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Abstract
Occupations are typically characterized in nominal form, a format that limits options for hypothesis testing and data analy-
sis. We drew upon ratings of knowledge, skills, and abilities for 966 occupations listed in the US Department of Labor’s 
Occupational Classification Network (O*NET) database to create an accessible, standardized multidimensional space in 
which occupations can be quantitatively localized and compared. Principal component analysis revealed that the occupation 
space comprises three main dimensions that correspond to (1) the required amount of education and training, (2) the degree 
to which an occupation falls within a science, technology, engineering, and mathematics (STEM) discipline versus social 
sciences and humanities, and (3) whether occupations are more mathematically or health related. Additional occupational 
spaces reflecting cognitive versus labor-oriented categories were created for finer-grained characterization of dimensions 
within occupational sets defined by higher or lower required educational preparation. Data-driven groupings of related 
occupations were obtained with hierarchical cluster analysis (HCA). Proof-of-principle was demonstrated with a real-world 
dataset (470 participants from the Nathan Kline Institute – Rockland Sample; NKI-RS), whereby verbal and non-verbal 
abilities—as assessed by standardized testing—were related to the STEM versus social sciences and humanities dimension. 
Visualization of Latent Components Assessed in O*Net Occupations (VOLCANO) is provided to the research community 
as a freely accessible tool, along with a Shiny app for users to extract quantitative scores along the relevant dimensions. 
VOLCANO brings much-needed standardization to unwieldy occupational data. Moreover, it can be used to create new 
occupational spaces customized to specific research domains.
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Introduction 

Understanding an occupation (i.e., a person’s regular work 
or profession) is relevant to research questions across many 
disciplines, including psychology, neuroscience, economics, 

political science, education, sociology, health care, and age-
ing. These questions often require retrospective analyses 
relating occupational practice to other measures, such as—
among others—health status, cognitive abilities, and sex or 
gender differences. By contrast, vocational psychologists use 

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-02044-7&domain=pdf
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prospective analysis of personality traits, abilities, and inter-
ests to predict placement or select candidate (e.g., Hartman & 
Betz, 2007; Holland, 1997; Larson et al., 2002; Ralston et al., 
2004)—a procedure that has been criticized due to low empir-
ical support (Fouad & Kozlowski, 2019; Savickas, 2001).

Tools that can convert occupations into quantified dimen-
sions of mental traits and skills—as well as contextual fac-
tors (e.g., sex/gender and economic access)—are required 
to test hypotheses regarding characteristics of individuals 
whose occupation is known. Researchers across disciplines 
have strived to develop an “occupational space” that can be 
linked to various research questions. For instance, cognitive 
neuropsychologists have identified key occupational attrib-
utes that relate to the location of atrophy in frontotemporal 
lobar degeneration in order to understand how long-term 
engagement in occupations associates with individual differ-
ences in the emergence of neurodegeneration (e.g., Spreng 
et al., 2010). Meanwhile, cognitive neuroscientists have 
assessed how occupations associate with structural brain 
health (e.g., Habeck et al., 2019) and gerontologists have 
identified key occupational factors in order to identify spe-
cific physical traits of occupations that could predict healthy 
ageing (e.g., Burzynska et al., 2019). While there is some 
overlap in the cognitive factors identified by these different 
research teams (e.g., a factor relating to the occupational 
complexity), these methods used to identify occupational 
factors differ across teams and disciplines, a problem making 
related findings challenging to compare.

There are several methodological barriers to develop-
ing continuous measures of occupation characteristics. 
Occupation is a categorical variable with a large number of 
titles (i.e., modalities), including multiple titles describing 
the same occupation (e.g., medical doctor vs. physician). 
Because occupations can be described with varying degrees 
of specificity (e.g., physician vs. cardiologist), each occu-
pational title exists within a complex hierarchical structure. 
Additionally, each occupation requires a different mix of 
knowledge, qualifications, and abilities, and this makes it 
challenging to categorize occupations into subgroups.

The dictionary of occupational titles (DOT)––first created 
in 1930 by the United States Department of Labor (DOT: 
United States Department of Labor, 2006)––is the earliest 
and best-known occupation taxonomic system. In 1995, the 
DOT was replaced by the Occupational Classification Net-
work (O*NET) database (US Department of Labor, 2019a), 
reducing the DOT’s 28,800 occupations to 966 occupations 
grouped using a conceptual framework called the Content 
Model (see Peterson et al., 2001). O*NET’s sampling meth-
odology and occupational assignment improved upon the 
DOT, enhancing application in social sciences (Handel, 2016) 
(Peterson et al., 2001). The O*NET Content Model provides 
a framework that identifies the most important types of infor-
mation about occupations and integrates this information 

into a theoretical, empirically validated, model. The O*NET 
content model includes both worker-oriented as well as job-
oriented traits. The O*NET content model describes and cat-
egorizes these distinguishing characteristics of occupations 
and provides a set of standardized, measurable variables that 
represent key features of occupations. Worker-oriented vari-
ables, including the specific knowledge, skills, and abilities 
associated with particular occupations, have long been used 
to explore how particular traits relate to different aspects of 
occupation at the individual level (e.g., Burrus et al., 2013).

Both DOT and O*NET data have also been subjected to 
dimension reduction techniques in order to extract compo-
nents accounting for fundamental occupational traits, such as 
occupational complexity, people versus things, and physical 
demands (Clark, 2002; Hadden et al., 2004; Hanson et al., 
1999; Levine, 2003; Shu et al., 1996). Similarly, clustering 
approaches have been applied to reduce the complexity of 
O*NET data (e.g., Nolan et al., 2011; Slaper, 2014). Although 
several studies have reduced O*NET data into accessible, shar-
able, and actionable data (Indiana Department of Workforce 
Development Research and Analysis Division & Indiana Busi-
ness Research Center, 2011), these analyses have been tailored 
to select samples or occupational categories and are not flex-
ible or modifiable to suit different research questions. A stand-
ardized, accessible, and flexible system for quantification of 
occupation characteristics is required to scale the application 
of the rich O*NET database across research domains.

