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Abstract

Multidimensional computerized adaptive testing for forced-choice items (MFC-CAT) combines the benefits of multidimen-
sional forced-choice (MFC) items and computerized adaptive testing (CAT) in that it eliminates response biases and reduces
administration time. Previous studies that explored designs of MFC-CAT only discussed item selection methods based on
the Fisher information (FI), which is known to perform unstably at early stages of CAT. This study proposes a set of new
item selection methods based on the KL information for MFC-CAT (namely MFC-KI, MFC-KB, and MFC-KLP) based on
the Thurstonian IRT (TIRT) model. Three simulation studies, including one based on real data, were conducted to compare
the performance of the proposed KL-based item selection methods against the existing FI-based methods in three- and five-
dimensional MFC-CAT scenarios with various test lengths and inter-trait correlations. Results demonstrate that the proposed
KL-based item selection methods are feasible for MFC-CAT and generate acceptable trait estimation accuracy and uniformity
of item pool usage. Among the three proposed methods, MFC-K® and MFC-KLP outperformed the existing FI-based item
selection methods and resulted in the most accurate trait estimation and relatively even utilization of the item pool.
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Item selection methods

Personality assessments that rely on respondent self-report
have been widely used for personnel selection. Such assess-
ments typically adopt single-statement formats, such as Lik-
ert-type items, where respondents are presented with one
statement at a time and are required to choose one among
several alternatives (e.g., agree/disagree). However, espe-
cially for high-stakes testing, this format is vulnerable to
faking and other types of response biases, such as central
tendency, acquiescence, socially desirable responding, halo
effects, leniency, and impression management (Brown &
Maydeu-Olivares, 2011; Cheung & Chan, 2002; Morrison
& Bies, 1991). To address these concerns, one alternative
is multidimensional forced-choice (MFC) item formats
(Brown & Maydeu-Olivares, 2011). Instead of evaluat-
ing each statement separately, respondents are presented
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with blocks consisting of two or more similarly attractive
statements, in which each statement is assumed to meas-
ure only one personality trait. Respondents are required to
make comparative judgments, choosing between statements
according to the extent to which the statements describe
their preferences or behavior (Brown & Maydeu-Olivares,
2013). While comparative judgments may reduce response
biases, the MFC item formats have also met controversy
(Brown & Maydeu-Olivares, 2013; Walton et al., 2020).
One commonly cited problem is that the traditional scoring
approaches of MFC items produce ipsative data, that is, the
total score of a test is constant for all respondents. Ipsative
scoring distorts individual profiles (i.e., it is impossible to
achieve all high or all low scores), and creates challenges
in estimating construct validity, criterion-related validity,
and reliability (Brown & Maydeu-Olivares, 2013; Dueber
et al., 2019). To address such issues, a series of MFC item
response theory (IRT) models have been proposed (e.g.,
Andrich, 1995; Brown & Maydeu-Olivares, 2011; Morillo
et al., 2016; Stark et al., 2005; Wang et al., 2017; Zinnes &
Griggs, 1974) to model comparative responses generated
via forced-choice items. For example, Stark et al. (2005)
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developed the multi-unidimensional pairwise-preference
(MUPP) model for blocks only containing two statements,
and Brown and Maydeu-Olivares (2011) developed the
Thurstonian IRT (TIRT) model, which can model blocks
with more than two statements.

Recently, the integration of MFC item formats and com-
puterized adaptive testing (MFC-CAT) has gained increas-
ing attention as studies demonstrate great advantages, such
as reducing testing time, obtaining more information with a
shorter test, and improving measurement accuracy (e.g., Joo
et al., 2020; Stark et al., 2012). A few studies explored adap-
tive testing of personality using forced-choice IRT models, but
most of them have focused exclusively on ideal-point models.
For example, Borman et al. (2001) compared a unidimensional
forced-choice CAT with other CAT rating scales in terms of
reliability, validity, and accuracy of performance ratings. Stark
et al. (2012) implemented simulation studies based on the
MUPP model (Stark et al., 2005), where they examined the
effects of dimensionality, test length, inter-trait correlations,
and other test design specifications on latent trait estimation
accuracy in nonadaptive and adaptive situations. Since then,
most studies and applications for MFC-CAT have used pair-
wise preference forced-choice items, and these studies have
shown more efficient trait estimation than nonadaptive tests of
an equal length (e.g., Aon Hewitt, 2015; Drasgow et al., 2012;
Stark et al., 2012, 2014). To explore the benefits of MFC-CAT
with more than two statements in a block, Joo et al. (2020)
compared the accuracy of latent trait estimation with MFC
pair, triplet, and tetrad tests using adaptive item selection based
on the GGUM-RANK (generalized graded unfolding-RANK)
model (Hontangas et al., 2015; Joo et al., 2018).

While the above studies all used ideal-point models,
another group of IRT models developed for MFC items is
dominance models (Wang et al., 2017), such as Maydeu-Oli-
vares and Brown’s (2010) TIRT model, Wang et al.’s (2017)
Rasch ipsative model (RIM), and a polytomous extension of
RIM (Qiu & Wang, 2016). We chose to focus on the TIRT
model in this study. The TIRT model can be used to model a
variety of forced-choice scales and has demonstrated efficacy
in accommodating many combinations of traits and block
sizes, which makes it widely applicable to many existing
forced-choice questionnaires, such as the Survey of Interper-
sonal Values (Gordon, 1976), the Customer Contact Styles
Questionnaire (SHL, 1997), and the Occupational Personal-
ity Questionnaire (SHL, 2006) (Brown & Maydeu-Olivares,
2011). Therefore, developing an adaptive testing approach
based on the TIRT model presents a promising gateway
towards further applications of MFC-CAT in personality tests
that saves substantial cost of test administration.

In an adaptive test, the method used to select items from
the item pool for each test-taker adaptively as the test pro-
gresses exerts a significant influence on measurement accu-
racy, test validity, and uniformity of item pool usage. Among

the existing item selection methods for CAT, a group of
methods developed for single-statement multidimensional
CAT (MCAT; e.g., Chang & Ying, 1996; Mulder & van der
Linden, 2009, 2010; Segall, 1996; Veldkamp & van der Lin-
den, 2002) provides the foundation for this study, because
MEC items measure multidimensional latent traits.

