditions:

– it is a leaf

– lies on a best path.

2. Click on the nodes satisfying all of the following conditions:

– they are leaves

– lie on best paths.

Click in this way as long as:

– the previously observed node was their sibling.

Repeat this step until a node with a positive value is observed.

3. Click on the nodes satisfying all of the following conditions:

– they are unobserved nodes

– they have children with the highest values considering the
children of other unobserved nodes.

Repeat this step as long as possible.

LTL formula: among(is leaf : has best path)
AND NEXT among(is leaf : has best path)
and is previous observed sibling
UNTIL is positive observed AND
NEXT among(not(is observed) :
has child highest value) UNTIL IT STOPS APPLYING

13

Summary: Click all final outcomes.

Description: 5.6% 0.69 0.74 0.55 6 Y

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved leaves.

Repeat this step until it stops applying.

LTL formula: among(not(is observed) and is leaf)
UNTIL IT STOPS APPLYING

1096 Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

20

Summary: Click two sibling final outcomes and maybe one random outcome.

Description∗: 5.9% 0.45 0.48 0.25 5 N

1. Click on random nodes. Do not click on the nodes satisfying either of
the following conditions:

– they are non-leaves that have children with the non-highest
value on their level.

2. Click on random nodes. Click in this way as long as:

– the previously observed node was their sibling.

Do not click on the nodes satisfying either of the following conditions:

– they are non-leaves that have children with the non-highest value
on their level.

Repeat this step until this node belongs to a subtree with all leaves
already observed.

3. Click on a random node or terminate.

LTL formula: not(among(not(has child highest level value)
and not(is leaf))) UNTIL (is positive observed
or is previous observed min level(3)) AND NEXT
not(among(not(has child highest level value) and
not(is leaf))) and is previous observed sibling
UNTIL[are branch leaves observed AND NEXT True

Description:

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf.

2. Click on random nodes. Click in this way as long as:

– the previously observed node was their sibling.

Do not click on the nodes satisfying either of the following conditions:

– they are nodes belonging to a subtree with some unobserved leaves.

Repeat this step as long as possible.

LTL formula: among(is leaf and not(is observed))
AND NEXT is previous observed sibling and
not(are branch leaves observed)) UNTIL IT STOPS
APPLYING

10

Summary: Search for the best final outcome in pairs.

Description: 4% 0.58 0.84 0.73 2 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf

2. Click on a nodes satisfying all of the following conditions:

– it is an unobserved leaf

Click in this way under the condition that

– the previously observed node was its sibling.

3. GOTO step 1 unless all the leaves are observed or the previously
observed node uncovers a 48.

LTL formula: among(is leaf and not(is observed))
AND NEXT among(is leaf and not(is observed))
and is previous observed sibling
LOOP FROM among(is leaf and not(is observed))
UNLESS (are leaves observed or
[is previous observed max leaf |
is previous observed max])

1097Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

15

Summary: Click 2 sibling final outcomes.

Description: 6.1% 0.54 0.54 0.37 6 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved leaf

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved leaves

Click in this way as long as:

– the previously observed node was their sibling.

Repeat this step as long as possible.

LTL formula: among(is leaf and not(is observed))
AND NEXT among(is leaf and not(is observed))
and is previous observed sibling UNTIL IT STOPS
APPLYING

21

Summary: Random planning.

Description: 4.1% 0.57 1.0 1.0 20 Y

1. Terminate or click on some random nodes and then terminate. Repeat
this step as long as possible.

LTL formula: True UNTIL IT STOPS APPLYING

12

Summary: Depth first search on two random branches.

Description: 3% 0.7 0.66 0.54 2 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the parents
of other unobserved non-roots.

Repeat this step as long as possible.

3. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

4. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the
parents of other unobserved non-roots.

Repeat this step as long as possible.

LTL formula: among(not(has child lowest level value)
and not(is observed) : has parent [lowest|highest] value)
AND NEXT among(not(is observed) and
not(is root) : has parent highest value)
UNTIL IT STOPS APPLYING AND NEXT
mong(not(has child lowest level value) and
not(is observed) : has parent [lowest|highest] value)
AND NEXT among(not(is observed) and not(is root)
: has parent highest value) UNTIL IT STOPS
APPLYING

1098 Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

17

Summary: Depth First Search until a positive value.

Description: 2.8% 0.85 0.68 0.47 1 N

1. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

2. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the parents
of other unobserved non-roots.

Repeat this step as long as possible

3. Click on a node satisfying all of the following conditions:

– it is an unobserved node

– it has a parent with the lowest value considering the parents of
other unobserved nodes.