We created a method for the derivation of quantified dimen-
sional scores characterizing O*NET occupations for use by the 
research community. We applied principal component analysis 
(PCA; Abdi & Williams, 2010; Eckart & Young, 1936; Hotel-
ling, 1933) to the ratings of knowledge, skills, and abilities asso-
ciated with each occupation from O*NET to identify dimen-
sions (also called components) that capture patterns in the data. 
We then used these components as the input to hierarchical 
cluster analyses (HCA; Bridges, 1966) to identify categorical 
clusters of occupations and their associated traits as indicated 
by the ratings. Visualizations of the occupational space were 
labeled by these clusters as well as by the overall required level 
of preparation (i.e., ‘Job Zone’, which quantifies the required 
level of education, related experience, and on-the-job training, 
see https://​www.​oneto​nline.​org/​help/​online/​zones). Follow-up 
PCAs with HCAs within different Job Zones were conducted 
to identify finer-grained occupational components unaccounted 
for by education and socioeconomic status. We also provide 
an illustrative example where we use Visualization of Latent 
Components Assessed in O*Net Occupations (VOLCANO) 
to understand the link between cognition and occupation in a 
sample of healthy adults. All analyses, data, and clustering are 
available through the Open Science Framework (OSF), GitHub 
(https://​github.​com/​juchi​yu/​Occup​ation​PCAs), and an original 
Shiny app (i.e., an R-based interactive web app; the codes and 
link are included in the same GitHub repository).

https://www.onetonline.org/help/online/zones
https://github.com/juchiyu/OccupationPCAs


419Behavior Research Methods (2024) 56:417–432	

1 3

Method

Data collection and extraction

The data included in this study were obtained from a public 
database available from the United States Department of Labor 
Standard Occupational Classification Network (O*NET: US 
Department of Labor, 2019a). O*NET is a Standard Occupa-
tional Classification based system that organizes work into 966 
occupations and associated traits as determined from surveys 
of workers (US Department of Labor, 2019c).

In our analyses, each occupation is treated as an “obser-
vation” described by scores on different measures. For 
each occupation within the O*NET database, we extracted 
120 trait variables (e.g., trunk strength ability, physics 
knowledge, and clerical skills) that were described with 
Likert-scaled ratings ranging from “not important” (0) to 
“extremely important” (5) concerning abilities (52 vari-
ables), knowledge (33 variables), and skills (35 variables). 
The current study did not include job-oriented traits (US 
Department of Labor, 2019b), because the key aim of this 
study is to uncover the association between individual 
abilities (e.g., cognitive, behavioral, neural) and worker-
level occupational attributes. These data (966 occupations 
described by 120 traits) were used as input for all subsequent 
analyses (see Table 1 for examples).

Analyses

A general occupation PCA was applied to the 966 occupa-
tions described by 120 rated traits. The first component of 
this general occupation PCA was dominated by Job Zone 
level (i.e., a five-level grouping variable that reflects the 

preparation required; specifically, the amount of education, 
related experience, and on-the-job training needed to do the 
work). To identify components that explain variance over 
and above the effect of Job Zone effect, we conducted fol-
low-up PCAs to identify components only within Job Zones 
4 and 5 (391 occupations requiring extensive preparation; 
the Job Zones 4–5 PCA) and Job Zones 1–3 (575 occupa-
tions requiring relatively less preparation; the Job Zones 
1–3 PCA). Data were analyzed using R, version 4.1.1 ( R 
Core Team , 2021), with packages ExPosition, version 2.8.23 
(Beaton et al., 2014), stats, version 4.1.1 (R Core Team, 
2021), ggplot2, version 3.3.5 (Wickham, 2016), ggden-
dro, version 0.1.22 (de Vries & Ripley, 2020), dendextend, 
version 1.15.1 (Galili, 2015), and tidyverse, version 1.3.1 
(Wickham et al., 2019).

Principal component analysis (PCA)

We performed PCA on the preprocessed data where each 
trait was mean-centered (i.e., the mean of each trait is now 
equal to 0) across occupations (with the ExPosition R pack-
age, Beaton et al., 2014; scaling—a.k.a., normalization, 
such as using Z-scores—was not used because all traits were 
rated on the same scale)1. PCA creates a set of orthogonal 

Table 1   Sample data of occupations and associated traits

Occupational traits were selected from 120 variables across 966 occupations for the purposes of illustration. Trait ratings range from “not impor-
tant” (0) to “extremely important” (5)

Traits

Occupations Abilities Knowledge Skills

Arm Hand 
Steadiness

Deductive 
Reasoning

Chemistry Production & 
Processing

Active Listening Programming

Job Zones 1–3
Bartenders 3.00 3.00 1.87 1.69 3.12 0.25
Electricians 3.00 3.88 1.50 2.39 3.00 0.00
Maids and Housekeeping Cleaners 2.12 2.38 0.97 1.12 2.25 0.00
Sales Agent, Financial Services 1.00 4.25 0.07 0.99 4.00 0.75
Job Zones 4 – 5
Chemists 3.12 4.50 6.10 3.85 3.75 1.75
Computer Programmers 1.12 3.88 0.29 2.56 4.00 4.88
Fundraisers 0.00 4.25 0.06 0.56 3.88 1.00
Lawyers 0.38 4.38 0.38 1.46 4.75 0.75

1  We did not perform a rotation here, because rotation is recom-
mended when the variables are normalized (i.e., so that the average 
eigenvalue is unity) and works best when the pattern of eigenvalues 
clearly indicates the number of components to keep (see Abdi & Wil-
liams, 2010). However, when we performed a Varimax rotation with 
the number of dimensions equal to the number of significant compo-
nents—as determined by the permutation test —, we obtained results 
highly similar to the un-rotated PCA reported here.
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(i.e., uncorrelated) variables called principal components 
(Abdi & Williams, 2010; Hotelling, 1933; Pearson, 1901). 
The scores of each principal component are called compo-
nent scores and are obtained as a linear combination of the 
original variables (i.e., here traits) with coefficients—called 
loadings—that indicate the importance of each original vari-
able in the combination. For each component, the amount of 
explained variance in the data is measured by the variance 

of its component scores—called the eigenvalue of this com-
ponent. In PCA, these components are ordered (from the 
largest to the smallest) according to their eigenvalues.

