
https://doi.org/10.3758/s13428-022-02029-6

Shennong: A Python toolbox for audio speech features extraction

Mathieu Bernard1,2 ·Maxime Poli1 · Julien Karadayi1 · Emmanuel Dupoux1,3

Accepted: 17 November 2022
© The Psychonomic Society, Inc. 2023

Abstract
We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements
a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral
Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and
post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi
speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-
party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software
architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a
benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze
the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare
pitch estimation algorithms on speech under various noise conditions.

Keywords Speech processing · Features extraction · Pitch estimation · Software · Python

Introduction

Automatic processing of speech is at the heart of a
wide range of applications: speech to text (Benzeghiba
et al., 2007), speaker identification (Tirumala, Shahamiri,
Garhwal, & Wang, 2017), emotion recognition (Koolagudi
& Rao, 2012) or speaker diarization (Ryant et al., 2019;
2020). It is also applied to a variety of contexts such as
multilingual models (Fer et al., 2017; Silnova et al., 2018),
low-resource languages processing (Dunbar et al., 2017;
2020), pathological speech analysis (Orozco-Arroyave
et al., 2016; Riad et al., 2020) or, more recently, end-to-
end deep learning models (Saeed, Grangier, & Zeghidour,
2021; Zeghidour, Usunier, Synnaeve, Collobert, & Dupoux,
2018). All of those applications rely on some representation

Mathieu Bernard and Maxime Poli contributed equally to this
work.

� Mathieu Bernard
mathieu.bernard.2@cnrs.fr

1 Cognitive Machine Learning, PSL Research University,
CNRS, EHESS, ENS, Inria, Paris, France

2 EconomiX (UMR 7235), Université Paris Nanterre, CNRS,
Nanterre, France

3 Meta AI Research, Paris, France

or features of the speech signal, i.e., a transformation of the
raw audio signal which carries informative or discrimina-
tive information, usually in the time-frequency domain, that
can further be processed and analyzed. Features extraction
is thus the first step of most speech processing pipelines.
For instance, the starting point of speaker identification sys-
tems is to extract some spectral information from the raw
speech, then used for speaker modeling and discrimination
(Tirumala et al., 2017). Another example is the classifica-
tion of spoken sentences as statements or questions. This
point can be addressed by extracting pitch – fundamental
frequency – from the raw speech signal and analyzing its
variations at the end of the sentences, a rise towards high
frequencies at the end being an insight into whether a given
sentence is a question or not (Liu, Surendran, & Xu, 2006).

Many speech features extraction software packages have
been authored over time, with various implementations in
different programming languages. Among them, some tools
gained a wide audience. Kaldi (Povey et al., 2011) is an
Automatic Speech Recognition toolkit that covers every
aspect of this topic, from language modeling to decoding
and features extraction. It is written in C++ and supports
a collection of state-of-the-art recipes as Bash scripts.
Although it is very reliable and efficient, it is hard to
use and embed in third-party tools for non-technical users.
Praat (Boersma, 2001) is another popular software used
for speech analysis in phonetics, particularly for speech

/ Published online: 7 February 2023

Behavior Research Methods (2023) 55:4489–4501

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-02029-6&domain=pdf
http://orcid.org/0000-0001-7586-7133
mailto: mathieu.bernard.2@cnrs.fr

annotation. Praat can be used from a graphical user interface
or a custom scripting language. It includes basic spectro-
temporal analysis, such as spectrogram, cochleogram, and
pitch analysis. OpenSMILE (Eyben, Wöllmer, & Schuller,
2010) is another features extraction package designed for
real-time processing. It focuses on audio signals but is
also generic enough to be used for visual or physiological
signals. Usable from command-line and wrappers in various
programming languages, its generic approach makes it hard
to use and configure. Finally, Surfboard (Lenain, Weston,
Shivkumar, & Fristed, 2020) is a Python toolbox dedicated
to speech features extraction. It is oriented toward medical
applications and implements many specialized markers.
OpenSMILE and Surfboard are suitable tools, but they lack
general-purpose features such as speaker normalization and
do not propose the fine-grained parameters Kaldi offers.