4. Click on the nodes satisfying all of the following conditions:

– they are unobserved non-roots

– they have parents with the highest values considering the parents
of other unobserved non-roots.

– this step until all the roots are observed or the previously observed
node uncovers a positive value

5. GOTO step 3.

LTL formula: among(not(is observed)
:
has parent lowest value)
AND NEXT among(not(is root) and
not(is observed) : has parent highest value)
UNTIL IT STOPS APPLYING AND NEXT
among(not(is observed) : has parent lowest value)
AND NEXT among(not(is root) and
not(is observed) : has parent highest value)
UNTIL (are roots observed or
is previous observed positive)

1099Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

18

Summary: Click sibling final outcomes and a middle node.

Description: 5.5% 0.47 0.5 0.24 1 Y

1. Click on random nodes. Do not click on the nodes satisfying either of
the following conditions:

– they are non-leaves that have children with the non-highest value
on their level.

Repeat this step until a node with a positive value is observed or the
previously observed node uncovers a -48.

2. Click on random nodes. Click in this way as long as:

– the previously observed node was their sibling.

Do not click on the nodes satisfying either of the following conditions:

– they are non-leaves that have children with the non-highest value
on their level.

Repeat this step until a node with a positive value is observed or the
termination rewrd is -30.

3. Click on a node satisfying all of the following conditions:

– it is a non-leaf that has a child with the non-highest value on its level.

LTL formula: not(among(not(has child highes level value)
and not(is leaf))) UNTIL (is positive observed
or is previous observed min) AND NEXT
not(among(not(has child highest level value) and
not(is leaf))) and is previous observed sibling
UNTIL (is positive observed or
termination reward(-30)) AND NEXT
among(not(has child highest level value) and
not(is leaf))

1100 Behavior Research Methods (2024) 56:1065–1103

Table 6 (continued)

ID Generated formulas and descriptions Statistics

FR FCF FON FPO N GT

19

Summary: Depth First Search until a positive valued path.

Description: 3.9% 0.82 0.52 0.41 1 N

1. Click on the nodes satisfying all of the following conditions:

– they are unobserved nodes that lead to leaves whose value is
different from -48

– they are located on the highest level considering the unobserved
nodes that lead to leaves whose value is different from -48.

Repeat this step until a node with a positive value is observed or the
previously observed node uncovers a -48.

2. Click on the nodes satisfying all of the following conditions:

– it is an unobserved node that leads to a leaf whose value is
different from -48

– it is located on the highest level considering the unobserved nodes
that lead to leaves whose value is different from -48.

– it is the previously observed node was its sibling.

3. GOTO step 1 unless all the leaves are observed or all the roots are
observed.

LTL formula: among(not(has leaf lowest level value)
and not(is observed) : has largest depth)
UNTIL (is positive observed or
is previous observed min) AND NEXT
among(not(has leaf lowest level value)
and not(is observed) : has largest depth)
and is previous observed sibling
LOOP FROM among(not(has leaf lowest level value)
and not(is observed) : has largest depth) UNLESS
(are leaves observed or are roots observed)

For each strategy, we provide automatically generated descriptions that represent that strategy, and a summary of that strategy that we created
by hand. FR denotes the frequency of the strategy; FCF (fit cluster-formula) averages two proportions: formula demonstrations agreeing with the
softmax clusters and vice-versa measured using 100000 demonstrations; FON (fit optimal-non-optimal) quantifies how often people’s planning
operations in the cluster agreed with the description; FPO (fit per operation) is the ratio between the average likelihood per planning operation
belonging to the cluster and the average likelihood per planning operation for the (policy induced by the) cluster’s description in general; N is the
total number of clusters encoding a strategy
∗One strategy listed steps 1 and 2 twice

1101Behavior Research Methods (2024) 56:1065–1103

Funding Open Access funding enabled and organized by Projekt
DEAL. This project was funded by the German Federal Ministry
of Education and Research (BMBF): Tübingen AI Center, FKZ:
01IS18039B.

Data Availability Anonymized data from the experiment we used
as our benchmark experiment is available at https://github.com/
RationalityEnhancement/InterpretableHumanPlanning/tree/main/
data/human.

Code Availability The code for Human-Interpret is available at https://
github.com/RationalityEnhancement/InterpretableHumanPlanning.

Declarations

Ethics approval and consent to participate Not applicable

Consent for Publication Not applicable.

Conflict of Interests The authors declare that they have no conflicts of
interest or competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Abelson, R., & Levi, A. (1985). Decision making and decision
theory. In Lindzey, G., & Aronson, E. (Eds.) Handbook of social
psychology. Hillsdale, NJ: Erlbaum.