In PCA, a component is reliable when it explains a 
significant amount of variance. This significance was 
evaluated by a permutation test obtained by (1) randomly 
permuting the data within each variable, (2) computing a 
PCA on the permuted data table, (3) repeating this process 

Table 2   Descriptions of occupation cluster labels

Occupation Clusters

Label Description

General ArtsCom Arts and Communication Specialists
BioTech Biological Technicians
Construction Construction Workers and Craftsmen
EnviroSaftey Environment and Safety Managers
EnviroSustain Environment and Sustainability Managers
FinMedLglClerks Financial, Medical and Legal Clerks
FinMedLglManag Financial, Medical and Legal Managers
FinMedLglSpec Financial, Medical and Legal Specialists
GovtComManag Government and Community Managers
ITSpec Computer and Informatics Specialists
Labor Physical Labor Workers
MathSpatial Mathematicians and Spatial Scientists
MedPrac Medical Practitioners
ObjectTech Object Technicians
SciEngi Scientists and Engineers
Service Service Workers
SocSci Social Scientists and Practitioners
TechOp Technicians and Operators

Job Zones 4–5 AltThrpy Alternative Therapy
BusGovt Business and Government
CompSci Computer and Informatics
Engi Engineering
Enviro Environment
MedGen Medical Science, Generalized
MedSpec Medical Science, Specialized
SalesLog Sales and Logistics
SciMaths Science and Mathematics
SocSci Social Science

Job Zones 1–3 Clerk Office Clerks
EngEnviroTech Engineering and Environmental Technicians
HealthTech Health Technicians
LaborFineMotor Labor Workers, Requiring Fine Motor Skills
LaborGrossMotor Labor Workers, Requiring Gross Motor Skills
Managerial Managerial Workers
Production Production Workers
PublicSafe Public Safety Specialists
ServiceSocial Service Workers, Social Sector
ServiceTech Service Workers, Technical Sector
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many (i.e., 1000) times, and (4) generating the probability 
distribution of each eigenvalue from the PCAs of these 
permuted datasets. From each distribution, the propor-
tion of the permuted eigenvalues that are larger than the 
observed eigenvalue gives the probability associated with 
(i.e., the p value of) this eigenvalue (Abdi & Williams, 
2010; Buja & Eyuboglu, 1992; Reddon, 1984).

In PCA, these components are interpreted by inspecting, 
one component at a time, their patterns of component scores 
and loadings, and this process is facilitated by drawing maps 
(i.e., scatterplots) that plot the loadings of two components 
(typically Components 1 and 2) against each other. In these 
maps, the correlation between two traits is estimated by the 
angle that these two traits form with the origin of the map: 
Two traits with a small angle are positively correlated, two 
traits with a right angle are orthogonal (i.e., uncorrelated), and 
two traits with a large obtuse angle are negatively correlated. 
Here, loadings were scaled to have the same variance as the 
component scores and therefore called “scaled loadings” (by 
contrast with the usual loadings that have unitary variance).

Finally, to reveal the structure of the occupations in the 
same component space, we used the component scores as 
coordinates to create scatterplots of the occupations. In these 
maps, the similarity between occupations is evaluated by 
their distances: Occupations near each other require similar 
skills, whereas occupations far from each other require dis-
tinct skills (note that this procedure differs from the plots of 
the traits whose interpretation relies on the angle between 
pairs of traits). We labeled these components according to 
how both traits and occupations are distributed. The labels 
were selected for the sake of efficient communication, rec-
ognizing that they do not necessarily reflect the nuances of 
each component.

Hierarchical cluster analysis (HCA)

Hierarchical cluster analyses (HCA; Bridges, 1966)2 were 
performed on both the occupations’ component scores and 
the traits’ scaled loadings for the three PCAs (i.e., general, 
Job Zones 1–3, Job Zones 4–5) using the significant com-
ponents of each PCA. The HCAs were conducted using the 
R-function hclust (R Core Team, 2021), and the clusters 
were extracted using Ward’s minimum variance (Ward, 1963). 
Homogeneous clusters were defined such that the numbers of 
occupations or traits were roughly equivalent (Fig. 1; see the 
detailed list of occupations and traits in Supplementary S1, 
S3, and S4).

Visualizations

Component scores and scaled loadings were grouped 
and labeled using clusters derived from the correspond-
ing HCAs. The component scores are also grouped and 
labeled using the Job Zone variable from O*NET to assess 
the degree to which a given component corresponds to the 
overall level of education and preparation required. An 
interactive, publicly available (R-based) Shiny app (avail-
able at https://​github.​com/​juchi​yu/​Occup​ation​PCAs) is 
provided so that others can re-run analyses and plot the 
data, adjusting the parameters (e.g., the number of clusters, 
clustering method, occupation vs trait clustering) accord-
ing to their needs.

