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Abstract
What Works Clearinghouse (WWC, 2022) recommends a design-comparable effect size (D-CES; i.e., gAB) to gauge an intervention 
in single-case experimental design (SCED) studies, or to synthesize findings in meta-analysis. So far, no research has examined 
gAB’s performance under non-normal distributions. This study expanded Pustejovsky et al. (2014) to investigate the impact of 
data distributions, number of cases (m), number of measurements (N), within-case reliability or intra-class correlation (ρ), ratio of 
variance components (λ), and autocorrelation (ϕ) on gAB in multiple-baseline (MB) design. The performance of gAB was assessed 
by relative bias (RB), relative bias of variance (RBV), MSE, and coverage rate of 95% CIs (CR). Findings revealed that gAB was 
unbiased even under non-normal distributions. gAB’s variance was generally overestimated, and its 95% CI was over-covered, espe-
cially when distributions were normal or nearly normal combined with small m and N. Large imprecision of gAB occurred when 
m was small and ρ was large. According to the ANOVA results, data distributions contributed to approximately 49% of variance 
in RB and 25% of variance in both RBV and CR. m and ρ each contributed to 34% of variance in MSE. We recommend gAB for 
MB studies and meta-analysis with N ≥ 16 and when either (1) data distributions are normal or nearly normal, m = 6, and ρ = 0.6 
or 0.8, or (2) data distributions are mildly or moderately non-normal, m ≥ 4, and ρ = 0.2, 0.4, or 0.6. The paper concludes with a 
discussion of gAB’s applicability and design-comparability, and sound reporting practices of ES indices.
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Single-case experimental designs (SCEDs) are research 
designs that can be used to determine whether there exists 
a causal or functional relationship between the introduc-
tion of an intervention and changes in outcome behavior(s). 

SCED studies have been used to evaluate the effectiveness 
of interventions in psychology, education, speech pathology, 
medicine, sports and athletic performance, to name a few 
(Barker et al., 2011; Byiers et al., 2012; Franklin et al., 1996; 
Horner et al., 2005; Kunze et al., 2021; Morgan & Morgan, 
2009; Vlaeyen et al., 2020). SCED typically employs a small 
number of cases who serve as their own controls. Among 
the variety of SCEDs, the multiple baseline (MB) design 
was by far the most popular design accounting for nearly 
50% of published SCED studies (Hammond & Gast, 2010; 
Horner & Odom, 2014; Pustejovsky et al., 2019; Shadish & 
Sullivan, 2011; Smith, 2012; Tanious & Onghena, 2021). An 
MB design consists of one A phase and one B phase across 
multiple cases, multiple behaviors of one case, or multiple 
settings for the same behavior of a case. During the A phase, 
a case (or a behavior) is observed to be stabilized before an 
intervention is introduced to that case (or that behavior). An 
intervention in an MB design is successively administered to 
all cases (behaviors or settings) until all cases (all behaviors, 
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Advances in SCED methodology

Traditionally, systematic visual analysis of SCED data has 
been used to determine whether a behavioral change is due 
to the introduction of an intervention, but not chance fluctua-
tions (Horner et al., 2005; Kazdin, 2011; Wolfe & McCam-
mon, 2022). In recent years, advanced approaches have been 
applied to quantify intervention effects in SCED studies 
(Chen et al., 2019; Kazdin, 2019; Tanious & Manolov, 2022; 
WWC, 2022). Many scholarly journals published special 
issues to devote exclusively to these advanced approaches, 
such as Journal of School Psychology (2014, Volume 52, 
Issue 2), Remedial and Special Education (2017, Volume 
38, Issue 6), Developmental Neurorehabilitation (2018, 
Volume 21, Issue 4), and Perspectives on Behavior Sci-
ence (2022, Volume 45, Issue 1). The advanced approaches 
include (1) quantifying an intervention effect with standard-
ized/unstandardized indices (e.g., Hedges et al., 2012, 2013; 
Moeyaert et al., 2013; Pustejovsky et al., 2014; Ugille et al., 
2012, 2014) or with non-overlapping ESs (e.g., Michiels & 
Onghena, 2019; Parker & Vannest, 2009), (2) employing 
different methods to estimate an intervention effect (e.g., 
the method of moments by Hedges et al., 2012, 2013; the 
restricted maximum likelihood method by Pustejovsky et al., 
2014; the Bayesian method by Natesan, 2019 or Natesan & 
Hedges, 2017), and (3) inferring an intervention effect based 
on a statistical model (e.g., hierarchical linear modeling by 
Pustejovsky et al., 2014) or a design (e.g., randomization 
tests by Michiels & Onghena, 2019, and Onghena, 2020). 
Among the advanced approaches, design-comparable ESs 
(D-CESs) were proposed as standardized indices to synthe-
size intervention effects across SCED and group studies, 
or over different outcome measures, based on a statistical 
model (Hedges et al., 2012, 2013; Pustejovsky et al., 2014; 
Shadish et al., 2014; Zelinsky & Shadish, 2018).

Version 5.0 of the What Works Clearinghouse Procedures 
and Standards Handbook (WWC, 2022) specifically recom-
mends reporting D-CES indices, along with visual analy-
sis, when assessing an intervention effect in SCED stud-
ies. Yet to the best of our knowledge, no published research 
has investigated D-CES’s statistical assumptions in SCED 
contexts. If statistical assumptions, such as normality, are 
not met or not robust, inferences derived from D-CES lack 
statistical validity. Furthermore, the small sample sizes and 
limited number of measurements used in most SCED stud-
ies render the normality assumption unlikely to be robust, 
if it is violated.

Small sample sizes and limited number of measurements 
are also a central concern when an effective intervention 
is to be generalized to another sample, setting, location, 
behavior, or measurement (Horner et al., 2005). That is, 
how does one know that an intervention is generalizable 
beyond the effect already documented in a SCED study? 

One way to address, or even enhance, the generalizability 
of an effect is to systematically replicate an intervention in 
different contexts using different participants, behaviors, and 
parallel measurements (Horner et al., 2005; Kazdin, 2011). 
Replication results are subsequently synthesized using meta-
analysis methods (Becraft et al., 2020; Beretvas & Chung, 
2008; Moeyaert et al., 2020; Onghena et al., 2018). To this 
end, methodologists have devised various approaches to per-
form SCED meta-analysis (Jamshidi et al., 2022; Vlaeyen 
et al., 2020). According to Becraft et al. (2020) and Moey-
aert et al. (2021), there has been a dramatic increase from 
1987 to 2019 in the number of scholarly publications on 
SCED intervention studies and their meta-analyses.

Definition of gAB for SCED studies

One D-CES1, namely gAB, was proposed by Pustejovsky 
et al. (2014) to quantify intervention effects within and 
across primary SCED studies (Hedges et al., 2012, 2013; 
Pustejovsky et al., 2014; Shadish et al., 2014; WWC, 2022; 
Zelinsky & Shadish, 2018). A cursory search of the litera-
ture since 2014 has found gAB reported in numerous primary 
studies or meta-analysis (Anaby et al., 2020; Grasley-Boy 
et al., 2021; Lee et al., 2022; Peltier et al., 2021; Peltier et 
al., 2020a, b; Rincón et al., 2021; Rivera Pérez et al., 2022; 
Romano & Windsor, 2020; Romano et al., 2021; Ruiz et al., 
2018; Saul & Norbury, 2021; Teh et al., 2021; Thurmann-
Moe et al., 2021). gAB is the D-CES specifically recom-
mended by the What Works Clearinghouse Procedures and 
Standards Handbook, Version 5.0 (WWC, 2022) for SCED 
studies.

gAB is a sample estimator of the population standardized 
mean difference (δAB) between an A phase and a B phase, 
similar to Cohen’s d or Hedges’ g used in group studies 
(Pustejovsky et al., 2014; WWC, 2022). The δAB is defined 
according to Eq. 1:

where μA is the population mean of Phase A measurements, 
μB is the population mean of Phase B measurements, σ2 is 
the variance of measurements within cases, and τ2 is the 
variance of measurements across cases. Thus, (σ2 + τ2) is 
the total variance of measurements within and across all 
cases.

(1)δAB =
μB − μA√
σ2 + τ2

,

1 A D-CES is also called between-case standardized mean differ-
ence (BC-SMD) or simply standardized mean difference (SMD) in 
the literature (Barton et al., 2019; Moeyaert et al., 2021; Peltier et al., 
2020b; Valentine et al., 2016).
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Among the three MB design variations mentioned earlier, 
gAB is suitable only for MB designs across three or more 
cases of the same behavior. It is a product of a bias correc-
tion factor [J(ν)] and the sample estimate of δAB ( ̂δAB ), as 
in Eq. 2:

Both J(ν) and δ̂AB are estimated by the restricted maxi-
mum likelihood (REML) method (Pustejovsky et al., 2014) 
which we explain in the “Method” section. The performance 
of gAB under normal and non-normal distributions is the 
focus of the present simulation study.

Five MB models formulated by Pustejovsky et al. 
(2014)

Pustejovsky et al. (2014) formulated five models for MB data. 
They are sequentially named MB1 to MB5 in this paper. All 
five models permit cases to vary in Phase A levels. They differ 
in how the intervention effect and the trends in A or B phase 
are modeled across cases. The five MB models are hierarchi-
cal linear models in which Level-1 parameters model the indi-
vidual data and Level-2 parameters model how the Level-1 
parameters vary across cases. Being the simplest and most 
restrictive model, MB1 assumes a fixed intervention effect for 
all cases with no trend in either A or B phase. MB1 is recom-
mended by the What Works Clearinghouse Procedures and 
Standards Handbook, Version 5.0 (WWC, 2022) as a “starting 
point” (p. 182) for assessing an intervention effect.

MB2 to MB5 are more flexible and extensible than MB1, 
due to additional parameters and fewer restrictions (Puste-
jovsky et al., 2014). MB2 assumes a varying immediate effect 
due to intervention across cases, with no trend in either A or 
B phase. MB3 assumes a fixed intervention effect with a fixed 
linear trend in either A, B, or both phases. MB4 assumes a 
fixed intervention effect with a varying linear trend in the A 
phase and a fixed linear trend in the B phase. Being the most 
complex model, MB5 assumes a fixed intervention effect 
with a varying linear trend in both A and B phases. It is worth 
noting that MB2 is the only model among the five proposed 
that allows the immediate effect of intervention to vary across 
cases. Pustejovsky et al. (2014) conducted three simulation 
studies under MB1, MB2, and MB4 to provide empirical 
evidence to support the reporting of gAB. Results from the 
three simulation studies are summarized next.

Three simulation studies of gAB under MB1, MB2, 
and MB4

The first simulation study (Study 1) was conducted under 
MB1, Study 2 under MB2, and Study 3 under MB4. In all 
three studies, data were simulated from normal distributions. 

(2)gAB = J(ν) × δ̂AB.

For Studies 1 and 2, four levels of number of cases (m) were 
used: 3, 4, 5, and 6. For Study 3, two additional levels were 
added to m: 3, 4, 5, 6, 9, and 12. The number of measurements 
(N) was either 8 or 16, the within-case reliability (ρ = the 
ratio of between-case variance to the total variance within 
and between cases) ranged from 0 to 0.8, and the first-order 
autocorrelation (ϕ) ranged from −0.7 to 0.7 in Studies 1 to 3. 
For Studies 2 and 3, the ratio of variance components (λ) was 
either 0.1 or 0.5. λ was defined in Study 2 as the variance of all 
cases’ level shifts between A and B phases as a fraction of the 
variance of all cases’ Phase A levels. In Study 3, λ was defined 
as the variance of all cases’ baseline slopes as a fraction of the 
variance of all cases’ Phase A levels. Four criteria were used 
in all three studies to assess the performance of gAB: relative 
bias, relative bias of variance estimators, MSE, and coverage 
rate of the 95% CIs. The 95% CI was constructed using two 
methods: the symmetric and the noncentral t.

