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Abstract
The development and maintenance of the item bank is a critical element to a CD-CAT (cognitive diagnostic computerized 
adaptive testing; Cheng, 2009) system. For continuous testing, it is important to replenish the item bank with new items that 
have been calibrated. This requires pretesting to estimate the parameters of the new items. For CD-CAT, the structural param-
eters that need to be estimated include both item parameters and attribute vectors. In this paper, we propose three residual-
statistic-based methods: RMA, ROEM, and RMEM, to estimate the attribute vectors and item parameters all together for 
new items. An iterative two-step online calibration procedure is developed to estimate the attribute vectors for the new items 
in the first step, and estimate the item parameters in the second step, then proceed iteratively until convergence is reached. 
An extensive simulation study was conducted to evaluate the performance of the three proposed methods and compare them 
with two existing methods, namely the Joint Estimation Algorithm (JEA; Chen & Xin, 2011) and Single Item Estimation 
(SIE; Chen et al., 2015) methods. In terms of the estimation of the attribute vector, the RMEM method performs the best 
in most of the cases. In terms of item parameter estimation, RMEM still has some advantages, and RMA outperforms JEA 
and SIE. Taken together, results suggest that the RMEM is superior to the other methods, especially when sample size is 
relatively small. A real-data example is provided to illustrate the application of RMEM in practice.
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Cognitive diagnostic computerized adaptive testing (CD-
CAT; Cheng, 2009; McGlohen & Chang, 2008) is computer-
ized adaptive testing (CAT) built upon a cognitive diagnostic 
model (CDM; Rupp & Templin, 2008; Rupp et al., 2010). 
Cognitive diagnostic models (CDMs) are considered impor-
tant statistical tools that link item responses to latent cogni-
tive profiles, which capture the strengths and weaknesses of 
each respondent in terms of their mastery of discrete knowl-
edge points or attributes. Hence, testing programs built on 
CDMs have both features of model-based measurement and 
formative assessment (Embretson, 2001).

In a typical adaptive testing system, items are sequen-
tially selected from an item bank, tailored to each respondent 
according to certain item selection rules, for example, maxi-
mizing test information or minimizing the standard error of 
measurement of the latent trait. In CD-CAT, the goal is to 

efficiently estimate the latent cognitive profiles by sequen-
tially choosing the most suitable items for each candidate 
(Cheng, 2009; Dai et al., 2016; Yu et al., 2019; Zheng & 
Chang, 2016; Zheng & Wang, 2017). Given a well-designed 
item bank, continuous testing can be offered through CD-
CAT, which means that efficient formative assessment can 
be provided to students continuously.

In real applications, any CAT systems that offer continu-
ous testing need to replenish their item banks periodically. 
This is because repeated use of items may pose a risk to test 
security and validity. Therefore, retiring flawed, obsolete, 
or overexposed items and replacing them with new items 
that have been calibrated, a process called item replenish-
ment, is important for continuous testing (Chen et al., 2012; 
Chen et al., 2015; Chen & Xin, 2011; Ren et al., 2017). 
For this reason, new items constantly need to be developed, 
reviewed, and calibrated for CAT programs.

Online calibration in CAT refers to estimating the param-
eters of new items that are administered to respondents dur-
ing the course of their operational testing along with previ-
ously calibrated items (Wainer & Mislevy, 2000). Ren et al. 
(2017) pointed out several main advantages of online cali-
bration. First, new items are calibrated under the exact same 
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condition as for their future operational use. Second, the 
item parameters of the new items are calibrated on the same 
scale as the operational items, which means linking or res-
caling is no longer required. Commonly used methods that 
have been proposed to calibrate new items include Method A 
and Method B (Stocking, 1988), marginal maximum likeli-
hood estimation with one expectation maximization (OEM) 
iteration (Wainer & Mislevy, 2000), and marginal maximum 
likelihood estimation with multiple EM (MEM) iterations 
(Ban et al., 2001; Ban et al., 2002).

New items for CD-CAT need to be calibrated in terms of 
both item parameters and the attribute vectors. In contrast, 
in traditional CAT, item calibration only refers to the estima-
tion of item parameters. Thus, it is even more challenging 
to conduct online item calibration for CD-CAT than regular 
CAT. Chen et al. (2012) considered the online calibration 
of only the item parameters in CD-CAT and proposed three 
methods, namely Cognitive Diagnostic-Method A (CD-
MA), Cognitive Diagnostic-One EM cycle (CD-OEM), and 
Cognitive Diagnostic-Multiple EM cycle (CD-MEM). These 
methods assume known attribute vectors and are analogs to 
methods described in the preceding paragraph. For online 
calibration of both item parameters and attribute vectors, 
literature is relatively scarce. Chen and Xin (2011) pro-
posed a joint estimation algorithm (JEA), which considered 
jointly estimating the attribute vectors and the item param-
eters based on the DINA (Deterministic Input, Noisy output 
“AND” gate; see Junker & Sijtsma, 2001; de la Torre, 2009) 
model. Their results indicated the JEA can have a promising 
performance. Chen et al. (2015) considered two Bayesian 
variations of JEA: the SIE (Single Item Estimation), and 
the SimIE (Simultaneous Item Estimation) method. As their 
names suggest, in SIE a single new item is calibrated at a 
time, while in SimIE multiple new items are calibrated at a 
time. With a sample size larger than 800, Chen et al. (2015) 
showed that SIE and SimIE methods perform better than 
the JEA method in the estimation of both attribute vectors 
and the item parameters. Due to their iterative nature, SIE 
and SimIE showed very similar performances in estimating 
attribute vectors and item parameters. For all three methods, 
JEA, SIE, or SimIE, the estimation of the item parameters is 
highly dependent on the estimation of the attribute vectors. 
However, if the sample size is relatively small (e.g., 400 or 
fewer), item parameters cannot be estimated well even with 
known attribute vectors, let alone with unknown attribute 
vectors (Chen et al., 2015).

Given the limitations of existing methods, in this paper 
we propose an iterative two-step procedure to estimate both 
attribute vectors and item parameters with relatively small 
sample sizes. First, we propose to use a residual-based 
statistic to estimate the attribute vectors in the context of 
CD-CAT. This step does not require known or precisely 
estimated item parameters. In the second step, we treat the 

estimated attribute vector as true, and estimate the item 
parameters based on CD-Method A, CD-OEM, or CD-
MEM. The procedure proceeds iteratively until conver-
gence is reached.

The rest of this paper is organized as follows. First, we 
provide a literature review for the existing methods on this 
topic, which involves two main lines of research: online cali-
bration of the item parameters only, and online calibration 
of both the item parameters and attribute vectors. Next, we 
introduce in detail a new method of attribute vector esti-
mation using a residual-based statistic, and the iterative 
two-step procedure for estimating both item parameters and 
attribute vectors. A simulation study to assess the perfor-
mance of the proposed estimation methods is then described. 
A real-data analysis is provided to illustrate the application 
of RMEM in practice. Discussions and implications of the 
results are given in the last section.

Online calibration methods in CD‑CAT​

In this section, we briefly review several existing methods. 
For the sake of convenience but without loss of generality, 
we first introduce the following terms and notations that will 
be used throughout the remainder of the paper. As discussed 
earlier, new items refer to the items whose attribute vectors 
and item parameters are unknown, in contrast to the opera-
tional items that have been previously calibrated in the item 
bank. Let’s assume an existing item bank with J operational 
items. Meanwhile, the item parameters and attribute vectors 
of M new items need to be estimated. Consider a CD-CAT 
that targets a total of K attributes. Each of the J operational 
items require a distinct subset of the K attributes (denoted 
as qj, j = 1, 2, …, J) for them to be answered correctly. The 
stacked qjs form the item-attribute associations matrix for 
the item bank, namely the Q-matrix, which is a binary J × K 
matrix. The Q-matrix for the m new items is denoted as 
Qnew. The mastery status of each of N test takers is captured 
by αi (i = 1, 2, …, N), the attribute mastery pattern vector 
or, AMP. L refers to the fixed test length, and a N × L matrix 
X denotes the item response matrix with its binary element 
Xij, with Xij = 1 indicating a correct response of test taker i 
on item j, and Xij = 0 an incorrect response. Let nm be the 
total number of respondents responding to the mth new item.

As a parsimonious and popular CDM model, the DINA 
model is used here as an example (de la Torre, 2009). An 
expected or ideal response under the DINA model is char-
acterized by an indicator variable, denoted as �ij =

∏K

k=1
�
qjk

ik
 , 

which is used to indicate whether the ith respondent pos-
sesses all the required attributes of the jth item or not. 
Unexpected responses are accounted for by the slipping 
and guessing parameter, where sj = P(Xij = 0| ηij = 1) and 
gj = P(Xij = 1| ηij = 0), respectively. The probability of a 
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correct response to the jth item by the ith respondent under 
the DINA model is therefore defined as

For a new item m, its attribute vector qm and item param-
eters (sm, gm) are of key interest in online calibration.

Online calibration of item parameters

The following three methods are based on the assumption 
that the attribute vectors of the new items are known (i.e., 
qm’s are available, perhaps through content experts who 
label each item for the attributes they measure), and only 
their item parameters need to be estimated.

CD-Method A For a new item m, suppose that there are nm 
respondents responding to the item. The CD-method A treats 
the estimated AMP �̂i as the true αi, which was obtained 
based on the operational items answered by the ith respond-
ent, then estimates the slipping and guessing parameters 
through maximum likelihood (de la Torre, 2009).

where  lm
�
xi�qm , sm , gm

�
= log

�∏nm
i=1

Psm ,gm

�
qm , �̂i

�xim �1 − Psm ,gm

�
qm , �̂i

��1−xim� is  
the log-likelihood function, and qm is the attribute vector for 
item m. xim refers to the score of the mth new item answered 
by the respondent i (0/1), and Psm,gm

(
qm, �̂i

)
 refers to the 

response probability to new item m under the DINA model 
evaluated at �̂i.