Results

General occupation PCA

The general occupation PCA identified seven significant com-
ponents, which, together, explained 77.24% of the variance. 
HCA identified 18 occupation clusters and nine trait clusters 
(Fig. 1A and Supplementary S1). The occupation spaces of 
the first three components are shown in Figs. 2 and 3. The 
first component, explaining 37% of the variance, differenti-
ated labor-intensive occupations (e.g., stonemasons, logging 
equipment operators) from education-intensive occupations 
(e.g., industrial-organizational psychologists, political science 
teachers), with the scaled loadings of traits reflecting physi-
cal versus cognitive abilities (Fig. 2B and Supplementary S5, 
horizontal axes). Accordingly, this component corresponded 
to the five O*NET Job Zone groups (Fig. 2A; horizontal 
axis). Because this component was largely determined by the 
amount of preparation required (including education, related 
experience, and on-the-job training), we labeled it “Prepara-
tion.” This component likely reflects what has previously been 
labeled “occupational complexity” or “substantive complex-
ity” (Crouter et al., 2006; Gadermann et al., 2014; Hadden 
et al., 2004; Smart et al., 2014).

The second component explained 19% of the variance and 
differentiated occupations in STEM (e.g., robotic, marine, 
biomedical engineers) from occupations that are non-STEM 
(e.g., models, telemarketers, coatroom attendants), with the 
scaled loadings of traits reflecting engineering, technology, 
and natural sciences (Fig. 2B and Supplementary S5, verti-
cal axes). These scaled loadings of traits such as fine arts and 
philosophy on the low end of this component were close to 0 
and therefore did not contribute strongly to this component. 
We therefore simply called this component “STEM.”

The third component explained 9% of the variance 
and differentiated occupations in medicine, health 
science, and social science (e.g., nurse practitioners, 

2  A K-mean cluster analysis was also implemented to extract clusters 
of occupations and occupational traits. However, the resulting clusters 
were not as homogeneous as the clusters from HCA and thus were 
not kept for the current study.

https://github.com/juchiyu/OccupationPCAs
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clinical nurse specialists, police officers) from com-
puter science and engineering (e.g., hardware engi-
neers, aerospace engineers, mechanical drafters), with 
the scaled loadings of traits anchored by engineering 
and technology versus social sciences, humanities, 
and natural sciences (Fig. 3B and Supplementary S6, 
vertical axes). We labeled this component “Health 
versus Computational Science.”

Job zones 4–5 PCA

Job Zones 4–5 PCA identified six significant compo-
nents, which, together, explained 70% of the total variance. 
HCA was conducted on the first four of these components 
(which, together, explained 60% of the variance because 
the last two components did not yield interpretable clusters, 

Fig. 1   Descriptive information of the General, the Job Zones 4–5, 
and the Job Zones 1–3 PCAs. Note. Descriptive information for the 
General occupation (A), Job Zones 4–5 (B) and Job Zones 1–3 (C) 
PCAs and HCAs. Top: Scree plots depicting the percentage of vari-
ance explained by each component. The green dashed lines indi-
cate the Kaiser criteria, and the purple dots indicate significant 
components as determined by permutation tests. Bottom: Tree dia-
grams depicting the hierarchical structure of the clustering of occu-

pations from the HCA (N = number of occupations). Clusters were 
colored using a gradient of the component scores / scaled loadings 
of the first components (i.e., yellow-green reflects positive-negative 
loadings on the first component for occupation; see Figs.  2, 3,  4 
and 5 for color gradients). See Supplementary S1, S2, and S4 for 
the tree diagram depicting the hierarchical structure of the cluster-
ing of traits. Details of abbreviations for the occupation clusters are 
listed in Table 2
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Supplementary S2). This HCA identified 18 occupation clus-
ters and 11 trait clusters (Fig. 1B and Supplementary S3). 
Figure 4 shows the occupation space of the first two compo-
nents of the Job Zones 4–5 PCA. The preparation-level factor 
observed in general occupation PCA no longer dominated 
the first component, likely because the Job Zones 4–5 PCA 
is restricted to occupations requiring considerable to exten-
sive preparation level (see Fig. 4A). Job Zones 4–5 contain 
occupations that rely on cognitive abilities (e.g., coordinating, 
supervising, managing, etc.).

The first and second components of Job Zones 4–5 PCA 
(Fig. 4) resembled the second and third components of 
the general occupation PCA (Fig. 3). The first component, 
explaining 27% of the total variance, differentiated STEM 
occupations (e.g., manufacturing, marine, robotic engi-
neers) from occupations in the humanities, social sciences, 
and particularly teachers (e.g., English language and litera-
ture teachers, history teachers), with the scaled loadings 
of traits reflecting science and engineering versus social 
science, humanities, and communication (Fig. 4B and 

Fig. 2    First two components (Preparation and STEM) from the Gen-
eral occupation PCA. Note. Panel A illustrates the degree to which 
each component corresponds to mean Job Zone ratings. Anchors indi-
cate occupations (B) with the highest contributions (e.g., [Tree] Fallers 
and extent flexibility contributed strongly and positively to Preparation 

[Component 1]). Occupation component scores (B) are labeled by clus-
ters derived from the HCA. The horizonal axis in all plots represents 
Preparation (Component 1), and the vertical axis represents STEM 
(Component 2)
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Supplementary S7, horizontal axes). Unlike the general 
occupation PCA, where the social science, humanities, and 
communication traits have scaled loadings close to null, 
these traits strongly contributed to the variance of this 
component. This difference is attributable to the greater 
influence of liberal arts education in this set of professions. 
We labeled this component “STEM versus Social Science 
and Humanities.”

The second component of Job Zones 4–5 PCA, explaining 
16% of the variance, differentiated occupations in health sci-
ences and medicine (e.g., surgeons, nurse practitioners, oral and 
maxillofacial surgeons) from occupations in computer sciences 
and business (e.g., data specialists, cost estimators, research ana-
lysts), with the scaled loadings of traits reflecting social science, 
humanities, and natural science versus science, engineering, and 
math (Fig. 4B and Supplementary S7, vertical axes). We labeled 
this component “Health versus Computational Science.”

Job zones 1–3 PCA

Job Zones 1–3 PCA identified seven significant components, 
which, together, explained 75% of the total variance. All sig-
nificant components were included in the HCA, which identi-
fied ten occupation clusters and nine trait clusters (Fig. 1C and 
Supplementary S4). Job Zones 1–3 typically contain occupa-
tions that are labor-intensive (e.g., manual labor, typing speed).