Among studies of item selection methods for single-state-
ment MCAT, Mulder and van der Linden (2009) compared sev-
eral methods based on the Fisher information (FI) and found that
the estimation accuracy of the A-optimality method was slightly
better than that of the D-optimality method, and the E-optimality
method was the most unstable method. Although the Fl-based
item selection methods have achieved great popularity, several
problems need to be addressed. For example, one assumption
of the FI-based item selection methods is that the estimated trait
levels are close to their true values, which is often violated at
an early stage of CAT when few items have been administered,
namely the attenuation paradox issue (e.g., Chang & Ying, 1996;
Wang & Chang, 2011). When items with high FI are selected to
match inaccurate trait estimates, the adaptive test loses efficiency
and item exposure rates become uneven (Chang & Ying, 1996;
Lin, 2012). As a global information index, the Kullback—Leibler
(KL) information (Chang & Ying, 1996) has been proposed as
an alternative to the FI to be used for CAT item selection. Veld-
kamp and van der Linden (2002) extended the KL information
index (KL index, KI) method to multidimensional scenarios and
proposed the posterior expectation KL information method (the
K® method), and illustrated that the KL-based item selection
methods performed better in estimation accuracy than the FI-
based item selection methods.

Note that research on item selection methods for single-
statement MCAT so far has mainly concentrated on single-
statement items. Although several studies have explored
multidimensional forced-choice IRT (MFC-IRT) under nona-
daptive testing (e.g., Brown & Maydeu-Olivares, 2011; Hon-
tangas et al., 2015; Joo et al., 2018; Stark et al., 2005; Wang
et al., 2017), only two studies so far discussed adaptive item
selection methods in MFC-CAT contexts (Joo et al., 2020;
Stark et al., 2012). Stark et al. (2012) conducted four simula-
tion studies to explore the effects of test length, dimension-
ality, inter-trait correlations, and the advantages of adaptive
item selection on the accuracy and precision of latent trait
estimates for pairwise preference testing. Joo et al. (2020)
conducted simulations of MFC-CAT with pair, triplet, and
tetrad formats using the FI-based item selection methods,
specifically the A-optimality method for MFC items (MFC-
A-optimality). In contrast to FI-based item selection item
selection methods, methods based on the KL information
have not been studied in the MFC-CAT contexts. Hence, this
article focuses on the extension and application of item selec-
tion methods based on the KL information for MFC-CAT.

To achieve the above goals and provide a foundation for
MEFC-CAT research using KL-based item selection methods,
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this article is organized as follows: First, a brief summary of
the TIRT model is presented. Second, we provide an introduc-
tion of the FI-based item selection methods that have been
used in MFC-CAT contexts and present the proposed exten-
sion of the proposed KL-based item selection methods from
single-statement MCAT to MFC-CAT. Third, we describe two
Monte Carlo simulation studies to explore statistical proper-
ties and feasibility of these methods in MFC-CAT. We also
discuss how test length, dimensionality, and inter-trait cor-
relation affect the estimation accuracy and uniformity of item
pool usage of MFC-CAT. Next, we present a simulation study
based on real data using the item pool of the Big-Five factor
marker questionnaire with forced-choice items to examine the
empirical efficiency of the proposed item selection methods in
a personality assessment application. We compare the latent
trait estimation accuracy and uniformity of item pool usage
of the new methods with the existing methods. Finally, we
discuss limitations and recommendations.

TIRT

Thurstone (1927) proposed the law of comparative judgment
to describe comparative choices made between statements
in a forced-choice item block. This law assumes that each
of the two statements (i.e., i and m) in a block elicits a cor-
responding utility (i.e., ¢; and ¢,,). A respondent prefers to
choose the statement with the larger utility. Let ), denote
the observed binary outcome and )}’ denote the unobserved
difference of utilities for a pairwise comparison, /= {i,m},
within a forced-choice item block.

1’
yl:{o,

Y =t =ty 2

if statement i is preferred to statement m,
if statement m is preferred to statement i.

ey

Then, Thurstone’s (1927) law can be written as the rela-
tionship between the observed binary outcome ), and the
unobserved difference of utilities y;* :

_J L iy 20,
y"{o, ifyf*<0. )

Based on Thurstone’s (1927) law of comparative judg-
ment, Brown & Maydeu-Olivares (2010, 2011) developed
the TIRT model, which can be used to model a variety
of forced-choice scales and has demonstrated efficacy in
accommodating many combinations of traits and block
sizes. When comparing statement i measuring latent trait
n, and statement m measuring the latent trait 7, the item
characteristic function (ICF) of the binary outcome )
can be described as

@ Springer
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where @(x) denotes the cumulative probability function
of the standard normal distribution evaluated at x, y, is the
threshold parameter for binary outcome y,, A; and A, are the
statements’ factor loadings, and qfi2 and I//ri denote the state-
ments’ uniqueness.

Now, let

PV, =1|n,m,) =@ : )

- A A
al= 71 ﬂ= ’ﬁm= <

b 1 9 (5)
VWi v V¥ v

then the TIRT model (defined by Eq. 4) can be written in an
intercept/slope form as

P(Y, = 1ng.ny) = @(a;+ Bty — Bully)- (6)

where ¢, is the intercept parameter for binary outcome y;,
and j; and p,, are the slope parameters for statement i and
statement m, respectively.

To help readers better understand the TIRT model and
facilitate computations, in this study, we replaced the cumu-
lative probability function of the standard normal distribu-
tion in the TIRT model with a logistic function by referring
to the processing method adopted by Morillo et al. (2016):

1
L+ exp [=(Bin, — By + )]

P(Y, = 1n,.m,) = )

Note that if a forced-choice item block contains more than
two statements, there exist more than one pairwise compari-
son (e.g., three pairwise comparisons for a block with three
statements). For example, the comparisons between three
statements A, B, and C for a block can be presented as follows.

Three-statement block
A B C

Pairwise comparisons

Avs.B Bvs.C Avs.C

Note. A vs. B = the statement A is compared with the statement B; B
vs. C = the statement A is compared with the statement B; A vs. C =
the statement A is compared with the statement B.

Extension of item selection methods from MCAT
to MFC-CAT

In order to facilitate the presentation, several notations will
be introduced here. d denotes the measured trait dimensions
in tests, z € {1, -+, d} denotes the component of latent trait
vector 1 (7 is a d-dimensional vector of latent traits), R rep-
resents the item pool, S, _; denotes the set of the first k—1
administered blocks, U, _, denotes the response vector of
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the k— 1 administered blocks, j;, denotes the block admin-
istered as the k,, block in the test, and R, denotes the set of
blocks remaining in the item pool after the (k— 1)th block
is administered.