CD-OEM. CD-OEM applies a single cycle of an EM 
algorithm (Chen et al., 2012; de la Torre, 2009) to estimate 
the item parameters for each new item. For the mth new item, 
based on the posterior distribution of the AMPs, the CD-
OEM method considers one E-step obtaining the expected 
proportion of respondents who have AMP �̂v among those 
who answer the new item m, where �̂v refers to one of the 
2K possible attribute profiles and 

∑2K

v=1
Pm

�
�̂v

�
= 1 . Next, 

the M-step finds the ŝm and ĝm that maximize the logarithm 
of the corresponding expected likelihood.

CD-MEM By allowing multiple EM cycles, the CD-OEM 
becomes the CD-MEM. The first EM cycle in CD-MEM is 
the same as in the CD-OEM method, and the obtained item 
parameters and attribute vectors are regarded as the initial 
values of the second EM cycle. The CD-MEM method uti-
lizes both the responses of operational items and new items 
to calculate the posterior distribution of the AMPs for the 
E-step from the second EM cycle onward, then fixes the item 

(1)P
(
Xij = 1|�i

)
=
(
1 − sj

)�ij gj1−�ij .

(2)
�lm

�sm
= 0,

(3)
�lm

�gm
= 0,

parameters of the operational items, and adopts the same 
M-step as that of the CD-OEM method to update the item 
parameters of the new items (refer to Chen et al., 2012 for 
further details). The EM cycles are repeated till a stop cri-
terion is met.

Results of Chen et al. (2012) showed that CD-Method A, 
CD-OEM, and CD-MEM are able to recover item param-
eters accurately with large sample sizes, and CD-Method A 
performs the best when the items have smaller slipping and 
guessing parameters, but its performance is largely affected 
by the item parameter magnitude.

Online calibration of both item parameters 
and attribute vectors

The Joint Estimation Algorithm (JEA)  Based on the DINA 
model, Chen and Xin (2011) proposed the JEA to jointly 
estimate both the attribute vectors and the item parameters, 
which is the analog of the joint maximum likelihood estima-
tion (JMLE; Baker & Kim, 2004) method in item response 
theory (IRT). As the extension of CD-Method A, the JEA 
treats the AMPs estimated from operational items as true, 
and then estimates the item parameters and the attribute vec-
tors for the new items, one item at a time. For the mth new 
item, the JEA maximizes lm(qm, sm, gm ) with respect to qm 
given (sm, gm), then consider the estimated qm as true and 
optimizes lm(qm, sm, gm ) with respect to (sm, gm). This is done 
iteratively until convergence is reached. Convergence can 
be defined as a very small difference of the log-likelihood 
between one iteration and the next.

To account for the uncertainty of the estimated AMPs, 
the SIE and SimIE are two Bayesian versions of the JEA.

The Single Item Estimation Method (SIE) Instead of plug-
ging in the estimates of the AMPs of the respondents who 
answered the mth new item, the SIE method considers the 
expected log likelihood

where πi(αi; sm, gm) is the posterior distribution of αi based 
on the operational items (in the first EM cycle), or both 
the operational items and new items (in the remaining EM 
cycles). By doing so, SIE takes the uncertainty of �̂i into 
account. The SimIE further considers calibrating multiple 
new items at a time.

The Simultaneous Item Estimation Method (SimIE)  As noted 
by Chen et al. (2015), the more accurate the information 
about the AMP is, the better the calibration will be. There-
fore, the motivation of the SimIE is to borrow some useful 
information from the new items to improve the estimation of 

(4)
E
�
lm
�
xi�qm , sm , gm

��

=

nm∑
i=1

∑
�i

�i
�
�i;sm , gm

��
xim logPsm ,gm

�
qm ,�i

�
+
�
1 − xim

��
1 − logPsm ,gm

�
qm ,�i

���
,
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the unknown AMPs. However, borrowing information from 
those inadequately calibrated items may have a detrimental 
effect on the estimation of AMPs. In order to address this 
issue, Chen et al. (2015) proposed an index, here denoted 
as ωm (denoted as ηj in the original paper, but as ωm here to 
avoid confusion), to evaluate the confidence in the fit of q̂m . 
ωm was defined as the difference between the log-likelihood 
function for the two most probable q̂′

m
s for the mth item. Half 

of the 95th percentile of the χ2 distribution with one degree 
of freedom, i.e., 1.92, was chosen as the empirical cutoff for 
the “good” new items in Chen et al. (2015). Then treating 
the first chosen new item, which has the maximum ωm and 
ωm > 1.92, as an additional operational item, SimIE updates 
the posterior distribution of the AMP of the respondents 
based on all operational items, and recalibrates the second 
chosen new item. This process is repeated until all the cho-
sen new items are treated as additional operational items. 
Then, new items which are not selected in the preceding step 
are calibrated one at a time. This is one estimation cycle. The 
algorithm proceeds until the chosen items do not change in 
two consecutive cycles.

Attribute vector estimation based 
on a residual‑based statistic

In this section, we first briefly introduce the residual-based 
statistic (please refer to Yu and Cheng (2020) for more 
details) to measure the appropriateness of the attribute vec-
tor of an item. Then we present the theoretical proof that 
under the DINA model, the proposed residual-based sta-
tistic can be used to identify the true attribute vector of the 
mth new item with arbitrarily chosen item parameters under 
certain assumptions. This may help liberate the dependency 
on large sample size for existing methods.

Let E(Xim| αi) be the expected score for the ith respondent 
with AMP αi, and P(Xim = xim| αi), denoted by P(xim| αi) for 
short, be the probability for the respondent obtaining score 
xim, xim being 0 or 1. Then the appropriateness index of the 
attribute vector for the mth item can be defined as

where α is a matrix of vertically stacked �′

i
s, i.e., attribute 

profiles of those respondents who answered the mth new 
item. The squared form is numerically two times the abso-
lute form, so the performance of the method based on these 
two forms are equivalent. The squared form will be used in 
all our simulation conditions just for coding consistency. 
Under the DINA model, according to the values of ηim and 
the response xim, each respondent is classified into one of 
the four groups, G1, G2, G3 and G4, where respondents in G1 
have ηim = 1 and xim= 1, respondents in G2 have ηim = 1 and 

(5)Rm

(
�, qm , sm , gm

)
=

nm∑
i=1

log

[
xim − E

(
Xim|�i

)

P
(
xim|�i

)
]2

, or

nm∑
i=1

log
|||||
xim − E

(
Xim|�i

)

P
(
xim|�i

)
|||||
,

xim= 0, respondents in G3 have ηim = 0 and xim= 1, respond-
ents in G4 have ηim = 0 and xim= 0, respectively. Hence, for-
mula 5 can be expanded to

where �im =
∏K

k=1
�ik

qmk is the ideal response of the ith exam-
ine (with attribute profile αi) to the mth item (with attribute 
vector qm). We expect that given �̂ from operational items, 
Rm

(
�̂, qm, sm, gm

)
 as a function of qm is minimized when qm 

is at its true value.
Theorem 1. Consider an infinite sample, that is N → ∞, 

and the true item parameters sm, gm ∈ (0, 0.5). Denote �̂ as 
the estimate of α. Furthermore, assume its true value α is 
known in advance. Given the provisional item parameters 
for the mth item as 

(
s0
m
, g0

m

)
 , where s0

m
 , g0

m
 are two arbi-

trarily chosen real numbers within the range of (0, 0.5), 
and denote R̂0

m

(
�, qm, s

0
m
, g0

m

)
 as the value of the residual-

based statistic evaluated at 
(
s0
m
, g0

m

)
 , then R̂0

m

(
�, qm, s

0
m
, g0

m

)
 

reaches its minimum only when qm is correctly specified.
Theorem 1 is the basis of our proposed iterative two-

step online calibration method leveraging the residual 
statistic. According to the Theorem 1, we can obtain the 
attribute vector for each new item by arbitrarily assign-
ing item parameters to it, e.g., s0

m
= 0.25 , g0

m
= 0.25 , and 

minimizing the residual statistic. In other words, it is not 
necessary to jointly estimate the attribute vector and the 
item parameters for each new item, and the vector of the 
new item can be obtained based on the fixed item parame-
ters as long as α is known. Then one can estimate the item 
parameters based on the vector obtained in the preceding 
step. This is very useful for situations where existing joint 
estimation methods suffer, e.g., when the sample size is 
small, which is oftentimes the case for a diagnostic test. 
For conciseness, the proof is presented in Appendix A.

The iterative two‑step online item 
calibration method

Based on the preceding theorem, we propose an iterative 
two-step method for online item calibration. A flow chart 
describing the procedure is presented in Fig. 1. As we can 
see, by fixing the new item parameters at 0.25 (or any 
value between 0 and .5), the estimated attribute vector for 
the mth new item can be obtained based on the attribute 
profiles estimated from the responses of the operational 
items. In the second step, assume the estimated vector for 
each new item as true, the CD-MA, CD-OEM, and CD-
MEM can be applied to calibrate item parameters as 

(6)

Rm

(
�, qm, sm, gm

)
= 2

nm∑
i=1

log

[
�im

(
sm

1 − sm

)xim
(
1 − sm

sm

)1−xim

+
(
1 − �im

)( gm

1 − gm

)1−xim
(
1 − gm

gm

)xim
]
,
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described in Chen et al. (2012). Accordingly, the result-
ing three variations of the iterative two-step online cali-
bration methods based on the residual statistic are 
denoted as RMA, ROEM, and RMEM, respectively. Let 
R̂
(
�̂, Q̂new, ŝ, ĝ

)
 denote the sum of the R for all new items, 

that is, R̂
�
�̂, Q̂new, ŝ, ĝ

�
=
∑M

m=1
R̂m

�
�̂, q̂m, ŝm, ĝm

�
 , and let 

R̂t

Q̂new

 be the shorthand of R̂
(
�̂, Q̂new, ŝ, ĝ

)
 in the tth itera-

tion. The iterative algorithm stops till the number of itera-
tions reaches its prespecified maximum or the difference 
between two adjacent iterations, R̂t

Q̂new

 and R̂t−1

Q̂new

, is smaller 
than a preset threshold.