Figure 5 shows the occupation space of the first two com-
ponents of this PCA. The first component, explaining 33% 
of the total variance differentiated manual labor occupations 
(e.g., manufactured building installers, mechanics, mill-
wrights) from office administrative occupations (e.g., tele-
marketers, clerks), with the scaled loadings of traits reflecting 
engineering, technology, operations and control, and physical 
strength as distinct from communication and humanities (i.e., 
customer-service-related skills; Fig. 5B and Supplementary 

Fig. 3   First and third components (Preparation and Health versus Com-
putational Science) for the General occupation PCA. Note. Panel A 
illustrates the degree to which each component corresponds to mean 
Job Zone ratings.  Anchors indicate occupations (B) with the high-
est contributions (e.g., [Tree] Fallers and extent flexibility contributed 

strongly and positively to Preparation [Component 1]). In all plots, the 
horizonal axis represents Preparation (Component 1), and the vertical 
axis represents Health versus Computational Science (Component 3)
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S8, horizontal axes). This component was labeled “Manual 
Labor versus Office.”

The second component, explaining 19% of the vari-
ance, differentiated occupations that require specialized 
and practical knowledge and skills (i.e., technical occu-
pations, such as product managers or fire-fighting super-
visors) from occupations that do not require specialized 
and practical knowledge and skills (e.g., pressers, grad-
ers, sorters, cleaners). The scaled loadings of traits reflect 
technical and scientific knowledge and communication 
(which requires practical training and textbook learning) 

as opposed to general physical abilities (which rely on 
broad motor capacity) (Fig. 5B and Supplementary S8, 
vertical axes). This component was labeled “Technical.”

Application: Relationship of verbal and non‑verbal 
abilities to STEM occupations

To illustrate an application of VOLCANO on real-world data, 
we analyzed the relationship of verbal and non-verbal abilities 
in relation to occupation in the Nathan Kline Institute-Rock-
land Sample (NKI-RS; Nooner et al., 2012), a data set that 

Fig. 4   First and second components (STEM versus Social Science and 
Humanities; Health versus Computational Science) for the Job Zones 
4–5 PCA. Note. Panel A illustrates the degree to which each component 
corresponds to mean Job Zone ratings. Anchors indicate occupations (B) 
with the highest contributions (e.g., Engineers and Teachers contributed 
strongly to STEM versus Social Science and Humanities [Component 

1]). Occupation component scores (B) are labeled by clusters derived 
from the HCA. In all plots, the horizonal axis represents STEM versus 
Social Science and Humanities (Component 1) and the vertical axis rep-
resents Health versus Computational Science (Component 2)
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has the advantage of rich standardized testing in a large sam-
ple of adults with occupation coded. As a proof-of-principle, 
we tested the hypothesis that non-verbal abilities would be 
uniquely associated with STEM occupations. We first created 
groups according to cognitive performance (Verbal/Non-ver-
bal IQ discrepancy). For descriptive purposes, we examined 
frequencies of individuals in each discrepancy group within 
occupational clusters from our hierarchical clustering algo-
rithm. We then projected groups defined by cognitive abilities 
into the occupational space to assess their relationships to the 
components. As the NKI-RS data focus on cognitive perfor-
mance, we restricted this analysis to the Job Zones 4–5 PCA 
that includes occupations requiring more extensive training 
and preparation, especially with respect to cognitive skills. 
Indeed, the first two components of this space separate (1) 
STEM from Humanities and (2) Health from Computational 

Science. Finally, we extracted the occupation factor scores as 
continuous measures for relation to cognitive performance in 
a traditional regression analysis.

Methods

Because this analysis uses the Job Zones 4–5 PCA, only indi-
viduals who reported having an occupation that falls within 
Job Zones 4–5 were included in the analyses. A total of 470 
NKI-RS participants were included (152 males and 318 
females; Mage = 56.69 years, SDage = 15.45 years). The NKI-
RS dataset is a community sample of participants across the 
lifespan from Rockland County, a suburban/rural county 20 
miles northwest of New York City. This sample is intended 
to be a phenotypically rich neuroimaging sample, consisting 
of data obtained from representative individuals from the 

Fig. 5   First and second components (Manual Labor versus Office; 
Technical) for the Job Zones 1–3 PCA. Note. Panel A illustrates the 
degree to which each component corresponds to mean Job Zone rat-
ings. Anchors indicate occupations (B) with the highest contributions 
(e.g., Mechanical occupations contributed strongly to Manual Labor 

versus Office [Component 1]). Occupation component scores (B) are 
labeled by clusters derived from the HCA. In all plots, the horizonal 
axis represents Manual Labor versus Office (Component 1) and the 
vertical axis represents Technical (Component 2)
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community rather than comprised solely of university stu-
dents, as is typical of neuroimaging datasets. Individuals with 
past or current reports of head injury, stroke, bipolar disorder, 
autism spectrum disorder, attention deficit hyperactivity dis-
order, Alzheimer’s disease, epilepsy, and a full-scale IQ < 70 
were excluded from analyses. We also excluded individuals 
who did not speak English as their native language, because 
their verbal IQ scores would be artificially lowered. Only 
participants with both free entry occupation and scores on 
the Wechsler Abbreviated Scale of Intelligence – II (WASI-
II) were included. Participants provided informed consent in 
accordance with the NKI-RS research ethics boards.

Participants manually entered their occupations as a free-
entry item as part of the Hollingshead Four-Factor Index of 
Socioeconomic Status (Hollingshead, 1975). Free-text entries 
that do not correspond to an O*NET-listed occupation were 
re-coded by three independent raters who completed train-
ing on 100 representative occupations (the coding manual is 
available on GitHub: https://​github.​com/​juchi​yu/​Occup​ation​
PCAs). Each rater converted 264 occupations, including 67 
overlapping occupations. Inter-rater reliability for occupation 
coding of occupations that did not already correspond to an 
O*NET listed occupation (based on row cluster classifica-
tion, see above Methods) was acceptable (Fleiss’ mappa = 
.66; (Cohen, 1960; Fleiss et al., 1969).

