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Abstract
Agreement probability p(a) is a homogeneity measure of lists of properties produced by participants in a Property Listing 
Task (PLT) for a concept. Agreement probability’s mathematical properties allow a rich analysis of property-based descrip-
tions. To illustrate, we use p(a) to delve into the differences between concrete and abstract concepts in sighted and blind 
populations. Results show that concrete concepts are more homogeneous within sighted and blind groups than abstract ones 
(i.e., exhibit a higher p(a) than abstract ones) and that concrete concepts in the blind group are less homogeneous than in the 
sighted sample. This supports the idea that listed properties for concrete concepts should be more similar across subjects 
due to the influence of visual/perceptual information on the learning process. In contrast, abstract concepts are learned 
based mainly on social and linguistic information, which exhibit more variability among people, thus, making the listed 
properties more dissimilar across subjects. Relative to abstract concepts, the difference in p(a) between sighted and blind is 
not statistically significant. Though this is a null result, and should be considered with care, it is expected because abstract 
concepts should be learned by paying attention to the same social and linguistic input in both, blind and sighted, and thus, 
there is no reason to expect that the respective lists of properties should differ. Finally, we used p(a) to classify concrete 
and abstract concepts with a good level of certainty. All these analyses suggest that p(a) can be fruitfully used to study data 
obtained in a PLT.

Keywords Property listing task · Agreement probability · Concrete/abstract concepts · Sighted/blind populations

Introduction

In the current work, we discuss a measure of conceptual 
homogeneity and illustrate its potential by using it to analyze 
differences between two sets of concepts and two popula-
tions. Our data was collected using a semantic Property List-
ing Task (PLT, Lenci et al., 2013), where people freely pro-
duce featural descriptions of a given concept. Consequently, 

our measure of homogeneity quantifies, across participants, 
the average correspondence between the descriptions (i.e., 
properties/features) that were produced for a given concept. 
The more similar across participants the descriptions are, the 
greater the homogeneity.

Concepts are probably variable and not homogeneous 
across a population, and differences may exist even when 
people conceptualize a situation similarly. Philosophers have 
pointed out the theoretical difficulties in asserting that dif-
ferent people share strictly the same concepts (Frege, 1893; 
Glock, 2009; Russell, 1997). Empirical evidence also sug-
gests that the situation is that there is non-homogeneity in 
how people instantiate a given concept, and that there is even 
non-homogeneity in how a single person instantiates the same 
concept in two different occasions (Barsalou, 1987, 1993). 
In the current work, we take this non-homogeneity to be a 
fundamental characteristic of naturally occurring concepts. A 
simple source of non-homogeneity is learning. When concepts 
are learned in natural environments (in contrast to experimen-
tal environments), the most likely situation is that people will 

 * Enrique Canessa 
 ecanessa@uai.cl

1 Center for Cognition Research (CINCO), School 
of Psychology, Universidad Adolfo Ibáñez, Av. Presidente 
Errázuriz 3328, Las Condes, Santiago, Chile

2 Center for Social and Cognitive Neuroscience, School 
of Psychology, Universidad Adolfo Ibáñez, Av. Presidente 
Errázuriz 3328, Las Condes, Santiago, Chile

3 Faculty of Engineering and Science, Universidad Adolfo 
Ibáñez, Av. P. Hurtado 750, Lote H, Viña del Mar, Chile

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-02030-z&domain=pdf


94 Behavior Research Methods (2024) 56:93–112

1 3

be exposed to different training sets, and so they will develop 
different versions of putatively the same concept.

In the current work, we will use the idea that concepts 
have variable instantiations as a guiding principle and offer 
a quantitative probabilistic measure of this non-homogeneity 
(to be explained shortly). To show one example of our meas-
ure’s usefulness, we will use it to characterize the concrete 
versus abstract concept difference and also the differences 
between congenitally blind and sighted people when con-
ceptualizing the same set of concepts. Both issues have been 
highly researched topics.

Differences between concrete and abstract 
concepts

There is a large literature on the differences between abstract 
and concrete concepts. Our reading of the literature leads us 
to conclude that an essential difference between these types 
of concepts is that, while concrete concepts depend more 
on perceptual information than abstract concepts, abstract 
concepts rely to a large extent on social and linguistic input 
(for a good review of the evidence, see Borghi et al., 2019; 
for a critical view, see Willems & Casasanto, 2011). Impor-
tantly, in our analysis, perceptual information is predicted 
to introduce greater homogeneity in the semantic properties 
produced, leading to concrete concepts being more homo-
geneous than abstract concepts.

Compared to abstract concepts, concrete concepts are 
easier to learn and process (e.g., Jones, 1985; Walker & 
Hulme, 1999), are characterized by a larger number of con-
ceptual features (Plaut & Shallice, 1991, 1993), and are more 
closely related to specific contexts (Schwanenflugel et al., 
1988; Schwanenflugel & Shoben, 1983). A summary of all 
this research might be that semantic memory (SM) is more 
densely structured for concrete than for abstract concepts 
(Jones, 1985; Plaut & Shallice, 1993; Recchia & Jones, 
2012; Yap & Pexman, 2016). A richer semantic structure 
would make concrete concepts easier to access. In contrast, 
having a less densely structured representation in memory is 
coherent with abstract concepts having more different senses 
(Hoffman et al., 2013).

In addition to these differences in semantic richness and 
context dependence, and as foreshadowed at the begin-
ning of this section, several authors have proposed that the 
difference between concrete and abstract concepts hinges 
on the type of features that corresponds to each type of 
concept. In this view, concrete concepts depend on percep-
tual content, while abstract concepts depend on linguistic 
information (e.g., while dog may be described by “barks,” 
“has four legs,” and “is hairy,” justice may be described 
by “fairness” and “law;” Barsalou et al., 2008; Breedin 
et al., 1994; Paivio, 1986; Wiemer-Hastings & Xu, 2005). 

This view is in line with the proposal that conceptual pro-
cessing involves reactivating perceptual representations 
(Barsalou, 1999; Feldman, 2010; Gallese & Lakoff, 2005; 
Prinz, 2002; Pulvermüller, 2005).

Previous studies provide evidence consistent with the idea 
that people reactivate perceptual features during language 
comprehension (Lupyan & Ward, 2013; Ostarek & Huettig, 
2017), during property verification (i.e., Is y a property of 
concept x? Kan et al., 2003; Solomon & Barsalou, 2004), and 
during semantic property listing (Santos et al., 2011). Con-
sequently, in the current work we hypothesize that concrete 
concepts are characterized more by perceptual information 
than abstract concepts, and that this perceptual information 
introduces a greater homogeneity in conceptualization for 
concrete versus abstract concepts. For expository purposes, 
we will call these our characterizing concreteness hypotheses.

Differences in semantic representations 
between congenitally blind and sighted 
individuals

As previously discussed, it is possible that concrete concepts 
are characterized by having more perceptual content than 
abstract concepts, and that this perceptual content may intro-
duce a greater homogeneity in conceptual representations 
and processing. If these hypotheses are correct, then they 
suggest that we should find that congenitally blind individu-
als, because they lack visual perceptual information, should 
show differences when processing concrete concepts, but not 
when processing abstract concepts, which seem to depend 
more on linguistic and social input (Borghi et al., 2017; 
Borghi & Cimatti, 2009). For expository purposes, we will 
call this our role of vision hypothesis.

There is in fact previous evidence consistent with our 
hypothesis that congenitally blind subjects should process 
concrete concepts differently. Blind individuals show differ-
ences in performance relative to sighted individuals when 
visual information (e.g., color) is critical for judgments 
(Connolly et al., 2007). Similarly, Kim et al. (2019) found 
that though blind subjects used general-purpose inferen-
tial mechanisms to acquire knowledge about appearances 
(e.g., that all birds have feathers), they showed systematic 
differences relative to sighted people when judging similar-
ity based on shape, knowledge that is highly dependent on 
vision (i.e., choosing the dissimilar item in a triad odd-one-
out paradigm, for example, choosing the different animal in 
the wolf, gorilla, and bear triad).

However, our hypothesis might not be correct. There is 
a fair amount of evidence, suggesting that conceptual rep-
resentations are strikingly similar in sighted and blind sub-
jects (Landau & Gleitman, 1985; Marmor, 1978; Zimler & 
Keenan, 1983) and that though there are some detectable 
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differences in early development, language acquisition and 
use is remarkably resilient to the lack of visual input (Pérez-
Pereira, 2006). It is likely that congenitally blind subjects can 
use statistical regularities in language experienced in their 
communities (Erickson & Thiessen, 2015; Steyvers & Tenen-
baum, 2005) to acquire knowledge of semantic relations, 
even when they do not have direct access to the perceptual 
information that underlies those statistical regularities (e.g., 
they know that zebra and penguin are similar in that they are 
“black” and “white,” even if they have never had the cor-
responding visual experiences). Thus, it is an open question 
whether our hypothesis about processing differences between 
blind and sighted subjects should hold or not.

Agreement probability as a measure 
of homogeneity

The semantic PLT is a procedure widely used in psychology 
to obtain property-based descriptions of concepts coded in 
language (Cree & McRae, 2003; Hampton, 1979; McRae 
et al., 2005; Rosch et al., 1976). Though there are slight 
differences in the way the task is implemented by differ-
ent researchers, the general procedure is to ask subjects to 
produce properties that are typically true of a given concept. 
Once lists are obtained, they are generally coded into prop-
erty types (i.e., responses with only superficial differences 
across subjects are coded as a single property) and accumu-
lated across participants to obtain property frequency distri-
butions. When the PLT is used to collect properties across 
whole semantic fields, the resulting data can be organized 
in Conceptual Property Norms (CPNs, e.g., Devereux et al., 
2014; Kremer & Baroni, 2011; Lenci et al., 2013; McRae 
et al., 2005; Montefinese et al., 2013; Vivas et al., 2017).

As a way of measuring homogeneity in the PLT, here 
we compute agreement probability (p(a); Chaigneau et al., 
2012), which will be explained in detail in the next sec-
tion. Conceptually, agreement probability (p(a)) is defined 
as the probability that one property taken randomly from 
one list produced by an average subject in a PLT is also 
found in another list produced by a different average sub-
ject for the same PLT. By average subject, here we mean 
a hypothetical participant who on average represents the 
lists generated across participants, and thus, not a specific 
individual who produced a particular list. Lists may come 
from the same concept (the two lists were produced for the 
same concept C1) or from different concepts (the two lists 
were produced for two different concepts C1 and C2). It is 
called agreement probability because it is a measure of the 
agreement in the properties being listed. The maximum 
agreement will be produced when all subjects produce the 
same list (same properties, same length). In that case, p(a) 
= 1. The minimum agreement will be produced when all 

subjects produce different lists (different properties, not 
necessarily different lengths).

Quantifying homogeneity by using p(a) is important 
given that the instantiation of a concept, and thus the proper-
ties with which people describe it, depends on multiple fac-
tors. Hence, p(a) may be used as a measure of how sensitive 
a concept is to those multiple factors, whichever they are. On 
different occasions, concepts can be instantiated differently 
(e.g., the concept to jump may be instantiated differently in 
the context of “extreme sports” from the context of “chil-
dren”). It is likely that concepts are sensitive to the contexts 
in which they occur in terms of how frequently a given con-
text is associated with a given concept (e.g., bill occurs more 
frequently at a restaurant and less frequently at a beach). It 
is also likely that concepts are sensitive to context in terms 
of different senses being associated with different contexts 
(e.g., bill adopts a different sense in the context of restau-
rant than in the context of government). These factors are 
likely to introduce non-homogeneity in concepts (i.e., lack 
of agreement in lists being produced) because people may 
adopt different points of view when producing property lists 
after having been cued with a given concept. Other indi-
vidual factors may also introduce lack of agreement (e.g., 
subjects being influenced by recent events in memory, or by 
idiosyncrasies in how a concept was learned or is processed). 
Therefore, agreement can be interpreted as the degree to 
which a concept is independent from all those factors, where 
the higher the p(a) for a concept, the more independent the 
concept is from all those factors.

Note that, because homogeneity in conceptualization 
might be influenced by multiple factors (as discussed 
immediately above), if measured in a different task, differ-
ent homogeneity estimates could be obtained. For example, 
in conversation, it is possible that people will progress to 
higher agreements due to their history of interactions (Fay 
et al., 2018). However, and to the best of our knowledge, 
there is no similar measure in the literature, and we hypoth-
esize that, though other measures could produce different 
estimates, the results we report here should hold, at least 
in relative terms. Additionally, p(a) has the advantage that 
it makes use of and summarizes/aggregates in a unique 
indicator, information that is routinely obtained in PLTs, 
such as the average length of property lists being produced, 
the total number of unique properties produced for a given 
concept by a group of subjects, and the property frequency 
distributions found in a CPN. These advantages will be 
better appreciated when we present the mathematical prop-
erties of p(a).