Results from Study 1 of Pustejovsky et al. (2014) showed 
that relative bias of gAB under MB1 was small. At the small-
est m = 3 and N = 8, the relative bias was no more than 4.3%, 
yet the relative bias of gAB’s variance estimator was 16%. As 
both m and N increased, gAB’s variance estimate was very 
close to the true variance. Between the two CI methods, the 
average coverage rate of the symmetric method was closer 
to the nominal level of 95% than the noncentral t method.

Results from Study 2 showed that gAB’s average rela-
tive bias was small under MB2. Relative bias was generally 
greater when N = 8 than when N = 16. At the smallest m = 3 
and N = 8, the relative bias was no more than 7.3%. For m = 4, 
the relative bias was always less than 4.9%. The relative bias 
decreased to no more than 2.9% when m ≥ 5. The variance 
of gAB was overestimated. The relative bias in gAB’s variance 
estimator was as large as 43% when m = 3 and N = 16. Even 
when m = 6 (the largest under MB2) and N =16, the relative 
bias was still 14%. The MSEs under MB2 ranged from 0.092 
when m = 6 and N = 16, to 0.290 when m = 3 and N = 8. The 
MSEs generally increased as ρ, λ, and ϕ increased. Between 
the two CI methods, the symmetric method maintained an 
average coverage rate closer to 95% than the noncentral t 
method. Based on these results, Pustejovsky et al. (2014) 
recommended gAB for meta-analysis with m ≥ 4 and the sym-
metric method for constructing CIs of gAB under MB2.

Results from Study 3 revealed the same pattern under MB4 
as under MB2, namely small relative bias. As with results of 
MB2, gAB as a point estimator was suitable for studies with 
m ≥ 4. MSE obtained under MB4 was large, compared with 
those obtained under MB1, especially when m was small. 
Unlike results obtained under MB1 and MB2, gAB’s variance 
was underestimated, except when m = 3 and N = 8. The vari-
ance’s underestimation was more pronounced when N = 16 
than when N = 8. The average MSE of gAB under MB4 ranged 
from 0.066 when m = 12 and N = 16, to 0.596 when m = 3 and 
N = 8. For a given m and N, MSE derived under MB4 were 
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larger than those under MB1 or MB2, especially when m was 
small. MSEs generally increased as ρ, λ, and ϕ increased. The 
95% CI based on the symmetric method approached the nomi-
nal level when m was large (i.e., ≥ 9). The CI based on the 
noncentral t method tended to substantially undercover the 
population δAB when m = 3, 4, 5, 6, or 9.

Based on Studies 1 to 3, Pustejovsky et al. (2014) concluded 
that the relative bias of gAB was reasonably small, even with very 
few cases. Yet large sample sizes were needed in order to yield 
precise point estimates, reasonably accurate SE estimates and 
CIs under a complex model, namely MB4. Pustejovsky et al. 
(2014) further cautioned not to rely on model-based SE esti-
mates in meta-analysis, because inaccurate SE estimates lead to 
inaccurate weights for primary studies and inaccurate estimates 
of between-study heterogeneity for meta-analysis.

The normality assumption of gAB and the REML 
method

As previously mentioned, data in Studies 1 to 3 of Pustejovsky 
et al. (2014) were simulated only from normal distributions. 
Indeed, gAB assumes that data within and across cases are nor-
mally distributed. Yet non-normal data are quite common in 
SCED studies (e.g., Au et al., 2017; Brosnan et al., 2018; Ferron 
et al., 2014; Joo, 2017; Stewart & Hall, 2017). Furthermore, due 
to asymptotic normality2 of the REML method, voluminous data 
are needed in order to yield an acceptable gAB for δAB. The ML 
method, of which the REML is a special case, is known to per-
form poorly when data are limited, even under normal conditions 
(Braunstein, 1992). Yet small sample sizes (or cases) and limited 
numbers of measurements are the norm rather than an excep-
tion in SCED studies. According to Shadish and Sullivan (2011), 
73.5% of 809 SCED studies employed one to 13 participants with 
an average of 3.64 cases per study. Tanious and Onghena (2021) 
reported that the median sample size used in 210 MB studies was 
4 with an interquartile range of 4. As for the number of measure-
ments, Shadish and Sullivan (2011) reported that 90.6% of 809 
SCED studies used 49 or fewer measurements with a median 
of 20 measurements. Pustejovsky et al.’s (2019) review of 303 
SCED studies found a median of 7 measurements in initial base-
line phases, with an interquartile range of 7.

Pustejovsky et al. (2014) did not investigate the performance 
of gAB under non-normal conditions. Furthermore, sample sizes 
and the number of measurements used in their simulation studies 
were small for the REML method. It remains unknown whether 
gAB performs satisfactorily under non-normal conditions with 
small samples and limited numbers of measurements (Maas & 
Hox, 2004; Man et al., 2022; Raudenbush & Bryk, 2002). To 
the best of our knowledge, no published study has systematically 

investigated the singular impact of non-normality, or the joint 
impact of non-normality with other data features (e.g., sample 
size, autocorrelation), on the performance of gAB in primary 
SCED studies and their meta-analyses.

Aims of the present simulation

The present study aimed to fill the voids in the literature by 
investigating how distributions of data singularly and jointly 
impacted the performance of gAB under MB2. We focused on 
MB2 because MB2 is more flexible, but less researched, than 
MB1. MB2 is also the only model among the five proposed by 
Pustejovsky et al. (2014) that allows the immediate effect of an 
intervention to vary across cases.

The singular and joint impacts of data distribution on gAB 
were investigated by simulating data from normal and non-
normal distributions, and by manipulating five data features 
(number of cases, number of measurements, autocorrelation, 
within-case reliability, and ratio of variance components). The 
five data features were also manipulated in Pustejovsky et al. 
(2014). The performance of gAB was evaluated by the same 
four criteria as Pustejovsky et al. (2014): relative bias, relative 
bias of variance, MSE, and coverage rate. These four criteria 
have been routinely used to assess a statistic (e.g., gAB) in pri-
mary studies (e.g., Algina et al., 2005; Hoogland & Boomsma, 
1998), or for meta-analysis (e.g., American Psychological 
Association, 2020; Hoogland & Boomsma, 1998; Pustejovsky 
et al., 2014). Based on the evaluation of the four criteria, we 
identified conditions in which gAB performed acceptably for 
primary MB studies and meta-analysis.

In sum, the present study aimed to answer two research 
questions under MB2:

RQ1: What is the impact of data distribution, number of 
cases, number of measurements, within-case reliability, 
ratio of variance component, and autocorrelation on the 
performance of gAB as measured by relative bias, relative 
bias of variance, MSE, and coverage rate?
RQ2: What are the conditions in which gAB performed 
acceptably for primary MB studies and meta-analysis?

Findings from the present study should provide empirical evi-
dence to extend the recommendation made by the What Works 
Clearinghouse Procedures and Standards Handbook, Version 
5.0 (WWC, 2022) to MB2. They should also inform practition-
ers and researchers about the suitability of gAB for MB studies 
and their meta-analysis. To this end, we provide general recom-
mendations on conditions under which it is appropriate to use 
gAB to assess intervention effects. This paper concludes with a 
discussion of gAB’s applicability in SCED contexts, its design-
comparability across SCED and group studies, and sound 
reporting practices of ES indices including gAB.

2 Asymptotic normality is a property of the REML or ML method in 
which the normal approximation to the sampling distribution of a ML 
estimator (or gAB in this study) is valid when an asymptotically large 
sample of data is used (McNeish, 2017).
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Method

In this section, we present MB2 and its assumptions first, 
followed by the definition of the population standardized 
mean difference (δAB) under MB2. Next, we describe the 
simulation design, justifications for the manipulated con-
ditions, and an outline of seven steps for simulating and 
analyzing simulated data. Details of each step are provided 
following the outline.

MB2

As previously stated, MB2 assumes that cases vary in the 
average score of the A phase and also in the immediate inter-
vention effect between A and B phases. Pustejovsky et al. 
(2014) referred to the average score of the A phase as Phase 
A level, and the immediate intervention effect as a level shift 
between A and B phases. MB2 also assumes that there is no 
linear trend in either A or B phase (Pustejovsky et al., 2014). 
Thus, for the jth measurement of the ith case, the score Yij is 
modeled by a within-case model according to Eq. 3:

where β0i = Phase A level for Case i; β1i = level shift for 
Case i = the immediate change in Case i’s measurement due 
to intervention; Dij = a dummy variable that equals 0 (for 
Phase A measurements) or 1 (for Phase B measurements); 
εij = Level-1 error; i = 1, 2, . . ., m; j = 1, 2, . . ., N; m = the 
number of cases; and N = the total number of measurements 
in A and B phases combined3.

Because MB2 assumes a varying Phase A level and a 
varying level shift between A and B phases across cases, 
β0i and β1i are further modeled by a between-case model 
according to Eqs. 4 and 5:

where γ00 = the average Phase A level, γ10 = the average level 
shift between A and B phases, and η0i and η1i are Level-2 
errors.

Substituting Eq. 4 for β0i and Eq. 5 for β1i into Eq. 3, we 
obtain Eq. 6 of fixed and random effects for the distribution 
of Yij—the jth measurement of the ith case—under MB2:

(3)Yij = β0i + β1i × Dij + �ij,

(4)β0i = γ00 + η0i,

(5)β1i = γ10 + η1i,

(6)
Yij = γ00 + η0i +

(
γ10 + η1i

)
× Dij + εij

=
[
γ00 +

(
γ10 × Dij

)]
+
{
η0i +

(
η1i × Dij

)
+ εij

}
= [fixed effects] + {random effects}.

Statistical and design assumptions for MB2 are stated in (a) 
to (f) below, according to Pustejovsky et al. (2014). The present 
study investigated normality assumptions stated in (a) and (d).

(a) Within cases, εijs are normally distributed with a mean 
of 0 and a variance of σ2.

(b) Within cases, εijs are correlated with a first-order auto-
correlation ϕ, or Cov (εij, εik) = ϕ|k−j|σ2.

(c) Across cases, εijs are homoscedastic and independently 
distributed, namely, Var(εij) = Var(εhk) = σ2 and Cov (εij, 
εhk) = 0 for all i ≠ h.

(d) (η0i, η1i) are multivariate normally distributed with 

mean (0, 0) and a covariance matrix T2×2 = 
[
τ2
0
τ10

τ10 τ2
1

]
 , 

where τ2
0
 is the variance of all cases’ Phase A levels, τ2

1
 

is the variance of all cases’ level shifts between A and 
B phases, and τ10 is the covariance between Phase A 
levels and level shifts4.

(e) Level-1 errors (εijs) are independent of Level-2 errors 
(η0i and η1i).

(f) Measurements are equally spaced over time.

Definition of δAB

Under MB2, the population mean difference = (γ00 + γ10) 
– γ00 = γ10, and the total variance within and across cases = 
σ2 + τ2

0
 . Hence, δAB is defined by Eq. 7:

Equation 7 is identical to Eq. 1, except for the notation 
differences (Pustejovsky et al., 2014). Guided by Puste-
jovsky et al. (2014), we set5 γ00 = 0, γ10 = 1, and σ2 + τ2

0
 

= 1. Therefore, δAB = 1 for all simulated conditions in this 
study and also in Studies 1 to 3 of Pustejovsky et al. (2014).