The process of the calibration of the mth item can be 
described as follows:

Step 1: Estimate the attribute vector for the mth new item:

(1)	 Obtain �̂ of each examinee based on their responses to 
the operational items;

(2)	 Assigning the initial slipping and guessing parameter 
as 0.25, estimate the attribute vector for each new item 
based on the proposed R statistic.

Step 2: Based on the estimated attribute-vectors obtained 
from the last step, apply the CD-MA, CD-OEM, or CD-

CD-MA CD-MEMCD-MEMCD-OEMCD-OEM

N

Stop

t=t+1

For each new item
m in

The provisional item
parameters,

Y

Set the initial slipping and
guessing parameter for

each item as 0.25,

Fig. 1   The flow chart of the iterative two-step online item calibration 
method. Note. Q̂

t

new
 is the attribute vector definition of the new items 

in the tth iteration. R̂t

Q̂new

 and R̂t−1

Q̂new

refer to the sum of the R statistic for 
all new items in the tth and the (t − 1)th iteration, respectively. Qqm

 
refers to the set of the possible attribute vectors of the mth new item. 
and q̂m is the estimate of the attribute vector for item m. �̂ refers to 

the AMP estimates of those respondents who were administered the 
new item. ŝm and ĝm refer to estimates of the slipping and the guess-
ing parameters, s0

m
 and g0

m
 are their initial values, respectively. In the 

context of cognitive diagnosis, CD-MA, CD-OEM, CD-MEM refer 
to the online calibration of item parameters based on method A, 
OEM, and MEM, respectively
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MEM method to update the slipping and guessing param-
eters for the mth item.

Two practical concerns arise when using the iterative two-
step procedure in real applications. One is that the true AMPs 
are unknown, and the AMPs based on responses to operational 
items are used in their place. The other is that theorem 1 holds 
only when N → ∞. Therefore, robustness of the proposed pro-
cedure in presence of unknown AMPs and limited sample size 
remains to be examined. In order to evaluate the performance 
and the robustness of the proposed two-step method under the 
condition of unknown AMPs and a relatively small sample 
size, a simulation study is conducted. According to the results 
of Chen et al. (2015), SIE and SimIE have almost the same 
performance with sample sizes smaller than 1600. Since our 
main goal is to compare the online item calibration methods 
in the context of CD-CAT with a relatively small sample size, 
only the JEA, SIE, and the three residual-based methods are 
involved in the following simulation study. The purpose of 
this article is twofold: (a) to introduce three residual-based 
methods implemented in an iterative algorithm for online 
calibration in CDA, and (b) to examine how the performance 
of these methods compares to that of the JEA and SIE under 
a wide range of conditions by means of a simulation study.

Simulation study

Diagnostic assessment sees great promise in classroom 
assessment, which calls for considerations of a small sample 
size and short test length. Furthermore, the AMP distribu-
tions are most likely different for respondents in different 
classes. Therefore, in a comprehensive simulation study, 
we evaluate the performance of the proposed method under 
various conditions, e.g., different sample sizes, test lengths, 
distribution of AMPs, and proportion of the new items to the 
operational items. The performance of the proposed methods 
is compared against two existing methods, JEA and SIE. For 
each condition, the simulation is replicated 1000 times. The 
same as Chen et al. (2012), the number of attributes meas-
ured by the test is set as K = 6. Therefore, the number of 
possible AMPs is 26 = 64. The comparison is made in terms 
of the accuracy of the estimation of the attribute vectors for 
the new items, slipping and guess parameters, as well as the 
respondents’ AMPs.

Sample Size  Six sample sizes (200, 400, 600, 800, and 
1000) are considered. The first three are small sample sizes, 
and the last two are medium sample sizes.

Test Length  Three test lengths (20, 30, and 40) are consid-
ered. Each test consists of a certain number of operational 
items and new items, with the total test length being 20, 30, 

or 40. For each test length, the rate of new to operational 
items (denoted by λ) is 1:4, 1:3, or 1:2. For example, at the 
test length of 30, there could be six new and 24 operational 
items, or roughly eight new and 22 operational items, or ten 
new and 20 operational items.

Respondent Generation  We use a similar method to Chen 
et al. (2012) and Chen et al. (2015) to generate the AMPs 
of respondents. Two independent groups of respondents 
are simulated. The first group assumes each respondent 
has a 50% probability of mastering each attribute, i.e., all 
attributes are equally “difficult”. The second group assumes 
that the probability of mastery varies from one attribute to 
another. More specifically, the probability of mastery is set 
at 0.65, 0.25, 0.75, 0.45, 0.55, and 0.35 for attribute 1 to 6, 
where 0.65 and 0.75 refer to low difficulty, 0.45 and 0.55 
refer to medium difficulty, and 0.25 and 0.35 refer to high 
difficulty.

Item Bank Generation  Similar to Chen et al. (2012) and 
Chen et al. (2015), two item banks are simulated based on 
the ranges of the item parameters. The slipping and guessing 
parameters are all randomly drawn from U(0.05, 0.25) for 
the first item bank, which feature items with high discrimi-
nation (Kaplan et al., 2015), and drawn from U(0.15, 0.35) 
for the second item bank, resulting in an item bank of low 
discrimination (Kaplan et al., 2015). A total of 360 items 
with the same Q-matrix as in Chen et al. (2012) are gener-
ated. Typically, high discrimination items involve less noise 
(as represented by slipping and guessing), and lead to better 
measurement outcomes.

New Item Generation  The same as Chen et al. (2012) and 
Chen et al. (2015), suppose the number of the new items as 
20, which indicates that there are 20 items in the Qnew, the 
associated attribute vectors for them are randomly drawn 
from the operational item banks. The set of the new items 
will be drawn either from the low-discrimination bank or 
high-discrimination bank, denoted as New1 or New2, respec-
tively. Table 1 presents detailed information of the new 
items.

Simulation of CD‑CAT and Online Calibration  For each 
respondent, the CD-CAT and the online calibration proceed as 
follows: (1) Generate the initial AMP estimate randomly, with 
each attribute having an equal probability of being mastered or 
not mastered; (2) Select the next item based on the most recent 
AMP estimate; (3) Generate the response to the selected item 
and update the AMP estimate according to the responses to the 
previously administered items. Steps 2 and step 3 are repeated 
until the stopping rule is satisfied. During the process, a certain 
number of new items (1/3, 1/4, or 1/5 of the test length) are 
randomly seeded in the test of each respondent. Three fixed 
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test lengths L = 20, 30, and 40 are simulated, and the item 
selection strategy for operational items is the Shannon Entropy 
method (SHE; Cheng, 2009; Tatsuoka, 2002, Xu et al., 2003). 
The prior distribution of the AMP is assumed to be the uni-
form distribution. It should be noted that the AMP estimates 
of CD-Method A, CD-OEM, and CD-MEM are based on the 
operational items, while those of SIE and SimIE are based on 
both the operational items and new items.

Update of the AMP  In the simulation, the Maximum A Pos-
terior (MAP; Huebner & Wang, 2011) method is used to 
update the AMP estimates of respondents:

where Xi refers to the response pattern for the ith respondent. 
As noted by Chen et al. (2012), the AMP is estimated after 
each operational item is answered. The test is terminated as 
soon as the test length reaches L.

Evaluation Criteria  For each condition, the following eight 
criteria are applied to evaluate the performance of online 
calibration methods. The first three indices are used to 

(7)�̂i = argmax
v=1,2,⋯,2K

P
(
�v|Xi

)
,

evaluate the estimation of the AMPs, while the remaining 
indices address the estimation accuracy of the item param-
eters and the attribute vectors for the new items.

Person Pattern Accuracy Rate (PPAR)  The PPAR represents 
the proportion of respondents whose AMPs are correctly 
estimated, which is defined as follows:

where I
(
�i = �̂i

)
 is an indicator function which equals 1 if 

the estimate AMP �̂i for the ith respondent equates to its true 
value αi, and 0 otherwise.

Person Attribute Accuracy Rate (PAAR​). The PAAR​k 
quantifies the estimation accuracy rate for attribute k:

Average Person Attribute Accuracy Rate (APAAR)  The 
APAAR​ summarizes the average attribute estimation accu-
racy at the person level for the CD-CAT, which can be deter-
mined as follows

(8)PPAR =

∑N

i=1
I
�
�i = �̂i

�
N

,

(9)PAARk =

∑N

i=1
I
�
𝛼ik = 𝛼̂ik

�
N

.