As will be discussed below, computing p(a) from frequency 
distributions of conceptual properties involves a combinato-
rial problem, which makes it impractical to use combinatorial 
formulae to compute it. Instead, we resort to computational 
simulations that deliver a close estimate for p(a).
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Computing and interpreting the meaning 
of agreement probability

To understand agreement probability, consider the following 
simple example. By asking people to produce conceptual 
properties for two related concepts or two versions of the 
same concept (C1, C2), two property frequency distributions 
are obtained. For concept C1, subjects produced properties 
a, b, c. For concept C2, subjects produced properties c, d, 
e. This situation is shown in Fig. 1, where for example C1 
= dog and C2 = cat. Note that to simplify the example, 
these are equiprobable distributions (i.e., properties in each 
distribution occur the same number of times). Assume now 
that subjects produced samples of average size = 2 for C1 

(the average number of properties mentioned by people for 
C1 is 2, s1 = 2) and also 2 for C2 (s2 = 2). Imagine that for 
concept C1, subjects produced the following properties: a = 
it barks, b = wags its tail, c = has four legs and for C2: c = 
has four legs, d = it meows, and e = catches mice.

According to conceptual agreement theory (CAT, 
Chaigneau et al., 2012) agreement probability p(a) is the 
probability that one property randomly chosen from a sample 
of size s2 of properties extracted from the set of all k2 proper-
ties that are listed in a PLT for a concept C2, is contained in 
a sample of size s1 randomly obtained from the set of all k1 
properties that are listed in a PLT for a concept C1. CAT’s 
mathematical formulation allows calculating p(a) using 
expression (1), where Table 1 defines each of the variables:

Equation (1) is the summation of the expected value of the 
number of common elements between samples S1

i
 of properties 

listed for C1 and independent samples S2
j
 of properties listed 

for C2 (i.e., the #
(
S1
i
∩ S2

j

)
 term), taking into account the 

probabilities of each sample (i.e., the pi and qj). Assuming that 
all properties in the S1

i
 and S2

j
samples have the same probability 

of being obtained, p(a) is calculated as the summation in Eq. 
(1) divided by s2. The interested reader may find the complete 
mathematical and theoretical development of p(a) in 
Chaigneau et al. (2012). Here we just present the most impor-
tant details necessary to understand the present work. Instead, 
to aid the reader in comprehending Eq. (1) and the definitions 
in Table 1, we present a simple example, which illustrates the 
application of such expressions.

Following the previous example, we have that:

(1)p(a) =
1

s2

∑n1

i=1

∑n2

j=1
#
(
S1
i
∩ S2

j

)
pi qj

a c

d

e

C1 C2

b

Fig. 1  Two concepts C1 and C2 with their corresponding set of prop-
erties obtained in a PLT (for C1 = {a, b, c} and C2 = {c, d, e}) and 
intersection (C1 ∩ C2 = {c}), with k1 (number of C1’s properties) = 
3, k2 (number of C2’s properties) = 3, u (number of properties in the 
intersection) = 1

Table 1  Definition of variables used in expressions for calculating p(a) 

Variable’s symbol Definition

s1 The average size of a sample of properties obtained from concept C1 (s1 ≤ k1), where k1 is the cardinality of the set of unique 
properties listed for concept C1

n1 The number of possible samples of size s1 obtained from the k1 properties that belong to the set of unique properties listed 
for concept C1. Thus, n

1
=

k
1
!

(k1−s1)!s1!
pi Probability of obtaining sample S1

i
 in Eq. (1)

s2 The average size of a sample of properties obtained from concept C2 (s2 ≤ k2), where k2 is the cardinality of the set of unique 
properties listed for C2

n2 The number of possible samples of size s2 obtained from the k2 properties that belong to the set of unique properties listed 
for concept C2. Thus, n

2
=

k
2
!

(k2−s2)!s2!

#

(
S1
i
∩ S2

j

)
The cardinality of the intersection between a sample “i” drawn from the set of unique properties listed for concept C1 ( S1

i
 ) 

and another independent sample “j” drawn from the set of unique properties listed for concept C2 ( S2
j
 ), i.e., the number of 

properties that belong to both samples
qj Probability of obtaining sample S2

j
 in Eq. (1)

u Number of common properties between the set of unique properties listed for concept C1 and C2. This variable is used in 
Eq. (3)
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the n1 samples from the properties listed for C1 are {ab, ac, 
bc} ( S1

i
∈ {ab, ac, bc}) and the n2 samples from the properties 

listed for C2 are {cd, ce, de} ( S2
j
∈ {cd, ce, de})

For simplicity, assume that each sample in C1 and in C2 
has an equal probability of being selected and thus, pi = 1/n1 
= 1/3 and qj=1/n2 = 1/3. Then, using Eq. (1):

In Eq. (2), the double summation corresponds to the sum 
of counts of coincidences between each sample S1

i
 and S2

j
 , for 

example:
#(S1

1
 ∩ S2

1
 ) = #(ab ∩ cd) = 0

#(S1
1
 ∩ S2

2
 ) = #(ab ∩ ce) = 0 and so on until,

#(S1
3
 ∩ S2

3
 ) = #(bc ∩ de ) = 0

For this example, each term of the double summation is
#( S1

i
∩ S2

j
 ) = {0,0,0,1,1,0,1,1,0} and hence p(a) = 4/18 = 

2/9
Probability p(a) tells us that for individuals who have listed 

properties for the concept C1 (e.g., dog) and C2 (e.g., cat), 
there exists a 2/9 probability that if one average participant 
listed a given property for the concept C2 (e.g., cat), that same 
property will be in the list of properties listed by another dif-
ferent average participant for C1 (e.g., dog). Several things 
are noteworthy. Note that first, p(a) is a measure of homoge-
neity because maximal homogeneity will be achieved when 
all participants in a PLT produce the same list, and minimal 
homogeneity will be obtained when all participants produce 
different lists.

Second, the reader may have noted that we assumed that 
the frequency distribution of the properties is uniform (i.e., 
properties in the distribution occur the same number of times, 
and thus pi, qj are the same for all i and j, see Eq. (1) and defi-
nitions in Table 1). This is an idealized case, and it is highly 
unlikely that real data would ever produce it. However, ideal-
ized models may have the virtue of reducing a problem to its 
essential characteristics. For such a case, we can demonstrate 
that (see Appendix A):

where s1 is the average number of properties in a group 
member’s sample of conceptual content for concept C1 and 
k1 is the total number of properties listed at least once for C1, 

Properties listed for C1 = {a, b, c} Properties listed for C2 = {c, d, e}

k1 = 3 and assuming s1 = 2 k2 = 3 and assuming s2 = 2

u = 1 (one common element, i.e., c) and thus,

n1 = n2 = 3!∕(3 − 2)!∕2! = 3

(2)

p(a) =
1

2

3∑
i=1

3∑
j=1

#

(
S
1

i
∩ S

2

j

)
11

33
=

1

18

3∑
i=1

3∑
j=1

#

(
S
1

i
∩ S

2

j

)

(3)p(a) =
s1

k1

u

k2

u is the number of common properties between the proper-
ties’ distributions of two concepts (C1 and C2), and k2 is the 
total number of properties listed at least once for concept 
C2. Thus, p(a) is a measure of how well separated two dis-
tributions are. This probability depends on the number of 
common properties between two distributions (u). Note that 
for our simple example above, Eq. (3) necessarily gives the 
same result as Eq. (2) (p(a) = s1/k1 x u/k2 = 2/3 x 1/3 = 2/9).

Third, note that p(a) is not symmetric with respect to 
concepts C1 and C2, i.e., calculating p(a) for concept C1 
relative to C2 does not necessarily give the same p(a) as if 
we were computing it for concept C2 relative to C1. Equa-
tions (1) and (3) give p(a) when concept C1 is the refer-
ence concept and C2 the comparison concept (i.e., p(a) 
for C1 relative to C2). On the other hand, when concept 
C2 is the reference and C1 is the comparison concept, the 
expressions are similar, but using s2 and k2 and k1 in (3); 
i.e., p(a) = s2/k2 x u/k1. This asymmetry tells us that the 
probability that a property contained in a sample for con-
cept C2 is also obtained in another sample of properties for 
concept C1 is not necessarily the same as the probability 
that a property contained in a sample for concept C1 is 
also obtained in another sample of properties for concept 
C2. This asymmetry is an important fact to remember 
when analyzing p(a) for concrete and abstract concepts, 
as well as for blind versus sighted subjects, which we will 
further use and explain in the corresponding analyses.

Finally, and as already stated, p(a) may be also com-
puted for the same concept. In this case, there is only one 
concept C1 and p(a) is the probability that one property 
randomly chosen from a sample of size s1 of properties 
extracted from the set of all k1 properties that are listed 
for a concept C1, is contained in a different sample of size 
s1 randomly obtained from the set of all k1 properties that 
are listed for the same concept C1.

Thus, the same expression (1) and definitions in Table 1 
apply, but s1 = s2, k1 = k2, n1 = n2, pi = qj, and samples S1

i
 

and S2
j
 are drawn from the same distribution of properties 

of concept C1. Hence, based on Eq. (1) and taking into 
account that now we are computing p(a) for the same con-
cept C1, we can write:

Note that in Eq. (4) the samples S1
i
 and S1

j
 both have 

superscript 1, which indicates that they are independently 

(4)p(a) =
1

s1

n1∑
i=1

n1∑
j=1

#
(
S1
i
∩ S1

j

)
pi pj
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drawn from the same distribution of properties of concept 
C1. Additionally, note that we replaced qj by pj so that it 
is clearer that those probabilities correspond to samples 
drawn from the same distribution of properties.

With regard to computing p(a) for the same concept 
and for uniform property frequency distributions, Eq. (4) 
becomes:

because in Eq. (3) and for the same list of properties for 
concept C1, it will always happen that u = k2, i.e., for the 
same list of properties obtained for a concept, the number of 
common elements will be the same as the number of proper-
ties obtained for the concept (see Appendix A for a more for-
mal demonstration). That fact also tells us that for concepts 
with uniform property frequency distributions, p(a) for two 
different concepts calculated using Eq. (3) will always be 
lower than p(a) computed for one of those concepts using 
Eq. (4), i.e., agreement probability for two different concepts 
will always be lower than p(a) for one of the concepts with 
itself (see Appendix A for a demonstration).

To help understand the computation of p(a) for the same 
concept, let’s use the same example shown in Fig. 1 and 
calculate p(a) for C1. Then we have that:

Properties listed for C1 = {a, b, c}
k1 = 3              and assuming s1 = 2
n1 = 3! / (3 − 2)! / 2! = 3

the n1 samples from the properties listed for C1 are {ab, 
ac, bc} ( S1

i
∈ {ab, ac, bc} and S1

j
∈ {ab, ac, bc})

For simplicity, assume that each sample in the properties 
listed for C1 has an equal probability of being selected and 
thus, pi = pj =1/n1 = 1/3.

And thus applying those values to Eq. (4):

In Eq. (6), the double summation corresponds to the sum 
of counts of coincidences between each sample S1

i
and S1

j
 , for 

example:
#(S1

1
 ∩ S1

1
 ) = #(ab ∩ ab) = 2

#(S1
1
 ∩ S1

2
 ) = #(ab ∩ ac) = 1 and so on until,

#(S1
3
 ∩ S1

3
 ) = #(bc ∩ bc) = 2

For this example, each term of the double summation is
#( S1

i
 ∩ S1

j
 ) = {2,1,1,1,2,1,1,1,2} and hence p(a) = 12/18 

= 2/3
Note that p(a) = 2/3 is the same as the one computed by 

using Eq. (5), i.e., p(a) for the same concept = s1/k1 = 2/3. 
As easily seen from Eq. (5), p(a) is a measure of conceptual 

(5)p(a) =
s1

k1

(6)

p(a) =
1

2

3∑
i=1

3∑
j=1

#

(
S
1

i
∩ S

1

j

)
11

33
=

1

18

3∑
i=1

3∑
j=1

#

(
S
1

i
∩ S

1

j

)

homogeneity in a group that uses the concept that produced 
it. Its maximal value is reached only when all group mem-
bers produce the same set of properties for the concept in 
question (i.e., when s1 = k1). In contrast, its minimal value 
is approached when each group member produces unique 
properties. Also see that p(a) for concept C1 relative to C2 
(2/9) is lower than p(a) for the same concept C1 (2/3), or for 
the same concept C2 = s2/k2 = 2/3.

One last feature that is interesting to note is that p(a) for 
the same concept computed with Eq. (5) provides a lower 
bound for this probability regardless of a distribution’s sta-
tistical structure (see Appendix A). In other words, p(a) 
for the same concept cannot reach a value lower than s1/k1. 
A direct consequence of this is that statistical structure in 
property frequency distributions (i.e., nonuniformity) will in 
general increase homogeneity, which is intuitively correct.