Participants completed the Wechsler Abbreviated Scale 
of Intelligence – 2nd edition (WASI-II) as part of a com-
prehensive test battery. The WASI-II is a brief intelligence 
test—with excellent reliability and validity (Irby & Floyd, 
2013)—designed for individuals between the ages of 6 and 
90 years. This instrument includes four subtests Vocabu-
lary, Similarities, Block Design, and Matrix Reasoning. A 
Verbal Comprehension Index (VCI) can be derived from 
the respective age-corrected standardized scores on the 
Vocabulary and Similarities subtests and a Perceptual Rea-
soning Index (PRI) can be derived from the respective age-
corrected standardized scores on the Matrix Reasoning and 
Block Design subtests. VCI scores reflect verbal abilities 
including abstract verbal reasoning ability, semantic knowl-
edge and verbal comprehension and expression. PRI scores 
reflect non-verbal abilities including visuospatial processing, 
and abstract problem solving. These measures correspond 
to the full Wechsler Adult Intelligence Scale – IV VCI and 
PRI scores, with a mean of 100 and a standard deviation of 
15. We predicted that these indices would be differentially 
associated with Component 1 (STEM versus Social Science 
and Humanities) identified in Job Zones 4–5 PCA, with PRI 
associated with STEM occupation and VCI associated with 
social science and humanities occupations.

Participants were assigned to one of two groups based on 
their VCI-PRI discrepancy scores that were computed as the 
difference between VCI and PRI. Reliabilities of discrepancy 
scores in adults range from .82 to .89, a value considered large 

enough to justify hypothesis generation (Ryan & Gontkovsky, 
2021). Individuals with a ten-point discrepancy between VCI 
and PRI and VCI were included in the projection. In this 
analysis, we only consider two groups from the distribution 
tails of the individuals: VCI+ and PRI+. The VCI+ group 
(N = 145) includes individuals with a VCI score greater than 
their PRI by at least ten points and were considered to have 
relatively stronger verbal skills. Conversely, PRI+ group (N = 
240) includes individuals with a PRI score greater than their 
VCI by at least ten points and who, therefore, were consid-
ered to have relatively stronger perceptual reasoning skills; 
the remaining 85 participants difference score was less than 
ten points. The VCI+ and PRI+ groups did not differ by age 
t(193) = – 0.91, ns, or gender χ2(1) = 0.73, ns. Participants 
were then colored based on group membership and projected 
into the cognitive occupation space, using supplementary 
projections (a procedure also called out of sample elements 
projections, for details, see Abdi & Williams, 2010).

Results and discussion

Figure 6A shows the occupation clusters with the proportion 
of each group for the purpose of sample characterization. 
The VCI+ group—relative to the PRI+ group—contains a 
larger proportion of people with low scores on Component 1 
(e.g., occupations in Social Sciences, Business and Govern-
ment, Alternative Therapies). Conversely, the PRI+ group, 
relative to the VCI+ group, contains a larger proportion of 
individuals with high scores on Component 1 of the Job 
Zones 4–5 PCA (e.g., occupations in Science and Mathemat-
ics, Engineering, Computer, and Informatics).

The utility of VOLCANO for quantifying occupational 
data on a ratio scale is illustrated by Figs. 6B and 6C. In 
Fig. 6B, the participants are represented as their occupa-
tions in the Job Zones 4–5 PCA space. The results show that 
individuals with stronger PRI relative to VCI scores have 
occupations that are more positive (i.e., higher in STEM) on 
Component 1 of the Job Zones 4–5 PCA. As the 95% boot-
strapped confidence intervals (ellipses) do not overlap, this 
difference is statistically significant. There was no difference 
on Component 2 (Health versus Computational Science).

Next, we leveraged the full range of VCI and PRI scores in 
a multiple linear regression analysis predicting individuals’ 
Component 1 score extracted from Job Zones 4–5 PCA plus 
gender. A significant regression was found F(3, 466) = 19.35, 
p < 0.001 with an R2 of .11. Within this model, there was a 
significant main effect of gender (β = – 1.53, SE = 0.30, t = 
– 5.06, p < 0.001), with males having jobs with higher scores 
on Component 1 (i.e., males were more likely than females to 
have jobs in a STEM discipline). There was also a significant 
main effect of VCI and PRI scores (VCI: β = – 0.04, SE = 
0.01, t = – 2.88, p < 0.005; PRI β = – 0.06, SE = 0.01, t = 
5.45, p < 0.001). Notably, there was no significant interaction 

https://github.com/juchiyu/OccupationPCAs
https://github.com/juchiyu/OccupationPCAs
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between gender and VCI or PRI. Additional results for this 
linear regression are presented in Table 3 and illustrated in 
Fig. 6B, where it can be seen that PRI was significantly posi-
tively related to Component 1 scores, r(468) = .211, p < 0.001, 
whereas VCI had a negative slope that was not significant, 
r(468) = – .01, ns, with the slopes of these bivariate corre-
lations significantly different as examined by William-Hotel-
ling’s test, t(467) = 4.93, p < 0.001. To further illustrate how 
verbal versus non-verbal cognitive abilities relate to Compo-
nent 1, the correlation of the VCI minus PRI difference score 
was significant, r(468) = – .24, p < 0.001 (see Fig. 6D).