Simulation design

The present study manipulated six factors according to 
Table 1. The first factor (Dist or distribution of data) was 
unique to the present study. The next four factors, namely, 
m, N, ρ, and λ were manipulated identically6 as in Study 2 of 
Pustejovsky et al. (2014). The sixth factor (ϕ) was manipu-
lated slightly differently from Study 2 of Pustejovsky et al. 
(2014). Justifications for manipulated conditions are given in 

(7)
δAB =

γ10√
σ2 + τ2

0

.

3 N refers to the total number of measurements per case. It was set to 
be identical for all cases in each condition.

4 The covariance between Phase A levels and level shifts (τ10) was 
set to 0 in this study, as Pustejovsky et al. (2014) did.
5 For the purposes of this simulation study, we set σ2 + τ2

0
 = 1, as 

Pustejovsky et al. (2014) did. σ2 and τ2
0
 were not specified separately.

6 The present study did not include ρ = 0, because ρ = 0 leads to an 
undefined λ. Study 2 of Pustejovsky et al. (2014) included ρ = 0.
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the next section. A total of 1792 conditions (= 4 × 4 × 2 × 4 
× 2 × 7) were manipulated. Table 2 presents the start points 
for the intervention across cases. The start points were iden-
tical to those used in Study 2 of Pustejovsky et al. (2014).

Justifications for manipulated conditions

The distribution of data was manipulated through the joint 
manipulation of Level-1 and Level-2 error distributions in Eq. 6. 
Four distributions—one normal and three non-normal—were 
simulated as the distributions of sums of Level-1 and Level-2 
errors. Because of the large number of conditions (= 1792) 
investigated in this study, we did not simulate Level-1 and 
Level-2 errors separately from two different distributions (e.g., 
normal for Level-1 errors and non-normal for Level-2 errors). 
Each distribution was specified through the specification of its 
skewness and kurtosis (Joo & Ferron, 2019; Man et al., 2022; 
Owens & Farmer, 2013). For the normal distribution, we speci-
fied skewness = kurtosis = 0. For the nearly normal distribution, 
skewness = 0 and kurtosis = 0.35 were specified. For the mildly 
non-normal distribution, skewness = 1 and kurtosis = 0.35 were 
specified. For the moderately non-normal distribution, we speci-
fied skewness = 1 and kurtosis = 3. The four marginal distribu-
tions are shown in File 17 at https:// osf. io/ hsvwu/.

We decided on these four distributions on the basis of 
empirical skewness and kurtosis of SCED data (Joo, 2017; 
Solomon, 2014) and conditions manipulated in Owens and 
Farmer (2013). Joo (2017) reported empirical skewness 
to range from −0.71 to 1.91 and empirical kurtosis from 
−1.07 to 3.01, based on 20 MB data sets published in the 
Journal of Applied Behavior Analysis. Solomon (2014) 
reported empirical skewness to range from 0.46 to 2.89 
and empirical kurtosis from 0.49 to 1.57, based on 104 
SCED studies of school-based interventions. Owens and 
Farmer (2013) investigated Level-2 normality assumption 

Table 1  Simulation design of the present study

Note. aKurtiosis is defined in this paper as the fourth moment of a distribution minus 3. This kurtosis is also called excess kurtosis (Christoffer-
sen, 2004; Cotter & Hanly, 2012; Darbyshire & Hampton, 2012)

Factor Definition No. of levels Conditions

Dist Distribution of data
(skewness,  kurtosisa)

4 normal (0, 0)
nearly normal (0, 0.35)
mildly non-normal (1, 0.35)
moderately non-normal (1, 3)

m Number of cases 4 3, 4, 5, 6
N Number of measurements 2 8, 16
ρ Within-case reliability

=  τ2
0
/(σ2 + τ2

0
)

4 0.2, 0.4, 0.6, 0.8

λ Ratio of variance components
= τ2

1
/τ2

0

2 0.1, 0.5

ϕ First-order autocorrelation 7 −0.4, −0.3, −0.1, 0, 0.1, 0.3, 0.4

Table 2  Start points for intervention in N measurements

m Case number Start point in N = 8 Start 
point in 
N = 16

3 Case 1 4 5
Case 2 5 9
Case 3 6 13

4 Case 1 4 4
Case 2 4 7
Case 3 5 11
Case 4 6 14

5 Case 1 4 4
Case 2 4 6
Case 3 5 9
Case 4 5 12
Case 5 6 14

6 Case 1 4 4
Case 2 4 6
Case 3 5 8
Case 4 5 10
Case 5 6 12
Case 6 6 14

7 Supplemental materials of the present study include nine files; they 
are available at https:// osf. io/ hsvwu/. File 1 presents the four marginal 
distributions. File 2 summarizes procedures used to confirm data gen-
eration under non-normal distributions. File 3 explains the decisions 
for the seven levels of ϕ. File 4 presents the modified R scdhlm pack-
age. File 4.1 is the superordinate R program to establish simulation 
conditions, execute File 4, and check convergence of each simulation. 
File 5 contains the actual values of the four criteria under each condi-
tion. File 6 presents alternative three-way ANOVA results including 
interactions of Dist with two of the other five factors in the model. 
File 7 presents the  P25,  P50, mean,  P75,  P95 of MSEs under each com-
bination of m and ρ. File 8 presents results from converged and non-
converged replications and non-convergence rates.

https://osf.io/hsvwu/
https://osf.io/hsvwu/
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for MB data using multilevel modeling. They manipulated 
six Level-2 unimodal distributions ranging from normal 
(skewness = 0, kurtosis = 0), (0, −1), (0, 2), (0, 3.75), 
(1, 2), to most non-normal (1, 3.75). Of the six, four were 
symmetric and two were positively skewed. Of the four 
unimodal distributions manipulated in this study, two were 
symmetric and two were positively skewed. The three non-
normal distributions of the present study were specified 
with skewness and kurtosis well within their respective 
empirical ranges reported in Joo (2017) and Solomon 
(2014). We confirmed that skewness and kurtosis of our 
simulated data matched closely with those specified in 
Table 1 (see File 2 at https:// osf. io/ hsvwu/).

Regarding m and N, Pustejovsky et al. (2014, supple-
mental materials8) justified their conditions by spread-
ing the intervention start points as evenly as possible 
over measurements, while keeping at least three meas-
urements in each phase. The within-case reliability 
( ρ = τ2

0
∕
(
σ2 + τ2

0

)
 , also called the intra-class correlation 

or ICC) was varied from 0.2 to 0.8 in increments of 0.2. 
A ρ of 0.2 represented a low between-case variance in 
levels ( τ2

0
 ) relative to the within-case variance (σ2), hence 

a low within-case reliability. A ρ of 0.8 represented a high 
between-case variance in levels relative to the within-case 
variance, hence a high within-case reliability. The ratio 
of variance components (λ = τ2

1
/τ2

0
 ) was set to either 0.1 

or 0.5. According to Pustejovsky et al. (2014, supplemen-
tary materials), a λ of 0.1 represented a moderate level 
of the between-case variation in level shifts, relative to 
the between-case variation in Phase A levels. A λ of 0.5 
represented a high level of the between-case variation 
in level shifts, relative to the between-case variation in 
Phase A levels.

Because of the repeated observation of the same behavior 
in SCED studies, each case’s measurements are correlated. 
Such a correlation is quantified by the first-order autocorrela-
tion (ϕ). Pustejovsky et al. (2014) manipulated the autocor-
relation under MB2 to range from −0.7 to 0.7, in increments 
of 0.2. To ensure that our manipulation of autocorrelation was 
plausible for MB2 under non-normal distributions, we tested 
a range of autocorrelations based on empirical and simulation 
studies (Joo, 2017; Joo & Ferron, 2019; Solomon, 2014). We 
eventually decided on seven levels of ϕ: −0.4, −0.3, −0.1, 0, 
0.1, 0.3, 0.4 for the present study (see File 3).

For each of the 1792 conditions, 20,000 replications were 
generated. We modified the R scdhlm package (Pustejovsky 
et al., 2021) for this simulation study. The modified R scdhlm 
package can be found in File 4 at https:// osf. io/ hsvwu/. File 
4.1 is the superordinate R program to establish simulation 

conditions, execute File 4, and check convergence of each 
simulation. Under normal distributions, the modified R scd-
hlm package produced results comparable to those obtained 
from Study 2 of Pustejovsky et al. (2014) (see Appendix A).

The simulation and analysis procedures are outlined in seven 
steps. Details on each step are presented following the outline.

Outline of simulation and analysis procedures

Step 1: Generate 20,000 random seeds which were used 
to create 20,000 replications for the 1792 conditions.
Step 2: Given a random seed from Step 1, simulate a 
replication under a specific condition of MB2.
Step 3: Use the REML method to compute gAB based on 
data generated in Step 2.
Step 4: Repeat Steps 2 and 3 until 20,000 replications and 
20,000 gABs were obtained for each of the 1792 conditions.
Step 5: Compute four criteria as indicators of the perfor-
mance of gAB.
Step 6: Analyze the impact of the six factors on the four 
criteria.
Step 7: Identify conditions in which gAB performed 
acceptably for MB studies and meta-analysis.

Step 1: Generate 20,000 random seeds for the 1792 
conditions

Before the simulation began, we assessed the adequacy of 
R = 20,000 replications used in Pustejovsky et al. (2014) by 
examining its Monte Carlo SE. A Monte Carlo SE provides 
an estimate of the empirical SE resulted from R replications. 
The Monte Carlo SE for the expected coverage rate of 95% CIs 
based on 20,000 replications was computed according to Eq. 8:

where 0.95 = the expected coverage rate of 95% CIs. Such 
a Monte Carlo SE was deemed acceptable by Morris et al. 
(2019), who suggested keeping the Monte Carlo SE below 
0.005. We therefore considered 20,000 replications ade-
quate for the present study. And 20,000 random seeds were 
generated and used in each condition.

Step 2: Simulate a replication under a specific 
condition

Given Eq. 6 as the distribution of Yij and start points in 
Table 2, we generated data from one of the four distribu-
tions specified in Table 1. For N scores of a case, Eq. 6 can 
be expressed in matrix notations as Eq. 9:

(8)
Monte Carlo SE =

[
0.95 × (1 − 0.95)∕20,000

]0.5
= 0.00154,

8 Pustejovsky et  al.’s (2014) supplemental materials are available 
from https:// www. jepus to. com/ files/ Effect- sizes- in- multi ple- basel ine- 
desig ns- Simul ation- resul ts. pdf.

https://osf.io/hsvwu/
https://osf.io/hsvwu/
https://www.jepusto.com/files/Effect-sizes-in-multiple-baseline-designs-Simulation-results.pdf
https://www.jepusto.com/files/Effect-sizes-in-multiple-baseline-designs-Simulation-results.pdf


386 Behavior Research Methods (2024) 56:379–405

1 3

The fixed effects in Eq. 6 are expressed as the product 
of the design matrix (DN×2) and a fixed-effect vector (γ2×1) 
in Eq. 9. The random effects in Eq. 6 are expressed as 
an error vector (eN×1) in Eq. 9. The eN×1 vector consists 
of Level-2 errors [η0i + (η1i × Dij) in Eq. 6] and Level-1 
errors (εij in Eqs. 3 and 6).