As discussed in Canessa and Chaigneau (2016), comput-
ing agreement probability from frequency distributions of 
conceptual properties involves a combinatorial problem. As 
shown in Eq. (1), it requires counting coincidences among 
pairs of samples weighted by their respective probabilities, 
where a sample means the conceptual content (i.e., proper-
ties) provided by an average individual contributing data to 
the distribution. That equation has the advantage of being 
formulated for the general case of nonuniform property fre-
quency distributions, but the number of samples (combi-
nations) that need to be taken into account rapidly grows 
as s1, s2 and/or k1, k2 increase. For example, for a realistic 
PLT, a concept may have s1 = 7 and k1 = 30, and thus n1 = 
2,035,800 (see Table 1 for the expression that calculates n1). 
That makes expression (1) impossible to use in real PLTs. 
Therefore, in Canessa and Chaigneau (2016) we present a 
simulator that emulates the property comparison process 
underlying p(a) (i.e., counting the number of times in which 
a property found in a randomly selected sample is also found 
in a second randomly selected sample, over the total number 
of selected samples) and that allows calculating that prob-
ability with non-statistically significant differences relative 
to the exact values that might be computed using Eq. (1). 
For the detailed simulator’s algorithm, the interested reader 
may consult Canessa and Chaigneau (2016). Here we briefly 
describe it, so that the parameters that must be inputted to 
the simulator and will be used in this paper are understood.

The simulator receives the property frequency distribu-
tion of properties listed for a concept C1 and C2 and their 
corresponding s1 and s2 values. First, the simulator proba-
bilistically gets one independent sample of size s1 properties 
without replacement from the properties listed for C1 and 
another sample of size s2 properties without replacement 
from the properties listed for C2. We label the first sample as 
reference sample and the second one as comparison sample. 
Note that the sampling probability of each property corre-
sponds to the frequency of the given property relative to the 
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frequencies of the other properties. In our simple example, 
if e.g., the frequencies of property a = 15, b = 20, and c 
= 10 in concept C1, then, the probability of sampling a is 
15 / (15 + 20 + 10) = 1/3 and similarly for b = 20/45 = 
4/9 and for c = 10/45 = 2/9. Then, it randomly selects one 
property from the comparison sample and if that property is 
contained in the reference sample, it increments a pa_coun-
ter. This is done max_iterations times. Then, p(a) is simply 
approximated by pa_counter / max_iterations. Addition-
ally, the simulator has two more inputs. Given that as the 
simulator iterates, the approximation gets closer to the real 
value of p(a) (in fact as max_iterations tends to infinity, the 
approximation reaches the true p(a) value), we can calculate 
a moving average of p(a) as the simulator iterates by using 
the last nr_points_moving_avg iterations. Finally, we can 
repeat the simulation for nr_repetitions times and calculate 
a mean and standard deviation of p(a) using each of the 
values computed in the individual repetitions. This simula-
tor was implemented in NetLogo v. 6.2.1 (Wilensky, 1999) 
and is available at https:// osf. io/ xhfmz/? view_ only= 31c08 
caa64 2f42c 69442 5a4f2 b46a8 b4 along with data files and 
instructions on how to use the simulator. For this work, the 
simulator’s parameters were set as follows: max_iterations 
= 5000, nr_points_moving_avg = 1000 and nr_repetitions 
= 50. The property frequency distributions for each con-
cept may be found in the abovementioned URL and were 
obtained from Lenci et al. (2013) norms for concrete and 
abstract concepts, and for sighted and blind individuals, as 
described in the next section.

Difference in agreement probability 
between concrete and abstract concepts, 
and between sighted and blind individuals

Participants and data collection procedures

To show one example of the application of agreement prob-
ability as a measure of homogeneity in lists produced by 
subjects in a PLT, we resorted to data collected in Lenci 
et al. (2013) norms, which report properties for 70 concepts 
(50 abstract and concrete nouns, and 20 verbs). The Lenci 
et al. data are freely available on the web. In this work, we 
use the concrete  (NC = 40) and abstract  (NA = 10) nouns, 
which were classified as such in Lenci et al. (2013). Here we 
provide just the most important details of Lenci et al. (2013) 
norms; for more particulars see the corresponding paper. 
Appendix B shows the 40 concrete and 10 abstract nouns. 
Concrete nouns cover living and nonliving things, most of 
which were already used in previous norms (Kremer & Bar-
oni, 2011; McRae et al., 2005) or by experiments with blind 
subjects (Connolly et al., 2007). These concrete concepts 
included things with salient visual features (e.g., “stripes” 

for zebra; “yellow” for banana). Abstract concepts included 
emotions (e.g., jealousy) and ideals (e.g., freedom). Forty-
eight Italian subjects (N = 48), 22 congenitally blind  (NB = 
22) and 26 sighted  (NS = 26), were included in the study, 
all of them native Italian speakers. The blind participants 
were 10 females and 12 males with an average age of 47.2 
years (s.d. = 16.5) and with education ranging from junior 
high school to a master’s degree. The 26 sighted participants 
were selected to match blind subjects as close as possible 
regarding age, gender, residence, education, and profession. 
Sighted subjects’ average age was 45.1 years (s.d. = 16.8). 
Subjects were instructed to orally describe the concepts with 
short phrases and listened to the concepts in random order. 
To avoid too much fatigue, the 70 concepts were split into 
two separate sessions, and each session contained a 5-min-
ute break at the middle of it. The entire procedure was done 
on a laptop, and the oral responses were recorded in digital 
audio. The oral responses were translated to text using an 
automated software program. The text was then coded by a 
trained coder using standard coding procedures (Kremer & 
Baroni, 2011; McRae et al., 2005).

Relating visual perceptual strength to agreement 
probability

According to our characterizing concreteness hypotheses, 
concrete concepts should be characterized by more percep-
tual information than abstract concepts, and this perceptual 
information should introduce a greater homogeneity in 
conceptualization for concrete versus abstract concepts. To 
test these hypotheses, we resorted to the perceptual modal-
ity norms in Vergallito et al. (2020). In those norms, 57 
sighted Italian participants rated concepts for their percep-
tual strength in each of five sensory modalities (i.e., vision, 
touch, smell, hearing, taste). Subjects were asked to rate, 
on a scale of 1 to 5, to which extent a given concept was 
experienced through each of these senses (e.g., the concept 
sweet may receive a high rating for taste and lower for the 
other modalities). A total of 20 concepts (15 concrete and 
5 abstract) in the Vergallito et al. (2020) norms were also 
present in the Lenci et al. (2013) norms, so we used them in 
this analysis (see those concepts in Appendix B). Due to our 
emphasis in the current work on the visual modality, we only 
used those ratings. As predicted, those 15 concrete concepts 
showed significantly higher visual strength ratings (M = 4.8, 
s.d. = .08) than the five abstract concepts (M = 3.3, s.d. = 
.23) (t(4.32) = 14.249, p < .001; adjusted for unequal vari-
ances, F = 8.55, p = .009). The observed statistical power 
for this test for an α = 0.05 is above 0.99, and thus, despite 
the rather small sample size used, this result is reliable.

Regarding our use of only visual perceptual strength, 
we must note that it is also possible that other perceptual 

https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4
https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4
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information (e.g., olfactive, haptic, etc.) would also intro-
duce homogeneity in property listing. Though we believe 
this is an interesting problem that could be tackled by our 
measure, it is well beyond the scope of the current work and 
we defer it for future work.

Regarding our second characterizing concreteness hypoth-
esis, data also supported it. Using the p(a) simulator described 
in Computing and interpreting the meaning of agreement 
probability and the concepts’ property frequency distributions 
obtained from the Lenci et al. (2013) norms, we computed 
agreement probability for the 15 concrete and 5 abstract con-
cepts for which the Vergallito et al. (2020) norms provided 
perceptual strength ratings. As predicted, our p(a) measure 
positively correlated with visual strength ratings. For sighted 
subjects the correlation is 0.59 (r(20) = .59, t(18) = 3.100, p = 
.006, observed statistical power for an α = 0.05 equal to 0.87) 
and for blind subjects it is 0.62 (r(20) = .62, t(18) = 3.353, p = 
.004, observed statistical power for an α = 0.05 equal to 0.92). 
These positive and statistically significant correlations show 
that the higher/lower p(a)s exhibited by concrete/abstract 
concepts are associated with higher/lower visual strength rat-
ings, which is consistent with the hypothesized homogeniz-
ing effect of visual perceptual information on property listing 
for concrete concepts relative to abstract ones. Also see that 
the high statistical power attained by those tests suggest that 
those results are reliable, and are not spurious findings due to 
underpowered comparisons. Finally, somewhat surprisingly, 
the correlation between visual perceptual strength and p(a) 
is statistically significant for blind subjects, which suggests 
that visual properties have a homogenizing effect on lists pro-
duced by those participants, even though they cannot directly 
perceive them. We will further elaborate on this issue in the 
Discussion section.

Additionally, for the 15 concrete and 5 abstract concepts 
used here, for sighted subjects, p(a) for concrete concepts (M 
= 0.17, s.d. = .03) is higher than for abstract ones (M = 0.11, 
s.d. = .03) (t(18) = 3.352, p = .004, observed statistical power 
for an α = 0.05 equal to 0.91). The same happens for blind, 
where p(a) is higher for concrete concepts (M = 0.15, s.d. = 
.03) than for abstract concepts (M = 0.11, s.d. =.02) (t(18) = 
3.565, p = .002, observed statistical power for an α = 0.05 
equal to 0.85). As we will show in the next subsection, this 
result agrees with the more general conclusion for the 50 con-
crete and abstract concepts in the Lenci et al. (2013) norms.

We acknowledge that, because our results are based on sub-
jective ratings of perceptual strength, other explanations are 
possible. However, we believe that the results we report next 
provide converging evidence in support of our explanation, 
so we defer discussing alternative accounts for our Discus-
sion and conclusions. Thus, we proceed now to test our role 
of vision hypothesis. Recall that this hypothesis predicts that 
lacking visual perceptual information would make concrete 
concepts less homogeneous for blind subjects than for sighted 

participants, reducing the difference in homogeneity between 
concrete and abstract concepts for a blind population.

Comparing agreement probability 
between concrete and abstract concepts for sighted 
and blind subjects

Using the p(a) simulator and the concepts’ property fre-
quency distributions in Lenci et  al.’s (2013) norms, we 
computed agreement probability for concrete and abstract 
concepts, within sighted and blind participants. Additionally, 
recall from our discussion in Computing and interpreting the 
meaning of agreement probability, that agreement probability 
can be calculated for the same concept (i.e., a single property 
frequency distribution) or for two different concepts or ver-
sions of the same concept (i.e., two different distributions 
obtained from different concepts or from two different sam-
ples or populations). Given that we have sighted and blind 
individuals who separately listed properties for the same set 
of concepts, we have two different property frequency distri-
butions: one for sighted (S) and another for blind (B). Hence, 
p(a) may be separately computed using the S distribution and 
the B distribution, i.e., separately inputting to the simulator 
S and then B. Those p(a)s will quantify the agreement prob-
abilities within the sighted group (here we label it: S → S) 
and within the blind group (B → B). We can also compute 
other two p(a)s: an intergroup (between-groups) agreement 
probability from sighted to blind (S → B) and from blind 
to sighted (B → S). Thus, Table 2 presents the results of a 
two-way analysis of variance (ANOVA) (Type of concept × 
Condition: S → S, B → B, S → B, B → S).

From Table 2 we can see that the model as a whole is sta-
tistically significant, and p(a) may differ for some compari-
sons between concrete and abstract concepts and between 
sighted and blind subjects. Also, there is a significant inter-
action between those two factors. Note also that the observed 
statistical power for an α = 0.05 for all the ANOVA results 
are high and hence, the corresponding results are reliable. 
Thus, we may now compare and analyze the mean of the 
eight treatments or cells of the ANOVA. To help visually 
assess those comparisons, Fig. 2 shows the mean p(a) and a 
95% CI for the eight treatments.

From Fig. 2 we can see that p(a) is higher for concrete than 
for abstract concepts for the S → S (t(48) = 5.612, p < .001) 
and B → B conditions (t(48) = 5.114, p = .001) (i.e., within 
groups). Our results for visual perceptual strength lead us to 
interpret this as showing that concrete concepts show more 
homogeneity due to the influence of visual/perceptual infor-
mation, while abstract concepts are in general less homogene-
ous due to the influence of social and linguistic information.