Under the framework of single-statement MCAT, a
group of item selection methods have been developed (e.g.,
Chang & Ying, 1996; Mulder & van der Linden, 2009,
2010; Segall, 1996; Veldkamp & van der Linden, 2002).
At present, only the MFC-A-optimality method, which is
based on the FI, has been applied to MFC-CAT (Joo et al.,
2020). The FI-based item selection methods assume that
the intermediate trait estimates are close to their true val-
ues, which is often violated at the beginning of CAT due
to few items having been administered (Mulder & van der
Linden, 2009; Segall, 1996). One alternative to the FI to be
used for CAT item selection is the global KL information
(Chang & Ying, 1996), which is a measure of discrepancy
between two probability distributions. It does not require
that the estimated latent trait, 7, be close to the true value,
7, and it is more robust than FI against early-stage estima-
tion instability (Lima Passos et al., 2007). Several studies
have demonstrated that the performance of KL-based item
selection methods is more stable, efficient, and precise in
terms of trait estimation, especially at an early stage of CAT
or for a short CAT (Chang & Ying, 1996; Veldkamp & van
der Linden, 2002; Wang et al., 2011). Therefore, with this
study, we propose an extension of KL-based item selection
methods from the single-statement MCAT context to the
MFC-CAT context. We then explore whether the properties
of the KL-based item selection methods continue to hold
true in the MFC-CAT context. In the following sections,
we first describe the FI-based item selection methods for
MEFC-CAT and then introduce the proposed KL-based item
selection methods for MFC-CAT.

Fl-based item selection methods for MFC-CAT

Under the framework of MFC-CAT, the FI is given as a
matrix. With the TIRT model employed, the FI matrix for
Block j can be defined as

B BBy BBy

BBy B2 o BB
ra=pmom T T

Bubyy Puby - B

BEP; (M0 ) Qs (s ) Bl (M) Q5 (M 1)+ BBy (1) Q; (1 1y)

BoibBiiP; (Mas 1) @ (s ) B3Py (s ) Oy (s i) - B BaiP; (112 15) Qs (M)

BuoiP (10 1) (s 1) By (1 1)@ (s 1)+ B2P (110515) Qs (1)
®)

where d denotes the number of dimensions measured by the
test. P;(n1,,n,) denotes the probability of preferring the first

statement measuring trait 77, over the second statement meas-
uring trait 7, in a pairwise comparison, which is the short-
hand notation for P(y, = 1|n,, nb) in Eq. 7, and
0,1y M) = 1=P; (11, Note that a single pair block only

involves statements pertaining to two of the d dimensions,
and hence the information matrix has only four nonzero ele-
ments, and all other elements equal 0. Likewise, a single
triplet block only involves three of the d dimensions, and the
information matrix has only nine nonzero elements. Also
note that different blocks have different nonzero entries
depending on the dimensions measured by the block respec-
tively. However, these information matrices can be summed
up across different blocks as in Egs. 9 and 10 below because
they share the same structure.

Under the conditional independence assumption of the
responses given #, the information matrix of a test is equal
to the sum of the block information matrices. Therefore, the
FI matrix of the test can be expressed as

J
rram =Y Irm. ©)
=1

Jj=

Then, the FI matrix of a set of S, _; blocks could be com-
puted by

I, =Y L. (10)

JESii

Based on the FI, three popular optimality methods,
namely the D-optimality method, the A-optimality method,
and the E-optimality method, have been developed for
single-statement MCAT (Mulder & van der Linden, 2009).
The MFC-A-optimality method has been used in previous
MFC-CAT studies but without being expressed with formu-
lation (Joo et al., 2020). Mulder and van der Linden (2009)
found that E-optimality lacks robustness in applications with
sparse data. Therefore, we present the formulas for MFC-A-
optimality and MFC-D-optimality as the following.

The D-optimality method for MFC items (MFC-D-optimal-
ity) The MFC-D-optimality method seeks to select the
next item that maximizes the determinant of the information
matrix, and this method can be expressed as

ji = argmin{det 15 (i) + 17 (1) | - (n
where [ISH ("k‘l) + IJ ("k‘l)] denotes the sum of the infor-
mation matrix after the k— 1 blocks already administered
and the information matrix for candidate block j.

The A-optimality method for MFC items (MFC-A-optimal-

ity) This method seeks to select the next block that mini-
mizes the sum of the (asymptotic) sampling variances of the
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trait estimators, which is equivalent to minimizing the trace
of the inverse of the information matrix. Its formulation is

-1
Jji = arg ig}en{trace[<l;kl (f[k_,) +IJT“(1A1,(_,)> ] }

k

det [1;H (e )+ iy ) (12)

= arg max< -

i€ER, . . .

e z:1 det([’;k-l(”k*‘)-'—[/*(m*‘)[z,zj
=

s

where ),_; denotes the trait estimator after the first k—1

blocks are administrated, and [I;k_I () +17 (ﬁk_l)] - is
the submatrix after deleting the zth row and column of the

information matrix I;‘H (ﬁk_l ) + I] ¥ (ﬁk_l )]

The proposed extension of KL-based item selection
methods for MFC-CAT

Several adaptive selection methods based on KL information
have been developed for single-statement MCAT (Chang &
Ying, 1996; Mulder & van der Linden, 2010; Veldkamp &
van der Linden, 2002; Wang & Chang, 2011), such as the
KL index (KI) method, posterior expected KL information
method (K®), and the KL distance between subsequent pos-
teriors (KLP) method. To adapt the above KL-based item
selection methods to MFC-CAT, we propose to modify the
classical KL information as

S L(#)
KL*({) =Y L. g |, 13
@l Zl, (1) log [Lq_(m] (13)

where 7 and # denote the unknown and estimated latent trait
vectors, respectively; j denotes the jth block, C; is the num-
ber of possible scoring patterns for Block j (e.g., a block
with three statements, such as A, B, and C, has six possible
scoring patterns; see Table 1); c(c=1,2, -, C;) indicates the
cth scoring pattern.