The main objective of Shennong1 is to provide reference
implementations of speech features extraction algorithms
within an easy-to-use and reliable framework. By distribut-
ing such a tool to the community, our objective is to reduce
the use of heterogeneous features extraction implemen-
tations in the literature and improve the replicability and
comparability of studies in this domain. The Shennong
toolbox relies on Kaldi (Povey et al., 2011) for most of
the algorithms, thus providing the user with an accurate
and efficient implementation while hiding technical details
(code-source compilation, data format, pipeline scripting).
On the other hand, it exposes a high-level easy-to-use
Python library and command line interface. The use of
Python makes it easy to integrate Shennong with machine
learning tools from the Python ecosystem, such as scikit-
learn (Pedregosa et al., 2011), PyTorch (Paszke et al.,
2019), and Tensorflow (Abadi et al., 2016). Another design
feature of Shennong is that it can be used by casual users,
with provided pre-configured pipelines, and power users,
being entirely customizable and easily extensible.

This paper is structured as follows. “The Shennong
toolbox” section describes the speech processing algorithms
available in Shennong and the architecture of the toolbox,
from low-level components to high-level user interfaces. It
also introduces simple usage examples using Python and
the command line interface. “Applications” section exposes
three applications of Shennong for speech processing.
First, we benchmark the features extraction algorithms
implemented in Shennong on a phoneme discrimination
task. Then we analyze a speaker normalization model
performance as a function of speech duration used

1We named Shennong after the so-called Chinese Emperor that
popularized tea according to Chinese Mythology. It is a reference to
Kaldi, a speech recognition toolkit on which Shennong is built, and a
legendary Ethiopian goatherd who discovered the coffee plant.

Fig. 1 Features extraction algorithms hierarchy, from speech signal
to usable features (blocks in full lines) with intermediate or optional
steps (blocks in dashed lines). The blocks are implemented after Kaldi
(Povey et al., 2011), excepted the Bottlneck block after (Silnova et al.,
2018), the Pitch block after (Kim et al., 2018; Povey et al., 2011)
and the Rasta filters block after (Ellis, 2005). Table 1 shows the
available parameters for each block. This diagram does not represent
post-processing algorithms, such as Delta and Cepstral Mean Variance
Normalization (see text for details)

for training. The final experiment compares three pitch
estimation algorithms under different noise conditions.

The Shennong toolbox

We distribute the Shennong package as an open-source
software2 under a GPL3 license. It is available for Linux
and macOS systems. Windows users can deploy it as a
Docker image (Hung, Kristiyanto, Lee, & Yeung, 2016).
It can be used as a Python library and can be integrated
into third-party applications. It can also be used directly
from the command line and called from bash scripts.
The code follows high-quality standards regarding software
development, testing, and documentation. Its modular
design, inspired by the scikit-learn toolbox (Pedregosa
et al., 2011), makes it easily extensible to new extraction
algorithms (see “Low-level software architecture” section).
We planned to extend the toolbox in the future, with new
algorithms such as Contrastive Predictive Coding (Oord, Li,
& Vinyals, 2018) and Voice Activity Detection (Ramirez,
Górriz, & Segura, 2007). Because it is an open-source
project, the code is also opened to users contributions. This
paper is based on version 1.0.

2https://github.com/bootphon/shennong

4490 Behavior Research Methods (2023) 55:4489–4501

https://github.com/bootphon/shennong

Implemented algorithms

Figure 1 presents the algorithms available in version
1.0 of Shennong. Most of them are implemented after
Kaldi (Povey et al., 2011), using the pykaldi Python
wrapper (Can, Martinez, Papadopoulos, & Narayanan,
2018). The complete set of parameters from the original
implementations are provided with the algorithms, along
with the default values given by their original authors,
as detailed in Table 1. All the implemented algorithms
have been extensively tested. The Shennong tests suite thus
covers 99% of the source code and includes tests replicating
the results of original implementations on a sample speech
signal. The remaining section introduces those algorithms,
for which “Phone discrimination task” section provides a
benchmark.

Short-term spectro-temporal methods are commonly
used for the extraction of speech features. Shennong
includes Spectrogram, Mel-Filterbank, Mel-Frequency
Cepstrum Coefficients (MFCC), and Perceptual Linear Pre-
dictive filters (PLP). The common point of those methods
is estimating the power spectrum from overlapping frames
extracted from the raw speech signal. This power spectrum,
along with the signal energy and optionally expressed in
the log domain, is used to generate the Spectrogram fea-
tures. The Mel Filterbank is then obtained by applying a
Mel scale to the power spectrum. Finally, MFCC and PLP
are obtained with further processing in the cepstral domain.
Rasta filters are optional bandpass filters that can be applied
to PLP features (Hermansky, 1990; Hermansky & Morgan,
1994; Hermansky, Morgan, Bayya, & Kohn, 1991), to make
them more robust to linear spectral distortions due to the
communication channel.