These results illustrate the utility of VOLCANO for charac-
terizing occupation and testing predictions on real-world occu-
pational data. The empirically-derived clusters are useful for 
sample characterization, but data analytic options are restricted 
to non-parametric statistics. Many studies of occupation use such 
measures (Zeman et al., 2020). The added value of VOLCANO 
is the derivation of component scores for use in more powerful 
parametric analyses. This exercise was intended as proof-of-
principle rather than theory-testing, as it generally accepted that 
spatial reasoning is important for STEM disciplines (e.g., Khine, 
2017), whereas there was no a priori reason for this dissociation 
to be observed when contrasting Health versus Computational 
science (Component 2). The relationship between specific verbal 
intellectual abilities and selection of occupations in the social 
sciences and humanities has received less attention, possibly 
owing to the heterogeneity of these occupations.

Discussion

We used multivariate methods (i.e., PCA and HCA) to con-
vert the heterogeneous categorical variable “occupation” into a 
concise set of continuous variables (along with the constrained 
set of categorical groupings). Our VOLCANO Shiny app pro-
vides a platform for standardized, quantitative characterization 
of occupation, enabling a new level of data sharing and com-
parison across studies concerning the skills, abilities, and traits 
associated with specific occupations. In addition to making 
O*NET data accessible and shareable, the VOLCANO Shiny 
app makes data flexible and supporting researcher’s ability to 
use O*NET data to address a range of research questions.

We implemented PCA on traits of occupations from 
O*NET and revealed three meaningful continuous compo-
nents. These include (1) a component that reflects the educa-
tion and preparation needed for specific occupations, (2) a 
STEM component that reflects the degree to which occupa-
tions are within a STEM discipline, and (3) a component that 
distinguishes STEM occupations between those in health sci-
ence and those from scientific professions that require com-
putational and mathematical thinking. These components are 
similar to those previously described for DOT and O*NET 
data (Hadden et al., 2004). However, we seek to transcend a 

static occupational space to create a flexible, accessible appli-
cation that can accommodate the dynamic needs of research-
ers studying occupational traits across disciplines.

The general occupation space derived in the current study 
is useful for questions associated with occupations across 
all Job Zones. The inclusion of two additional occupation 
spaces (i.e., Job Zones 4–5 and Job Zones 1–3) is useful for 
questions tailored to specific groups, such as higher cogni-
tive skills (e.g., working memory, mathematical reasoning) 
for Job Zones 4–5 space or physical skills (e.g., basal meta-
bolic rate) for the Job Zones 1–3 space. Together, these three 
occupation spaces hold promise to uncover how occupation 
is associated with a wide set of health, psychological, and 
financial measures as well as overall standard of living.

The first and second components of the Job Zones 4–5 
occupation space closely resembled the second and third 
components of the general occupation space (i.e., STEM 
component and Health versus Computational Science com-
ponent). This finding was expected because the components 
of PCA are orthogonal (i.e., the second and third components 
in the general occupation PCA are uncorrelated with the first 
education-related component). More importantly, removing 
the education-related component allowed for a wider distribu-
tion of cognitive skills along Components 2 and 3, enabling 
finer-grained distinctions across occupations requiring higher 
education, that did not contribute to the corresponding com-
ponent in the general occupation PCA. By contrast, the Job 
Zones 1–3 occupation space—which included labor-intensive 
occupations—has distinct components. The first component 
separated manual labor from office jobs, while the second 
component separated occupations that rely more on technical 
skills from those that rely less on such skills. It is worth not-
ing that this pattern is related to a linear pattern of Job Zones 
1–3 (see Fig. 5A) which indicates that the education and the 
preparation required for these occupations are closely related 
to their technicality. The HCA, performed on the scaled load-
ings from the PCAs, provided a set of data-driven categories 
that can be used to address research questions that require 
categorical clusters of occupational traits.

Notably, across PCAs the heterogeneity of one compo-
nent is often decomposed by the subsequent component. For 
instance, the heterogeneous construct of an occupation in a 
STEM discipline is often decomposed by the subsequent com-
ponent. More specifically, Component 3 of the general PCA 
and Component 2 of the Job Zones 4–5 PCA; are labeled 
as “Health versus Computational Science.” Because PCA 
components are orthogonal (i.e., uncorrelated)), these results 
showed that the distinction between non-STEM versus STEM 
(Health and Computational Science combined) is independ-
ent from the distinction within STEM (Health vs. Compu-
tational). Thus, our method does capture the complexity of 
professions such as medical doctors, who score high on health 
and low on computational science.
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Fig. 6   Projection the Rockland data onto the space of Job Zones 
4–5 PCA. Note. Visualization of the association between the Job 
Zones 4–5 PCA and the Wechsler Abbreviated Scale of Intel-
ligence (WASI-II) including verbal comprehension index (VCI) 
and perceptual reasoning index (PRI) from the NKI-RS dataset. 
A shows the distribution of occupation clusters within the groups 
defined as VCI+ and PRI+. From the left, clusters range from low 
to high on Component 1 (see Figs.  1B and 4B for interpretation). 
As expected, the VCI+ group contains a larger proportion of peo-
ple with occupations low on Component 1 (Social Sciences, Busi-
ness and Government, Alternative Therapies) relative to the PRI+ 
group, whereas the PRI+ group contains more people with occupa-
tions high on Component 1 (Science and Mathematics, Engineer-
ing, Computer and Informatics). B Illustrates the supplementary 
projection of the discrepancy scores (VCI+ denotes the group with 
VCI larger than PRI by 10, and PRI+ denotes the group with PRI 

larger than VCI by 10). The  ellipses indicate 95% bootstrapped 
confidence intervals. C The PRI is positively correlated with Com-
ponent 1 scores, indicating an association with STEM, whereas the 
VCI is negatively correlated with Component 1, indicating an asso-
ciation with social sciences and humanities. The two correlation 
coefficients are significantly different. D The difference between 
participants' VCI and PRI scores (i.e., VCI-PRI) is negatively 
correlated with Component 1, indicating that participants with a 
smaller  difference between VCI and PRI  are more likely to have 
occupations in Social Science and Humanities than in STEM. For 
positive WASI difference scores, a greater difference between VCI 
and PRI relates to having a lower score on Component 1 (i.e., an 
occupation in the humanities). Conversely, for negative WASI dif-
ference scores, a greater difference between VCI and PRI relates 
to having a higher score on Component 1 (i.e., an occupation in 
STEM)
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The occupation spaces can be exploited by projecting new 
observations onto the components using supplementary pro-
jections. For instance, groups with specific exposures, neuro-
logical characteristics, or cognitive traits can be projected into 
the occupational space to determine the association between 
these supplementary traits and occupation selection (provided 
they have been coded within the same O*Net job titles that 
we used to create the spaces). Alternatively, researchers can 
use the Shiny app to extract occupations, component scores, 
scaled loadings, and categorical clusters for use in classic uni-
variate analyses as well as complex multilevel modelling, such 
as structural equation modelling (SEM).