As previously stated, sums of Level-1 and Level-2 
errors followed a normal or non-normal distribution that 
was specified by its skewness and kurtosis. To generate 
random errors of eN×1 from a multivariate normal distribu-
tion, we specified skewness = 0, kurtosis = 0, and a var-
iance-covariance matrix of errors (ΣN×N) in the mvrnon-
norm function of the semTools package (Jorgensen et al., 
2021). The ΣN×N is written in matrix notation as Eq. 10:

where DTDT = the variance-covariance matrix of Level-2 
errors, (1 – ρ)∙AR(1) = the variance-covariance matrix of 
Level-1 errors, D = design matrix from Eq.  9, 

T2×2 =

[
� 0

0 � × �

]
=

[
τ2
0
0

0 τ2
1

]
 (see Footnote 4), and AR(1) 

is the matrix of first-order autocorrelations with 1s along the 
diagonal and ϕ|k−j| off-diagonal. Once skewness, kurtosis, and 
ΣN×N were specified, the mvrnonnorm function produced 
multivariate normal errors using the Vale and Maurelli 
method (Vale & Maurelli, 1983). Appendix B describes 
details in generating a replication of 3 (= m) cases from a 
normal distribution (Dist = normal) with 8 (= N) measure-
ments, within-case reliability (ρ) = 0.2, ratio of variance com-
ponents (λ) = 0.1, and first-order autocorrelation (ϕ) = −0.4.

Errors were similarly generated from the other three dis-
tributions by specifying their corresponding skewness and 
kurtosis, plus a ΣN×N in the mvrnonnorm function (see File 
4 at https:// osf. io/ hsvwu/). After data were generated for m 
cases, a replication was formed and a gAB was computed.

Step 3: Use the REML method to compute gAB

To explain the details of Step 3, we reformulate δAB in 
matrix notation. Next, we describe the estimation of δAB 
by gAB and the estimation of the variance of gAB.

Reformulating δAB in matrix notation

Using Pustejovsky et al.’s (2014) matrix notations, we define 
the vector of fixed effects of MB2 as γ2×1 = (γ00, γ10)T and 
the vector of variance components as ω5×1 = (σ2,ϕ, τ2

0
, τ2

1
, τ10

)T. The ω5×1 vector includes the within-case variance σ2, the 

(9)YN×1 = DN×2 �2×1 + eN×1.

(10)�N×N = DTD
T + (1–ρ) ∙ AR(1),

first-order autocorrelation ϕ, Level-2 variances τ2
0
 and τ2

1
 , 

and the covariance τ10 (see Footnote 4). With two constant 
vectors defined as p2×1 = (0, 1)T and r5×1 = (1, 0, 1, 0, 0)T, 
the δAB of Eq. 7 is reformulated as Eq. 11:

Estimating δAB by gAB

gAB is the product of the bias correction factor, J(ν), mul-
tiplied with the REML estimate of δAB (i.e., δ̂AB ), as in 
Eq. 12:

where J(ν) = 1− 3/(4ν −1) and ν is determined from 
Eq. 13.

where C(�̂) is the estimated covariance matrix of �̂ , and �̂ 
is the REML estimate of ω. When m and N both approach 
infinity, �̂ approaches ω, C(�̂) approaches a null matrix, ν 
approaches infinity, and J(ν) approaches 1; hence, the need 
for bias correction diminishes.

By plugging γ’s REML estimate ( ̂� ) and �̂ into Eq. 11, 
we obtain δ̂AB from Eq. 14:

The REML algorithm estimated the random effects (i.e., 
ω) iteratively using a non-linear maximization approach. The 
algorithm stopped when it met a pre-specified convergence 
criterion (i.e., tolerance =  10─6), or when it reached a pre-
specified number of iterations (= 50). If the REML algorithm 
did not converge to the convergence criterion after 50 itera-
tions, we re-simulated data (see File 4.1)9. After obtaining 

(11)δAB =
pT�√
rT�

.

(12)gAB = J(ν) × δ̂AB,

(13)𝜈 =
2
(
rT�̂

)2
rTC(�̂)r

,

(14)δ̂AB =
pT�̂√
rT�̂

.

9 Our decision to discard non-converged results was guided by Pax-
ton et  al. (2001) who stated, “If the purpose of the Monte Carlo 
analysis is to provide realistic information to users of the technique, 
then non-converged samples, which are rarely assessed in practice, 
will provide irrelevant information and subsequently threaten external 
validity” (pp. 301–302). In other words, a non-converged result could 
not be viewed as an optimal REML estimate of δAB. Authors of sev-
eral simulation studies held similar views on non-converged results, 
including Bandalos and Leite (2013, p. 655), Bolin et  al. (2019, 
p. 226), Bollen et  al. (2014, p. 7), and Fan and Fan (2005, p. 131). 
Hence, we decided to retain only converged results until we obtained 
20,000 replications in each condition. File 8 presents results from 
converged and non-converged replications and non-convergence rates.

https://osf.io/hsvwu/
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the estimated random effects ( �̂ ), the algorithm estimated 
fixed effects ( ̂� ) using the generalized least squares estimator 
(Jiang, 2007).

Estimating the variance of gAB

The variance of gAB is estimated from Eq. 15 (Hedges, 2007; 
Pustejovsky et al., 2014):

where J(ν) and gAB are computed from Eqs. 12 and 14, ν by 
Eq. 13, and κ by Eq. 16.

where C(�̂) is the estimated covariance matrix of �̂.

Step 4: Repeat Steps 2 and 3 until 20,000 
replications and 20,000 gABs are obtained

Steps 2 and 3 were repeated until all the data for the present 
study were generated. At the end of this step, we obtained 
20,000 replications and 20,000 gABs in each of the 1792 
conditions.

Step 5: Compute four criteria

We applied the same four criteria as those used in Puste-
jovsky et al. (2014) to assess the performance of gAB. The 
four criteria were relative bias, relative bias of gAB’s vari-
ance estimator, MSE, and coverage rate of symmetric 95% 
CI. They are abbreviated as RB, RBV, MSE, and CR respec-
tively. Each criterion is defined below.

RB (relative bias)

The RB of gAB was calculated according to Eq. 17:

where gAB was the mean of 20,000 gABs obtained in each 
condition. Because δAB = 1, bias and RB were the same. We 
refer to them both as RB. Based on Hoogland and Boomsma 
(1998), we interpreted |RB| < 5% as acceptable and |RB| ≥ 5% 
as unacceptable. In addition, RB < −5% was interpreted as 
unacceptable underestimate and RB > 5% as unacceptable 
overestimate.

(15)VgAB
= J(�)2

[
��2

� − 2
+ g2

AB
×

(
�

� − 2
−

1

J(�)2

)]
,

(16)𝜅 =

√
pTC(�̂)p

rT�̂
,

(17)RB =
gAB − δAB

δAB
,

RBV (relative bias of gAB’s variance estimator)

The RBV of gAB was calculated according to Eq. 1810,

where VgAB
 was the mean of 20,000 VgAB

 s obtained under 
each condition with each VgAB

computed from Eq. 15, and 
Var(gAB) was the Monte Carlo variance of 20,000 gABs com-
puted from Eq. 19,

The Monte Carlo variance, or Var(gAB), was used in 
Eq. 18 as a proxy for the true variance of gAB. Based 
on Hoogland and Boomsma (1998), we interpreted 
|RBV| < 21% as acceptable and |RBV| ≥ 21% as unaccepta-
ble11. In addition, RBV < −21% was interpreted as unac-
ceptable underestimate and RBV > 21% as unacceptable 
overestimate.

MSE (mean square error)

MSE measured the precision of gAB as a point estimator. 
MSE is the sum of the squared bias plus variance of gAB 
which we verified. MSE was calculated according to Eq. 20:

where δAB = 1 and R = 20,000.
To assess the magnitude of MSE, we examined MSE’s 

distribution in terms of its mean, median, and maximum. 
As a point of comparison suggested by Pustejovsky et al. 
(2014), we compared MSE’s mean and median with esti-
mated MSEs of Hedges’ g (Hedges, 1981) obtained from 
a balanced, two-group experiment with m × N participants 
when the population ES is 1. The estimated MSE of Hedges’ 

(18)RBV =
VgAB

− Var
(
gAB

)

Var
(
gAB

) ,

(19)Var
�
gAB

�
=

∑20,000

1

�
gAB − gAB

�2
20,000 − 1

.

(20)MSE =

∑20,000

1

�
gAB − δAB

�2
R

,

10 Pustejovsky et al.’s (2014) supplemental materials defined RBV as 
VgAB

Var(gAB)
 . They stated, “We assessed the performance of proposed vari-

ance estimators using relative bias; for an effect size estimator g [= 
gAB in the present paper] with associated variance estimator Vg, the 
relative bias of the variance estimator is the ratio of the expected 
value of the variance estimator E(Vg) to the true variance of the effect 
size estimator Var(g). Relative biases close to one mean that the vari-
ance estimator is unbiased.” (p. 4).
11 Hoogland and Boomsma (1998) used 0.10 as the cutoff for an 
acceptable relative bias in a SE. If a sample SE is denoted as θ̂ and its 
parameter as θ, Hoogland and Boomsma’s cutoff is expressed as ( ̂θ − 
θ)/ θ < 0.1. Hence, θ̂ /θ < 1.1 or ( ̂θ/θ)2 < 1.21. Therefore, ( ̂θ2 – θ2)/ θ2 
< 0.21 or 21%.
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g with mg participants in a balanced two-group experiment, 
when the population ES = 1, is given by Eq. 21:

where mdf = mg – 2, c
�
mdf

�
=

Γ
�
mdf

2

�
√

mdf

2
×Γ

�
mdf −1

2

� , and Γ = 

gamma function.
For m = 3 and N = 8, the MSE of Hedges’ g is estimated 

to be 0.212 by setting mg = 24 (= 3 × 8) into Eq. 21. Hence, 
0.212 was used as a point of comparison when m = 3 and 
N = 8. Similarly, for m = 4 and N = 8, we specified mg = 32 
(= 4 × 8) to obtain a point of comparison = 0.154. For m = 5 
and N = 8, the point of comparison = 0.121. For m = 6 and 
N = 8, the point of comparison = 0.099. For m = 3, 4, 5, 6 
and N = 16, the points of comparison = 0.099, 0.073, 0.058, 
and 0.048, respectively. Additionally, we noted in Table S4 
of Pustejovsky et al. (2014), supplemental materials) that 
maximum MSEs were approximately twice as large as the 
mean MSEs across levels of m and N under normal condi-
tions. The overall maximum MSE (= 0.664) from Table S4 
was approximately four times as large as the overall mean 
(= 0.167). Extremely large MSEs indicated imprecision. And 
conditions in which these large MSEs occurred needed to be 
identified. Hence, we decided to identify unacceptable MSEs 
as those greater than the 75th percentile of all MSEs.

CR (coverage rate of symmetric 95% CI)

Guided by Pustejovsky et al.’s (2014) findings that sym-
metric CIs of gAB were closer to the nominal level of 95% 
than noncentral CIs, we constructed the symmetric 95% CI 
for δAB using Eq. 22:

where t0.025,υ is the critical value from the t distribution 
with df = υ (Eq. 13), and VgAB

 is computed from Eq. 15. CR 
was defined as the percentage of the 95% CIs that covered 
δAB. We defined an acceptable CR to fall between 0.925 
(lower bound) and 0.975 (upper bound), according to Algina 
et al. (2005). A CR outside the range of [0.925, 0.975] was 
deemed unacceptable. In addition, CR < 0.925 was inter-
preted as unacceptable under-coverage and CR > 0.975 as 
unacceptable over-coverage.

Step 6: Analyze the impact of the six factors on four 
criteria

The impact of the six factors on four criteria (RQ1) was 
analyzed by four ANOVAs and six plots depicting trends 

(21)MSE of Hedges
�
g =

mdf

(
mdf − 2

)
×
(

mg

4

) ×

[
1 +

mg

4

]
+

[
1 −

2

c
(
mdf

)
]
,

(22)symmetric 95%CI for δAB = gAB ±
√

VgAB
× t0.025,υ,

of acceptable and unacceptable criterion values. For each 
criterion, the ANOVA analyzed the six main effects of Dist, 
m, N, ρ, λ, and ϕ, plus five two-way interactions of Dist with 
m, N, ρ, λ, and ϕ, respectively. All effects were treated as 
fixed. Because each condition yielded one criterion value, 
the three-way and higher-order interactions were pooled to 
form the error term in ANOVAs12. We defined effects with 
p-values < 0.05 and eta-squares > 5.9% as having a signifi-
cant impact on a criterion. An eta-square > 5.9% was labeled 
by Cohen (1988) as a medium ES.