Also, from Fig. 2 we can see that p(a) for concrete concepts 
and for condition S → S is higher than for conditions B → B 
(t(78) = 2.655, p = .01), S → B (t(78) = 27.790, p < .001), 
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and B → S (t(78) = 27.403, p < .001). However, the difference 
in p(a) between conditions S → B and B → S is not statisti-
cally significant (t(78) = 0.321, p = .749). Similarly, p(a) for 
concrete concepts and for condition B → B is higher than for 
conditions S → B (t(78) = 31.607, p < .001) and B → S (t(78) 
= 30.956, p < .001). These results are again consistent with 
our hypotheses in Differences between concrete and abstract 
concepts and Differences in semantic representations between 
congenitally blind and sighted individuals. Perceptual informa-
tion is probably dominant and imposes homogeneity on the 
sighted subjects’ sample. Lacking this information in the blind 
subjects’ sample presumably introduces differences in the lists 
of properties being produced, which in turn is reflected in the 
comparisons reported above.

An interesting result that Fig.  2 illustrates is that, for 
abstract concepts, the difference in p(a) between the S → S 
and B → B conditions (t(18) = 0.138, p = .892), as well as 
between S → B and B → S (t(18) = 0.261, p = .797), is not 
statistically significant. Though this is a null result, and should 
be considered with care, it is expected by our theoretical analy-
sis. Because abstract concepts should be learned by paying 
attention to the same social and linguistic input in both blind 
and sighted populations, there is no reason to expect that the 
respective list of properties should differ in these comparisons.

A final noteworthy results is that, as shown in Fig. 2, p(a) 
for abstract concepts is higher for the S → S than for S → B 
(t(18) = 12.791, p < .001) and B → S (t(18) = 12.408, p < 
.001) conditions. The same happens for B → B with respect to 
conditions S → B (t(18) = 14.666, p < .001) and B → S (t(18) 
= 14.167, p < .001). Interestingly, lists within groups are more 
homogeneous than between groups, suggesting that there are 
factors that operate differently in each group to produce these 
results (e.g., different learning experiences). This is a surpris-
ing result, because it suggests that differences in the property 
lists that characterize the two groups extend beyond concrete 
concepts. This was expected for concrete concepts, but we cur-
rently have no explanation for why it would happen for abstract 
concepts. This result awaits replication for further discussion.

Classification of concrete versus abstract 
concepts using several machine learning 
tools and inputs

Given that we found evidence that agreement probability 
values differ between abstract and concrete concepts, both 
for sighted and blind subjects, we used several machine 
learning (ML) techniques to assess whether agreement 

Table 2  ANOVA for agreement probabilities for concrete (C) and abstract (A) concepts, and for conditions S → S, B → B, S → B, B → S

Source F-test p-value Eta-squared Observed 
power for α = 
0.05

Model F(7, 192) = 302.735 <.001 0.917 > .99
Intercept F(1, 192) = 1433.623 <.001 0.882 > .99
Type-concept (C, A) F(1, 192) = 50.510 <.001 0.208 > .99
Condition (SS, BB, SB, BS) F(3, 192) = 331.287 <.001 0.838 > .99
Type-concept × Condition F(3, 192) = 18.317 <.001 0.223 > .99

Fig. 2  Agreement probability, p(a), for concrete and abstract concepts and for conditions S → S, B → B, S → B, B → S. Bars are 95% CIs. Note 
that we introduced jitter so that overlapping CIs are better visualized.
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probability is not only able to discriminate abstract from 
concrete at the aggregated average level of analysis, but 
also at the level of individual concepts. To foreshadow, our 
results show that p(a) can be used to classify abstract ver-
sus concrete with a good level of certainty. To better gen-
eralize and understand our findings, we used the ML tools 
k-nearest neighbors (KNN), Gaussian naïve Bayes (NB), 
decision trees (DT), and support vector machines (SVM). 
Additionally, and as a baseline, we also employed logistic 
regression (LR), which is a simpler regression tool. The 
inputs to all those tools were: s&k: s1 (mean list length) 
and k1 (number of unique properties listed for each con-
cept), equiprobable p(a)eq for each concept (i.e., p(a)eq = 
s1 / k1 : agreement probability without taking into account 
the property frequency distribution, see Eq. (5)), and non-
equiprobable p(a) (i.e., p(a) computed using the simula-
tor, which takes into consideration the property frequency 
distribution, see Eq. (4) and description of the simula-
tor). The idea behind using the three aforementioned vari-
ables was to assess whether more parsimonious variables 
achieve a better classification than more elaborated ones 
(i.e., s&k is the most parsimonious variable and p(a) the 
least parsimonious one). The classification performance 
measure used was the  F1 score, which is given by Eq. (7):

where we use the values of the confusion matrix (TP: 
true positives; FP: false positives; FN: false negatives, and 
TN: true negatives). The  F1 score is the harmonic average 
of precision (TP / (TP+FP)) and recall (TP / (TP+FN)) 
and thus, it balances two objectives: that most of the points 
which belong to the positive class are correctly classified 
(i.e., recall), and that most of the points classified as posi-
tive class are correctly classified (i.e., precision). The  F1 
score varies between 0 and 1, and a high value implies that 
the model can appropriately classify the positive class and 
generates a low number of false negatives and false posi-
tives, where true positives are associated with the class 
with fewer labels. We must note that we could have also 
used accuracy, which is one of the most typical classifica-
tion performance measures employed in machine learning 
and that indicates the percentage of correctly classified 
points over the total number of data points. However, this 
measure behaves improperly when a class is biased (i.e., 
when a class has substantially more data points than the 
rest) because high accuracy is achievable labeling all data 
points as members of the majority class, which is exactly 
the situation we face here, i.e., there are 40 concrete and 
10 abstract concepts.

Even though there are several classification models in 
the literature, some of them need a large number of data 
points, e.g., neural networks, to learn the parameter’s model. 

(7)F1score =
2 TP

2 TP + FP + FN

For this reason, in this paper, we use the following classic 
models:

• k-nearest neighbors (KNN): The KNN model is one of 
the most simple and basic classification models, called 
a lazy learner (Cover & Hart, 1967). There is no train-
ing process and the classification process is based on the 
distance and class of the k-closest neighbors of a test 
point. Specifically, when a new data point is presented, 
the distance over all the training data points is calculated, 
and the closest k points, with their respective labels, 
are selected. Based on these k points the probability of 
belonging to a class is estimated as the total number of 
points belonging to a specific class over k. For this work, 
we chose k = 3 to avoid overfitting (i.e., avoid memoriza-
tion of the training data, obtaining a high test error).

• Gaussian naïve Bayes (NB): The NB model is based on 
Bayes' theorem and probability conditional independ-
ence. For a given series of known inputs or variables, 
the model quantifies the conditional probability that the 
analyzed record belongs to a specific category of the 
class label (Langley et al., 1992). However, given the 
difficulty of finding the conditional probability of the 
data for a specific class label, the model assumes inde-
pendence between variables given the class. Once the 
parameters are learned and given a new data point, the 
model calculates the probability of belonging to each 
class (standardizing the proportional probabilities gen-
erates corresponding probabilities).

• Decision trees (DT): A DT is a structure composed by 
nodes, leaves, and branches, where each node corre-
sponds to a decision (or a test applied on some attribute), 
and each branch represents a possible path of this deci-
sion or test. When a data point is inserted in the model, 
the tree is traveled until a leaf is reached. Each “leaf” 
determines the probability that the data point belongs to 
one of the two possible classes (Quinlan, 1986). For this 
work, we restricted the depth of the tree to two levels to 
avoid overfitting.

• Support vector machines (SVM): SVM uses a hyper-
plane to separate between classes. The training algorithm 
searches for the hyperplane with the highest “margin,” 
i.e., the hyperplane such as the distance to the support 
vector points (closest points of each class to the hyper-
plane) is maximized (Boser et al., 1992). For complex 
problems, the dimension of the data points can be 
increased artificially by a kernel function, and the hyper-
plane in this new dimension can be found.

• Logistic regression (LR): LR is a nonlinear regression 
that allows predicting binary variables. The model cal-
culates the probability that a data point belongs to one 
of the two possible classes, using a logistic function 
(Fang, 2013).
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The  F1 score results for abstract versus concrete concept 
classification can be seen in Table 3, where we used abstract 
concepts as the positive class. We evaluated three different 
datasets: sighted (26 participants), blind (22 participants), 
and both (sighted and blind combined, with a total of 48 par-
ticipants). The classification results, for each dataset, corre-
spond to the average of the test folds using a five-fold strati-
fied cross-validation approach. This approach separates the 
selected dataset into five folds, using four folds for training 
and another fold for testing (the stratification forces each 
fold to have two abstract concepts). The process is repeated 
five times, using each fold as a test set. All models were also 
checked for overfitting, obtaining a test error similar to the 
training error.

† shows cases where the average value of  F1 score 
achieved by using p(a) or p(a)eq compared to s&k are higher 
and statistically significant at least at the 0.05 level. Αn * 
indicates that the  F1 score achieved by using p(a) is higher 
than the one of p(a)eq and of s&k, and is statistically signifi-
cant at least at the 0.05 level.

As can be seen from Table 3, most of the models using 
s&k are unable to obtain good performance, the lowest score 
being 0.07. In contrast, by comparing s&k with p(a)eq and 
p(a), the  F1 scores for the agreement probability values are 
higher on 12 and 13 occasions, respectively. From those 
comparisons, the  F1 scores achieved by p(a)eq and p(a) are 
higher and statistically significant at least at the 0.05 level 
in 7 and 12 cases, respectively. This shows that p(a)eq and 
p(a) better differentiate concrete from abstract concepts in 
contrast to using the more parsimonious s&k combination. 
Additionally, comparing the  F1 scores achieved with p(a) 
and p(a) eq, we can see that they are equal to or higher for 
p(a) in all cases, differences that reach statistical significance 
at the 0.05 level in three comparisons. Thus, all in all, we 
may say that the classification performance attained by p(a) 
is the best, followed by p(a) eq, and those two, trailed by s&k.

Finally, note from Table 3 that the  F1 scores for p(a) sug-
gest that the discrimination between concrete and abstract 
concepts in the sighted population is better than in the blind 
population. All  F1 scores for the five classification tools 

used are statistically significantly higher for sighted than 
for blind, except for KNN (t(8) and p value in parenthe-
sis; respectively, 0.746 (0.477), 3.751 (.006), 4.399 (0.002), 
3.651 (0.006), and 2.800 (0.023), and note that the values for 
making these comparisons come from executing the test fold 
for each tool five times). This is consistent with our hypoth-
esis that the difference between concrete and abstract con-
cepts would be more conspicuous in sighted than in blind, 
because the blind population tends to learn abstract concepts 
in much the same way it learns concrete concepts due to a 
lack of visual perceptual properties. Hence, this similarity in 
learning concrete and abstract concepts blurs their distinc-
tion in the blind population.

Discussion and conclusions

In the current work, we have discussed agreement probabil-
ity, a measure of homogeneity of concept instantiations in 
the Property Listing Task. Being a probability, the measure 
has the positive characteristic of being naturally bounded in 
the 0 to 1 range. Relatedly, the 0 and 1 values are interpreted 
in a clear and straightforward fashion (i.e., respectively, total 
heterogeneity and total homogeneity). Additionally, agree-
ment probability naturally integrates information produced 
when property listing data is collected into a single value 
that depends on the average list length produced by subjects 
(s), the total number of unique properties produced by the 
subject sample (k), and the frequency distribution of those 
properties. Finally, as shown in Appendix A, agreement 
probability also has the nice feature of directly implying that 
nonuniform property probability distributions reflect greater 
homogeneity in property lists (see the lower bound demon-
stration in Appendix A) and so they should be considered in 
a homogeneity index.

We assume that heterogeneity is an inherent characteristic 
of naturally occurring concepts coded in language. Many 
factors could influence this heterogeneity in the real world. 
Consequently, p(a) could be used to gauge these factors’ 
relative influence when comparing types of concepts or 

Table 3  F1 score results for abstract versus concrete concept classification using fivefold stratified cross-validation (mean, std. dev. in parenthe-
ses)

Sighted Blind Sighted and blind

F1 s&k p(a)eq p(a) s&k p(a)eq p(a) s&k p(a)eq p(a)

KNN 0.89(0.07) 0.69(0.23) 0.84(0.06) 0.39(0.22) 0.63(0.06) 0.82(0.05) †* 0.70(0.12) 0.68(0.04) 0.87(0.07) †*
NB 0.34(0.18) 0.69(0.23)† 0.94(0.08)† 0.07(0.09) 0.59(0.08)† 0.74(0.09) †* 0.44(0.15) 0.67(0.06)† 0.67(0.05)†

DT 0.42(0.13) 0.74(0.25)† 0.84(0.06)† 0.42(0.21) 0.61(0.06) 0.65(0.08)† 0.54(0.04) 0.70(0.08)† 0.77(0.06)†

SVM 0.63(0.06) 0.69(0.23) 0.83(0.10)† 0.25(0.13) 0.61(0.06)† 0.64(0.06)† 0.63(0.06) 0.67(0.06) 0.67(0.05)
LR 0.43(0.25) 0.69(0.23) 0.81(0.11)† 0.22(0.13) 0.61(0.06)† 0.67(0.02)† 0.69(0.07) 0.65(0.02) 0.67(0.05)
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types of conceptualizers. To show that this is the case, we 
compared conceptual agreement values between two types 
of concepts and two types of conceptualizers.