Table 1   The settings of the new items

New1 and New2 are the two settings of the seeded new items. s and g refer to the slipping and the guessing parameters, respectively. QNew1
 and 

QNew2
 are the Q-matrices based on the settings of New1 and New2, respectively

ID New1 New2

(0.05, 0.25) QNew1
(0.15, 0.35) QNew2

s g s g

1 0.226 0.233 1 1 0 1 0 0 0.239 0.333 0 1 0 1 0 1
2 0.082 0.173 0 0 0 0 1 1 0.267 0.306 1 0 1 0 0 0
3 0.215 0.180 1 0 0 1 0 0 0.284 0.173 0 0 0 0 1 0
4 0.169 0.214 0 0 0 0 1 0 0.198 0.269 0 0 0 0 1 0
5 0.171 0.128 0 0 0 1 0 1 0.224 0.164 0 0 1 0 0 0
6 0.241 0.186 0 1 1 0 0 1 0.270 0.308 0 1 0 1 1 0
7 0.207 0.115 0 1 0 1 0 1 0.232 0.324 1 0 0 0 0 0
8 0.071 0.109 0 0 0 0 0 1 0.243 0.292 0 0 0 1 0 0
9 0.244 0.080 1 0 0 0 0 0 0.268 0.289 0 0 1 0 0 0
10 0.196 0.234 0 0 1 0 0 0 0.340 0.333 1 1 0 1 0 0
11 0.246 0.174 0 0 0 0 1 1 0.306 0.191 1 0 0 1 0 1
12 0.208 0.173 0 1 0 0 1 0 0.176 0.345 0 1 0 0 1 1
13 0.166 0.095 0 1 0 1 0 1 0.253 0.285 1 0 0 0 0 0
14 0.076 0.053 1 0 0 0 0 0 0.247 0.315 0 0 0 0 0 1
15 0.206 0.226 0 1 0 0 0 0 0.176 0.288 1 1 0 1 0 0
16 0.144 0.212 0 0 0 1 0 1 0.333 0.278 0 0 0 0 1 0
17 0.109 0.051 0 1 0 0 1 1 0.164 0.188 1 1 1 0 0 0
18 0.151 0.144 1 0 1 0 0 0 0.271 0.316 0 0 0 1 0 1
19 0.122 0.071 0 1 1 1 0 0 0.306 0.257 0 0 0 1 0 0
20 0.185 0.088 0 0 1 0 0 0 0.326 0.162 0 0 1 1 0 1
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The following five indexes evaluate the estimation of the 
new items.

Root Mean Squared Error (RMSE)  The RMSE summarizes 
the overall performance of the calibration accuracy of the 
slipping and guessing parameters of the M new items (Chen 
et al., 2012; Chen et al., 2015):

Item Pattern Accuracy Rate (IPAR)  The IPAR indicates the 
calibration accuracy for the attribute vector of the new items, 
which is defined as follows:

where I(∙) is an indicator function: I
(
q̂m = qm

)
 returns 

a value of 1 when q̂m and qm are equal, and returns a 0 
otherwise.

Item Attribute Accuracy Number (IAAN)  The IAAN quantifies 
the average number of attributes per item that are specified 
correctly for the new items:

Among the preceding indices: The PPAR, PAAR​, and 
APAAR​ are used to summarize the estimation accuracy of 
AMPs. Higher value indicates better estimation. sRMSE and 
gRMSE are used to evaluate the item parameter estimation 
accuracy for the new items. Smaller sRMSE and gRMSE indicate 
more accurate estimation of item parameters. The IPAR and 
IAAN quantify the attribute vector estimation accuracy of the 
new items, with larger values representing a more accurate 
estimation of attribute vector.

Results

Figure 2 and Table 2 provide the indices of the AMP esti-
mation accuracy for the CD-CAT, which includes PPAR, 
PAAR​, APAAR​, under the condition of the sample size of 200 
(Results for other sample sizes show similar patterns and 

(10)APAAR =

∑N

i=1

∑K

k=1
I
�
𝛼ik = 𝛼̂ik

�
NK

.

(11)sRMSE =

√√√√ 1

M

M∑
m=1

(
sm − ŝm

)2
,

(12)gRMSE =

√√√√ 1

M

M∑
m=1

(
gm − ĝm

)2
.

(13)IPAR =

∑M

m=1
I
�
q̂m = qm

�
M

,

(14)IAAN =

∑M

m=1

∑K

k=1
I
�
q̂mk = qmk

�
M

.

are omitted to save space. They are available upon request). 
It should be noted that these three indices are calculated 
only based on the operational items. The two uppercase let-
ters in the first column of the tables refer to the range of 
item parameters and attribute mastery probability. The let-
ters “L” and “H” denote the low- and high-discrimination 
items with parameters’ range [0.15, 0.35] and [0.05, 0.25], 
respectively. The letters “S” and “D” refer to respondents 
with the same and different mastery probabilities, respec-
tively. Results indicate that the test with highly discriminat-
ing items is indeed better for the estimation of respondents’ 
attribute profile, consistent with expectation. For example, 
the test with 13 high-discrimination operational items (i.e., 
in the 20-item highly discriminating test, with 1:2 new to 
operational item ratio) can reach a comparable PPAR of the 
test with 22 low-discrimination operational items (i.e., in 
the low-discrimination test with test length of 30, with 1:4 
new to operational item ratio). Similar results between HS 
and HD, as well as between LS and LD suggest that the 
attribute mastery probabilities show little effect on the esti-
mation of the respondents’ attribute profiles. Due to the fixed 
test length of the CD-CAT, the AMP estimation precision 
will decrease with the number of seeded new items, because 
AMP estimation depends on the responses to the operational 
items. For example, at the length of the 20-item test with the 
rate of new to operational items being 1:4, 1:3, and 1:2, the 
PPARs are 0.944, 0.906, and 0.810, respectively.

The six columns below PAAR​ in Table 2 are the estima-
tion accuracy index of six attributes, which indicates that 
the test with high-discrimination items result in a higher 
PAAR​, and the test with more operational items also lead 
to a higher PPAR, which can be easily seen in Fig. 2. When 
the test length reaches as high as 40, the difference caused 
by the ratio of new items and operational item becomes less 
pronounced (see Fig. 2). On the other hand, the distribu-
tion of the attribute mastery probability shows a small effect 
on the estimation of respondents’ attribute profiles. Table 2 
also shows that the PPAR and APAAR​ indices have the same 
trend as PAAR​.

Tables 3, 4, 5, 6 and 7 present the IPAR index of the new 
items. Based on the results, more discriminating items, i.e., 
items with lower guessing and slipping parameters, are ben-
eficial for online calibration. The proposed residual-based 
(R-based) methods outperform the JEA and SIE method in 
attribute vector estimation of the new items. When all attrib-
utes are equally likely to be mastered, RMEM has the high-
est IPAR in most cases. Between JEA and SIE, there does not 
seem to be a consistent winner in terms of the IPAR index, 
suggesting that the Bayesian version of the JEA could not 
always borrow enough information to help the item calibra-
tion. For the R-based methods, RMA and ROEM have close 
performances. Results also suggest that a higher IPAR index 
can be obtained with more seeded new items. For example, 
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consider a sample size of 200 respondents and test length of 
20, the IPAR index for RMEM under three different ratios 
of seeded new items and operational items are 0.464, 0.524, 
0.538 (see Table 3). The increase of seeded new items leads 
to more responses to each new item, and subsequently leads 
to better estimation of new items’ attribute vectors. Con-
sider the sample size of 400 and a 20-item test, if five new 
items (corresponding to 1:3 new to operational item ratio) 
are seeded in the test, about 400×5/20 = 100 respondents 
answer each new item on average. Nevertheless, if seven 
new items (i.e., the ratio of new to operational items is 1:2) 
are seeded, about 400×7/20 = 140 respondents answer each 
new item on average. Meanwhile, the decrease of the opera-
tional items will lead to lower PPAR index, which is harmful 
to the calibration. Therefore, a trade-off between the num-
ber of seeded new items and operational items needs to be 
considered.

All five methods have better performances with more 
discriminating items, which is consistent with the findings 
of Chen et al. (2012). For example, for the RMEM method 
in the 20 items test with 200 respondents, the values of the 
IPAR index for the HS and LS condition with a 1:4 new to 
operational item ratio are .790 and .464. For the two distri-
butions of respondents’ attribute mastery probability, each 
of the methods has better performance in terms of the IPAR 
index under the condition of respondents with the same 
attribute mastery probability of 0.5. Also, take the 20-item 
test, 200-respondents condition as an example, under the 

HS and HD conditions, with a new to operational ratio of 
1:4, the IPARs of the RMEM method are .790 and .708, 
respectively.

Across five samples, the same trend for the IAAN index 
is observed. Hence, we only provide the results under the 
condition of the sample size of 200 and 400, which are 
presented in Tables 8 and 9. For this index, 6 means that 
all attributes of the item are estimated correctly, and the 
closer to 6 the better. As we can see, RMEM performs bet-
ter in most of the conditions. RMA and ROEM have com-
parable IAAN in some cases. For example, 4897 attributes 
can be correctly recovered on average under the condition 
of 20-item test with 1/4 seeded new items, and respondents 
with uniform attribute mastery probability.

Consider the item parameter estimation of the new items, 
the RMA and RMEM lead to comparable RMSEs for both 
the slipping and guessing parameters, and they together out-
perform the other three methods. As shown in Tables 10, 
11, 12, 13 and 14, ROEM results in higher sRMSE and gRMSE 
than RMEM and RMA. As discussed before, information 
borrowed from the respondents’ posterior distribution may 
not be enough to improve the online item calibration, and 
in most cases, the JEA has the largest sRMSE and gRMSE. The 
same as the attribute vector estimation, each method has 
better or comparable performances when the respondents 
have the same attribute mastery probability. With more 
seeded new items, estimation of the new items become bet-
ter, as more seeded new items for each respondent mean 

Fig. 2   The PPAR (Person Pattern Accuracy Rate) of the new items. 
Note. The first letter ‘H’ or ‘L’ in the labels for the x-axis refers to 
items with high- or low-discrimination, the second letter ‘S’ or ‘D’ 
refer to respondents with the same or different attribute mastery prob-

ability (ies). The number after the underscore refers to the test length. 
For example, HS_20 refers to the test with highly discriminative items 
and test length of 20. The numbers in the legend refer to the ratio of 
the number of seeded new items to the number of operational items
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more responses can be collected for each new item. Though 
the estimation accuracy of the respondents' AMP decreases 
in the test with more seeded new items, the increase of the 
respondents for each new item can improve the calibration 
of the new item, again pointing to a tradeoff.