As a practical illustration of these methods, we assessed the 
relationships of verbal and non-verbal intellectual abilities to 
STEM versus social science / humanities occupations (Com-
ponent 1 of Job Zones 4–5 PCA). Using both supplementary 
projections and extraction of component scores, we found that 
visuospatial and non-verbal analytical reasoning abilities were 
related to selection of STEM professions, as expected on the 
basis of prior research (Khine, 2017). Vocabulary and verbal 
reasoning were related to the practice of professions in the 
social sciences and humanities. Because these analyses were 
focused on the association between cognition and occupation, 
we restricted data to occupations that require extensive prepa-
ration and training and that are relatively more reliant on cog-
nition (i.e., occupation space as defined by the Job Zones 4–5 
PCA). A more extensive cognitive battery would be required 
to assess the association between other theoretically relevant 
skills and occupations across the full range of job zones. These 
findings were not intended to advance theory, but rather to 
provide proof-of-principle that the VOLCANO technique can 
be used to isolate specific occupational components in rela-
tion to external measures. Considering the NKI-RS sample, 
VOLCANO enables the incorporation of quantified occupa-
tional data into analyses with deep behavioral, mental health, 
and neuroimaging data included with that dataset. Moreover, 
VOLCANO standardization can facilitate linkages of findings 
across datasets containing O*NET-coded occupations.

We share our code on OSF and GitHub, and we provide 
a Shiny app to support researchers repurposing these data to 
address distinct research questions. With the publicly available 
code, the occupation space can be re-generated with an updated 

O*NET database. The Shiny app can be used to implement dif-
ferent clustering methods (either hierarchical clustering analysis 
or K-means), select different numbers of clusters, and generate 
distinct component spaces based on the inclusion of specific Job 
Zones (e.g., an occupational space within a single job zone). 
The Shiny app can also generate detailed lists of occupations 
and traits that comprise each component and cluster to help 
researchers identify key characteristics of the component and 
facilitate generating study-appropriate labels and names.

The following limitations should be considered by research-
ers using these methods. Each occupation’s contribution within 
a component is a relative measure only interpretable within the 
full set of occupations included in the space. For instance, the 
same occupation would appear to be more physically demand-
ing in the cognitive compared to the labor-intensive occupation 
space. Second, the occupational spaces are limited to those occu-
pations listed in O*NET. While other out-of-sample occupations 
evaluated by the same set of traits could be projected onto the 
same space using supplementary projections (Abdi & Williams, 
2010), such an exercise would assume that new trait ratings are 
comparable to older ones—an assumption that may be unjustified 
depending on the methods used to collect the ratings. Addition-
ally, the definition of Job Zone is somewhat ambiguous because 
it reflects to varying degrees the education, training, experience, 
required knowledge, wage and salary level associated with par-
ticular jobs. That said, O*NET is the most comprehensive occu-
pation dataset available. We acknowledge that routine updating 
of O*NET could change occupational spaces. We therefore pro-
vide the code required to generate occupational spaces using any 
occupation dataset, including future iterations of O*NET. Finally, 
we used consensus to derive labels for components and clusters 
in relation to the underlying constructs, but this labelling method 
is ultimately subjective.

Research implementing component reduction methodolo-
gies to characterize occupation data date back over 50 years, 
even before the emergence of comprehensive taxonomic sys-
tems, such as O*NET (e.g., Cole et al., 1971; Cunningham 
et al., 1983). Yet none of the prior attempts to reduce O*NET 
data has resulted in an accessible, sharable, and standardized 
system for the quantification and classification of occupation 
characteristics. The occupational space derived in the current 
study results in a set of components that converge with past 
research (e.g., Potter et al., 2008; Smyth et al., 2004; Spreng 
et al., 2010), but with additional intricacy, flexibility, and 
specificity. Moreover, this occupational space can be eas-
ily implemented, reproduced, updated, and adapted across 
disciplines and countries to enhance feasibility, consistency, 
and comparability across research settings. A key contribu-
tion of the current study is that it provides a flexible and 
easily accessible tool that will support and expedite future 
research on cognitive, neurological, and behavioral charac-
teristics associated with occupations across a range of edu-
cational attainment levels. Additionally, findings from the 

Table 3   Multiple linear regression results

Multiple linear regression model predicting the cognitive occupa-
tional factor scores (Component 1) from verbal comprehension index 
(VCI) and perceptual reasoning index (PRI) of the Wechsler Abbrevi-
ated Scale of Intelligence (WASI-II)

β SE t p Partial η2

Gender – 1.52 0.30 – 5.06 < 0.001 .06
VCI – 0.04 0.01 – 2.88 < 0.005 .0002
PRI 0.06 0.01 5.45 < 0.001 .06
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current study provide—for occupational traits and factors 
(i.e., components)—conceptual and terminology guardrails 
that will improve replicability and communication of findings 
across disciplines. Finally, our findings and techniques sup-
port research questions that will deepen our understanding 
of occupation, which in turn holds promise to enhance indi-
vidual quality of life, and global innovation and productivity.
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