Vocal Track Length Normalization (VTLN) (Kim,
Umesh, Gales, Hain, & Woodland, 2004; Povey, 2010)is
a normalization technique used to reduce inter-speaker
variability. It can be applied to Mel-based representations,
namely Mel Filterbank, MFCC, and PLP features. It
consists of a model-based estimation of speaker-specific
linear transforms of the power spectrum that scale
the Mel filters center frequencies and bandwidths. A
Universal Background Model (UBM) must be trained to
estimate a VTLN warp coefficient per speaker, which
is then applied to normalize the features. The training
is unsupervised and does not require any annotation or
phonetic transcription. “Phone discrimination task” section
demonstrates the effectiveness of VTLN for inter-speaker
phone discrimination, and “VTLN model training” section
provides a study on the amount of data required to train a
VTLN model.

The Bottleneck features (Fer et al., 2017; Silnova
et al., 2018) rely on convolutional neural networks pre-
trained for phone recognition. Three networks are available:

monophone and triphone states, trained on US English
from the Fisher dataset (Cieri, Miller, & Walker, 2004),
and a multilingual triphone states network trained on 17
languages from the Babel dataset (Harper, 2013).

Shennong also implements two algorithms for pitch
estimation. The first one from Kaldi (Ghahremani et al.,
2014) is based on the normalized cross-correlation of
the input signal. It outputs a pitch estimate and a
probability of voicing for each frame. The second algorithm
is Convolutional REpresentation for Pitch Estimation
(CREPE) (Kim, Salamon, Li, & Bello, 2018) and is based
on a convolutional neural network pre-trained on music
datasets (Kim et al., 2018; Mauch & Dixon, 2014). We
made the CREPE algorithm fully compatible with the Kaldi
one by turning the maximum of the network activation
matrix into a probability of voicing and interpolating pitch
for frames with low confidence. Finally, a post-processing
step, common to both algorithms, normalizes the pitch
estimates, converts them to log domain, and extracts their
first-order derivative. “Pitch estimation” section compares
those algorithms under various noise conditions.

Finally, Shennong also provides post-processors that
normalize or add information on extracted features. Delta
computes the nth order derivative of any features. Voice
Activity Detection (VAD) is a simple energy-based method
that makes binary decisions, mainly used to filter out
silences. Cepstral Mean Variance Normalization (CMVN)
normalizes features to a zero mean and unitary variance, and
can be applied on a per-frame, per-utterance, or per-speaker
basis.

Low-level software architecture

Shennong is built on a few low-level components, namely
Python classes, that users can use to configure and run a
features extraction pipeline.

The Audio class is the interface with raw audio data
and is the input of all pipelines implemented in Shennong.
It is used to load audio files as NumPy arrays, resample
and manipulate them. It supports multiple audio file formats
such as WAV or FLAC. The Utterances class provides
a high-level view of speech fragments as it handles a
collection of Audio instances, each one with an attached
identifier, speaker information, and optional onset and offset
times.

The Features class is the output returned by
processing algorithms. It stores three attributes: a data array,
a time array, and some properties. Data is a NumPy array
of shape [m, n] with m being the number of frames on the
temporal axis and n being the dimension of the features,
usually along the frequency axis. The time array stores
the timestamps of each frame either as a single value
corresponding to the central time of each frame, with a

4491Behavior Research Methods (2023) 55:4489–4501

Table 1 Parameters of the features extraction algorithms implemented in Shennong

Algorithm Parameter Default Comment

Bottleneck weights BabelMulti Pretrained network to use, in FisherMono, FisherMulti
or BabelMulti

dither 0.1 Amount of dithering to add

Framing sample rate 16000 Sampling frequency in Hz

frame shift 0.01 Frame shift in second

frame length 0.025 Frame length in second

dither 0.1 Amount of dithering to add

preemph coeff 0.97 Signal preemphasis coefficient

remove dc offset True Whether to subtract mean on each frame

window type povey Window to use in hamming, hanning, povey,
rectangular or blackman

snip edges True If true, output only frames that completely fit in the input signal