What have we learned from the concrete/abstract 
and blind/sighted comparisons

A large literature strongly suggests that concrete concepts 
are different from abstract concepts. In that literature, evi-
dence is discussed that when conceptualizing, people rou-
tinely reenact perceptual content associated with the corre-
sponding concepts (Kan et al., 2003; Lupyan & Ward, 2013; 
Ostarek & Huettig, 2017; Santos et al., 2011; Solomon & 
Barsalou, 2004), which is characteristic of concrete con-
cepts. In contrast, abstract concepts appear not to be char-
acterized as much by perceptual content, but rather by social 
and linguistic associations (Barsalou et al., 2008; Borghi 
et al., 2017; Borghi & Cimatti, 2009; Breedin et al., 1994; 
Paivio, 1986; Wiemer-Hastings & Xu, 2005).

From this literature, we posited our characterizing con-
creteness hypotheses, which holds that concrete concepts are 
characterized more by perceptual information than abstract 
concepts. Importantly, we also hypothesized that this per-
ceptual information introduces a greater homogeneity in 
conceptualization for concrete than for abstract concepts. 
Consistently with this hypothesis, we found visual strength 
subjective ratings obtained from Vergallito et al. (2020) to 
be higher for concrete than for abstract concepts, and we 
also found that visual strength ratings positively correlated 
with our p(a) measure, confirming that visual information is 
associated with increasing homogeneity across participants.

A somewhat surprising result is that the positive correla-
tion between visual strength ratings and p(a) also occurs 
when blind subjects’ data are analyzed. This suggests that 
blind participants not only have information about visual 
perceptual information (e.g., that “black” and “white” can be 
used to describe zebras), which is likely to be obtained from 
blind subjects’ interactions with the sighted community (cf., 
Louwerse, 2018), but also that this linguistic source intro-
duces homogeneity in their lists, similarly to what occurs 
with sighted subjects. In fact, there is recent evidence which 
is consistent with this. The concreteness advantage effect 
consists in people showing faster processing for concrete 
than for abstract words, presumably due to the effect of per-
ceptual information. However, Bottini et al. (2022) report 
that early blind subjects show this effect even when a word’s 
concreteness depends mostly on its reliance on visual infor-
mation (e.g., “blue”).

Because discrimination tasks that rely on visual informa-
tion can detect differences between sighted and blind sub-
jects (Connolly et al., 2007; Kim et al., 2019), in our role 
of vision hypothesis, we posited that visual reenactments 
should introduce greater homogeneity for concrete concepts 

in sighted compared to blind participants. This seems at odds 
with our finding discussed in the immediately preceding 
paragraph, which suggests that blind participants do have 
information about visual perceptual information, presumably 
acquired through regularities experienced in language, and 
that this information does introduce relative homogeneity in 
the lists they produce. However, as discussed next, we did 
find evidence consistent with our role of vision hypothesis.

As shown in Fig. 2, concrete concepts are less homo-
geneous for blind than for sighted participants. To explain 
this apparent contradiction, here we further hypothesize that 
when visual reenactments occur, they capture attention and 
guide property listing. Thus, even if blind subjects have the 
linguistically represented perceptual information, their lists 
rely on linguistic associations and not on the highly sali-
ent visual reenactments. In contrast, for sighted subjects, 
visual reenactments capture attention and guide listing, thus 
introducing homogeneity to a larger extent than would be 
expected only from linguistic regularities.

An additional and interesting finding is that, as shown in 
Fig. 2, p(a) computations indicate that property lists differ 
across groups of conceptualizers, suggesting that perhaps 
different learning experiences lead to different category 
memory representations. When comparisons were made 
across groups (i.e., between blind and sighted participants), 
p(a) values were consistently lower than when those com-
parisons were made within the same groups. Evidently, 
property frequency distributions were not the same across 
our groups.

Though being able to use p(a) to make group level com-
parisons (i.e., groups of concepts and groups of concep-
tualizers) is already interesting, we also showed that p(a) 
can be used to discriminate between individual concepts. If 
abstract concepts are characterized by producing more vari-
able instantiations in the PLT than concrete concepts, then, 
p(a) might also allow discriminating between concepts at 
the individual concept level (i.e., showing that a particular 
concept can be classified as concrete or abstract based on its 
agreement probability value). To this effect, we introduced 
a simple measure consisting of s (the average number of 
properties produced by subjects) and k (the total number of 
unique properties produced by the whole subject sample) 
and contrasted it with p(a)eq and p(a) in their capacity to 
discriminate concrete and abstract concepts. These three 
variables were submitted to machine learning algorithms 
and their classification performances contrasted. Overall, our 
data showed that the best classification performance was 
achieved by p(a). Three consequences ensue: agreement 
probability carries more useful information about concepts 
than its s and k constituents considered in isolation; informa-
tion about property frequency distribution needs to be con-
sidered in the computation of agreement probability; abstract 
concepts effectively are more heterogeneous than concrete 
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concepts, not only as a group, but also at the level of indi-
vidual concepts. Additionally, classification results for p(a) 
between sighted and blind indicated that a better discrimi-
nation between concrete and abstract concepts is achieved 
among sighted individuals. This lends further support to the 
theory that blind people learn abstract concepts much in 
the same way as concrete concepts due to lack of visual 
perceptual information. Hence, this similarity in learning 
concrete and abstract concepts blurs their distinction in the 
blind population, which makes distinguishing between con-
crete and abstract concepts more difficult for blind people.

What more might p(a) enable

As discussed above, the work we report here shows that vari-
ability in the PLT is not necessarily noise. Rather, variability 
in the PLT contains information that can be meaningfully 
related to the literature on the abstract concept versus concrete 
concept distinction, and to the literature on the effect that lack 
of sight has on conceptual representations. That a simple task 
like the PLT contains such a wealth of information is surpris-
ing. In what follows, we want to suggest other issues to which 
p(a) could be applied to gain theoretical insights.

Studying conceptualizations in social groups The PLT 
and ensuing CPNs have been used to characterize shared 
semantic memory in social groups, either using them in iso-
lation or in combination with other techniques (e.g., Hood, 
2020; Mazzuca et al., 2020; Sunohara et al., 2022; Weiler & 
Jacobsen, 2021). The aim of these researchers has been to 
characterize shared semantic concepts in a particular social 
group (e.g., to characterize knowledge of foods in children; 
to characterize the meaning of tattoos in older adults). How-
ever, it is not trivial to claim that a certain semantic structure 
(1) is shared across members of a social group, and (2) is 
also specific to that social group, in contrast to being rela-
tively invariant across different social groups. Following our 
comparison between blind and sighted subjects, we envision 
that, by using p(a), it should be possible to compare linguis-
tically coded concepts in different social groups. A group 
would have a shared and distinctive conceptualization if the 
within-group p(a) is greater than the between-group p(a), 
just as our analyses illustrate.

Analyzing the effect of coding on CPN results Because 
the PLT task is highly productive and properties can be 
expressed in numerous ways (e.g., people who are cued with 
the concept democracy may use “a president is elected” and 
“there are presidential elections” to essentially refer to the 
same property), PLT data needs to be coded. This coding 
process typically involves several coders, and inter-coder 
reliability is always a concern. Only recently have there been 

attempts to develop methods oriented to promoting highly 
reliable codings (Buchanan et al., 2020; Reid & Katz, 2022). 
Note that low or even moderate reliabilities make it difficult 
to aim for replicable studies.

The problems introduced by coding are partly responsi-
ble for why one can hardly find in the literature studies that 
make use of coding procedures that were developed by other 
researchers and why CPN studies are seldom replicated. A 
closely related problem is the following. Coders in different 
CPN studies could code highly related sets of raw properties 
with slightly different labels, and their codes could produce 
somewhat different partitions of the raw properties, such that 
inter-studies comparisons are made difficult to carry out (i.e., 
How do we know if the coded properties yield similar data 
structures to the extent that both studies should be consid-
ered replications?). Note that these problems only increase 
when concepts of interest are abstract, because people tend 
to produce more unique properties. We hope that comput-
ing p(a) could help to solve these issues, given that different 
coding systems over the essentially same raw property data 
should produce comparable agreement values.

Testing the effect of context on the instantiation of a 
concept It has been long argued that contextual knowl-
edge plays a central role in categorization and cognition 
(Chaigneau et al., 2009; Kiefer & Pulvermüller, 2012; Lin 
& Murphy, 2001; Roth & Shoben, 1983; Wenchi & Barsa-
lou, 2006). Furthermore, evidence supports the idea that 
conceptual properties can be meaningfully divided into 
those that are context dependent (i.e., those that become 
active depending on specific contexts, e.g., that a basket-
ball “can float”) and those that are relatively independent 
from context (i.e., those that become active across different 
contexts, e.g., that dogs “bark”) (Barsalou, 1982). If, as we 
hypothesize (see our Agreement probability as a measure of 
homogeneity), concepts with lower p(a) are those for which 
people may adopt different points of view when conceptu-
alizing them, then, manipulating contexts should change a 
concept’s p(a). To test this hypothesis, we envision experi-
ments where property lists are obtained after subjects have 
been primed with specific contexts, and we would predict 
that p(a) should increase when specific relevant contexts 
are introduced, and that perhaps abstract concepts should be 
relatively more influenced by this manipulation. However, 
these experiments are beyond the scope of the current work, 
and we defer them for future work.

On closing, we want to highlight that our p(a) measure is 
consistent with views that see an intimate link between cognition 
and culture (Atran, 2003; Berntsen & Rubin, 2004; DiMaggio, 
1997; Lehman et al., 2004; McCauley et al., 2022; ojalehto & 
Medin, 2015; Patterson, 2014; Roberson et al., 2000; Talmy, 
2000; Waxman et al., 2007), where cognition is thought to 
reflect objective cultural practices in the subjective domain 
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(Kashima, 2016; Nisbett et al., 2001; Nisbett & Masuda, 2003; 
Nisbett & Miyamoto, 2005; Romney & Moore, 1998). Thus, 
we believe that p(a) has a wide range of application and will be 
pleased if it does indeed live up to this standard.

Appendix A

Mathematical demonstrations

1. Initial definitions

Let’s consider two sets of coded properties listed in a PLT 
for two concepts C1 and C2:

In this case, the cardinality of C1 is k1 and the one of C2 
is k2. Let’s also denote the size of a sample extracted from 
C1 as s1 and the size of a sample taken from C2 as s2. Then, 
the number of such possible independent samples will be:

n1: total number of possible samples of size s1 obtained 
from C1

n2: total number of possible samples of size s2 obtained 
from C2

Thus,

If each independent sample is an event of a random vari-
able, we can define the set of all possible events as:

So, we have the following probability:

where pi is the probability of obtaining sample S1
i
 and qj 

is the probability of obtaining sample S2
j
.

Note that throughout this appendix we will use C1 and 
C2 to designate two concepts, as well as the set of unique 
coded properties listed for such concepts, where the cor-
responding meaning is given by the context in which those 
labels are used.

The probability in Eq. (A5) may be seen as a quadratic 
form by defining the following matrices:

(A1)C1 =
{
a1, a2,… , ak1

}
and C2 =

{
c1, c2,… , ck2

}

(A2)n1 =

(
k1
s1

)
and n2 =

(
k2
s2

)
.

(A3)
M1 =

{
S ⊆ C1 ∶ #S = s1, Si ≠ Sj ∀i, j

}
=
{
S1
1
, S1

2
,… , S1

n1

}

(A4)
M2 =

{
S ⊆ C2 ∶ #S = s2, Si ≠ Sj ∀i, j

}
=
{
S2
1
, S2

2
,… , S2

n2

}

(A5)
p(a) =

1

s
2

∑n
1

i=1

∑n
2

j=1
#

(
S
1

i
∩ S

2

j

)
p
i
q
j
,

∑n
1

i=1
p
i
= 1, p

i
≥ 0

∑n
2

j=1
q
j
= 1, q

j
≥ 0.

2. Demonstration p(a)eq for two different concepts C1 
and C2 is equal to s1

k1

u

k2

Beginning with Eq. (A9), for equiprobable elements of 
C1 and C2, we can see that the samples obtained from C1 or 
C2 are also equiprobable (they have the same probability of 
being obtained), and thus pj = 1

n1
 and qj = 1

n2
 . In that case,

where p(a)eq denotes that we are calculating such prob-
ability for equiprobable elements of C1 and C2.