Step 7: Identify conditions acceptable for MB 
studies and meta‑analysis

To identify conditions in which gAB performed accept-
ably for MB studies and meta-analysis (RQ2), we applied 
acceptability standards to the four criteria in each condi-
tion. Conditions that yielded all acceptable criteria were 
identified as acceptable conditions (e.g., Algina et  al., 
2005; APA, 2020; Hoogland & Boomsma, 1998; Puste-
jovsky et al., 2014).

Results

Results pertaining to RQ1 are presented first. These 
include the ANOVA results of the four criteria (RB, RBV, 
MSE, and CR) and trends of acceptable and unaccepta-
ble criterion values. The ANOVA results are presented 
in the section titled “ANOVA results of the four criteria” 
and trends of criterion values are presented in the section 
titled “Trends of acceptable and unacceptable criterion 
values.” Results pertaining to RQ2 are presented in the 
section titled “Acceptable conditions.” We summarize all 
results in “Summary of findings.”

ANOVA results of the four criteria

The ANOVA results presented in Table 3 are eta-squares of 
the six main effects of Dist, m, N, ρ, λ, ϕ and the five two-way 
interactions of Dist with m, N, ρ, λ, and ϕ on the four criteria. 
Eta-squares of effects having a significant impact (p-values 
< 0.05 and eta-squares > 5.9%) are shown in bold. According 
to Table 3, RB’s variance was best explained by all effects 
with a total eta-square of 91.0%. This was followed by 89.7% 
of MSE’s variance and 83.1% of CR’s variance. RBV’s vari-
ance was least explained with an eta-square of 71.5%.

12 Alternative three-way ANOVA results that included interactions 
of Dist with two of the five factors are presented in File 6 at https:// 
osf. io/ hsvwu/. The alternative three-way ANOVA identified the same 
main effects and interactions as the two-way ANOVA, that had sig-
nificant impacts on the four criteria.

https://osf.io/hsvwu/
https://osf.io/hsvwu/
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The Dist factor had a significant impact on RB, RBV, and 
CR, accounting for most variance of RB (explaining 48.7% of 
its variance) and RBV (27.4%). Furthermore, Dist had the sec-
ond greatest impact on CR (23.9%). The m factor had a signifi-
cant impact on RBV, MSE, and CR with the greatest impact on 
MSE (34.4%) and the second greatest impact on RBV (22.2%). 
It is evident that Dist and m had greater impact on the four cri-
teria than other factors. The N factor had a significant impact 
on RBV and CR with the greatest impact on CR (29.5%). The 
ρ factor had a significant impact on RB and MSE; its impact 
on MSE (33.9%) was the second greatest, only slightly smaller 
than the greatest impact by m (34.4%). The λ factor had a sig-
nificant impact on RB and RBV. The ϕ factor had a significant 
impact on CR only.

Regarding two-way interactions of Dist with m, N, ρ, λ, 
and ϕ, Dist interacted with ρ in impacting RB significantly 
(8.2% of its variance). Dist did not interact with other factors 
in impacting RBV, MSE, or CR significantly.

Trends of acceptable and unacceptable criterion 
values

Based on the ANOVA results, we plot trends of acceptable 
and unacceptable criterion values as indicators of the per-
formance of gAB. Figures 1 and 2 plot trends of RB and RBV, 
respectively. Figures 3 and 4 plot trends of MSE. Figure 5 
plots trends of CR for N = 8, whereas Fig. 6 plots trends of 
CR for N = 16.

Table 3  Eta-squares (%) of effects on the performance of gAB based on four criteria

Note. Bolded eta-squares correspond to effects that had a significant impact on a criterion. Bolded eta-squares > 20% are marked 
by a border. RB = relative bias, RBV = relative bias of gAB’s variance estimator, MSE = mean square error, and CR = coverage rate

Source RB RBV MSE CR

Main effects
  Distribution of data (Dist) 48.7 27.4 5.6 23.9
  Number of cases (m) 1.6 22.2 34.4 9.9

  Number of measurements (N) 2.1 6.0 3.6 29.5
  Within-case reliability (ρ) 12.3 0.2 33.9 1.8

  Ratio of variance components (λ) 12.0 6.5 2.3 0.2
  Autocorrelation (Φ) 2.2 3.1 5.9 9.2 

Interactions
  Dist × m 2.7 1.5 1.1 2.1
  Dist × N 0.1 0.1 0.1 1.2
  Dist × ρ 8.2 3.3 2.4 1.7
  Dist × λ 0.9 1.1 0.3 2.5
  Dist × Φ 0.2 0.1 0.1 1.1 

Total 91.0 71.5 89.7 83.1
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RB (relative bias)

According to Table 3, RB was significantly impacted by Dist, 
ρ, λ, and the interaction of Dist with ρ. Figure 1 plots RB by 
Dist, ρ, and λ. Acceptable RBs are inside blue shaded areas 
and unacceptable RBs are outside blue shaded areas, based 
on the cutoff for an unacceptable RB (|RB| ≥ 5%) established 
in the “Method” section.

According to Fig. 1, RBs were all acceptable when Dist 
was normal, nearly normal, or mildly non-normal. When 
Dist was moderately non-normal, RBs were acceptable when 
(1) ρ ≤ 0.4 and λ = 0.1, or (2) ρ ≤ 0.6 and λ = 0.5. Moreover, 
unacceptable RBs were all overestimates.

RB increased as ρ increased and Dist was mildly or 
moderately non-normal. Given a fixed Dist and ρ, RB was 
smaller when λ = 0.5 than when λ = 0.1.

RBV (relative bias of gAB’s variance estimator)

According to Table 3, RBV was significantly impacted by 
Dist, m, N, and λ. Figure 2 plots RBV by Dist, m, N, and λ. 
Acceptable RBVs are inside blue shaded areas and unac-
ceptable RBVs are outside blue shaded areas, based on the 

cutoff for an unacceptable RBV (|RBV| ≥ 21%) established in 
the “Method” section.

According to Fig. 2, when Dist was normal, RBVs were 
acceptable only when m = 6 and N = 16. When Dist was 
nearly normal, RBVs were acceptable when m = 6 and 
N = 16, or when m = 5, N = 16, and λ = 0.1. When Dist was 
mildly non-normal, RBVs were acceptable if (1) λ = 0.1, (2) 
m ≥ 5, N = 8, λ = 0.5, or (3) m ≥ 4, N = 16, and λ = 0.5. When 
Dist was moderately non-normal, RBVs were acceptable if 
(1) m ≥ 4, N = 8, and λ = 0.1, (2) m ≥ 5, N = 8, and λ = 0.5, (3) 
N = 16 and λ = 0.1, or (4) m ≥ 4, N = 16, and λ = 0.5. Moreo-
ver, unacceptable RBVs were all overestimates.

RBVs obtained from normal and nearly normal Dists were 
similar; they were noticeably larger than those obtained from 
mildly or moderately non-normal Dist. RBV decreased as 
m increased from 3 to 6, N increased from 8 to 16, or λ 
decreased from 0.5 to 0.1.

MSE (mean square error)

Table 4 presents means, medians, and maximums of gAB’s 
MSE and points of comparison based on estimated MSEs of 
Hedges’ g. It was evident that means and medians of gAB’s 

Fig. 1  Effects of data distribution, within-case reliability (ρ), and ratio of variance components (λ) on RB (%). RBs inside the blue shaded area 
were acceptable; RBs outside the blue shaded area were unacceptable
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MSE were noticeably larger than MSEs of Hedges’ g. When 
N = 8, gAB’s mean MSEs were approximately 1.5 times larger 
than MSEs of Hedges’ g. When N = 16, gAB’s mean MSEs 
were approximately 2.5 times larger than MSEs of Hedges’ 
g. Similar to Pustejovsky et al.’s (2014) findings, extremely 
large MSEs were uncovered in this study. Maximum MSEs 
were approximately twice as large as mean MSEs across 
levels of m and N. The overall maximum MSE (= 0.808) 
was approximately four times as large as the overall mean 
(= 0.194). Thus, we decided that it was justified to use the 
75th percentile (= 0.241) of all MSEs as a cutoff to identify 
unacceptable MSEs.

According to Table 3, MSE was significantly impacted 
by m and ρ. Figure 3 plots MSE by m, ρ, and Dist. Accept-
able MSEs are inside the blue shaded areas and unacceptable 
MSEs are outside the blue shaded areas, based on the cutoff 
for an unacceptable MSE (MSE > 0.241).

According to Fig. 3, MSE decreased as m increased for 
a fixed ρ, regardless of data distribution. At a fixed m, MSE 
increased as ρ increased, again regardless of data distribu-
tion. When m = 6, all MSEs were acceptable. When m = 4 or 
5, all MSEs were acceptable, except when ρ = 0.8 and Dist 
was mildly or moderately non-normal. When m = 3, MSEs 
were acceptable only when ρ = 0.2, or when ρ = 0.4 and Dist 
was normal or nearly normal.

Figure 4 presents boxplots of MSEs for each combination 
of m and ρ across levels of Dist, N, λ, and ϕ. Three refer-
ence lines are overlaid corresponding to the 95th percentile 

(= 0.401), 75th percentile (= 0.241), and median (= 0.170) 
of the 1792 MSEs, respectively. According to Fig. 4, when 
m = 3 (the smallest) and ρ = 0.8 (the largest), all MSEs were 
larger than 0.241 (=  P75). When m = 3 and ρ = 0.6, or when 
m = 4 and ρ = 0.8, more than 75% of MSEs were larger than 
0.241 (=  P75). Under all other combinations of m and ρ, more 
than 50% MSEs were smaller than 0.241 (=  P75). The exact 
 P25, median, mean,  P75, and  P95 of each boxplot shown in 
Fig. 4 are presented in File 7.

CR (coverage rate of symmetric 95% CI)

According to Table 3, CR was significantly impacted by 
Dist, m, N, and ϕ. Figure 5 plots CR by Dist, m, and ϕ 
for N = 8, whereas Fig. 6 plots CR by the same factors for 
N = 16. Acceptable CRs are inside the blue shaded areas and 
unacceptable CRs are outside the blue shaded areas, based 
on the cutoff for unacceptable CR (CR < 0.925 or > 0.975) 
established in the “Method” section.

When N = 8 and m = 5 or 6, CRs were mostly acceptable 
across the four Dists. As m decreased from 5, 4 to 3, CRs 
became increasingly unacceptable and overcovering, espe-
cially under normal and nearly normal distributions. When 
m = 3 or 4 under mildly and moderately non-normal Dists, 
CRs were mostly unacceptable when ϕ ≥ 0.

When N = 16, CRs were mostly acceptable across the four 
Dists. A few unacceptable overcovering CRs were found 
when (1) m = 3 or 4 and Dist was normal or nearly normal, 

Fig. 2  Effects of data distribution, number of cases (m), number of measurements (N), and ratio of variance components (λ) on RBV (%). RBVs 
inside the blue shaded areas were acceptable; RBVs outside the blue shaded areas were unacceptable.
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Fig. 3  Effects of number of cases (m) and within-case reliability (ρ) on MSE by data distribution. MSEs inside the blue shaded area were accept-
able; MSEs outside the blue shaded area were unacceptable

Fig. 4  Boxplots of MSEs for combinations of number of cases (m) and within-case reliability (ρ)
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or (2) m = 3, ϕ ≥ 0, and Dist was mildly or moderately non-
normal. A few unacceptable undercovering CRs were iden-
tified when m = 5 or 6, ϕ ≤ −0.3, and Dist was moderately 
non-normal.