L) and L;(#) refer to the block response probability,
namely the likelihood of pairwise comparison response
probability, for latent traits  and #), respectively, given the
cth scoring patterns of Block j. The expression of L ;(#7) and
L;(#) are respectively given by

K. K
Ly =TT TT #0t0m)" 1= By nem)] ™7 14y

a=1 b=a+1

and

Ko K
Ly =TT TI 2(nem)” [t = P (naem)] 7P (15)

a=1 b=a+1

@ Springer

Table 1 All possible scoring patterns in a block with three statements

Scoring Avs.B Bvs.C Avs.C Computation of Ln)
pattern

[Pas 5 MIPp cIDIPy < )D)]
[P <y @IPys cDILP 4 < @]
(P> @IPy < DILP 5 o)@)]
[P <y @IPys cDILP 5 o)@)]
(P> @IPys cDIP 5 )@)]
[P <3y@IPp <« cDIP 4 < o)1)

AN kA W=
O - O = O =
O = = O = O
O = = = o o

A vs. B = statement A is compared with statement B; B vs. C = state-
ment B is compared with statement C; A vs. C = statement A is com-
pared with statement C. The observed binary outcomes are coded as
1 if respondents prefer the former statement over the later statement
in the above pairwise comparisons: A > B, B > C and B > C; other-
wise, 0

where Kj denotes the number of statements in Block j, ) is
defined in Eq. 1, and P/(n,,7,) is defined in Eq. 7. Brown
and Maydeu-Olivares (2011) proposed that effects of ignor-
ing these dependencies on the latent trait estimates have
been shown to be negligible in applications involving a sin-
gle ranking task, and they are likely to be even smaller in
forced-choice questionnaires where blocks are smaller and
there are fewer local dependencies per item. So, throughout
this article, we will use the simplifying assumption that the
ICFs for the binary outcomes are locally independent.

The proposed extension of the KI method for MFC items
(MFC-KI) The KL information as shown in Eq. 13 is a func-
tion of the true trait #, but the true trait value is unknown.
Therefore, Chang and Ying (1996) proposed to calculate
the KL index (KI) by integrating the estimated trait #. The
extended KI item selection method for MFC items (MFC-
KI) can be defined as

A48,y
Ji = arg %%f{Klj(ﬁk—l)} = arg rjfggi{/ﬂ KL (f_y | n)an},
(16)
where 6, = dv/k — 1 determines the size of the area on
which the average is calculated, d usually takes a value
of 3 (Chang & Ying, 1996; Veldkamp & van der Linden,
2002), and k— 1 denotes the number of blocks that have been
administered.
The MFC-KI method selects the blocks with the largest
KI value among the remaining blocks R, in the item pool.

k_ékfl

The proposed extension of the KB method for MFC items
(MFC-KB) By weighting KL through the posterior distribu-
tion of latent trait #, Veldkamp and van der Linden (2002)
proposed a Bayesian version of the KI method, that is, the
multidimensional posterior expected KL information method
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(K®). Under the framework of MEC-CAT, the expression of g(m L<Uk— s “jk|'7>
the KB method for MFC items (MFC-K®) can be written as 7 (n‘Uk_l, W ) = (1)

i = argmaxK? (fy_,) = argmax [, KL} (s Il m) 7 (n | Upy)om

2%
_ N Loy (e et )
= argljg%i‘f,,{(; Lcj(”jklﬂk—l ) log [ Ll](’t\l,ﬂl;])l ] }”k—l ('1|Uk_1 )‘7715
17

where L (u;l) and LCJ( uy|f_; ) denote the response
probablhty for n and #,_; when selecting Block j as the
kth administrated block of the test with the response score
uy(uy=0,1), respectively. m,_;(lU;_,) indicates the
posterior distribution for 5 after k— 1 blocks have been
administrated:

gmL(U,_In)
[ gmL(U_ In)on

-1 = ('I|Uk 1) (18)

where g(n) denotes a prior distribution for , U, _, denotes
the response vector of the k— 1 administered blocks, and
L(U,_In) denotes the likelihood associated with response
vector Uy _ ;.

The proposed extension of the KLP method for MFC items
(MFC-KLP) An item should be selected to maximize the
divergence between the posterior distributions of #. One of
the possible responses to the candidate item would move the
posterior distribution of # toward the respondents’ true trait,
and the other would move it away from the respondents’ true
trait, and then this level of divergence between the response
distributions generated by two different trait levels can be
formalized by the KL information, i.e., the KLP (Mulder
& van der Linden, 2010). The KLP method selects the item
with the maximum expected KLP distributions 7, _ (U, _,)
and m(lU; _, u;) (Mulder & van der Linden, 2010; Tu
et al., 2018). Under the framework of MFC-CAT, the expres-
sion of the KLP method for MFC items (MFC-KLP) can be
defined as

Jx = a.rgmaxKLPj
JER,

= argr/_gax Z /

o /A|UA 1 KL ”k 1('I|Uk 1) Il ﬂk('lIUk 1> u/A>>a"

w1 (MU )
(V) |
19
where the predictive probability and posterior distribution of

the kth candidate block after k — 1 blocks have been admin-
istrated can be defined as follows

/A|Uk 1) k- l(’l'Uk 1)10g

= argmax Z /

Lcj(”jk|Uk-1) :/ Lcj(ujkln)”k—l(n|Uk—1)an’ (20)
n

[ 8L(U,_y,u;|n)on’

where LU, _ , uyli) = L(U._ m) L ;(u;iln7) denotes the likeli-
hood of the kth candidate block after k— 1 blocks have been
administrated.

The R codes of the proposed MFC-KI, MFC-KB, and
MEFC-KLP methods can be found at https://osf.io/bmg8t/.

Simulation studies

Two Monte Carlo simulation studies and a simulation based
on real data were conducted to evaluate the proposed KL-
based item selection methods for MFC-CAT. Study 1 and
study 2 compared the performance of the newly developed
KL-based item selection methods against the existing
FI-based item selection methods in terms of trait estima-
tion accuracy and uniformity of item pool usage in three-
dimensional and five-dimensional MFC-CAT scenarios,
respectively. Finally, the simulation based on real data (the
Big-Five factor marker questionnaire response data) further
investigated the feasibility of the proposed KL-based item
selection methods in real MFC-CAT testing situations.