Using the notation B =
(
Z1,Z2,… ,Zn1

)
 , where Zi is the 

i-th column of matrix B, we have that 1tZi is the sum of 
each column. Also, if we denote G(Zi) as the sum of the i-th 
column, we can rewrite Eq. (A10) as:

Let li be the maximum number of common elements 
between the i-th element of M1 (for example S1

i

)
and the set 

M2. Then, the sum of each column G(Zi) in matrix B depends 
on li.

Considering that r is the number of common elements 
between two independent samples of size s1 and s2 obtained 
from the k1 and k2 elements of C1 and C2, respectively, then 
G(Zi) will be r multiplied by the number of samples that 
contain those r common elements, and summed over all pos-
sible r values. The number r can be modelled as a hypergeo-
metric random variable as follows:

R ~ HyperGeo(s2, k2, li), whose probability mass function 
is given by:

We know that the expected value of a hypergeometric 
random variable as already defined is: E[R] = s2li

k2
 and by 

definition of E[R]:

(A6)B =
(
bij
)
where bij = #

(
S1
i
∩ S2

j

)
.

(A7)p =
(
p1, p2,… , pn1

)

(A8)q =
(
q1, q2,… , qn2

)

(A9)p(a) =
1

s2

∑n1

i=1

∑n2

j=1
pibijqj =

1

s2
ptBq

(A10)p(a)eq =
1

s2n1n2

∑n1

i=1

∑n2

j=1
bij =

1

s2n1n2
1
tB1

(A11)

p(a)eq =
1

s
2
n
1
n
2

1
t
B1 =

1

s
2
n2
1

(
G
(
Z
1

)
,… ,G

(
Zn

1

))t
1 =

1

s
2
n
1
n
2

∑n
1

i=1
G
(
Zi

)
.

(A12)

f (r) =

(
li
r

)(
k2−li
s2−r

)
(

k2
s2

) , r ∈ Range(R) =
{
max

{
0, s2 + li − k2

}
,… , min

{
s2, li

}}
.
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Then,

Recall that li is the maximum number of common elements 
between the i-th element of M1 and the set M2. Let u be the 
maximum number of common elements among all possible 
combinations of the sets M1 and M2 (note that in Table 1 u is 
differently defined as “number of common properties between 
the set of unique properties listed for concept C1 and C2,” but 
that definition is totally consistent with the one we use here), 
then li varies between max{0, s1 + u − k1} and min{s1, u}.

Now, we can rewrite 
∑n1

i=1
li as the possible values of 

limultiplied by the number of times that each li value 
appears in its summation, i.e.,  
∑n1

i=1
li=

∑min{s1,u}
v=max{0,s1+u−k1}

(v∙(nr.of times v appears)).

As can be observed, v is the number of common elements 
between two independent samples of size s1 obtained from 
the k1 elements of C1. Thus, the number v can be modelled 
as a hypergeometric random variable as follows:

V ~ HyperGeo(s1 , k1 , u), whose probability mass func-
tion is given by:

We know that the expected value of a hypergeometric 
random variable as already defined is: E[V] = s1u

k1
 and by 

definition of E[V]:

Replacing Eq. (A16) in Eq. (A14), we obtain:

(A13)

E[R] =
∑

r∈Rge(R)
rf (r) =

s
2
li

k
2

⇒ G
(
Z
i

)

=
∑

v∈Rge(R)
r
(
li
r

)(
k
2
− li

s
2
− r

)
=

s
2
li

k
2

(
k
2

s
2

)

⏟⏟⏟
n2

=
n
2
s
2
li

k
2

.

(A14)

p(a)eq =
1

s2n1n2

∑n1

i=1
G
(
Zi

)
=

1

s2n1n2

∑n1

i=1

n2s2li

k2
=

1

n1k2

∑n1

i=1
li.

(A15)
f (v) =

(
u

v

)(
k1−u

s1−v

)
(

k1

s1

) , v ∈ Range(V)

=
{
max

{
0, s1 + u − k1

}
,… , min

{
s1, u

}}
.

(A16)

E[V] =
∑

t∈Rge(V)
vf (v) =

s
1
u

k
1

⇒

∑n
1

i=1
li

=
∑

v∈Rge(V)
v
(
u

v

)(
k
1
− u

s
1
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s
1
u

k
1

(
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1
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1
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1
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(A17)
p(a)eqfor two concepts C1 and C2

=
1

n1k2

∑n1

i=1
li =

1

n1k2

n1s1u

k1
=

s1u

k1k2
.

3. Corollary p(a)eq for the same concept C1 is equal to 
s1

k1

Beginning with Eq. (A17), we can see that if C1 = C2, 
then u = k2 , i.e., for the same concept C1, the number of 
common properties between the same two concepts must be 
equal to the number of properties for C1. Thus, in Eq. (A17) 
u/k2 = 1, and we can write:

Additionally, replacing s1/k1 in Eq. (A17) by Eq. (A18), 
we can also write:

4. Corollary p(a)eq for two different concepts C1 and C2 
<p(a)eq for the same concept C1

Note that for equiprobable elements of C1 and C2 Eq. 
(A19) implies that p(a)eq for the same concept C1 will condi-
tion the value of the corresponding p(a)eq for two different 
concepts C1 and C2, depending on the amount of overlap 
between the C1 and C2 concepts. The only way in which 
p(a)eq for two different concepts C1 and C2 could be equal 
to p(a)eq for the same concept C1 is if u = k2, i.e., if the 
cardinality of the intersection between C1 and C2 (i.e., the 
number of properties that belong to both C1 and C2) is equal 
to the cardinality of C2, which means that C2 ⊆ C1. Thus, 
for two different concepts (i.e., C2 ⊄ C1), it must hold that 
p(a)eq for two different concepts C1 and C2 <p(a)eq for the 
same concept C1.

5. Lower bound of p(a) for the same concept C1 is equal 
to p(a)eq for the same concept C1

If we calculate p(a) for the same concept C1, then we can 
rewrite Eq. (A5) as:

Where S1
i
 and S1

j
 are samples drawn from the same con-

cept C1 and because of that we use the same superscript 1. 
Note also that pi and pj are the corresponding probabilities 
of obtaining such samples.

The probability in Eq. (A20) may be seen as a quadratic 
form by defining the following matrices:

(A18)p(a)eqfor the same concept C1 =
s1

k1

(A19)

p(a)eqfor two concepts C1 and C2 =
(
p(a)eq for concept C1

)( u

k2

)

(A20)
p(a) =

1

s
1

∑n
1

i=1
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1

j=1
#

(
S
1

i
∩ S

1

j

)
p
i
p
j
,
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1

i=1
p
i
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i
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p
j
= 1, p
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≥ 0.
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To calculate a lower bound on p(a) for the same concept 
C1, we must minimize expression (A23). This minimization 
problem expressed in matrix notation is:

The properties of A are:

1. Symmetric, i.e., At = A.
2. aii = s1 ∀i.
3. s1 = aii > aij ≥ 0 ∀i,j
4. A1 = α1 or 1t A = α1t, where α is the sum of a row G(Zi) 

calculated in (A13), but now s2 = s1 and k2 = k1. Thus:

where you should also remember that li is the maximum 
number of common elements but now for the same concept 
C1, and hence li = s1.

The first property indicates that all the eigenvalues of A are 
real numbers and the last property shows that all the rows, and 
by symmetry, all the columns of A sum the same value. This 
same property indicates that α is an eigenvalue of A and the 
vector 1 is its respective eigenvector.

Before solving (A24), we must note that 2
s1

 is a constant, and 
thus it will not be considered in solving the problem. Addition-
ally, considering an objective function f (p) = 1

2
ptAp and that 

the  solut ion set  where we are  working is 
D = {p ∈ ℜn1 ∶ pt1 = 1, p ≥ 0} , it is easy to see that the 
problem has a solution, given that the objective function is 
continuous and D is a closed and bounded set, reaching the 
minimum value either in the interior of D, when p > 0, or at 
the frontier of D, when a component of p = 0. The Weierstrass 
theorem guaranties the existence of the minimizer in D.

To solve problem (A24), let´s consider the Lagrangian:

(A21)A =
(
aij
)
where aij = #

(
S1
i
∩ S1

j

)

(A22)p =
(
p1, p2,… , pn1

)

(A23)p(a) =
1

s1

∑n1

i=1

∑n1

j=1
piaijpj =

1

s1
ptAp

(A24)

2

s1
���

1

2
pt Ap,

�. �. pt� = 1

p ≥ 0.

(A25)

� =G
(
Zi

)
=
∑

v∈Rge(R)
r
(
li
r

)(
k
1
− li

s
1
− r

)

=
s
1
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k
1

(
k
1

s
1

)
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n
1
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n
1
s
1
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k
1
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n
1
s2
1

k
1

.

(A26)L(p, �,�) =
1

2
ptAp + �

(
pt1 − 1

)
− �

tp.

Note that the restrictions of the type pi ≥ 0 or pi ≤ 0 are not 
included in the Lagrangian, but the so-called complementary 
conditions, which are μipi = 0. Thus, the problem to be solved, 
KKT (Karush-Kuhn-Tucker) conditions, is:

Remembering matrix derivatives, we have that:

To solve the Lagrangian, let’s first consider that μi = 0,that 
is, we will for now suppose that the restrictions that p must be 
positive are inactive. Then,

Replacing the value of λ∗ in Ap + λ1 = 0 and using the fact 
that A1 = α1, we have that:

If det(A) ≠ 0, then p∗ is unique and equal to:

If det(A) = 0, there exist infinite solutions and one of them 
is the one already found in Eq. (A29). The rest of the solu-
tions are of the form:

The constantb∈ℜ , is any that gives q∗ ≥ 0. The vector v, 
is a linear combination of the eigenvectors of matrix A asso-
ciated with the zero eigenvalues. Given that p∗and q∗will 
allways be positive, we can state that the restriction that p 
must be positive is met.

Notably, see that the solution in Eq. (A29) means that a 
lower bound to p(a) for the same concept C1 occurs when 
all samples drawn from C1 are equiprobable, and thus, all 

(A27)

∇pL(p
∗, �∗,�∗) = 0,

(pt1 − 1) = 0,

−p ≤ 0,

� ≥ 0,

�ipi = 0, i = 1,… , n1

(A28)∇pL(p, �,�) =
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⋮
�L
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⎞
⎟⎟⎟⎠
= Ap + �1 − �

Ap + �1 = 0,

1Ap + �1t1 = 0,

�1tp + �n1 = 0,

� + �n1 = 0 ⇒ �∗ = −
�

n1

Ap −
�

n1
1 = 0,

Ap −
1

n1
A1 = 0,

A
(
p −

1

n1
1

)
= 0.

(A29)p∗ =
1

n1
1 =

⎛⎜⎜⎝

1∕n1
⋮

1∕n1

⎞⎟⎟⎠

(A30)
q∗ = p∗ + bv, where v ∈ Ker(A) = {v ∈ ℜ

n1 ∶ Av = 0}
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elements in C1 must also be equiprobable, i.e., a lower 
bound to p(a) for the same concept C1 is equal to p(a)eq for 
the same concept C1.

Appendix B

List of concrete and abstract concepts used in this study
The following concrete (C)  (NC = 40) and abstract (A) 

 (NA = 10) concepts from the Lenci et al. (2013) norms were 
used in this study, where Lenci et al. classified each noun as 
concrete or non-concrete (i.e., abstract). Note that concepts 
marked with an asterisk (*) correspond to those that are also 
contained in the Vergallito et al. (2020) study (15 concrete 
and 5 abstract concepts).

Concept (alphabetical order) Type (C, A)
apartment C
apple C
banana C
bar C *
beach C *
canary C
car C *
carrot C
cat C *
cathedral C
cheerfulness A
cherry C
comb C
crow C
democracy A
dog C *
eggplant C
freedom A *
friendship A
giraffe C
hammer C *
horse C *
jealousy A *
justice A *
kiwi C
knife C *
lawn C *
lettuce C
motorcycle C *
mountain C *
pain A *
passion A *
pencil C *
penguin C
pineapple C

potato C
religion A
restaurant C *
screwdriver C
sea C
seagull C
ship C *
shop C
swan C
tomato C
train C *
woods C
worry A
zebra C

Acknowledgements This research was carried out with funds provided 
by ANID, Fondo Nacional de Desarrollo Científico y Tecnológico 
(FONDECYT) of the Chilean government grant 1200139. We grate-
fully acknowledge Carlos Barra, dear friend and collaborator in various 
research projects, for his valuable insights and viewpoints regarding 
agreement probability, which greatly helped us refine the ideas pre-
sented in this paper. Carlos recently passed away, and thus we dedicate 
this paper to his memory.