Acceptable conditions

To answer RQ2, we integrated findings across four cri-
teria in Tables 5, 6, 7 and 8. Specifically, Tables 5 and 
6 present acceptable conditions for λ = 0.1 and N = 8 or 
16, respectively. Tables 7 and 8 present acceptable con-
ditions for λ = 0.5 and N = 8 or 16, respectively. A circle 
(O) in Tables 5, 6, 7 and 8 indicates that gAB performed 
acceptably on all four criteria in that condition; hence, 
gAB was acceptable for MB studies and meta-analysis 
in that condition (e.g., Algina et al., 2005; APA, 2020; 
Hoogland & Boomsma, 1998; Pustejovsky et al., 2014). 
Actual values of the four criteria are shown in File 5 at 
https:// osf. io/ hsvwu/.

According to Tables 5, 6, 7 and 8, the number of accept-
able conditions marked by O ranged from 55 (normal), 
90 (nearly normal), 223 (moderately non-normal), to 233 
(mildly non-normal). gAB’s performance was acceptable in 
far more mildly or moderately non-normal conditions than 
normal or nearly normal conditions. At fixed λ and N, normal 

and nearly normal Dists yielded similar patterns, and mildly 
and moderately non-normal Dists yielded similar patterns.

The number of acceptable conditions increased as m or N 
increased. When m increased from 3, 4, 5 to 6, the number of 
acceptable conditions increased from 51, 113, 182, to 255, 
respectively. When N increased from 8 to 16, the number of 
acceptable conditions increased from 220 to 381.

In general, the number of acceptable conditions 
decreased as λ, ρ or ϕ increased. When λ increased 
from 0.1 to 0.5, the number of acceptable conditions 
decreased from 320 to 281. When ρ increased from 
0.2, 0.4, 0.6 to 0.8, the number of acceptable condi-
tions in general decreased from 172, 180, 157, to 92, 
respectively. When ϕ increased from −0.4, −0.3, −0.1, 
0, 0.1, 0.3 to 0.4, the number of acceptable conditions 
gradually decreased from 110, 106, 87, 82, 81, 68, to 
67, respectively.

According to Table 5, when λ = 0.1 and N = 8, most of 
the acceptable conditions were associated with (1) ρ = 0.2 
or 0.4, m ≥ 4, and mildly or moderately non-normal Dist, (2) 
ρ = 0.6, m ≥ 5, and mildly non-normal Dist, or (3) ρ = 0.8, 
m = 6, and normal, nearly normal, or mildly non-normal 
Dist. According to Table 6, when λ = 0.1 and N = 16, most of 
the acceptable conditions were associated with (1) ρ = 0.2 or 
0.4, and mildly or moderately non-normal Dist, (2) ρ = 0.6, 

Fig. 5  Effects of data distribution, number of cases (m), and autocorrelation (ϕ) on CR when N = 8. CRs inside blue shaded areas were accept-
able; CRs outside the blue shaded areas were unacceptable

https://osf.io/hsvwu/
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m ≥ 4, and normal, nearly normal, or mildly non-normal 
Dist, or (3) ρ = 0.8, m ≥ 5, and normal or nearly normal Dist.

According to Table 7, when λ = 0.5 and N = 8, most of the 
acceptable conditions were associated with (1) ρ = 0.2, m ≥ 4, 
and moderately non-normal Dist, or (2) ρ = 0.4 or 0.6, m ≥ 5, and 
mildly or moderately non-normal Dist. According to Table 8, 
when λ = 0.5 and N = 16, most of the acceptable conditions were 
associated with (1) ρ = 0.2, and moderately non-normal Dist, 
(2) ρ = 0.2, m = 3 or 6, and mildly non-normal Dist, (3) ρ = 0.4 
or 0.6 , m ≥ 4, and mildly or moderately non-normal Dist, (4) 
ρ = 0.4, 0.6, or 0.8, m = 6, and normal, nearly normal, or mildly 
non-normal Dist, or (5) ρ = 0.8, m = 5, and nearly normal Dist.

Summary of findings

Results presented above indicated that gAB as a point esti-
mator was fairly unbiased even under non-normal distribu-
tions. gAB’s variance was generally overestimated and its 
95% CI was over-covered, especially when data distribution 
was normal or nearly normal combined with m = 3 or 4, and 
N = 8. The imprecision of gAB, as measured by MSE, was 
quite large when m = 3 or 4 and ρ = 0.6 or 0.8 across the 
four distributions.

Indeed, data distribution played a vital role in impact-
ing gAB’s performance for MB studies and meta-analysis. 

Fig. 6  Effects of data distribution, number of cases (m), and autocorrelation (ϕ) on CR when N = 16. CRs inside blue shaded areas were accept-
able; CRs outside the blue shaded areas were unacceptable

Table 4  Mean, median, and maximum MSEs of gAB and estimated MSEs of Hedges’ g as points of comparison derived from Eq. 21

m N = 8 N = 16

Mean Median Maximum Points of com-
parison

Mean Median Maximum Points of 
compari-
son

3 0.326 0.308 0.808 0.212 0.259 0.232 0.667 0.099
4 0.222 0.209 0.419 0.154 0.182 0.165 0.383 0.073
5 0.171 0.162 0.325 0.121 0.140 0.128 0.313 0.058
6 0.140 0.133 0.275 0.099 0.113 0.104 0.256 0.048
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gAB performed far better under mildly and moderately 
non-normal distributions than under normal and nearly 
normal distributions. This was because more RBVs were 
acceptable under mildly or moderately non-normal distri-
bution than under normal or nearly normal distribution (see 
Fig. 2). Additionally, data distribution interacted with ρ 
in impacting the performance of gAB significantly. Under 
normal or nearly normal distribution, gAB performed more 
acceptably when ρ = 0.6 or 0.8 than when ρ = 0.2 or 0.4. 
Under mildly or moderately non-normal distribution, gAB 
performed more acceptably when ρ = 0.2 or 0.4 than when 
ρ = 0.8. When ρ = 0.6 and λ = 0.5, gAB performed equally 
acceptably under mildly and moderately distributions. 
When ρ = 0.6 and λ = 0.1, gAB performed more acceptably 
under the mildly non-normal than under the moderately 
non-normal distribution. The negative impact of ρ on gAB 

under any data distribution was mitigated by doubling N 
from 8 to 16 and/or by increasing m from 3 to 6.

Discussion

The What Works Clearinghouse Procedures and Standards 
Handbook, Version 5.0 (WWC, 2022) recommends gAB as a 
D-CES (1) to gauge an intervention effect in SCED studies, and 
also (2) to synthesize findings from SCED and group studies in 
meta-analysis. As an estimator of its parameter δAB, gAB’s inter-
pretation is conditioned on its assumptions. Yet there have been 
no published studies that examined gAB’s normality assump-
tion. The present study aimed to investigate the impact of data 
distributions on the performance of gAB by expanding Study 
2 of Pustejovsky et al. (2014) to non-normal data. Our study 

Table 5  Acceptable conditions when λ = 0.1 and N = 8 for MB studies and meta-analysis

Note. 3, 4, 5, 6 in the header row are the number of cases

Normal Nearly normal Mildly non-normal Moderately non-normal

ρ ϕ 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.2 −0.4 O O O O O O
−0.3 O O O O O
−0.1 O O O O O
0 O O O O O
0.1 O O O O O O
0.3 O O O O O O
0.4 O O O O O

0.4 −0.4 O O O O O O O O
−0.3 O O O O O O O O
−0.1 O O O O O O
0 O O O O O O
0.1 O O O O O O
0.3 O O O O
0.4 O O O O

0.6 −0.4 O O O O O O O O
−0.3 O O O O O O
−0.1 O O O
0 O O O
0.1 O O O
0.3 O O
0.4 O O O O

0.8 −0.4 O O O
−0.3 O O O
−0.1 O O O O
0 O O O
0.1 O O
0.3 O O
0.4 O O
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applied the same REML method to compute gAB and the same 
four criteria to evaluate the performance of gAB, as Pustejovsky 
et al. (2014) did. The four criteria were: relative bias (RB), rela-
tive bias of gAB’s variance estimator (RBV), mean square error 
(MSE), and coverage rate of symmetric 95% CI (CR). The pre-
sent study differed from Pustejovsky et al. (2014) in two aspects. 
First, we analyzed converged results, whereas Pustejovsky et al. 
(2014) analyzed both converged and non-converged results. Sec-
ond, we specified cutoffs for acceptable and unacceptable RB, 
RBV, MSE, and CR, whereas Pustejovsky et al. (2014) did not 
establish such standards.

Two research questions (RQ1 and RQ2) were raised 
concerning the impact of data distributions on the per-
formance of gAB. RQ1 explored the extent to which data 
distribution (Dist), the number of cases (m), the number 
of measurements (N), within-case reliability (ρ), ratio 
of variance components (λ), autocorrelation (ϕ) and the 

interactions of Dist with m, N, ρ, λ, and ϕ impacted each 
of the four criteria. Dist was manipulated in this study to 
range from normal, nearly normal, mildly non-normal to 
moderately non-normal. The other five factors (m, N, ρ, 
λ, and ϕ) were manipulated identically or similarly as in 
Pustejovsky et al. (2014). We answered RQ1 by analyzing 
the impact of the six main effects and five interactions on 
each criterion in an ANOVA framework (Table 3) and by 
plotting trends of acceptable and unacceptable RB (Fig. 1), 
RBV (Fig. 2), MSE (Figs. 3 and 4), and CR (Figs. 5 and 6).

We answered RQ2 by applying acceptability standards 
to all four criteria in each condition (Tables 5, 6, 7 and 8). 
The suitability of gAB for MB studies and meta-analysis 
(RQ2) was answered by identifying conditions that yielded 
acceptable results on all four criteria. Our results indicated 
that gAB as a point estimator was fairly unbiased even under 
non-normal distributions. Yet gAB’s variance was generally 

Table 6  Acceptable conditions when λ = 0.1 and N = 16 for MB studies and meta-analysis

Note. 3, 4, 5, 6 in the header row are the number of cases

Normal Nearly normal Mildly non-normal Moderately non-normal

ρ ϕ 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.2 −0.4 O O O O O O O O
−0.3 O O O O O O O O
−0.1 O O O O O O O O
0 O O O O O O O O
0.1 O O O O O O O O
0.3 O O O O O O O O
0.4 O O O O O O O O

0.4 −0.4 O O O O O O O O O O O
−0.3 O O O O O O O O O O
−0.1 O O O O O O O O
0 O O O O O O O
0.1 O O O O O O O
0.3 O O O O O O
0.4 O O O O O O

0.6 −0.4 O O O O O O O
−0.3 O O O O O O O O
−0.1 O O O O O O O
0 O O O O O O O O
0.1 O O O O O O
0.3 O O O O O
0.4 O O O O O

0.8 −0.4 O O O O O O
−0.3 O O O O O O
−0.1 O O O O O
0 O O O O O
0.1 O O O O O
0.3 O O O O O
0.4 O O O
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overestimated, and its symmetric 95% CI was over-covered, 
especially when data distribution was normal or nearly nor-
mal combined with m = 3 or 4, and N = 8. The imprecision 
of gAB, as measured by MSE, was a concern when m = 3 or 
4 and ρ = 0.6 or 0.8, regardless of data distribution.