Simulation study 1
Simulation design

In this study, we were focused on the triplet test, where three
latent trait dimensions (d=3) were measured in a block con-
sisting of three statements, because it is more common in
block matching. An item pool containing 100 triplet blocks
were pre-assembled following methods used by Joo et al.
(2020). Specifically, Joo et al. (2020) found that the percent-
age of unidimensional blocks had little influence on GGUM-
RANK scoring. Therefore, we only considered the case that
each statement in each block measures different traits from
different dimensions. Item responses were simulated based
on the TIRT model. The slope parameters § and the intercept
parameters a were randomly sampled from a lognormal dis-
tribution and a normal distribution respectively. To compare
item selection methods under a variety of test scenarios,
we varied the correlations between traits (inter-trait correla-
tions) at 0 and 0.5, and varied the test length at 5, 10, and
15 blocks. To simulate data for this study, 500 true latent
trait vectors were randomly generated from a multivariate
standard normal distribution with the abovementioned inter-
trait correlations.

In sum, there were 5 (item selection method: MFC-A-
optimality, MFC-D-optimality, MFC-KI, MFC-K®, and
MFC-KLP) X 2 (inter-trait correlation: 0, 0.5) X 3 (test
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length: 5, 10, 15) = 30 simulation conditions. For each con-
dition, 20 replications were performed. This study used the
expected a posteriori (EAP; Bock & Mislevy, 1982) estima-
tion for latent trait estimation, in which the trait prior distri-
bution was set to a multivariate standard normal distribution.
Gauss-Hermite numerical integration (Glas, 1992) was used
for the parameter estimation and the integration was taken
over the range of trait [—3, +3]. All simulation code was
written in R.

Evaluation criteria The performance of each method was
evaluated by trait estimation accuracy and uniformity of
item pool usage. In this study, the indices to evaluate trait
estimation accuracy were bias (BIAS), root mean squared
error (RMSE) and the correlation between the generating
and estimated traits (CORR), while the index to evaluate
uniformity of item pool usage included chi-square (x?).

The three trait estimation accuracy indices were com-
puted as follows:

N

1y,
BIAS; = — Z‘f (Rt = aa)- (22)

1 N
RMSE; = | 5 2 (g = 1a)’ 23)

n—1

N — —_—

Z: (ﬂnd - ’7d) <’7nd - ﬁd) 24
CORR, = "= : 24)

S’ld Sﬁd

where N is the total number of respondents in the test, n
denotes the nth respondent, and 7,,; and #j,,; are the true traits
and the estimated traits of respondent n respectively. 77, and
S,, are the mean value and standard deviation of the true
tralts of all respondents, while 7, and S;; are the mean value
and standard deviation of the estlmated traits respectively.
The smaller the BIAS and RMSE values and the larger the
CORR values, the higher the trait estimation accuracy.

The x? index is employed to measure the overall exposure
and it is defined as

|ER; - EER)]

J
Z w) (25)

J=1

where ER;=f/N is the exposure rate of block j, f; is the
number of times that block j is selected. E(ER;)=T1/J is the
expected exposure rate of block j, T is the test length, and J
is the number of blocks in item pool (Chang & Ying, 1999).
The smaller the x? is, the more evenly the whole item pool
is used.

@ Springer

Results of study 1

Trait estimation accuracy The trait estimation accuracies of
the five compared item selection methods (MFC-A-optimal-
ity, MFC-D-optimality, MFC-KI, MFC-KB, and MEFC-KLP)
under different inter-trait correlations and test lengths in the
three-dimensional MFC-CAT scenarios are presented in
Table 2. As shown, all average RMSEs ranged from 0.308 to
0.582, all CORRs ranged from 0.803 to 0.951, and all biases
were around zero, which indicates that the trait estimation
accuracy of MFC-CAT adaptive methods was relatively
high across all three-dimensional conditions. Except for the
MFC-KI method, all the other methods achieved satisfactory
estimation accuracy, which demonstrates their applicability
to MFC-CAT. Note that: (1) Among the existing FI-based
item selection methods, MFC-A-optimality was compara-
ble to MFC-D-optimality with slightly higher estimation
accuracy of the latter. (2) Among the proposed KL-based
item selection methods, MFC-KI performed noticeably
worse than the other two methods, as it rendered the largest
RMSE and BIAS, and the smallest CORR. (3) Among the
five item selection methods, MFC-K® performed similarly
to MFC-KLP with higher trait estimation accuracy, which
demonstrates that the proposed methods based on the KL
information outperformed the existing methods based on the
FI, especially when the test is short. These results are in line
with the original expectations of this study.

Other factors held constant, the inter-trait correlations
have a non-negligible influence on the trait estimation accu-
racy of MFC-CATs implemented in this study. The RMSEs
increase and the CORRs decrease as the inter-trait correla-
tions increase. In other words, the trait estimation accuracy
of all methods reduces considerably as the inter-trait correla-
tions increase, which is consistent with the results of Brown
and Maydeu-Olivares’s (2011) and Biirkner et al.’s (2019)
study. For example, the average RMSEs of the MFC-K®
method ranged from 0.308 to 0.474 when the inter-trait cor-
relation was 0, and took higher values ranging from 0.315 to
0.515 when the inter-trait correlation was 0.5 (see Table 2).

By contrast, the RMSEs of all methods decrease and the
CORRs increase as the test length increases. It was evident
that the estimation accuracy gradually improves as the test
length increases. According to the results, the estimation
accuracy of the 15-block tests performed better than the
5-block or 10-block tests. For example, in the conditions
where the inter-trait correlation was 0, the average RMSEs
of all methods for the 15-block tests ranged from 0.308 to
0.354, versus 0.474 to 0.531 for the 5-block tests.

Similarly, in the same condition, the CORRs of the
15-block tests ranged from 0.935 to 0.951, as opposed
to 0.844 to 0.881 for the 5-block tests. As the test length
increases, the difference of estimation accuracy between
the proposed item selection methods and the existing MFC
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methods narrowed down. In sum, the proposed KL-based
MFC-K® and MFC-KLP methods performed better than the
FI-based item selection methods in terms of trait estimation
accuracy, especially when the test is short (or equivalently,
at an early stage of MFC-CATs). However, the performance
of the MFC-KI method needs to be further improved with
lower trait estimation accuracy. The same pattern was con-
sistently observed from other indices, as well.