Figure 3 illustrates the IPAR index of the condition of 
sample size 200 with different test lengths. As we can see, 
on one hand, the IPAR becomes better with more seeded 
new items (with a new to operational item ratio of 1:4 to 
1:2 within each specific test length). On the other hand, the 

Table 2   Estimation accuracy of the respondents under the sample size of 200

The indices in the table were obtained only based on the operational item, where λ refers to the rate of new to operational items, L refers to the 
test length. The first letters in ‘HS’, ‘LS’, ‘LS’, ‘LD’, which are ‘H’ or ‘L’, refer to items with high- or low-discrimination, the second letter ‘S’ or 
‘D’ refers to respondents with the same or different attribute mastery probability (ies). A1–A6 refers to the six simulated attributes, respectively. 
PPAR, PAAR​, and APAAR​ are the person pattern accuracy rate, the person attribute accuracy rate, and the average person attribute accuracy rate, 
respectively. Boldfaced values indicate the best performance across λ levels

Condition L λ PPAR PAAR​ APAAR​

A1 A2 A3 A4 A5 A6

HS 20 1/4 0.944 0.990 0.990 0.990 0.988 0.990 0.986 0.989
1/3 0.906 0.983 0.984 0.981 0.975 0.985 0.980 0.981
1/2 0.810 0.965 0.963 0.961 0.957 0.966 0.953 0.961

30 1/4 0.989 0.998 0.999 0.998 0.998 0.998 0.998 0.998
1/3 0.982 0.996 0.997 0.996 0.996 0.997 0.996 0.996
1/2 0.945 0.989 0.992 0.989 0.986 0.991 0.986 0.989

40 1/4 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000
1/3 0.995 0.999 0.999 0.999 0.999 0.999 0.999 0.999
1/2 0.981 0.997 0.997 0.996 0.995 0.997 0.995 0.996

LS 20 1/4 0.649 0.906 0.930 0.920 0.908 0.931 0.909 0.917
1/3 0.573 0.889 0.912 0.900 0.887 0.915 0.882 0.897
1/2 0.457 0.843 0.878 0.873 0.850 0.883 0.838 0.861

30 1/4 0.805 0.952 0.961 0.954 0.956 0.964 0.954 0.957
1/3 0.774 0.943 0.956 0.945 0.947 0.959 0.945 0.949
1/2 0.649 0.908 0.929 0.920 0.910 0.929 0.902 0.916

40 1/4 0.896 0.975 0.983 0.976 0.980 0.982 0.974 0.978
1/3 0.869 0.969 0.977 0.973 0.973 0.974 0.969 0.973
1/2 0.771 0.945 0.955 0.948 0.944 0.959 0.941 0.949

HD 20 1/4 0.942 0.989 0.992 0.987 0.987 0.989 0.989 0.989
1/3 0.913 0.984 0.986 0.982 0.978 0.985 0.981 0.983
1/2 0.813 0.966 0.971 0.960 0.955 0.963 0.960 0.962

30 1/4 0.988 0.998 0.999 0.998 0.998 0.998 0.997 0.998
1/3 0.984 0.997 0.998 0.998 0.996 0.997 0.996 0.997
1/2 0.944 0.989 0.993 0.989 0.986 0.990 0.988 0.989

40 1/4 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000
1/3 0.996 0.999 0.999 0.999 1.000 0.999 0.999 0.999
1/2 0.985 0.998 0.998 0.997 0.997 0.997 0.997 0.997

LD 20 1/4 0.637 0.895 0.939 0.910 0.908 0.922 0.909 0.914
1/3 0.578 0.874 0.922 0.885 0.899 0.909 0.896 0.898
1/2 0.472 0.832 0.894 0.862 0.861 0.877 0.859 0.864

30 1/4 0.805 0.946 0.968 0.948 0.957 0.963 0.959 0.957
1/3 0.763 0.933 0.961 0.935 0.951 0.956 0.947 0.947
1/2 0.639 0.893 0.938 0.903 0.918 0.916 0.917 0.914

40 1/4 0.901 0.974 0.987 0.973 0.980 0.980 0.981 0.979
1/3 0.859 0.961 0.980 0.962 0.970 0.971 0.970 0.969
1/2 0.772 0.939 0.961 0.936 0.951 0.954 0.952 0.949
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Table 3   The IPAR (Item Pattern Accuracy Rate) for the new items with the sample size of 200

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

Group L λ s, g~U(0.15,0.35) s, g~U(0.05,0.25)

RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attribute mastery
probability

20 1/4 0.464 0.464 0.464 0.431 0.403 0.789 0.790 0.790 0.768 0.775
1/3 0.518 0.522 0.524 0.481 0.463 0.873 0.876 0.876 0.856 0.857
1/2 0.538 0.538 0.538 0.508 0.481 0.917 0.918 0.919 0.895 0.874

30 1/4 0.653 0.655 0.656 0.629 0.642 0.922 0.921 0.922 0.908 0.906
1/3 0.711 0.711 0.712 0.686 0.688 0.942 0.942 0.942 0.935 0.937
1/2 0.774 0.774 0.774 0.736 0.735 0.981 0.981 0.981 0.976 0.977

40 1/4 0.767 0.767 0.767 0.735 0.753 0.950 0.950 0.950 0.943 0.944
1/3 0.839 0.840 0.840 0.829 0.831 0.979 0.979 0.979 0.971 0.972
1/2 0.878 0.878 0.898 0.858 0.892 0.990 0.990 0.996 0.989 0.990

Uneven attribute mastery
probability

20 1/4 0.407 0.409 0.441 0.402 0.403 0.704 0.704 0.708 0.706 0.699
1/3 0.444 0.449 0.455 0.452 0.441 0.770 0.769 0.767 0.759 0.749
1/2 0.458 0.460 0.476 0.463 0.453 0.801 0.798 0.797 0.773 0.764

30 1/4 0.565 0.567 0.567 0.559 0.560 0.830 0.831 0.833 0.825 0.813
1/3 0.578 0.578 0.599 0.583 0.587 0.864 0.863 0.864 0.859 0.854
1/2 0.625 0.626 0.644 0.624 0.623 0.912 0.910 0.919 0.908 0.913

40 1/4 0.666 0.666 0.697 0.673 0.684 0.864 0.867 0.867 0.865 0.866
1/3 0.713 0.714 0.731 0.715 0.720 0.915 0.916 0.916 0.909 0.911
1/2 0.762 0.762 0.796 0.764 0.783 0.949 0.948 0.949 0.946 0.947

Table 4   The IPAR (Item Pattern Accuracy Rate) for the new items with the sample size of 400

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

Group L λ s, g~U(0.15,0.35) s, g~U(0.05,0.25)

RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attribute mastery
probability

20 1/4 0.638 0.637 0.636 0.600 0.593 0.945 0.944 0.945 0.924 0.934
1/3 0.715 0.714 0.715 0.674 0.617 0.967 0.966 0.977 0.965 0.971
1/2 0.717 0.716 0.717 0.674 0.657 0.981 0.981 0.987 0.979 0.972

30 1/4 0.857 0.859 0.866 0.843 0.857 0.983 0.983 0.983 0.978 0.978
1/3 0.887 0.889 0.899 0.878 0.891 0.995 0.995 0.996 0.993 0.994
1/2 0.922 0.922 0.932 0.906 0.892 0.996 0.996 0.996 0.996 0.996

40 1/4 0.924 0.923 0.925 0.913 0.922 0.984 0.984 0.992 0.987 0.987
1/3 0.959 0.960 0.966 0.954 0.959 0.998 0.998 0.998 0.998 0.998
1/2 0.982 0.982 0.986 0.980 0.980 1.000 1.000 1.000 1.000 1.000

Uneven attribute mastery
probability

20 1/4 0.534 0.538 0.537 0.525 0.529 0.843 0.843 0.847 0.840 0.841
1/3 0.563 0.561 0.586 0.581 0.566 0.910 0.907 0.909 0.892 0.892
1/2 0.592 0.593 0.594 0.593 0.594 0.908 0.908 0.928 0.894 0.899

30 1/4 0.729 0.723 0.742 0.709 0.739 0.933 0.932 0.935 0.932 0.929
1/3 0.752 0.753 0.759 0.750 0.758 0.950 0.950 0.955 0.953 0.950
1/2 0.767 0.769 0.769 0.764 0.758 0.973 0.972 0.977 0.972 0.976

40 1/4 0.823 0.823 0.828 0.804 0.821 0.952 0.952 0.952 0.944 0.945
1/3 0.871 0.872 0.877 0.858 0.870 0.972 0.972 0.973 0.971 0.972
1/2 0.889 0.889 0.909 0.885 0.887 0.988 0.988 0.989 0.987 0.989
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Table 5   The IPAR (Item Pattern Accuracy Rate) for the new items with the sample size of 600

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

Group L λ s, g~U(0.15,0.35) s, g~U(0.05,0.25)

RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attribute mastery
probability

20 1/4 0.743 0.740 0.768 0.719 0.742 0.971 0.971 0.971 0.966 0.970
1/3 0.787 0.787 0.787 0.769 0.690 0.989 0.989 0.989 0.988 0.989
1/2 0.794 0.794 0.796 0.774 0.757 0.994 0.994 0.994 0.991 0.991

30 1/4 0.928 0.928 0.928 0.909 0.925 0.995 0.995 0.996 0.996 0.996
1/3 0.938 0.939 0.940 0.925 0.927 0.997 0.997 0.998 0.998 0.998
1/2 0.961 0.961 0.961 0.944 0.933 1.000 1.000 1.000 1.000 1.000

40 1/4 0.969 0.968 0.969 0.962 0.963 0.999 0.999 0.999 0.999 0.999
1/3 0.988 0.988 0.989 0.984 0.988 1.000 1.000 1.000 1.000 1.000
1/2 0.990 0.990 0.990 0.986 0.990 1.000 1.000 1.000 1.000 1.000