Addis, M., Sozou, P.D., Lane, P.C., & Gobet, F. (2016). Computational
scientific discovery and cognitive science theories. In Computing
and philosophy, Springer, pp 83–97.

Agrawal, M., Peterson, J. C., & Griffiths, T. L. (2020). Scaling up
psychology via scientific regret minimization. Proceedings of the
National Academy of Sciences, 117(16), 8825–8835.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C. I., Donahue, M., & Rus,
D. (2019). Learning to Plan with Logical Automata. In Robotics:
Science and systems conference (RSS), Messe Freiburg, Germany,
(pp. 1-9).

Bacon, F. Fowler, T. (Ed.) (1878). Oxford: Clarendon Press.
Becker, F., Skirzyński, J., Van Opheusden, B., & Lieder, F. (2022).

Boosting human decision-making with ai-generated decision aids.
Computational Brain & Behavior.

Bettman, J. R., Johnson, E. J., & Payne, J. W. (1990). A componential
analysis of cognitive effort in choice. Organizational behavior and
human decision processes, 45(1), 111–139.

Bhatia, S., & He, L. (2021). Machine-generated theories of human
decision-making. Science, 372(6547), 1150–1151.

Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically
organized behavior and its neural foundations: a reinforcement
learning perspective. Cognition, 113(3), 262–280.

Callaway, F., Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017).
Mouselab-MDP: A new paradigm for tracing how people plan. In
The 3rd Multidisciplinary Conference on Reinforcement Learning
and Decision Making, Ann Arbor, MI, https://osf.io/vmkrq/ .

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M., & Griffiths,
T. (2018). A resource-rational analysis of human planning.

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P., Lieder,
F., & Griffiths, T. (2020). Human planning as optimal information
seeking. Manuscript under review.

Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive
psychology, 4(1), 55–81.

Consul, S., Heindrich, L., Stojcheski, J., & Lieder, F. (2021). Improv-
ing human decision-making by discovering efficient strategies for
hierarchical planning. arXiv preprint arXiv: 210200521.

Cook, G. J., & Swain, M. R. (1993). A computerized approach
to decision process tracing for decision support system design.
Decision Sciences, 24(5), 931–952.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the em algorithm. Journal of
the Royal Statistical Society: Series B (Methodological), 39(1),
1–22.

Džeroski, S., Langley, P., & Todorovski, L. (2007). Computational
discovery of scientific knowledge. In Computational Discovery of
Scientific Knowledge, Springer, pp 1–14.

Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2018). Diversity
is all you need: Learning skills without a reward function. arXiv
preprint arXiv: 180206070.

Fang, J., Schooler, L., & Shenghua, L. (2022). Machine learning
strategy identification: a paradigm to uncover decision strategies
with high fidelity. Behavior Research Methods, pp. 1–22.

Ford, J. K., Schmitt, N., Schechtman, S. L., Hults, B. M., & Doherty,
M. L. (1989). Process tracing methods: contributions, problems,
and neglected research questions. Organizational behavior and
human decision processes, 43(1), 75–117.

Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh, Y. W.,
Rainforth, T., & Goodman, N. (2019). Variational bayesian
optimal experimental design. arXiv preprint arXiv: 190305480.

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P.
M., & Lieder, F. (2019). Doing more with less: meta-reasoning
and meta-learning in humans and machines. Current Opinion in
Behavioral Sciences, 29, 24–30.

Huber, O., Wider, R., & Huber, O. W. (1997). Active information
search and complete information presentation in naturalistic risky
decision tasks. Acta Psychologica, 95(1), 15–29.

Huys, Q. J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser,
J. P. (2012). Bonsai trees in your head: how the Pavlovian system
sculpts goal-directed choices by pruning decision trees. PLoS
Computational Biology 8(3).

Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E.,
Gershman, S. J., . . . , Roiser, J. P. (2015). Interplay of approximate
planning strategies. Proceedings of the National Academy of
Sciences, 112(10), 3098–3103.

Jain, Y. R., Callaway, F., Griffiths, T. L., Dayan, P., He, R., Krueger, P.
M., & Lieder, F. (2022). A computational process-tracing method
for measuring people’s planning strategies and how they change
over time. Behavior Research Methods, pp. 1–43.

Jasper, J., & Shapiro, J. (2002). Mousetrace: A better mousetrap
for catching decision processes. Behavior Research Methods
Instruments, & Computers, 34(3), 364–374.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90(430), 773–795.