Uniformity of item pool usage Item exposure control is
an important component in CAT design and operation,
especially for high-stake tests. Stocking and Lewis (1998)
pointed out that in order to reduce the cost of item pool
development, adaptive selection methods should also max-
imize the utilization of the item pool. Table 3 shows the
results of the x* values. The results demonstrated that the
proposed MFC-K® method rendered the lowest x> values
across five methods. Namely, MFC-KB outperformed the
existing FI-based MFC item selection methods in terms of
uniformity of the item pool. The MFC-KLP method pro-
moted greater utilization of the item pool and produced
smaller x values at the early stage. However, similar to the
performance of estimation accuracy, MFC-KI performed the
worst in item pool usage. For the Fl-based item selection
methods, MFC-A-optimality outperformed MFC-D-optimal-
ity in uniformity of item pool usage, though the former’s
accuracy was slightly worse than the latter. For example,
the x? values of MFC-D-optimality was as high as 40.605
compared with the largest x> values of 39.313 when MFC-
A-optimality was used. Overall, the use of the item pool
was relatively more even when the KL-based item selection
methods were used than when the FI-based item selection
methods were used.

Simulation study 2

Simulation design Simulation study 1 mainly discussed
the feasibility of all item selection methods under the three-
dimensional MFC-CAT scenarios. In practice, however,
MEC tests may need to measure more than three dimensions,
namely higher-dimensional tests (e.g., TAPAS; Drasgow

et al., 2012; Stark et al., 2014). Hence, study 2 intends to
further explore the performance of all methods in relatively
higher-dimensional (i.e., five-dimensional) MFC-CAT sce-
narios. At the same time, the performance of each method in
the five-dimensional conditions is compared against study 1.

The simulation design of study 2 was mostly the same
as study 1, except for the following aspects: first, five latent
trait dimensions (d=5) were measured for triplet tests in this
study. Furthermore, the number of MFC blocks administered
were changed from 5, 10, and 15 blocks to 10, 15, and 20
blocks, respectively. In total, there were 5 (item selection
method: MFC-A-optimality, MFC-D-optimality, MFC-KI,
MEFC-KB, and MFC-KLP) X 2 (inter-trait correlation: 0, 0.5)
X 3 (test length: 10, 15, 20) = 30 simulation conditions.
For each condition, 20 replications were conducted. EAP
estimation and Gauss-Hermite numerical integration were
again utilized for trait estimation with the R program. Study
2 used the same evaluation criteria as study 1.

Results of study 2

Trait estimation accuracy For five-dimensional MFC-CATs,
the RMSEs, biases, and CORRs of the five item selection
methods are presented in Table 4. Overall, the average
biases of all methods under various conditions were between
[-0.014, 0.001]. The average RMSEs of each method under
various conditions were between [0.341, 0.566], and the
mean CORRs of each method were still acceptable, between
[0.822, 0.936]. Therefore, the trait estimation accuracy was
acceptable, which indicates that the proposed methods are
also applicable to MFC-CATs under the higher-dimensional
conditions.

Compared with the three-dimensional study (simula-
tion study 1), the estimation accuracy of all methods, espe-
cially MFC-KI, decreased significantly with the increase of
dimensionality. As can be seen from Table 2 and Table 4,
under the three-dimensional conditions, except for MFC-KI,
which generated the lowest estimation accuracy, the estima-
tion accuracies of MFC-A-optimality and MFC-D-optimal-
ity were relatively high, and the estimation accuracies of

Table 3 The x? values of the five compared item selection methods for three-dimensional MEC-CAT

r Indices Test length MFC-A-optimality MFC-D-optimality MFC-KI MFC-KB MFC-KLP
0 X 5 35.370 36.789 44.893 24.740 32.038

10 25.380 27.676 48.054 24.578 29.259

15 21.799 24.076 49.569 23.046 26.167
0.5 X 5 39.313 40.605 49.935 29.884 36.125

10 31.623 33.363 54.673 31.516 34.513

15 28.095 30.264 56.181 29.913 31.453

r = inter-trait correlations, Test length = number of administered MFC items
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MFC-K® and MFC-KLP were higher than the other item
selection methods. Similar to the three-dimensional study,
in the case of five dimensions, MFC-K® and MFC-KLP
have similar performance. Among the five item selection
methods, those two item selection methods have a higher
estimation accuracy and a greater accuracy improvement
over the other item selection methods. Moreover, the estima-
tion accuracy of MFC-KI slightly improved, while MFC-A-
optimality performed the worst. In conclusion, under both
the three-dimensional and five-dimensional conditions, the
proposed MFC-K® and MFC-KLP methods not only had
high estimation accuracy, but also were notably better than
the existing FI-based item selection methods, while MFC-KI
did not perform as well as the others.

The influence of the inter-trait correlations on trait esti-
mation of item selection methods varied by the level of
correlations. Other factors held constant, the trait estima-
tion accuracy of the five methods decreases as the inter-
trait correlations increase, which is consistent with study 1.
Moreover, this performance pattern was more obvious in the
five-dimensional conditions. For example, in the conditions
in which the dimension correlation was 0 (see Table 4), the
average RMSEs for MFC-K® ranged from 0.341 to 0.427,
versus 0.370 to 0.484 in which the inter-trait correlation was
set to 0.5. The same pattern was consistently observed from
other indices as well.

The test length also has a non-negligible impact on the
estimation accuracy of methods in five-dimensional simu-
lation. As expected, as the length of the MFC-CAT test
increases, the estimation accuracy of all methods gradually
improves. For example, in the conditions in which the inter-
trait correlation was 0, the average RMSEs of all methods
with 20-block tests ranged from 0.340 to 0.392, versus 0.427
to 0.485 for 10-block tests. This may be because the more
blocks administrated in the tests, the more information was
provided. Compared with the three-dimensional MFC-CAT,
this trend was more notable in five-dimensional tests. When
the test length increases from 10 blocks to 15 blocks, or
from 15 blocks to 20 blocks, the estimation accuracy of each
method significantly improved.