Uneven attribute mastery
probability

20 1/4 0.620 0.620 0.630 0.620 0.614 0.910 0.910 0.912 0.903 0.911
1/3 0.624 0.624 0.654 0.654 0.654 0.933 0.933 0.935 0.923 0.934
1/2 0.651 0.655 0.659 0.659 0.659 0.941 0.941 0.950 0.933 0.940

30 1/4 0.802 0.804 0.815 0.798 0.812 0.961 0.961 0.961 0.960 0.959
1/3 0.831 0.835 0.848 0.823 0.831 0.981 0.981 0.982 0.981 0.981
1/2 0.838 0.839 0.851 0.842 0.832 0.987 0.987 0.989 0.985 0.989

40 1/4 0.883 0.882 0.886 0.871 0.874 0.981 0.981 0.981 0.977 0.976
1/3 0.926 0.926 0.939 0.915 0.931 0.986 0.986 0.986 0.985 0.986
1/2 0.931 0.930 0.954 0.931 0.937 0.994 0.994 0.995 0.993 0.994

Table 6   The IPAR (Item Pattern Accuracy Rate) for the new items with the sample size of 800

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

Group L λ s, g~U(0.15,0.35) s, g~U(0.05,0.25)

RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attribute mastery
probability

20 1/4 0.844 0.843 0.845 0.825 0.825 0.990 0.990 0.990 0.990 0.990
1/3 0.862 0.864 0.865 0.850 0.851 0.995 0.997 0.998 0.998 0.997
1/2 0.879 0.879 0.879 0.865 0.867 0.997 0.995 0.998 0.997 0.998

30 1/4 0.957 0.957 0.966 0.948 0.959 0.998 0.998 0.998 0.998 0.998
1/3 0.979 0.981 0.981 0.970 0.976 0.999 0.999 0.999 0.999 0.999
1/2 0.979 0.980 0.988 0.980 0.986 1.000 1.000 1.000 1.000 1.000

40 1/4 0.989 0.988 0.989 0.987 0.989 1.000 1.000 1.000 1.000 1.000
1/3 0.998 0.998 0.998 0.995 0.995 1.000 1.000 1.000 0.999 0.999
1/2 1.000 1.000 1.000 0.996 0.996 1.000 1.000 1.000 1.000 1.000

Uneven attribute mastery
probability

20 1/4 0.677 0.693 0.694 0.689 0.689 0.950 0.950 0.950 0.945 0.947
1/3 0.691 0.707 0.719 0.712 0.713 0.958 0.958 0.966 0.957 0.964
1/2 0.711 0.717 0.727 0.722 0.724 0.967 0.967 0.987 0.964 0.965

30 1/4 0.873 0.873 0.873 0.860 0.865 0.981 0.980 0.981 0.977 0.976
1/3 0.883 0.886 0.895 0.881 0.894 0.990 0.990 0.992 0.987 0.987
1/2 0.886 0.886 0.899 0.888 0.865 0.995 0.995 0.998 0.994 0.998

40 1/4 0.923 0.923 0.932 0.913 0.927 0.987 0.987 0.987 0.984 0.983
1/3 0.949 0.949 0.949 0.943 0.945 0.995 0.995 0.995 0.995 0.995
1/2 0.956 0.956 0.976 0.949 0.966 0.999 0.999 1.000 1.000 1.000
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Table 7   The IPAR (Item Pattern Accuracy Rate) for the new items with the sample size of 1000

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

Group L λ s, g~U(0.15,0.35) s, g~U(0.05,0.25)

RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attrib-
ute mastery 
probability

20 1/4 0.860 0.860 0.861 0.843 0.846 0.994 0.994 0.996 0.994 0.996
1/3 0.887 0.888 0.888 0.878 0.881 0.996 0.996 0.999 0.997 0.997
1/2 0.897 0.898 0.898 0.880 0.881 0.999 0.999 0.999 0.997 0.998

30 1/4 0.975 0.977 0.978 0.971 0.975 0.999 0.999 0.999 0.998 0.998
1/3 0.986 0.986 0.986 0.982 0.984 1.000 1.000 1.000 1.000 1.000
1/2 0.988 0.987 0.988 0.983 0.985 1.000 1.000 1.000 1.000 1.000

40 1/4 0.995 0.995 0.995 0.992 0.994 1.000 1.000 1.000 1.000 1.000
1/3 0.999 0.999 0.999 0.997 0.997 1.000 1.000 1.000 1.000 1.000
1/2 1.000 1.000 1.000 0.999 0.998 1.000 1.000 1.000 1.000 1.000

Uneven attrib-
ute mastery 
probability

20 1/4 0.723 0.722 0.730 0.727 0.728 0.962 0.961 0.961 0.952 0.957
1/3 0.739 0.741 0.762 0.746 0.746 0.974 0.973 0.987 0.968 0.973
1/2 0.740 0.743 0.774 0.764 0.765 0.977 0.977 0.992 0.973 0.979

30 1/4 0.888 0.887 0.896 0.871 0.888 0.986 0.986 0.989 0.989 0.989
1/3 0.909 0.908 0.918 0.906 0.910 0.993 0.993 0.993 0.991 0.992
1/2 0.917 0.917 0.927 0.918 0.918 0.999 0.999 0.999 0.997 0.997

40 1/4 0.944 0.944 0.946 0.935 0.940 0.996 0.996 0.996 0.995 0.995
1/3 0.969 0.969 0.970 0.965 0.964 0.997 0.997 0.998 0.998 0.998
1/2 0.969 0.969 0.987 0.967 0.973 1.000 1.000 1.000 1.000 1.000

Table 8   The IAAN (Item Attribute Accuracy Number) for the new items with the sample size of 200

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

s, g~U(0.15,0.35) s, g~U(0.05,0.25)

Group L λ RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attrib-
ute mastery 
probability

20 1/4 4.888 4.888 4.897 4.838 4.816 5.644 5.645 5.646 5.618 5.623
1/3 5.004 5.013 5.035 4.948 5.015 5.806 5.811 5.811 5.787 5.792
1/2 5.065 5.073 5.073 5.001 5.064 5.878 5.878 5.882 5.853 5.837

30 1/4 5.344 5.336 5.384 5.305 5.341 5.884 5.884 5.884 5.864 5.870
1/3 5.486 5.485 5.486 5.443 5.458 5.923 5.923 5.923 5.914 5.917
1/2 5.618 5.619 5.617 5.561 5.578 5.977 5.977 5.977 5.974 5.975

40 1/4 5.602 5.601 5.599 5.566 5.598 5.935 5.935 5.935 5.927 5.927
1/3 5.721 5.726 5.726 5.714 5.720 5.973 5.973 5.973 5.965 5.965
1/2 5.807 5.807 5.808 5.788 5.843 5.988 5.988 5.989 5.987 5.988

Uneven attrib-
ute mastery 
probability

20 1/4 4.788 4.788 4.791 4.719 4.759 5.504 5.506 5.508 5.490 5.462
1/3 4.888 4.900 4.918 4.854 4.896 5.628 5.624 5.621 5.582 5.578
1/2 4.925 4.935 4.937 4.883 4.942 5.685 5.679 5.680 5.651 5.630

30 1/4 5.187 5.199 5.199 5.145 5.153 5.732 5.732 5.735 5.720 5.701
1/3 5.234 5.234 5.238 5.202 5.216 5.792 5.791 5.792 5.780 5.774
1/2 5.330 5.330 5.333 5.314 5.366 5.885 5.881 5.888 5.876 5.884

40 1/4 5.413 5.413 5.413 5.397 5.425 5.789 5.792 5.792 5.779 5.771
1/3 5.528 5.530 5.532 5.513 5.522 5.874 5.876 5.876 5.866 5.859
1/2 5.618 5.617 5.623 5.606 5.635 5.936 5.935 5.936 5.935 5.935
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IPAR increases with the test length, and the full range of 
IPAR gets tighter. Figure 4 shows the IPAR index under the 
20-item test, and 1:4 new to operational ratio condition with 
different sample sizes. It is clear that the R-based statistics 
have higher IPAR indices, JEA outperforms SIE when the 
sample size is smaller than 600, and SIE has an equal or 
higher IPAR index than JEA when the sample size is 600 or 
higher. Figure 5 only provides the IPAR for the 20-item test 
with different sample sizes for the RMEM method, which 
shows that the proposed method performs better both when 
the items are highly discriminative and when the attribute 
mastery probability is uniform across attributes.

It is worth pointing out that although this method has 
promising performance in calibrating new items in small 
samples and theoretically does not depend on the initial 
value of the item parameters, it relies on accurate estima-
tion of respondents’ AMP. Therefore, the premise that the 
method does not depend on the initial item parameters is 
that AMPs are estimated sufficiently well based on the oper-
ational items. For that reason, the number of operational 
items taken by respondents and the number of respondents 
who take each new item should not be too small.

Real data example  Due to the unavailability of a real data-
set for CD-CAT, the real data example based on a dataset 

collected from a non-adaptive test is used for illustrative 
purposes for the proposed iterative two-step method. It is 
important to note that this does not mean that the proposed 
method is restricted to non-adaptive testing. One can view 
the application to non-adaptive testing as a special case 
where attribute profiles of test takers can be obtained based 
on the responses to the items with known attribute vectors 
(these items correspond to the operational items in adap-
tive testing), and the items that need to be estimated cor-
responds to new items in online calibration of CD-CAT. In 
fact, though the motivation for this approach was to develop 
an online calibration method for adaptive testing, the method 
can be used both for adaptive and non-adaptive tests.