Under normal or nearly normal data distribution, bias 
in variance estimates of gAB was mostly unacceptable. In 
contrast, more RBVs were acceptable under mildly or mod-
erately non-normal distribution than under normal or nearly 
normal distribution. Consequently, gAB was suitable for MB 
studies and meta-analysis in more conditions under mildly 
or moderately non-normal distribution than under normal 
or nearly normal distribution. It may seem counterintuitive 
as to why more RBVs were unacceptable under normal and 
nearly normal Dists than under mildly and moderately non-
normal Dists. One explanation is given by Eq. 15 on the 
estimated variance of gAB, or VgAB

 . Though Eq. 15 is derived 
under normality (Pustejovsky et al., 2014), its approximation 

to the true variance of gAB is poor when m and N are small 
due to asymptotic normality of the REML method (see Foot-
note 2). Our results revealed that the largest m (= 6) and N 
(= 16) in this study were not large enough to yield accept-
able estimates of the variance of gAB under normal and 
nearly normal Dists13. Our results also showed that Eq. 15 
yielded more biased estimates of gAB’s variance under small 
m (= 3) and N (= 8) than under large m (= 6) and N (= 16). 
These findings are consistent with the mathematical deriva-
tion of Eq. 15 under the normality assumption. Given the 
substantial relative bias in gAB’s variance estimator in the 
present study and in Pustejovsky et al. (2014), Eq. 15 needs 
to be improved in future research. We offer a few viable 

Table 7  Acceptable conditions when λ = 0.5 and N = 8 for MB studies and meta-analysis

Note. 3, 4, 5, 6 in the header row are the number of cases

Normal Nearly normal Mildly non-normal Moderately non-normal

ρ ϕ 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.2 −0.4 O O O
−0.3 O O O O
−0.1 O O O
0 O O O
0.1 O O O O
0.3 O O O O O
0.4 O O O O

0.4 −0.4 O O O O
−0.3 O O O O
−0.1 O O O
0 O O O
0.1 O O O O
0.3 O O O O
0.4 O O O O

0.6 −0.4 O O O O O O O
−0.3 O O O O O O
−0.1 O O O O
0 O O O O
0.1 O O O O
0.3 O O O
0.4 O O

0.8 −0.4 O O O O
−0.3 O O O
−0.1 O O
0 O
0.1
0.3
0.4

13 The fact that more RBVs were acceptable under mildly and mod-
erately non-normal conditions may be explained by the compensation 
of non-normality for REML’s tendency to overestimate the true vari-
ance of gAB under normal and nearly normal conditions.
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alternative methods under “Limitations and future research 
directions.”

Our results revealed a complex and joint impact of data 
distribution, along with number of cases, number of meas-
urements, ratio of variance components, within-case reli-
ability, and autocorrelation on the suitability of gAB for 
MB studies and meta-analysis. According to the ANOVA 
results, data distribution contributed to approximately 49% 
of variance in RB and 25% of variance in both RBV and CR. 
Furthermore, data distribution interacted with within-case 
reliability in impacting 8% of variance in RB. Number of 
cases and within-case reliability each contributed to 34% 
of variance in MSE. Among the four criteria, RB was most 
accounted for (91%) and RBV was least accounted for (72%) 
by all effects combined.

Our findings showed that the performance of gAB, 
as assessed by RB, MSE, RBV, and CR, depended on the 
distribution of data and five data features investigated in 

the present study. Of the six data features, the number of 
cases and measurements are within the control of a SCED 
researcher or interventionist, whereas data distribution, 
within-case reliability, ratio of variance components, and 
autocorrelation are not. In fact, our results demonstrated a 
mitigating effect of increased cases and measurements on 
the negative impact due to increased ratio of variance com-
ponents, within-case reliability, and first-order autocorrela-
tion on the performance of gAB. The mitigating effect of 
increased m or N on gAB was particularly evident for normal 
and nearly normal distributions.

Furthermore, large number of cases and measurements 
are required by the REML method to yield acceptable esti-
mates of gAB’s variance. Therefore, SCED researchers and 
interventionists should be encouraged to design a study 
with sufficiently large number of cases and measurements. 
In light of our findings, we offer general recommenda-
tions of gAB for primary MB studies and meta-analysis. 

Table 8  Acceptable conditions when λ = 0.5 and N = 16 for MB studies and meta-analysis

Note. 3, 4, 5, 6 in the header row are the number of cases

Normal Nearly normal Mildly non-normal Moderately non-normal

ρ ϕ 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.2 −0.4 O O O O O O O O O
−0.3 O O O O O O O O O
−0.1 O O O O O O
0 O O O O O O O O
0.1 O O O O O O
0.3 O O O O O O
0.4 O O O O O O O O

0.4 −0.4 O O O O O O O O O O O O
−0.3 O O O O O O O O O O O
−0.1 O O O O O O O O O
0 O O O O O O
0.1 O O O O O O O O
0.3 O O O O O
0.4 O O O O O O

0.6 −0.4 O O O O O O O O O
−0.3 O O O O O O O O O O
−0.1 O O O O O O O O O
0 O O O O O O O O
0.1 O O O O O O O O
0.3 O O O O
0.4 O O O O

0.8 −0.4 O O O O O
−0.3 O O O O O
−0.1 O O O O O
0 O O O O
0.1 O O O O
0.3 O O O
0.4 O O
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The preamble to our recommendations is that each SCED 
study, for which gAB is applicable, had been well con-
structed, conducted, and documented (Chen et al., 2020; 
Kratochwill et al., 2013, 2021; Peng et al., 2013).

Our recommendations

We recommend gAB for primary MB studies and meta-anal-
ysis when each study with at least 16 measurements, meets 
one of the following two conditions:

(1) m = 6, the within-case reliability is 0.6 or 0.8, and the 
shape, skewness, and kurtosis of the data distribution 
are similar to the normal or nearly normal distribution 
investigated in this study;

(2) m ≥ 4, the within-case reliability is 0.2, 0.4, or 0.6, and 
the shape, skewness, and kurtosis of the data distribu-
tion are similar to the mildly or moderately non-normal 
distribution investigated in this study.

The shape, skewness and kurtosis may be determined from 
raw data and compared to the four data distributions manipu-
lated in the current study (see File 1 at https:// osf. io/ hsvwu/ for 
the four marginal distributions). Alternatively, the shape, skew-
ness and kurtosis of empirical data distributions concerning a 
specific intervention or outcome measure may be conjectured 
from review studies, such as Joo (2017), Shadish et al. (2014), 
and Solomon (2014). Likewise, the within-case reliability of a 
study’s data may be computed from the ratio of the between-
case variance in levels over the sum of the within-case variance 
plus the between-case variance in levels, and then compared to 
the four levels manipulated in the current study.

In empirical SCED studies, there may well be exceptions 
to the conditions recommended above when gAB performs 
satisfactorily. When applied researchers find their data to not 
meet the recommended conditions, a cautionary note should be 
added for interpreting the magnitude of gAB. Practitioners are 
advised to consider context effects of an intervention holisti-
cally when interpreting gAB and its reasonableness.

Limitations and future research directions

As with any simulation study, findings and recommendations 
presented here are based on specific manipulations of the six 
factors investigated and acceptable standards established in 
the present study. Of the six factors, the number of cases (m), 
the within-case reliability (ρ), and the autocorrelation (ϕ) 
were well represented by levels commonly found in empiri-
cal MB studies. The number of measurements (N = 8 or 16) 
and the ratio of variance components (λ = 0.1 or 0.5) were 
represented by only two levels.

The manipulation of data distributions in the present simu-
lation study ranged from normal to moderately non-normal. 
All four distributions were unimodal, either mesokurtic or 
leptokurtic. And the two non-normal distributions were both 
positively skewed. Future studies can examine performance 
of gAB using discrete or count/frequency data with one or 
more modes, or different distributions at Level-1 and Level-2.

We fitted MB2 to normal and non-normal data. Hence, 
the impact of non-normality on gAB has not been investigated 
under MB1, MB3, MB4, or MB5 (Pustejovsky et al., 2014). 
Simulation studies conducted under models other than MB2 
should yield useful information to inform SCED researchers 
and interventionists about gAB in broader contexts. Studies 
on the impact of model misspecification should facilitate our 
understanding of the application of gAB.

Relative bias in gAB’s variance estimator was substantial in 
the present study and in Pustejovsky et al. (2014). Such relative 
bias has impeded gAB’s utility in meta-analysis. In the context 
of hierarchical modeling of SCED data, alternative methods, 
such as the Bayesian method (Baek et al., 2020; Joo & Ferron, 
2019), have been proposed to improve the variance estima-
tion of a random effect. However, biased variance estimation 
remains an unresolved issue in meta-analysis of SCED studies.

In sum, future studies should consider: (a) generating data 
from non-normal distributions not considered in the present 
study (e.g., platykurtic, discrete, count/frequency, bimodal/
multimodal); (b) simulating data from different distributions 
for Level-1 and Level-2 errors separately; (c) increasing the 
number of cases > 6 and the number of measurements ≥ 20 
to improve the convergence of REML estimates (see File 8 
for non-convergence rates); (d) fitting a model different from 
MB2 to data; and (e) developing Bayesian or robust estima-
tors of gAB’s variance (e.g., Chen & Pustejovsky, 2022; Park 
& Beretvas, 2019; Tipton, 2015; Verbeke & Lesaffre, 1996; 
Yuan & Bentler, 2002), or applying the Box-Cox or square 
root transformation of gAB’s variance (Man et al., 2022).

Concluding remarks

The gAB statistic has been endorsed as a D-CES by the What 
Works Clearinghouse Procedures and Standards Handbook, 
Version 5.0 (WWC, 2022) to gauge an intervention effect in 
a SCED study and to synthesis findings from multiple SCED 
studies, or across SCED and group studies. Such an endorse-
ment will surely increase the reporting of gAB in published 
reports. Thus, it is crucial to examine the performance of gAB 
under non-normal distributions with different data features 
in order to render appropriate reporting and interpretation 
of gAB. Findings from our study highlight the importance of 
data distributions and features in determining the suitability 
of gAB for primary MB studies and meta-analysis.

https://osf.io/hsvwu/
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Based on gAB’s definition and its REML estimation 
method, it is worth pointing out several issues associated with 
gAB’s applicability in SCED contexts. First, gAB is applicable 
to MB designs across three or more cases of the same behav-
ior, as previously mentioned. gAB is equally applicable to  ABk 
designs with at least three cases of the same behavior. Second, 
as a study-level ES index, gAB does not permit the examina-
tion of factors that may vary between cases within a study, as 
in moderator analyses (Kratochwill et al., 2021). Third, gAB’s 
computation and interpretation depend on a model. Such a 
model may be misspecified, or overly simplistic (Maggin 
et al., 2022; Valentine et al., 2016)14, and the model assump-
tions (e.g., normality, equally spaced measurements, no trend) 
may be untenable (Maggin et al., 2022) or non-robust. Fourth, 
its applicability beyond the “starting point,” or MB1, recom-
mended by the What Works Clearinghouse Procedures and 
Standards Handbook, Version 5.0 (WWC, 2022) requires 
extensive research, especially under non-normal distributions 
with small number of cases and measurements.

In addition to issues discussed above, Kratochwill 
et al. (2021) raised concerns about the compatibility of 
constructs underlying outcomes measured in SCED and 
group studies. Such concerns cast doubt on the design-
comparability of gAB across SCED and group studies. 
Maggin et al. (2022) demonstrated several misleading 
conclusions based exclusively on ES indices. Thus, Mag-
gin et al. (2022) emphasized the importance of conducting 
systematic visual analyses of single-case data in terms of 
level, trend, variability, immediacy of change, overlap, and 
consistency of data patterns both within and across phases.