To confirm that our observed result patterns are also
statistically significant, we performed a three-way factorial
ANOVA on the RMSE outcomes, and the results are pre-
sented in Table 5. Although the two-way interactions are
significant, based on Keppel and Wickens (2004), because
these interaction effects are all noticeably smaller than the
main effects as indicated by the smaller F values, it is mean-
ingful to interpret the main effects as reflecting the general
trends in the data. The main effect of the item selection
method on RMSE was significant (F (4, 180) = 297.3, p
< .001, #° = 0.888). Multiple comparisons revealed that
the KL-based methods evoked smaller RMSE than those
of the FI-based methods (all p < .001). The main effect of

@ Springer

the correlation between traits on RMSE was significant (F
(1, 180) =1005.492, p < .001, #* = 0.870). Multiple com-
parisons revealed that the O inter-trait correlation evoked
smaller RMSE than those in the 0.5 inter-trait correlation
condition (all p < .001). The main effect of the test length
on RMSE was significant (F (2, 180) = 1694.602, p < .001,
7 = 0.958). Multiple comparisons revealed that the 10 block
and 15 block conditions evoked smaller RMSE than those in
the 5 block condition (all p < .001).

Uniformity of item pool usage The x> values of each method
are shown in Table 6. In the five-dimensional MFC-CAT,
except for MFC-KI, the x% values of all methods were rela-
tively small. MFC-A-optimality had the most uniform expo-
sure, while it had the lowest estimation accuracy. For the
FI-based item selection methods, the higher the estimation
accuracy was, the more uneven the utilization of the item
pool. Among the KL-based item selection methods, MFC-
KI has a relatively uneven item pool usage, while MFC-
K® and MFC-KLP had more even item pool usage. On the
whole, the results indicated that the uniformity of item pool
usage of the proposed KL-based item selection methods also
better performed in five-dimensional study.

A simulation based on real data

The first two simulation studies provide evidence for the
feasibility and effectiveness of the proposed KL-based item
selection methods to measure various numbers of dimen-
sions. The third simulation evaluates the proposed methods
in real testing situations. This study used the Big-Five fac-
tor marker questionnaire with forced-choice items (Bunji &
Okada, 2020), which measures five traits with 25 blocks,
each block containing two statements measuring different
traits. Based on the response data from 499 subjects pro-
vided by Bunji and Okada (2020), the Markov Chain Monte
Carlo MCMC) method was used to estimate the correla-
tion matrix and item parameters (see Table 7), which were
used as the true and generating correlation matrix and item
parameters in this simulation. The real data can be found at
https://osf.i0/x92a3/.

For this study, five trait dimensions were measured, and
the test length was fixed to 10, 15 and 20 blocks. A total of
1000 true latent trait vectors were randomly generated from
a multivariate standard normal distribution with the corre-
lation matrices of the NEO-PIR shown in Table 7. In sum,
there were 5 (item selection method: MFC-A-optimality,
MFC-D-optimality, MFC-KI, MFC-K®, and MFC-KLP) x
3 (test length: 10, 15, 20) = 15 simulation conditions. For
each condition, 20 replications were conducted. EAP estima-
tion and Gauss-Hermite numerical integration were utilized
for trait estimation with the R program.
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Table 5 Main effects of item selection method, inter-trait correlation, and test length on RMSE

Independent variables SS df MS F

Item selection method 0.128 4 0.032 297.3%%*
Inter-trait correlation 0.108 1 0.108 1005.492%%*%*
Test length 0.365 2 0.182 1694.602%%**
Item selection method * Inter-trait correlation 0.003 4 0.001 6.675%%*
Item selection method * Test length 0.002 8 0.001 2.412%
Inter-trait correlation * Test length 0.007 2 0.004 34.351%**
Item selection method * Inter-trait correlation * Test length 0.001 8 0.001 0.085

p < .05, %% p < .01, **%p < 001

For the trait estimation accuracy evaluation, the RMSEs of
each dimension are presented next (BIAS and CORR are omit-
ted for this study as previous studies revealed similar patterns
as RMSE). For item exposure, the x> index was computed.

Results

Table 8 summarizes the RMSEs and x? values of study
3. It is evident that the estimation accuracy and uniform-
ity of item pool usage of five item selection methods were
acceptable in real testing situations. Compared with the five-
dimensional MFC-CAT simulation in study 2, the estimated
RMSE:s of each method were relatively high. This may be
because the quality of blocks in the item pool was relatively
low, and the inter-trait correlations in the real correlation
matrix were relatively high. The performance pattern of five
methods in real testing situations was similar with that in
the previous two simulation studies. For example, the aver-
age RMSEs of MFC-K® ranged from 0.723 to 0.772, which
performed better than the FI-based methods. As shown in
Table 8, MFC-K® yielded the smallest RMSEs, while MFC-
A-optimality produced the largest RMSEs. In general, the
estimation accuracies of the KL-based item selection meth-
ods exceed that of the FI-based item selection methods in
real testing situations.

The performance pattern of the five methods in terms
of uniformity of item pool usage was also similar to the
first two simulation studies. Among the five methods, the
item pool usage of the KL-based item selection methods is

relatively even with lower x* values, which outperformed
the FI-based item selection methods. However, MFC-KI still
had the worst performance.

In summary, from the perspective of the estimation accu-
racy and uniformity of item pool usage, MFC-K® performed
the best and the proposed KL-based item selection methods
generally outperformed the existing FI-based item selection
methods under the circumstance of the practical NEO-PIR
item pool.

Summary and discussion

MEFC-CAT is a promising new research area that has gained
more and more attention given that it integrates MFC per-
sonality assessment with CAT. Compared with traditional
tests, MFC-CAT not only greatly reduces test time, but also
eliminates response bias, thus improving test efficiency and
estimation accuracy. Currently, studies on MFC-CATSs were
mainly focused on the FI-based item selection methods using
the GGUM-RANK model (e.g., Joo et al., 2020). However,
studies found that the KL-based item selection methods can
be an alternative to address the issue of attenuation paradox of
FI-based item selection methods (Chang & Ying, 1996; Veld-
kamp & van der Linden, 2002). Moreover, the TIRT model is
a promising alternative model for MFC-CAT as it was widely
used to model a variety of forced-choice scales and has demon-
strated efficacy in accommodating many combinations of traits
and block sizes (Brown & Maydeu-Olivares, 2011, 2013).