Kemtur, A., Jain, Y. R., Mehta, A., Callaway, F., Consul, S.,
Stojcheski, J., & Lieder, F. (2020). Leveraging machine learning
to automatically derive robust planning strategies from biased
models of the environment. In Proceedings of the 42nd Annual
Conference of the Cognitive Science Society, pp 2405–2411.

1102 Behavior Research Methods (2024) 56:1065–1103

https://github.com/RationalityEnhancement/InterpretableHumanPlanning/tree/main/data/human
https://github.com/RationalityEnhancement/InterpretableHumanPlanning/tree/main/data/human
https://github.com/RationalityEnhancement/InterpretableHumanPlanning/tree/main/data/human
https://github.com/RationalityEnhancement/InterpretableHumanPlanning
https://github.com/RationalityEnhancement/InterpretableHumanPlanning
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://osf.io/vmkrq/
http://arxiv.org/abs/210200521
http://arxiv.org/abs/180206070
http://arxiv.org/abs/190305480

Konishi, S., & Kitagawa, G. (2008). Information criteria and statistical
modeling. Springer Science & Business Media.

Kuhn, M., & Johnson, k. (2019). Feature engineering and selection: A
practical approach for predictive models. CRC Press.

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago:
University of Chicago Press.

Langley, P., Zytkow, J. M., Bradshaw, G. L., & Simon, H. A. (1983).
Three facets of scientific discovery. In IJCAI, Citeseer, pp 465–
468.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987).
Scientific discovery: Computational explorations of the creative
processes. Cambridge: MIT press.

Lieder, F., Krueger, P. M., & Griffiths, T. (2017). An automatic method
for discovering rational heuristics for risky choice. In CogSci.

Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., &
Griffiths, T. (2019). A cognitive tutor for helping people overcome
present bias. In RLDM 2019.

Lieder, F., Callaway, F., Jain, Y. R., Das, P., Iwama, G., Gul, S.,
. . . , Griffiths, T. L. (2020), Leveraging artificial intelligence to
improve people’s planning strategies. Manuscript in revision.

Liu, G., Schulte, O., Zhu, W., & Li, Q. (2018). Toward interpretable
deep reinforcement learning with linear model u-trees. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, Springer, pp 414–429.

McGrath, T., Kapishnikov, A., Tomašev, N., Pearce, A., Hassabis, D.,
Kim, B., . . . , Kramnik, V. (2021). Acquisition of chess knowledge
in alphazero. arXiv preprint arXiv: 211109259.

McNicol, D. (2005). A primer of signal detection theory. London:
Psychology Press.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE
Signal processing magazine, 13(6), 47–60.

Myung, J. I., Cavagnaro, D. R., & Pitt, M. A. (2013). A
tutorial on adaptive design optimization. Journal of mathematical
psychology, 57(3-4), 53–67.

Newell, A., Simon, H. A., et al. (1972). Human problem solving vol
104. Englewood Cliffs, NJ: Prentice-Hall.

Newton, I. (1687). Philosophiae naturalis principia mathematica.
London: William Dawson & Sons Ltd.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters,
J., et al. (2018). An algorithmic perspective on imitation learning.
Foundations and Trends�, in Robotics, 7(1-2), 1–179.

Ouyang, L., Tessler, M. H., Ly, D., & Goodman, N. (2016). Practical
optimal experiment design with probabilistic programs. arXiv
preprint arXiv: 160805046.

Ouyang, L., Tessler, M. H., Ly, D., & Goodman, N. D. (2018).
Webppl-oed: A practical optimal experiment design system. In
CogSci.

Payne, J. W., Braunstein, M. L., & Carroll, J. S. (1978). Exploring
predecisional behavior: an alternative approach to decision
research. Organizational Behavior and Human Performance,
22(1), 17–44.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive
strategy selection in decision making. Journal of experimental
psychology: Learning, Memory, and Cognition, 14(3), 534.

Payne, J. W. (1993). The adaptive decision maker. Cambridge:
Cambridge University Press.

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D., &
Griffiths, T. L. (2021). Using large-scale experiments and

machine learning to discover theories of human decision-making.
Science, 372(6547), 1209–1214.

Popper, K. (1935). The Logic of Scientific Discovery. Evanston, IL:
Routledge.

Raftery, A. E. (1995). Bayesian model selection in social research.
Sociological methodology, 25, 111–163.

Reichenbach, H. (1938). Experience and prediction an analysis of
the foundations and the structure of knowledge. Chicago: The
University of Chicago Press.

Riedl, R., Brandstätter, E., & Roithmayr, F. (2008). Identifying
decision strategies: a process-and outcome-based classification
method. Behavior research methods, 40(3), 795–807.