Funding This research was carried out with funds provided by ANID, 
Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 
of the Chilean government grant 1200139.

Data availability Data and materials used for the analyses reported 
here are available at https:// osf. io/ xhfmz/? view_ only= 31c08 caa64 
2f42c 69442 5a4f2 b46a8 b4.

Code availability Software and code are available at https:// osf. io/ 
xhfmz/? view_ only= 31c08 caa64 2f42c 69442 5a4f2 b46a8 b4.

Declarations 

Conflicts of interest/competing interests The authors declare not hav-
ing any known conflict of interests.

Ethics approval Data used in this study was obtained in a previously 
reported study for which the original authors obtained Ethics approval.

Consent to participate Informed consent was obtained from all indi-
vidual participants included in the original study from which we 
obtained data.

Consent for publication Not applicable.

References

Atran, S. (2003). Théorie cognitive de la culture. L’Homme, 166, 
107–144.

Barsalou, L. W. (1982). Context-independent and context-dependent 
information in concepts. Memory & Cognition, 10, 82–93.

Barsalou, L. W. (1987). The instability of graded structure: Implica-
tions for the nature of concepts. In U. Neisser (Ed.), Concepts and 
conceptual development: Ecological and intellectual factors is 
categorization (pp. 101–140). Cambridge University Press.

https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4
https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4
https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4
https://osf.io/xhfmz/?view_only=31c08caa642f42c694425a4f2b46a8b4


110 Behavior Research Methods (2024) 56:93–112

1 3

Barsalou, L. W. (1993). Flexibility, structure, and linguistic vagary in 
concepts: Manifestations of a compositional system of perceptual 
symbols. In A. C. Collins, S. E. Gathercole, & M. A. Conway 
(Eds.), Theories of memory (pp. 29–101). Lawrence Erlbaum 
Associates.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and 
Brain Sciences, 22(4), 577–660. https:// doi. org/ 10. 1017/ S0140 
525X9 90021 49

Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). 
Language and simulation in conceptual processing. In M. de Vega, 
A. Glenberg, & A. Graesser (Eds.), Symbols and embodiment: 
Debates on meaning and cognition (pp. 245–284). Oxford Uni-
versity Press: Oxford. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 
99217 274. 003. 0013

Berntsen, D., & Rubin, D. C. (2004). Cultural life scripts structure 
recall from autobiographical memory. Memory and Cognition, 
32(3), 427–442. https:// doi. org/ 10. 3758/ BF031 95836

Borghi, A. M., & Cimatti, F. (2009). Embodied cognition and beyond: 
Acting and sensing the body. Neuropsychologia, 48(3), 763–773. 
https:// doi. org/ 10. 1016/j. neuro psych ologia. 2009. 10. 029

Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, 
C., & Tummolini, L. (2017). The challenge of abstract concepts. 
Psychological Bulletin, 143(3), 263–292. https:// doi. org/ 10. 1037/ 
bul00 00089

Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, 
G., & Tummolini, L. (2019). Words as social tools: Language, 
sociality and inner grounding in abstract concepts. Physics of Life 
Reviews, 29, 120–153. https:// doi. org/ 10. 1016/j. plrev. 2018. 12. 001

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for 
optimal margin classifiers. In: Proceedings of the 5th Annual ACM 
Workshop on Computational Learning Theory, pp. 144–152.

Bottini, R., Morucci, P., D'Urso, A., Collignon, O., & Crepaldi, D. (2022). 
The concreteness advantage in lexical decision does not depend on 
perceptual simulations. Journal of Experimental Psychology: Gen-
eral, 151(3), 731–738. https:// doi. org/ 10. 1037/ xge00 01090

Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the 
concreteness effect in a patient with semantic dementia. Cognitive 
Neuropsychology, 11(6), 617–660. https:// doi. org/ 10. 1080/ 02643 
29940 82519 87

Buchanan, E. M., De Deyne, S., & Montefinese, M. (2020). A 
practical primer on processing semantic property norm data. 
Cognitive Processing, 21, 587–599. https:// doi. org/ 10. 1007/ 
s10339- 019- 00939-6

Canessa, E. C., & Chaigneau, S. E. (2016). When are concepts com-
parable across minds? Quality and Quantity, 50(3), 1367–1384. 
https:// doi. org/ 10. 1007/ s11135- 015- 0210-4

Chaigneau, S. E., Barsalou, L. W., & Zamani, M. (2009). Situational 
information contributes to object categorization and inference. 
Acta Psychologica, 130(1), 81–94. https:// doi. org/ 10. 1016/j. act-
psy. 2008. 10. 004

Chaigneau, S. E., Canessa, E., & Gaete, J. (2012). Conceptual agree-
ment theory. New Ideas in Psychology, 30(2), 179–189.

Connolly, A. C., Gleitman, L. R., & Thompson-Schill, S. L. (2007). 
Effect of congenital blindness on the semantic representation of 
some everyday concepts. Proceedings of the National Academy 
of Sciences of the United States of America, 104(20), 8241–8246. 
https:// doi. org/ 10. 1073/ pnas. 07028 12104

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. 
IEEE Transactions on Information Theory, 13(1), 21–27.

Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the 
structure and computation of the meaning of chipmunk, cherry, 
chisel, cheese, and cello (and many other such concrete nouns). 
Journal of Experimental Psychology: General, 132(2), 163–201. 
https:// doi. org/ 10. 1037/ 0096- 3445. 132.2. 163

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). 
The Centre for speech, language and the brain (CSLB) concept 

property norms. Behavior Research Methods, 46(4), 1119–1127. 
https:// doi. org/ 10. 3758/ s13428- 013- 0420-4

DiMaggio, P. (1997). Culture and cognition. Annual Review of Sociol-
ogy, 23, 263–287.

Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of lan-
guage: Theory, validity, and predictions of a statistical learning 
account of language acquisition. Developmental Review, 37, 
66–108. https:// doi. org/ 10. 1016/j. dr. 2015. 05. 002

Fang, J. (2013). Why logistic regression analyses are more reliable than 
multiple regression analyses. Journal of Business and Economics, 
4, 620–633.

Fay, N., Walker, B., Swoboda, N., & Garrod, S. (2018). How to create 
shared symbols. Cognitive Science, 42, 241–269. https:// doi. org/ 
10. 1111/ cogs. 12600

Feldman, J. (2010). Embodied language, best-fit analysis, and formal 
compositionality. Physics of Life Reviews, 7(4), 385–410. https:// 
doi. org/ 10. 1016/j. plrev. 2010. 06. 006

Frege, G. (1893/1952). On sense and reference. In P. Geach & M. Black 
(Eds.), Translations from the philosophical writings of Gottlob 
Frege (pp. 56–78). : Blackwell.

Gallese, V., & Lakoff, G. (2005). The Brain’s concepts. Cognitive Neu-
ropsychology, 22, 455–479. https:// doi. org/ 10. 1080/ 02643 29044 
20003 10

Glock, H. J. (2009). Concepts: Where subjectivism goes wrong. Phi-
losophy, 84(1), 5–29.

Hampton, J. A. (1979). Polymorphous concepts in semantic memory. 
Journal of Verbal Learning and Verbal Behavior, 18(4), 441–
461. https:// doi. org/ 10. 1016/ S0022- 5371(79) 90246-9

Hoffman, P., Lambon Ralph, M. A., & Rogers, T. T. (2013). Semantic 
diversity: A measure of semantic ambiguity based on variability 
in the contextual usage of words. Behavior Research Methods, 
45, 718–730. https:// doi. org/ 10. 3758/ s13428- 012- 0278-x

Hood, J. H. (2020). Cultural models of democracy among Bur-
mese residents in the United States. Journal of Cultural 
Cognitive Science, 4(1), 107–122. https:// doi. org/ 10. 1007/ 
s41809- 019- 00033-5

Jones, G. V. (1985). Deep dyslexia, imageability, and ease of predica-
tion. Brain & Language, 24, 1–19.

Kan, I. P., Barsalou, L. W., Solomon, K. O., Minor, J. K., & Thomp-
son-Schill, S. L. (2003). Role of mental imagery in a property 
verification task: fMRI evidence for perceptual representations of 
conceptual knowledge. Cognitive Neuropsychology, 20, 525–540.

Kashima, Y. (2016). Cultural Dynamics. Current Opinion in Psychol-
ogy, 8, 93–97. https:// doi. org/ 10. 1016/j. copsyc. 2015. 10. 019

Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations 
in mind and brain: Theoretical developments, current evidence 
and future directions. Cortex, 48(7), 805–825. https:// doi. org/ 10. 
1016/j. cortex. 2011. 04. 006

Kim, J. S., Elli, G. V., & Bedny, M. (2019). Knowledge of animal 
appearance among sighted and blind adults. Proceedings of the 
National Academy of Sciences of the United States of America, 
166(23), 11213–11222. https:// doi. org/ 10. 1073/ pnas. 19009 52116

Kremer, G., & Baroni, M. (2011). A set of semantic norms for German 
and Italian. Behavior Research Methods, 43(1), 97–109. https:// 
doi. org/ 10. 3758/ s13428- 010- 0028-x

Landau, B., & Gleitman, L. R. (1985). Cognitive science series, 8. 
Language and experience: Evidence from the blind child. Harvard 
University Press.

Langley, P., Iba, W., & Thompson, K. (1992). An Analysis of Bayes-
ian Classifiers. Proceedings of the Tenth National Conference on 
Artificial Intelligence, 223–228.

Lehman, D. R., Chiu, C. Y., & Schaller, M. (2004). Psychology and 
culture. Annual Review of Psychology, 55, 689–714. https:// doi. 
org/ 10. 1146/ annur ev. psych. 55. 090902. 141927

Lenci, A., Baroni, M., Cazzolli, G., & Marotta, G. (2013). BLIND: 
A set of semantic feature norms from the congenitally blind. 

https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1017/S0140525X99002149
https://doi.org/10.1093/acprof:oso/9780199217274.003.0013
https://doi.org/10.1093/acprof:oso/9780199217274.003.0013
https://doi.org/10.3758/BF03195836
https://doi.org/10.1016/j.neuropsychologia.2009.10.029
https://doi.org/10.1037/bul0000089
https://doi.org/10.1037/bul0000089
https://doi.org/10.1016/j.plrev.2018.12.001
https://doi.org/10.1037/xge0001090
https://doi.org/10.1080/02643299408251987
https://doi.org/10.1080/02643299408251987
https://doi.org/10.1007/s10339-019-00939-6
https://doi.org/10.1007/s10339-019-00939-6
https://doi.org/10.1007/s11135-015-0210-4
https://doi.org/10.1016/j.actpsy.2008.10.004
https://doi.org/10.1016/j.actpsy.2008.10.004
https://doi.org/10.1073/pnas.0702812104
https://doi.org/10.1037/0096-3445.132.2.163
https://doi.org/10.3758/s13428-013-0420-4
https://doi.org/10.1016/j.dr.2015.05.002
https://doi.org/10.1111/cogs.12600
https://doi.org/10.1111/cogs.12600
https://doi.org/10.1016/j.plrev.2010.06.006
https://doi.org/10.1016/j.plrev.2010.06.006
https://doi.org/10.1080/02643290442000310
https://doi.org/10.1080/02643290442000310
https://doi.org/10.1016/S0022-5371(79)90246-9
https://doi.org/10.3758/s13428-012-0278-x
https://doi.org/10.1007/s41809-019-00033-5
https://doi.org/10.1007/s41809-019-00033-5
https://doi.org/10.1016/j.copsyc.2015.10.019
https://doi.org/10.1016/j.cortex.2011.04.006
https://doi.org/10.1016/j.cortex.2011.04.006
https://doi.org/10.1073/pnas.1900952116
https://doi.org/10.3758/s13428-010-0028-x
https://doi.org/10.3758/s13428-010-0028-x
https://doi.org/10.1146/annurev.psych.55.090902.141927
https://doi.org/10.1146/annurev.psych.55.090902.141927


111Behavior Research Methods (2024) 56:93–112 

1 3

Behavior Research Methods, 45(4), 1218–1233. https:// doi. org/ 
10. 3758/ s13428- 013- 0323-4

Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults' con-
cepts. Journal of Experimental Psychology: General, 130(1), 
3–28. https:// doi. org/ 10. 1037/ 0096- 3445. 130.1.3

Louwerse, M. M. (2018). Knowing the meaning of a word by the lin-
guistic and perceptual company it keeps. Topics in Cognitive Sci-
ence, 10(3), 573–589.

Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise 
unseen objects into visual awareness. Proceedings of the National 
Academy of Sciences of the United States of America, 110(35), 
14196–14201. https:// doi. org/ 10. 1073/ pnas. 13033 12110

Marmor, G. S. (1978). Age at onset of blindness and the develop-
ment of the semantics of color names. Journal of Experimental 
Child Psychology, 25(2), 267–278. https:// doi. org/ 10. 1016/ 0022- 
0965(78) 90082-6

Mazzuca, C., Majid, A., Lugli, L., Nicoletti, R., & Borghi, A. M. 
(2020). Gender is a multifaceted concept: Evidence that specific 
life experiences differentially shape the concept of gender. Lan-
guage and Cognition, 12(4), 649–678. https:// doi. org/ 10. 1017/ 
langc og. 2020. 15

McCauley, T. G., Billingsley, J., & McCullough, M. E. (2022). An 
evolutionary psychology view of forgiveness: Individuals, groups, 
and culture. Current Opinion in Psychology, 44, 275–280. https:// 
doi. org/ 10. 1016/j. copsyc. 2021. 09. 021

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). 
Semantic feature production norms for a large set of living and 
nonliving things. Behavior Research Methods, 37(4), 547–559. 
https:// doi. org/ 10. 3758/ BF031 92726

Montefinese, M., Ambrosini, E., Fairfield, B., & Mammarella, N. 
(2013). Semantic memory: A feature-based analysis and new 
norms for Italian. Behavior Research Methods, 45(2), 440–461. 
https:// doi. org/ 10. 3758/ s13428- 012- 0263-4

Nisbett, R. E., & Masuda, T. (2003). Culture and point of view. Pro-
ceedings of the National Academy of Sciences of the United States 
of America, 100(19), 11163–11170. https:// doi. org/ 10. 1073/ pnas. 
19345 27100

Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: Holis-
tic versus analytic perception. Trends in Cognitive Sciences, 9(10), 
467–473. https:// doi. org/ 10. 1016/j. tics. 2005. 08. 004

Nisbett, R. E., Choi, I., Peng, K., & Norenzayan, A. (2001). Culture 
and systems of thought: Holistic versus analytic cognition. Psy-
chological Review, 108(2), 291–310. https:// doi. org/ 10. 1037/ 
0033- 295X. 108.2. 291

Ojalehto, B., & Medin, D. L. (2015). Perspectives on culture and con-
cepts. Annual Review of Psychology, 66, 249–275.

Ostarek, M., & Huettig, F. (2017). A task-dependent causal role for 
low-level visual processes in spoken word comprehension. Jour-
nal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 43(8), 1215–1224. https:// doi. org/ 10. 1037/ xlm00 00375

Paivio, A. (1986). Mental representations: A dual coding approach. 
Oxford. Oxford University Press.

Patterson, O. (2014). Making sense of culture. Annual Review of Soci-
ology, 40(1), 1–30.

Pérez-Pereira, M. (2006). Language development in blind children. In 
K. Brown (Ed.), Encyclopedia of Language & Linguistics (Vol. 
6, Second ed., pp. 357–361). Elsevier.

Plaut, D. C., & Shallice, T. (1991). Effects of word abstractness in a 
connectionist model of deep dyslexia. Proceedings of the 13th 
Annual Conference of the Cognitive Science Society (pp. 73-78). 
Hillsdale, NJ: Lawrence Erlbaum Associates.

Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of 
connectionist neuropsychology. Cognitive Neuropsychology, 10, 
377–500.

Prinz, J. J. (2002). Furnishing the mind: Concepts and their perceptual 
basis. MIT Press.

Pulvermüller, F. (2005). Brain mechanisms linking language and 
action. Nature Reviews. Neuroscience, 6(7), 576–582. https:// 
doi. org/ 10. 1038/ nrn17 06

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 
1(1), 81–106.

Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract 
concepts. Frontiers in Human Neuroscience, 6, 315. https:// doi. 
org/ 10. 3389/ fnhum. 2012. 00315

Reid, J. N., & Katz, A. (2022). The RK processor: A program for 
analysing metaphor and word feature-listing data. Behavior 
Research Methods, 54(1), 174–195. https:// doi. org/ 10. 3758/ 
s13428- 021- 01564-y

Roberson, D., Davidoff, J., & Davies, I. (2000). Color categories are 
not universal: Replications and new evidence from a stone-age 
culture. Journal of Experimental Psychology: General, 129(3), 
369–398. https:// doi. org/ 10. 1037/ 0096- 3445. 129.3. 369

Romney, A. K., & Moore, C. C. (1998). Toward a theory of culture as 
shared cognitive structures. Ethos, 26(3), 314–337. https:// doi. org/ 
10. 1525/ eth. 1998. 26.3. 314

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-
Braem, P. (1976). Basic objects in natural categories. Cogni-
tive Psychology, 8(3), 382–439. https:// doi. org/ 10. 1016/ 0010- 
0285(76) 90013-X

Roth, E. M., & Shoben, E. J. (1983). The effect of context on the struc-
ture of categories. Cognitive Psychology, 15(3), 346–378. https:// 
doi. org/ 10. 1016/ 0010- 0285(83) 90012-9

Russell, B. (1997). The problems of philosophy. Oxford University Press.
Santos, A., Chaigneau, S. E., Simmons, W. K., & Barsalou, L. W. 

(2011). Property generation reflects word association and situated 
simulation. Language and Cognition, 3, 83–119.

Schwanenflugel, P. J., & Shoben, E. J. (1983). Differential context effects 
in the comprehension of abstract and concrete verbal materials. 
Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 9(1), 82–102. https:// doi. org/ 10. 1037/ 0278- 7393.9. 1. 82

Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). 
Context availability and lexical decisions for abstract and concrete 
words. Journal of Memory and Language, 27(5), 499–520. https:// 
doi. org/ 10. 1016/ 0749- 596X(88) 90022-8

Solomon, K. O., & Barsalou, L. W. (2004). Perceptual simulation in 
property verification. Memory & Cognition, 32, 244–259.

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of 
semantic networks: Statistical analyses and a model of semantic 
growth. Cognitive Science, 29(1), 41–78. https:// doi. org/ 10. 1207/ 
s1551 6709c og2901_3

Sunohara, M., Sasaki, J., Kogo, S., & Ryder, A. G. (2022). Japanese 
clinical psychologists' consensus beliefs about mental health: 
A mixed-methods approach. Japanese Psychological Research. 
https:// doi. org/ 10. 1111/ jpr. 12410

Talmy, L. (2000). Toward a cognitive semantics. In  Volume II: Typol-
ogy and process in concept structuring. The MIT press.

Vergallito, A., Petilli, M. A., & Marelli, M. (2020). Perceptual modality 
norms for 1,121 Italian words: A comparison with concreteness 
and imageability scores and an analysis of their impact in word 
processing tasks. Behavior Research Methods, 52, 1599–1616. 
https:// doi. org/ 10. 3758/ s13428- 019- 01337-8

Vivas, J., Vivas, L., Comesaña, A., Coni, A. G., & Vorano, A. (2017). 
Spanish semantic feature production norms for 400 concrete con-
cepts. Behavior Research Methods, 49(3), 1095–1106. https:// doi. 
org/ 10. 3758/ s13428- 016- 0777-2

Walker, I., & Hulme, C. (1999). Concrete words are easier to recall 
than abstract words: Evidence for a semantic contribution to short-
term serial recall. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 25(5), 1256–1271. https:// doi. org/ 
10. 1037/ 0278- 7393. 25.5. 1256

Waxman, S., Medin, D., & Ross, N. (2007). Folkbiological reason-
ing from a cross-cultural developmental perspective: Early 

https://doi.org/10.3758/s13428-013-0323-4
https://doi.org/10.3758/s13428-013-0323-4
https://doi.org/10.1037/0096-3445.130.1.3
https://doi.org/10.1073/pnas.1303312110
https://doi.org/10.1016/0022-0965(78)90082-6
https://doi.org/10.1016/0022-0965(78)90082-6
https://doi.org/10.1017/langcog.2020.15
https://doi.org/10.1017/langcog.2020.15
https://doi.org/10.1016/j.copsyc.2021.09.021
https://doi.org/10.1016/j.copsyc.2021.09.021
https://doi.org/10.3758/BF03192726
https://doi.org/10.3758/s13428-012-0263-4
https://doi.org/10.1073/pnas.1934527100
https://doi.org/10.1073/pnas.1934527100
https://doi.org/10.1016/j.tics.2005.08.004
https://doi.org/10.1037/0033-295X.108.2.291
https://doi.org/10.1037/0033-295X.108.2.291
https://doi.org/10.1037/xlm0000375
https://doi.org/10.1038/nrn1706
https://doi.org/10.1038/nrn1706
https://doi.org/10.3389/fnhum.2012.00315
https://doi.org/10.3389/fnhum.2012.00315
https://doi.org/10.3758/s13428-021-01564-y
https://doi.org/10.3758/s13428-021-01564-y
https://doi.org/10.1037/0096-3445.129.3.369
https://doi.org/10.1525/eth.1998.26.3.314
https://doi.org/10.1525/eth.1998.26.3.314
https://doi.org/10.1016/0010-0285(76)90013-X
https://doi.org/10.1016/0010-0285(76)90013-X
https://doi.org/10.1016/0010-0285(83)90012-9
https://doi.org/10.1016/0010-0285(83)90012-9
https://doi.org/10.1037/0278-7393.9.1.82
https://doi.org/10.1016/0749-596X(88)90022-8
https://doi.org/10.1016/0749-596X(88)90022-8
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.1207/s15516709cog2901_3
https://doi.org/10.1111/jpr.12410
https://doi.org/10.3758/s13428-019-01337-8
https://doi.org/10.3758/s13428-016-0777-2
https://doi.org/10.3758/s13428-016-0777-2
https://doi.org/10.1037/0278-7393.25.5.1256
https://doi.org/10.1037/0278-7393.25.5.1256


112 Behavior Research Methods (2024) 56:93–112

1 3

essentialist notions are shaped by cultural beliefs. Develop-
mental Psychology, 43(2), 294–308. https:// doi. org/ 10. 1037/ 
0012- 1649. 43.2. 294

Weiler, S. M., & Jacobsen, T. (2021). “I'm getting too old for this stuff”: 
The conceptual structure of tattoo aesthetics. Acta Psychologica, 
219. https:// doi. org/ 10. 1016/j. actpsy. 2021. 103390

Wenchi, Y. E. H., & Barsalou, L. W. (2006). The situated nature of con-
cepts. American Journal of Psychology, 119(3), 349–384. https:// 
doi. org/ 10. 2307/ 20445 349

Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract 
and concrete concepts. Cognitive Science, 29(5), 719–736. https:// 
doi. org/ 10. 1207/ s1551 6709c og0000_ 33

Wilensky, U. (1999). NetLogo. http:// ccl. north weste rn. edu/ netlo go/. 
Center for Connected Learning and Computer-Based Modeling. 
Northwestern University.

Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied lan-
guage understanding. Frontiers in Psychology, 2(JUN). https:// 
doi. org/ 10. 3389/ fpsyg. 2011. 00116

Yap, M. J., & Pexman, P. M. (2016). Semantic richness effects in syn-
tactic classification: The role of feedback. Frontiers in Psychol-
ogy, 7(SEP). https:// doi. org/ 10. 3389/ fpsyg. 2016. 01394

Zimler, J., & Keenan, J. M. (1983). Imagery in the congenitally blind: 
How visual are visual images? Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 9(2), 269–282. https:// 
doi. org/ 10. 1037/ 0278- 7393.9. 2. 269

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1037/0012-1649.43.2.294
https://doi.org/10.1037/0012-1649.43.2.294
https://doi.org/10.1016/j.actpsy.2021.103390
https://doi.org/10.2307/20445349
https://doi.org/10.2307/20445349
https://doi.org/10.1207/s15516709cog0000_33
https://doi.org/10.1207/s15516709cog0000_33
http://ccl.northwestern.edu/netlogo/
https://doi.org/10.3389/fpsyg.2011.00116
https://doi.org/10.3389/fpsyg.2011.00116
https://doi.org/10.3389/fpsyg.2016.01394
https://doi.org/10.1037/0278-7393.9.2.269
https://doi.org/10.1037/0278-7393.9.2.269

	Using agreement probability to study differences in types of concepts and conceptualizers
	Abstract
	Introduction
	Differences between concrete and abstract concepts
	Differences in semantic representations between congenitally blind and sighted individuals
	Agreement probability as a measure of homogeneity
	Computing and interpreting the meaning of agreement probability
	Difference in agreement probability between concrete and abstract concepts, and between sighted and blind individuals
	Participants and data collection procedures
	Relating visual perceptual strength to agreement probability
	Comparing agreement probability between concrete and abstract concepts for sighted and blind subjects

	Classification of concrete versus abstract concepts using several machine learning tools and inputs
	Discussion and conclusions
	What have we learned from the concreteabstract and blindsighted comparisons
	What more might p(a) enable

	Appendix A
	Appendix B
	Acknowledgements 
	References