The real dataset used here was collected from a learn-
ing experiment at the University of Tuebingen in Germany. 
The dataset contained responses from 504 examinees to 12 
elementary probability theory problems that measure the fol-
lowing four attributes: (A1) calculate the classic probability 
of an event, (A2) calculate the probability of the complement 
of an event, (A3) calculate the probability of the union of 
two disjoint events, and (A4) calculate the probability of two 
independent events. The Q-matrix was initially produced 
by content experts and response data are available in the 
R package pks (Heller & Wickelmaier, 2013). Wang et al. 
(2020) applied several methods to estimate the Q-matrix by 

Table 9   The IAAN (Item Attribute Accuracy Number) for the new items with the sample size of 400

λ is the rate of new to operational items, and L refers to the test length. RMA, ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algorithm and the single item estimation method, respectively. s and g refer to the 
slipping and the guessing parameters, respectively. Boldfaced values indicate the best performance across estimation methods

s, g~U(0.15,0.35) s, g~U(0.05,0.25)

Group L λ RMA ROEM RMEM JEA SIE RMA ROEM RMEM JEA SIE

Uniform attrib-
ute mastery 
probability

20 1/4 5.329 5.328 5.326 5.274 5.310 5.922 5.922 5.923 5.899 5.910
1/3 5.475 5.478 5.468 5.428 5.449 5.951 5.951 5.953 5.952 5.952
1/2 5.491 5.489 5.488 5.430 5.458 5.975 5.975 5.979 5.976 5.969

30 1/4 5.767 5.770 5.771 5.765 5.769 5.982 5.982 5.983 5.976 5.976
1/3 5.823 5.825 5.825 5.803 5.840 5.995 5.995 5.995 5.993 5.994
1/2 5.886 5.884 5.887 5.864 5.859 5.996 5.996 5.996 5.996 5.996

40 1/4 5.890 5.886 5.892 5.876 5.884 5.983 5.983 5.987 5.986 5.986
1/3 5.942 5.946 5.947 5.941 5.946 5.998 5.998 5.998 5.998 5.998
1/2 5.974 5.974 5.977 5.972 5.975 6.000 6.000 6.000 6.000 6.000

Uneven attrib-
ute mastery 
probability

20 1/4 5.156 5.172 5.157 5.120 5.146 5.768 5.767 5.769 5.759 5.762
1/3 5.244 5.250 5.255 5.227 5.254 5.872 5.868 5.872 5.851 5.856
1/2 5.188 5.190 5.193 5.193 5.193 5.871 5.872 5.873 5.856 5.852

30 1/4 5.550 5.536 5.554 5.502 5.546 5.908 5.907 5.909 5.902 5.900
1/3 5.605 5.602 5.603 5.585 5.600 5.934 5.931 5.939 5.938 5.933
1/2 5.632 5.634 5.634 5.622 5.629 5.969 5.968 5.974 5.968 5.972

40 1/4 5.725 5.728 5.732 5.690 5.721 5.939 5.939 5.939 5.928 5.929
1/3 5.803 5.804 5.813 5.784 5.803 5.967 5.967 5.968 5.967 5.966
1/2 5.839 5.837 5.844 5.828 5.837 5.986 5.986 5.988 5.985 5.986
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Fig. 3   The IPAR (Item Pattern Accuracy Rate) in different test lengths 
with 200 respondents. Note. The first letter ‘H’ or ‘L’ in the legend 
refer to items with high- or low-discrimination, the second letter ‘S’ 
or ‘D’ refer to respondents with the same or different attribute mastery 

probability (ies), and 1
2
 , 1
3
, or 1

4
 denote the rate of new to operational 

items. RMA, ROEM, and RMEM are variations of CD-MA, CD-
OEM, and CD-MEM, respectively. JEA and SIE refer to the joint esti-
mation algorithm and the single item estimation method, respectively

Fig. 4   The IPAR (Item Pattern Accuracy Rate) in the 20-item test 
with 1/4 seeded new items under different sample sizes. Note. The 
first letter ‘H’ or ‘L’ in the legend refer to items with high- or low-
discrimination, and the second letter ‘S’ or ‘D’ refer to respondents 

with the same or different attribute mastery probability (ies). RMA, 
ROEM, and RMEM are variations of CD-MA, CD-OEM, and CD-
MEM, respectively. JEA, and SIE refer to the joint estimation algo-
rithm and the single item estimation method, respectively
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treating eight of the 12 items as operational items and the 
remaining four as new. Here we follow a similar strategy, 
i.e., we consider eight of 12 items as the operational items, 
which are items 1, 2, 3, 4, 6, 7, 9, 11, and the remaining 
four items (items 5, 8, 10, 12) as new. The Q-matrix for 
the operational items and the original Q-matrix for the new 
items in the package pks are given in Table 15.

Responses to the eight operational items are referred to 
as XO, and responses to the four new items are referred to as 
XN. Based on the two-step on-line item calibration method, 
we follow the process below to obtain the Q-matrix for the 
new items:

(1)	 Obtain the estimates of the attribute profile �̂ of each 
examinee based on the XO,

(2)	 Assign the initial slipping and guessing parameter as 
0.25, estimate the attribute vector for each new item 
based on the proposed R statistic,

(3)	 Based on the attribute-vectors obtained from the last 
step, apply the CD-MEM method to estimate the slip-
ping and guessing parameters,

(4)	 Repeat step 2 to step 3 till the convergence condition 
reaches.

The estimated Q-matrix for the new items is presented at 
the bottom of Table 15. The proposed method suggested four 
changes to the original Q-matrix, which are all from 1 to 0. 

Fig. 5   The IPAR (Item Pattern Accuracy Rate) for the RMEM method 
with different sample sizes in the 20-item test. Note. The first letter ‘H’ 
or ‘L’ in the legend refer to items with high- or low-discrimination, the 

second letter ‘S’ or ‘D’ refer to respondents with the same or different 
attribute mastery probability (ies), and 1

2
 , 1
3
, or 1

4
 denotes the rate of new 

to operational items. RMEM is a variation of the CD-MEM method

Table 15   The Q-matrix for the operational items, and the original and 
suggested Q-matrix for the new items

The entries with an asterisk in bold are different from the original 
Q-matrix. The four attributes in the table are: A1 - Calculate the clas-
sic probability of an event; A2 - Calculate the probability of the com-
plement of an event; A3 - Calculate the probability of the union of 
two disjoint events; and A4 - Calculate the probability of two inde-
pendent events

Item A1 A2 A3 A4

Operational items 1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
6 1 1 0 0
7 1 0 1 0
9 1 0 0 1
11 1 1 0 1

New items (original) 5 1 1 0 0
8 1 0 1 0
10 0 1 0 1
12 1 0 1 1

New items (Suggested by 
RMEM)

5 1 0* 0 0
8 0* 0 1 0
10 0 0* 0 1
12 1 0 0* 1
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This seems to indicate that the proposed method tends to assign 
fewer attributes to each new item. Take the first new item (its 
name is p105 in the pks package) as an example, whose stem is 
“Given a standard deck containing 32 different cards, what is 
the probability of not drawing a heart?” The RMEM suggests 
that it only measures the attribute A1, which is to calculate the 
classic probability of an event. The original attribute specifica-
tion of this item is A1 and A2, where A2 refers to “calculate 
the probability of the complement of an event”. Based on our 
analysis, it does not seem to require mastery of A2 to answer 
this item. The estimated Q-matrix could serve as a reference for 
domain experts, who can further review the changes.

Conclusions and further discussion

In this paper, we proposed a method based on a residual-based 
statistic to estimate attribute vectors of new items in the online 
calibration of CD-CAT. The rationale of the use of the resid-
ual-based statistic in online calibration is presented in Appen-
dix A. Essentially, the residual statistic is minimized when the 
attribute vector of a new item is at its true value, regardless 
of the item parameters. An iterative two-step online calibra-
tion method was thus developed in the context of CD-CAT in 
which the attribute vectors and item parameters are estimated 
in separate steps iteratively. By coupling CD-MA, CD-OEM, 
and CD-MEM with the residual-based statistic, three new 
online calibration methods: RMA, ROEM, and RMEM, are 
developed. The analytical result in Appendix A holds when 
N → ∞ and the AMPs of respondents are known. When the 
AMPs need to be estimated, and the sample size is limited, the 
performance of RMA, ROEM, and RMEM are not guaranteed 
to be optimal, but could still be superior to existing methods.

The results from the simulation study indicate that the 
methods based on the proposed statistics do work well in 
terms of item-parameter recovery, and attribute-vector 
recovery, even under a small sample size. Compared to the 
JEA and SIE methods, the methods based on the residual 
statistic show some advantages, especially in the situation 
of a small sample size. Results also suggest that RMA and 
ROEM perform similarly in the estimation of the attribute 
vector of the new items, and RMA and SIE have similar 
performance in the estimation of the item parameters of the 
new items, especially in the test with highly discriminative 
items. For a CD-CAT system, quality of items (operational 
items and new items) is very important because it can seri-
ously affect the efficiency and accuracy of the test, and the 
online calibration as well.

Several future directions for research need to be consid-
ered. First, the Q-matrix in this study is generated assuming 
that attributes are independent. However, in more realistic 
conditions, some relationships may exist among the attributes, 

such as hierarchical relationships (Leighton et al., 2004). Non-
independence may impact the performance of the proposed 
methods, which is worthy of investigation in the future. Sec-
ond, the proposed methods were evaluated under the DINA 
model, and it should be adapted to many other CDMs, such 
as RRUM (Hartz, 2002), DINO (Templin & Henson, 2006) 
and more general models (e.g., Ma & de la Torre, 2016, 2019) 
such as the G-DINA model (de la Torre, 2011). Under the 
G-DINA model, each respondent is classified into one of the 
2k

∗
m groups, where k∗

m
=
∑K

k=1
qmk . Then the residual statistic 

defined in Eq. (6) can be adapted as follows for the G-DINA 
model:

where nlm refers to the number of respondents with attribute 
vector �∗

lm
 , and �∗

lm
=

(
�lm1

,⋯ , �lmk∗m

)
 . The probability that 

respondents with attribute pattern �∗

lm
 will answer item m 

correctly is denoted by p
(
Xim = 1|�∗

lm

)
= p

(
�
∗

lm

)
 . By defin-

ing an appropriate residual statistic, the proposed method in 
this paper is potentially applicable to other models. That 
said, it remains to be investigated how well the adapted 
residual statistic works, and whether nice statistical proper-
ties such as what is demonstrated in Theorem 1 still holds 
true for other models.