Given the issues and concerns summarized above, we 
caution readers not to rely solely on the magnitude of 
a D-CES, such as gAB, when determining an interven-
tion’s effectiveness. Instead, a detailed description of an 
intervention study should be reviewed thoroughly when 
assessing an intervention. A study description should 
provide sufficient information regarding the definition 
of the construct being intervened, the construct valid-
ity of its measurements, the verification of the study’s 
design standards, the examination of the study’s opera-
tional issues, visual and quantitative demonstrations of 
the intervention’s effectiveness. As Chen et al. (2020), 

Kratochwill et al. (2021), and Wrigley and McCusker 
(2019) advocated, which we agree with, that it is more 
meaningful to ask, “For whom and under what condi-
tions does an intervention work?” than to ask, “Does an 
intervention work?” A sound reporting of gAB, or any ES 
index, should include (A) a thorough interpretation of the 
ES magnitude based on similar studies (i.e., construct 
and population of interest, treatment/intervention intro-
duced, and measurements of outcomes), and (B) clinical 
or practical importance of the intervention effect.

The data and materials for the simulation study are avail-
able at https:// osf. io/ hsvwu/.

Appendix A

In this Appendix, we compare our findings under normal 
distributions to those obtained from Study 2 of Pustejovsky 
et al. (2014) in terms of relative bias, relative bias of vari-
ance estimators, MSE, and CR.

In terms of gAB’s relative bias, Pustejovsky et al. (2014) 
reported the average absolute relative bias of gAB to be 
less than 7.3% when m = 3, less than 4.9% when m = 4, 
and less than 2.9% when m ≥ 5, across all combinations of 
parameters and N. In its supplementary materials, Puste-
jovsky et al. (2014) noted that relative bias was generally 
greater when N = 8 than when N = 16 (pp. 8–9). Relative 
bias decreased as m increased. We too observed these pat-
terns in gAB’s relative bias. The average absolute relative 
biases uncovered in our study were slightly higher than 
those cited above. The greatest absolute relative bias of 
gAB was 10.8% when m = 3, 7.6% when m = 4, 5.5% when 
m = 5, and less than 4.4% when m = 6.

In terms of relative bias of gAB’s variance estimator, 
Pustejovsky et al. (2014) reported substantial overestimation 
of variance when m was small, averaging 43% when m = 3 
and N = 16. Even at the largest m = 6 and N = 16, the variance 
of gAB was overestimated with an average relative bias of 
14%. We too observed the persistent overestimation by gAB’s 
variance estimator. The positive relative biases uncovered in 
our study were comparable to those cited above. When m = 3 
and N = 16, the average relative bias was 48%. When m = 6 
and N = 16, the average relative bias was 20%.

In terms of gAB’s MSE as a criterion for its precision, 
Pustejovsky et al. (2014, supplementary materials) reported 
that MSE at N = 8 ranged from 0.290 (m = 3), 0.198 (m = 4), 
0.149 (m = 5), to 0.120 (m = 6) across levels of the param-
eters (p. 9). At N = 16, MSE ranged from 0.221 (m = 3), 
0.153 (m = 4), 0.116 (m = 5), to 0.092 (m = 6) also across 
levels of the parameters. Pustejovsky et al. (2014, supple-
mentary materials) concluded that (1) gAB was imprecise 
especially when m was small; (2) MSEs decreased as m or 
N increased; and (3) MSEs generally increased as ρ, λ, and 

14 Valentine et  al. (2016) stated, “In general, when specifying the 
phase time trends used in the REML model for estimating design-
comparable effect sizes, we recommend that users balance prior the-
ory, visual inspection of the data, and parsimony …. we suggest that 
most users will probably focus on just the two simplest options of no 
trends or linear trends …. If the user is planning to include the effect 
size in a synthesis, we recommend that similar model specifications 
(i.e., phase time trends, and fixed/random effects, as described below) 
be used for all studies included in the synthesis” (pp. 20-21).

https://osf.io/hsvwu/
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ϕ increased (p. 9). We too uncovered patterns comparable 
to those cited above. Our MSEs at N = 8 ranged from 0.278 
(m = 3), 0.191 (m = 4), 0.146 (m = 5), to 0.119 (m = 6). At 
N = 16, our MSEs ranged from 0.222 (m = 3), 0.156 (m = 4), 
0.120 (m = 5), to 0.097 (m = 6).

In terms of CR, Pustejovsky et al. (2014) reported that 
the symmetric CI had greater than nominal coverage, rang-
ing from 97.8% when m = 3 to 96.4% when m = 6, averaged 
across the parameter levels and N. When m = 6, CRs var-
ied from 93.9% to 97.6% across levels of the manipulated 
factors. We too observed the gAB’s CI to over-cover. The 
CRs in our study were comparable to those cited above. 
Our average CRs ranged from 97.3% when m = 3 to 96.6% 
when m = 6. When m = 6, CRs ranged from 95.0% to 98.0% 
across levels of the manipulated factors.

In summary, our results from the normal distribution 
agreed with Pustejovsky et al.’s (2014), obtained also under 
the normal distribution, in terms of gAB’s overestimated 
variance, imprecision when m was small, and over-cover-
age of the symmetric 95% CI. As for gAB’s small relative 
bias when m ≥ 4 claimed in Pustejovsky et al. (2014), the 
average absolute relative bias of gAB in our study fell below 
5% only when m = 6. Subtle differences in findings might 
be attributed to ways in which Pustejovsky et al. (2014) and 
this study dealt with non-converged results, and manipu-
lated the autocorrelation (ϕ) slightly differently.

Appendix B

In this appendix, we explain (1) how a case was generated 
from a normal distribution and (2) how 3 (= m) cases were 
combined to form a replication. We use Pustejovsky et al.’s 
(2014) matrix notations to facilitate the explanation.

Generating a case

Under MB2, the distribution of the jth measurement of the 
ith case (Yij ) is given in Eq. 6 which is repeated here as 
Eq. B1:

For N scores of a case, Eq. B1 can be expressed in matrix 
notations as Eq. B2 or 9:

The fixed effects in Eq. B2 are expressed as the product of 
the design matrix (DN×2) and a fixed-effect vector (γ2×1). The 
random effects in Eq. B2 are expressed as a vector (eN×1) 

(B1)
Yij = γ00 + η0i +

(
γ10 + η1i

)
× Dij + εij

=
[
γ00 +

(
γ10 × Dij

)]
+
{
η0i +

(
η1i × Dij

)
+ εij

}
= [fixed effects] + {random effects}.

(B2)YN×1 = DN×2 �2×1 + eN×1.

that consists of Level-2 errors [η0i + (η1i × Dij)] and Level-1 
errors (εij).

For illustration, let’s consider the first case from the con-
dition of m = 3, N = 8, ρ = 0.2, λ = 0.1, and ϕ = −0.4. The D 
and γ matrices for this illustrated case are defined according 
to Eq. B3:

where the first column of D8×2 is a vector of 1s, the second 
column of D8×2 specifies that this case’s intervention starts 
on the fourth measurement (see Table 2), and γ2×1 contains 
γ00 and γ10—the two parameters specified under MB2 (see 
“Definition of δAB”).

Errors in the error vector (e8×1) were randomly generated 
from a distribution specified in Table 1, using the mvrnon-
norm function in the semTools package (Jorgensen et al., 
2021). If Dist = normal, random errors were generated from 
the normal distribution by specifying skewness = 0, kurto-
sis = 0, and a variance-covariance matrix of errors (Σ8×8 
from Eq. B6 below) in the mvrnonnorm function. With these 
specifications, the mvrnonnorm function produced multivar-
iate normal errors using the Vale and Maurelli method (Vale 
& Maurelli, 1983). One such e8×1 = (−0.54, 0.30, 0.14, 0.62, 
−0.07, 1.95, 1.33, 0.87)T. Adding this e8×1 to the product of 
D8×2 and γ2×1 matrices from Eq. B3, we obtained data for 
the illustrated case in Eq. B4:

The variance-covariance matrix of errors (Σ) is written 
generally as Eq. B5:

where DTDT = the variance-covariance matrix of Level-2 
errors, (1 − ρ) ∙ AR(1) = the variance-covariance matrix of 
Level-1 errors, D = design matrix from Eq.  B3, 

T2×2 =

[
τ2
0
0

0 τ2
1

]
 (see Footnote 4), and AR(1) is the matrix of 

(B3)D8×2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and �2×1 =

�
0

1

�
,

(B4)Y
8×1 = D

8×2 �2×1 + e
8×1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
0

1

⎤⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.54

0.30

0.14

0.62

− 0.07

1.95

1.33

0.87

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.54

0.30

0.14

1.62

0.93

2.95

2.33

1.87

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B5)
∑

= DTD
T + (1 − ρ) ∙ AR(1),
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first-order autocorrelations with 1s along the diagonal and 
ϕ|k−j| off-diagonal.

For the illustrated case, ρ = 0.2 and λ = 0.1. Hence, 
τ2
0
 = 0.2 and τ2

1
 = 0.02 because ( σ2 + τ2

0
 ) =1 (see “Definition 

of δAB”), ρ = τ2
0
/(σ2 + τ2

0
 ) = τ2

0
 , and λ = τ2

1
/τ2

0
 . With ϕ = −0.4 

and N = 8, the Σ8×8 for the eight random errors was com-
puted according to Eq. B6:

The Σ8×8 computed in Eq. B6 was input into the mvrnon-
norm function, along with skewness = 0 and kurtosis = 0, to 
generate normally distributed errors shown in Eq. B4 above.

Generating m cases to form a replication

For a specific m in a replication, m cases were generated 
similarly as the illustrated case above. The design matrix 
DN×2 of each case varied according to the start point speci-
fied in Table 2. After data were generated for m cases, a 
replication was formed and a gAB was computed.
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(B6)

�
8×8 = DTD

T + (1 − ρ) ∙ AR(1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
0.2 0

0 0.02

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

⎤
⎥⎥⎦
+

(1 − 0.2) ∙

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.4 (−0.4)2 (−0.4)3 (−0.4)4 (−0.4)5 (−0.4)6 (−0.4)7

− 0.4 1 −0.4 (−0.4)2 (−0.4)3 (−0.4)4 (−0.4)5 (−0.4)6

(−0.4)2 −0.4 1 −0.4 (−0.4)2 (−0.4)3 (−0.4)4 (−0.4)5

(−0.4)3 (−0.4)2 −0.4 1 −0.4 (−0.4)2 (−0.4)3 (−0.4)4

(−0.4)4 (−0.4)3 (−0.4)2 −0.4 1 −0.4 (−0.4)2 (−0.4)3

(−0.4)5 (−0.4)4 (−0.4)3 (−0.4)2 −0.4 1 −0.4 (−0.4)2

(−0.4)6 (−0.4)5 (−0.4)4 (−0.4)3 (−0.4)2 −0.4 1 −0.4

(−0.4)7 (−0.4)6 (−0.4)5 (−0.4)4 (−0.4)3 (−0.4)2 −0.4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.12 0.33 0.15 0.22 0.19 0.20 0.20

− 0.12 1 −0.12 0.33 0.15 0.22 0.19 0.20

0.33 −0.12 1 −0.12 0.33 0.15 0.22 0.19

0.15 0.33 −0.12 1.02 −0.10 0.35 0.17 0.24

0.22 0.15 0.33 −0.10 1.02 −0.10 0.35 0.17

0.19 0.22 0.15 0.35 −0.10 1.02 −0.10 0.35

0.20 0.19 0.22 0.17 0.35 −0.10 1.02 −0.10

0.20 0.20 0.19 0.24 0.17 0.35 −0.10 1.02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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