Russek, E., Acosta-Kane, D., van Opheusden, B., Mattar, M.G., &
Griffiths, T. (2022). Time spent thinking in online chess reflects
the value of computation. PsyArXiv.

Shrager, J., & Langley, P. Shrager, J., & Langley, P. (Eds.) (1990).
Computational approaches to scientific discovery. San Mateo,
CA: Morgan Kaufmann.

Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., & Tenenbaum, J.
(2020). Few-shot bayesian imitation learning with logical program
policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, (Vol. 34, pp. 10251-10258).

Simon, H. A. (1973). Does scientific discovery have a logic?
Philosophy of science, 40(4), 471–480.

Simon, H. A., & Newell, A. (1971). Human problem solving: The
state of the theory in 1970. American Psychologist, 26(2), 145.

Skirzyński, J., Becker, F., & Lieder, F. (2021). Automatic discovery of
interpretable planning strategies. Machine Learning, 110, 2641–
2683.

Sozou, P. D., Lane, P. C., Addis, M., & Gobet, F. (2017).
Computational scientific discovery. Springer handbook of model-
based science 719–734.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An
introduction. Cambridge: MIT press.

Svenson, O. (1979). Process descriptions of decision making.
Organizational behavior and human performance, 23(1), 86–112.

Verma, A., Murali, V., Singh, R., Kohli, P., & Chaudhuri, S.
(2018). Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning, PMLR, pp
5045–5054.

Vincent, B. T., & Rainforth, T. (2017). The darc toolbox: automated,
flexible, and efficient delayed and risky choice experiments using
bayesian adaptive design. PsyArXiv October 20.

Vrieze, S. I. (2012). Model selection and psychological theory:
a discussion of the differences between the akaike information
criterion (aic) and the bayesian information criterion (bic).
Psychological methods, 17(2), 228.

Westenberg, M. R., & Koele, P. (1994). Multi-attribute evaluation pro-
cesses: Methodological and conceptual issues. Acta Psychologica,
87(2-3), 65–84.

Whewell, W. (1840). The philosophy of the inductive sciences:
founded upon their history, vol 1. JW Parker.

Willemsen, M., & Johnson, E. (2011). Visiting the decision factory:
observing cognition with MouselabWEB and other information
acquisition Methods, pp. 19–42.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1103Behavior Research Methods (2024) 56:1065–1103

http://arxiv.org/abs/211109259
http://arxiv.org/abs/160805046

	Automatic discovery and description of human planning strategies
	Abstract
	Introduction
	Background and related work
	Research on automating scientific discovery
	Using artificial intelligence to understand human planning
	Methods for measuring how people plan
	Mouselab
	Mouselab-MDP
	Categorizing planning strategies via the Computational Microscope

	Finding interpretable descriptions of formal planning strategies (policies): AI-Interpret

	A new method for discovering and describing human planning strategies
	Data collection and data preparation
	Creating the Domain Specific Language
	Obtaining interpretable descriptions of human planning strategies via Human-Interpret
	Big picture
	Examples
	Clustering planning operations into planning strategies
	Finding formulaic descriptions of planning strategies
	Extracting procedural descriptions from logical formulas
	Translating to natural language
	Bayesian model selection

	Heuristically choosing strategies used by people
	Technical details regarding using our method

	Evaluating our method for discovering human planning strategies
	Setup of the benchmark problem
	Planning experiment
	Domain Specific Language (DSL) and translation dictionary
	Parameters for the Human-Interpret algorithm

	Measuring the reliability of Human-Interpret
	Method
	Technical specification
	Results

	Measuring the reliability of our computational method
	Method
	Results

	Evaluating and comparing strategies discovered by our computational method to strategies discovered through manual inspection
	Ground truth strategies
	Noisy strategies
	Quantitative analysis of the strategies
	Quantitative comparison against the manual method

	General discussion
	Advantages
	Reliability
	Time complexity
	Generality
	Summary

	Limitations
	Imperfect clustering
	Incomplete DSL
	Disregarding evidence for some planning strategies
	Computational complexity
	Bias towards fewer strategies.

	Future work
	Tackling the limitations
	Designing a Human-in-the-Loop version of Human-Interpret
	Merging Human-Interpret with the Computational Microscope
	Researching other scenarios

	Appendix A
	A.1: Human-Interpret parameters
	A.2: Defining the Domain Specific Language
	A
	D
	H
	I
	O
	T
	A.3: Defining redundant and allowed predicates
	A.4: Defining features for the softmax models
	C
	D
	G
	H
	I
	M

	O
	P
	S
	T
	U
	A.5: Benchmark test results
	Declarations
	References