Third, the study assumes that the attribute vectors and 
item parameters of all the operational items are known. 
In reality, those must have been estimated or specified 
by content experts at some point. How will the proposed 
methods perform when the attribute vectors or the item 
parameters or both for some of the operational items are 
misspecified? How badly will different methods react to the 
misspecification? These are issues yet to be investigated. 
Finally, recent popularity of online learning environments 
has prompted advances in continuous item calibration that 
may not require any operational items to begin with (Fink 
et al., 2018) for CAT. The same philosophy may be appli-
cable to CD-CAT and is certainly an interesting direction 
to pursue.

Appendix A

Theorem 1. Consider an infinite sample, that is N → ∞, and 
the true item parameters sj, gj ∈ (0, 0.5). Denote �̂ as the esti-
mate of α. Furthermore, assume its true value α is known in 
advance. Given the provisional item parameters for the jth 
item 

(
s0
j
, g0

j

)
 , where s0

j
 , g0

j
 are two arbitrary real numbers 

within the range of (0, 0.5), denote Rj

(
�, q∗

j
, s0

j
, g0

j

)
 as the 

value of the residual-based statistic when the item parameters 

(15)Rm

�
�, qm , sm , gm

�
= 2

�2k
∗
m

l=1

�nlm

i=1
log

⎧
⎪⎨⎪⎩

�
1 − p

�
�∗

lm

�

p
�
�∗

lm

�
�xim

+

�
p
�
�∗

lm

�

1 − p
�
�∗

lm

�
�1−xim⎫⎪⎬⎪⎭

,
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and attribute vector are assigned as 
(
s0
j
, g0

j

)
 and q∗

j
 , respec-

tively. Then Rj

(
�, q∗

j
, s0

j
, g0

j

)
 reaches its minimum only when 

the attribute vector of the jth item, q∗
j
 , is correctly specified.

Proof.
Based on the qj and α, the respondents can be catego-

rized into four groups G1, G2, G3, and G4, with Nj

11
 , Nj

10
 , 

N
j

01
 , and Nj

00
 respondents, respectively. The two numbers in 

the subscript of Nj

11
 , Nj

10
 , Nj

01
 , or Nj

00
 are the values of the 

ideal response ηij and the response Xij. Respondents in G1 
and G2 possess all the required attributes of item j, while 
respondents in G3 and G4 miss at least one of the required 
attributes of item j. Respondents in G1 and G3 answer the 
item correctly, but not the respondents in G2 and G4. Eq. (5) 
can be transformed to

When N → ∞, it is expected that Nj

11
> N

j

10
 , and Nj

00
> N

j

01
 . 

Substituting sj and gj in A-1with s0
j
 and g0

j
 , we get

Given s0
j
 and g0

j
 ∈(0, 0.5), Rj

(
�, qj, s

0
j
, g0

j

)
 should always 

be negative. The number of respondents in the four groups 
may change with the value that qj takes. For qj = q

∗

j
 , the 

corresponding number of respondents in each group can be 
denoted as Nj∗

11
 , Nj∗

10
 , Nj∗

01
 , and Nj∗

00
 , respectively. The differ-

ence between Rj

(
�, q∗

j
, s0

j
, g0

j

)
 and Rj

(
�, qj, s

0
j
, g0

j

)
, can then 

be defined as

where

In the following discussion, we only consider the condi-
tions when q∗

j
 does not match the true value of qj, which 

includes the following three cases.

Case 1: In addition to all the required attributes in qj, q∗j  
also contains some unnecessary attributes, for example, 
qj = [1  1  0], q∗

j
= [1 1 1] . In this case, some of the 

respondents in G1 and G2 will be wrongfully categorized 
into G3 (denote as ∆N11) and G4 (denote as ∆N10). When 
N → ∞, ∆N11 > ∆N10. Also note the increase in G3 is 
exactly the decrease in G1, and the increase in G4 is 

(A-1)
Rj

(
�, qj , sj , gj

)

= 2
[
N

j

11
log

(
sj

1−sj

)
+ N

j

10
log

(
1−sj

sj

)
+ N

j

01
log

(
1−gj

gj

)
+ N

j

00
log

(
gj

1−gj

)]
.

(A-2)
Rj

(
�, qj , s

0
j
, g0

j

)

= 2

[
N

j

11
log

(
s0
j

1−s0
j

)
+ N

j

10
log

(
1−s0

j

s0
j

)
+ N

j

01
log

(
1−g0

j

g0
j

)
+ N

j

00
log

(
g0
j

1−g0
j

)]

= 2

[(
N

j

11
− N

j

10

)
log

(
s0
j

1−s0
j

)
+

(
N

j

00
− N

j

01

)
log

(
g0
j

1−g0
j

)]
,

(A-3)Δ = Rj

(
�, q∗

j
, s0

j
, g0

j

)
− Rj

(
�, qj, s

0
j
, g0

j

)
,

(A-4)

Rj

(
�, q∗

j
, s0

j
, g0

j

)
= 2

[(
N

j∗

11
− N

j∗

10

)
log

(
s0
j

1 − s0
j

)
+

(
N

j∗

00
− N

j∗

01

)
log

(
g0
j

1 − g0
j

)]
.

exactly the decrease in G2. That is, Nj∗

11
= N

j

11
− ΔN11

 , 
N

j∗

10
= N

j

10
− ΔN10

 , Nj∗

01
= N

j

01
+ ΔN11 , and Nj∗

00
= N

j

00
+ ΔN10 . 

Therefore, A-3 becomes

On one hand,log
(

s0
j

1−s0
j

g0
j

1−g0
j

)
 is a constant and negative; 

on the other hand, ∆N10 − ∆N11 ≤ 0, therefore, Δ ≥ 0. In other 
words, the misspecification in this case is expected to lead 
to an increase of the R statistic, except when the q∗ is cor-
rectly specified (i.e., qj= q∗

j
 ), in which case Δ = 0.

Case 2: In this case q∗ lacks some required attributes of 
qj, for example, qj = [1 1 0], q∗ = [1 0 0]. This means that 
∆N01 respondents in G3 will be wrongfully categorized 
into G1, and ∆N00 will be wrongfully categorized from G4 
to G2, respectively. When N → ∞, ∆N01 < ∆N00. That is, 
N∗

11
= N

j

11
+ ΔN01 , N∗

10
= N

j

10
+ ΔN00 , N∗

01
= N

j

01
− ΔN01 , 

and N∗

00
= N

j

00
− ΔN00 . Therefore, A-3 becomes

Because ∆N01 − ∆N00 ≤ 0, Δ ≥ 0. The misspecification in 
this case is also expected to lead to an increase of the R 
statistic, except when the q∗ is correctly specified (i.e., qj= 
q
∗

j
 ), in which case Δ = 0.

Case 3: We consider a more complex situation where q∗ 
lacks some of the required attributes, while containing 
some unnecessary attributes, for example, qj = [1 1 0], 
q∗ = [1 0 1]. In this case, ∆N11 respondents in G1 will 
be wrongly categorized into G3, and ∆N10 respondents 
from G2 to G4, and ∆N11 > ∆N10. Meanwhile, some 
respondents in G3 will be wrongly categorized into G1 
(∆N01 respondents), and from G4 to G2 (∆N00 respond-
ents), and ∆N01 < ∆N00. Then, N∗

11
= N11 − ΔN11 + ΔN01 , 

N∗

10
= N10 − ΔN10 + ΔN00 , N∗

01
= N01 − ΔN01 + ΔN11 , 

N∗

00
= N00 − ΔN00 + ΔN10 . Thus, A-3 becomes

and Δ ≥ 0. Again, the misspecification in this case is 
expected to lead to an increase of the R statistic, except 

(A-5)

Δ = 2

[(
N

j∗

11
− N

j∗

10

)
log

(
s0
j

1−s0
j

)
+

(
N

j∗

00
− N

j∗

01

)
log

(
g0
j

1−g0
j

)]

−2

[(
N

j

11
− N

j

10

)
log

(
s0
j

1−s0
j

)
+

(
N

j

00
− N

j

01

)
log

(
g0
j

1−g0
j

)]

= 2
(
ΔN10 − ΔN11

)[
log

(
s0
j

1−s0
j

)
+ log

(
g0
j

1−g0
j

)]

= 2
(
ΔN10 − ΔN11

)
log

(
s0
j

1−s0
j

g0
j

1−g0
j

)
.

(A-6)
Δ = 2

(
ΔN01 − ΔN00

)[
log

(
s0
j

1−s0
j

)
+ log

(
g0
j

1−g0
j

)]

= 2
(
ΔN01 − ΔN00

)
log

(
s0
j

1−s0
j

g0
j

1−g0
j

)
.

(A-7)

Δ = 2
(
ΔN10 + ΔN01 − ΔN00 − ΔN11

)
log

(
s0
j

1 − s0
j

g0
j

1 − g0
j

)
,
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when the q∗ is correctly specified (i.e., qj= q∗
j
 ), in which 

case Δ = 0.
It should be noted that Case 3 can be considered as the 

general case that covers Case 1 and Case 2. In other words, 
both Cases 1 and Case 2 are special cases of Case 3. Alto-
gether, any misspecifications in the q∗ will lead to a larger 
residual statistic. In other words, one can estimate qj can be 
obtained by minimizing Rj

(
�, qj, s

0
j
, g0

j

)
 , with s0

j
, g0

j
being 

arbitrarily chosen in the range of (0, .5). This indicates that 
we can estimate the attribute vector of the jth new item with-
out knowing its item parameters.
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