Table 6 The x* values of the five compared item selection methods for five-dimensional MFC-CAT

r Indices Test length MFC-A-optimality MFC-D-optimality MFC-KI MFC-KB MFC-KLP
0 X 10 26.849 31.434 45.879 31.472 29.480

15 22.064 27.026 46.734 30.367 26.238

20 19.355 23.880 46.492 27.191 23.518
0.5 X 10 32.705 36.501 51.974 33.562 33.967

15 29.540 33.161 53.380 34.836 31.082

20 27.512 30.452 53.139 32.291 28.317

r = inter-trait correlations, Test length = number of administered MFC items
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Table 7 The correlation matrices of the Big-Five factor marker ques-
tionnaire

Traits N E C A o
N 1

E 0.552 1

C 0.371 0.526 1

A 0.355 —0.209 -0.110 1

0 0.476 0.616 0.498 —-0.158 1

N = neuroticism; E =extraversion, C = conscientiousness, A = agree-
ableness, O = openness to experiences

Therefore, this study constructs the MFC-CAT proce-
dures based on the TIRT model and proposes the MFC-KI,
MFC-K®, and MFC-KLP item selection methods based on
the KL information for MFC-CAT. The results from three
simulation studies confirmed that the proposed KL-based
item selection methods outperformed the existing FI-based
item selection methods, especially when the test is short
(or equivalently, at an early stage of the CAT), generating
greater trait estimation accuracies and utilization of the
item pool. These findings are encouraging for applications
of MFC-CAT to noncognitive personality evaluation in tal-
ent assessment.

More specifically, two Monte Carlo simulations and a
simulation based on real data were conducted under three-
dimensional, five-dimensional, and real testing settings. In
these simulations, we manipulated several factors, including
the number of dimensions, the inter-trait correlations, and the
test length. The findings are summarized as the following.

First, the trait estimation accuracy and uniformity of item
pool usage of all proposed item selection methods were
acceptable. Among the five compared methods, the proposed
MFC-K® and MFC-KLP performed best and comparably in
terms of estimation accuracy and uniformity of item pool
usage. By using the posterior distribution, these two item
selection methods extract more information from the
respondents (Mulder & van der Linden, 2010; Veldkamp &
van der Linden, 2002), resulting in more precise trait estima-
tion than the other methods. Except for MFC-KI, which per-
formed the worst among all five compared methods and
resulted in lower trait estimation accuracy and relatively
higher utilization of the item pool. It is consistent with previ-
ous studies in single-statement MCAT (e.g., Tu et al., 2018).
This may be because MFC-KI prefers blocks with high dis-
crimination parameters in both dimensions, while blocks
with larger KI do not necessarily provide higher power to
dgscriminate n from 7). For example, a block j satisfying

Y, ;4(Ag — n4) = 0 may has high KI, but it does not actually
d=1

Table 8 The results of the five compared item selection methods for MFC-CAT based on real data

Indices Test length MFC-A-optimality MFC-D-optimality MFC-KI MFC-KB MFC-KLP
RMSE-trait1 10 0.831 0.748 0.725 0.720 0.817
15 0.743 0.708 0.696 0.690 0.727
20 0.707 0.685 0.676 0.679 0.688
RMSE-trait2 10 0.881 0.838 0.793 0.747 0.887
15 0.825 0.736 0.700 0.707 0.762
20 0.723 0.697 0.688 0.693 0.704
RMSE-trait3 10 0.873 0.873 0.884 0.875 0.925
15 0.846 0.848 0.854 0.842 0.871
20 0.823 0.829 0.836 0.821 0.831
RMSE-trait4 10 0.833 0.730 0.693 0.723 0.823
15 0.730 0.692 0.678 0.694 0.716
20 0.712 0.676 0.671 0.685 0.681
RMSE-trait5 10 0.982 0.858 0.845 0.796 0.856
15 0.853 0.812 0.764 0.753 0.779
20 0.811 0.752 0.743 0.739 0.752
Mean 10 0.880 0.809 0.788 0.772 0862
15 0.799 0.759 0.738 0.737 0.771
20 0.755 0.728 0.723 0.723 0.731
X 10 7.852 6.915 10.853 6.674 8.025
15 3.795 4.404 7.910 4.045 3.833
20 1.808 2.832 3.720 1.593 1.100

r = inter-trait correlations, Test length = number of administered MFC items, mean = average RMSE values of traits, RMSE = root mean square
error, CORR = correlation between generated and estimated traits
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provide discrimination power with respect to  and # as
KL || n) = 0 (Tuetal., 2018; Wang & Chang, 2011).

Second, the influence of the inter-trait correlations, test
lengths, and dimensionality on various item selection methods
for MFC-CAT was examined. We found that the lower the inter-
trait correlations, the higher the estimation accuracy and the uti-
lization of the item pool. These findings are consistent with simi-
lar studies (Brown & Maydeu-Olivares, 2011; Biirkner et al.,
2019). The reason may be that, in forced-choice tests, as the
correlation between the traits measured in each block increases,
the uncertainty of the participants’ responses increases, thus
reducing the trait estimation accuracy. Similarly, consistent with
the previous MFC-CAT studies (Biirkner et al., 2019; Joo et al.,
2020), the more test items, the higher the estimation accuracy.
From three to five dimensions, the performance pattern of the
five MFC-CAT item selection methods as varying by inter-trait
correlations and test lengths stays the same.

Lastly, a simulation based on real data was conducted to
evaluate the proposed KL-based item selection methods in a
practical setting. Results show that acceptable trait estimation
accuracy (in terms of RMSEs) and acceptable uniformity of
item pool usage (in terms of x> values) can also be rendered in
a practical application of the proposed methods in MFC-CAT.

In sum, simulation results show that the proposed KL-based
item selection methods are all viable to the MFC-CAT, and
MFC-K® and MFC-KLP are the best choices recommended.

The simulation studies conducted in this research are by no
means exhaustive. This article represents a crucial step in the
research of MFC-CAT by exploring CAT procedures and item
selection methods applicable to forced-choice items based on
the TIRT model. For future studies, it is interesting to investi-
gate other adaptive methods for MFC-CAT. The item selection
methods used in this paper are extended from the single-state-
ment MCAT. New and more efficient methods and algorithms
may be explored for MFC-CAT. To make MFC-CAT more
applicable in real work contexts, it is necessary to discuss the
nonstatistical factors, such as item exposure control, content
constraints, and so on. Moreover, in order to further verify the
practical applicability of the proposed methods, real empiri-
cal research is needed. Last but not least, while the MFC-CAT
simulations in this study are fixed-length tests, future research
can be conducted to explore termination strategies in variable-
length MFC-CAT, which may further shorten the test length
and improve the efficiency and fairness of the test.

Funding The work was supported by the National Natural Science
Foundation of China (62167004, 32160203, 31960186, and 61967009).
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