Spectrogram all from Framing plus...

energy floor 0.0 Absolute floor on energy

raw energy True When true, compute energy before preemphasis and
windowing

Mel Scale all from Framing plus...

num bins 23 Number of triangular mel-frequency bins

low freq 20 Low cutoff frequency for mel bins in Hz

high freq 0 High cutoff frequency for mel bins in Hz

vtln low 100 Low inflection point in VTLN in Hz

vtln high -500 High inflection point in VTLN in Hz

Filterbank all from Mel Scale plus...

use energy False Add an extra dimension with energy to the filterbank output

energy floor 0.0 Absolute floor on energy

raw energy True When true, compute energy before preemphasis and windowing

use log fbank True Whether to produce log or linear filterbank

use power True Whether to use power or magnitude

MFCC all from Mel Scale plus...

num ceps 13 Number of cepstra, including C0

use energy False Add an extra dimension with energy to the filterbank output

energy floor 0.0 Absolute floor on energy

raw energy True When true, compute energy before preemphasis and windowing

cepstral lifter 22.0 Constant that controls scaling of MFCCs

PLP all from Mel Scale plus...

rasta False Whether to do RASTA filtering

lpc order 12 Order of LPC analysis

num ceps 13 Number of cepstra, including C0

use energy False Add an extra dimension with energy to the filterbank output

energy floor 0.0 Absolute floor on energy

raw energy True When true, compute energy before preemphasis and windowing

compress factor 1/3 Compression factor

cepstral lifter 22.0 Constant that controls scaling of PLPs

cepstral scale 1.0 Cepstral constant in PLP computation

4492 Behavior Research Methods (2023) 55:4489–4501

Table 1 (continued)

Algorithm Parameter Default Comment

Pitch sample rate 16000 Sampling frequency in Hz

(Kaldi algorithm) frame shift 0.01 Frame shift in second

frame length 0.025 Frame length in second

min f0 50 Minimum F0 to search for in Hz

max f0 400 Maximum F0 to search for in Hz

soft min f0 10 Minimum F0 to search for in Hz, applied in soft way

penalty factor 0.1 Cost factor for F0 change

lowpass cutoff 1000 Cutoff frequency for low-pass filter in Hz

resample freq 4000 Downsampling frequency in Hz

delta pitch 0.005 Smallest relative change in pitch that the algorithm measures

nccf ballast 7000 Increasing this factor ensure pitch continuity in unvoiced regions

Pitch model capacity full Pretrained model to use, in tiny, small, medium, large or full

(CREPE algorithm) frame shift 0.01 Frame shift in second

frame length 0.025 Frame length in second

viterbi True Whether to apply Viterbi smoothing to the estimated pitch curve

center True Whether to center the window on the current frame

Pitch pitch scale 2.0 Scaling factor for the final normalized log-pitch value

(post-processing) pov scale 2.0 Scaling factor for final probability of voicing feature

delta pitch scale 10.0 Term to scale the final delta log-pitch feature

delta pitch noise stddev 0.005 Standard deviation for noise we add to the delta log-pitch

delta window 2 Number of frames on each side of central frame

delay 0 Number of frames by which the pitch information is delayed

Universal num gauss 64 Number of Gaussians in the model

Background Model num iters 4 Number of training iterations

initial gauss proportion 0.5 Proportion of Gaussians to start with in initialization phase

num iters init 20 Number of E-M iterations for model initialization

num frames 5.105 Maximum num-frames to keep in memory for model initialization

min gaussian weight 10−4 Minimum weight below which a Gaussian is not updated

remove low count gaussians False Remove Gaussians with a weight below min gaussian weight

Vocal Tract Length all from UBM plus...

Normalization num iters 15 Number of training iterations

min warp 0.85 Minimum warp considered

max warp 1.15 Maximum warp considered

warp step 0.01 Warp step

logdet scale 0.0 Scale on log-determinant term in auxiliary function

norm type offset Type of fMMLR applied, in offset, none or diag

Zero or negative frequencies are relative to the Nyquist frequency

shape [m, 1] or as a pair of onset/offset times with a shape
[m, 2]. Several Features instances sharing the same time
values can be concatenated over the frequency axis to obtain
composite data within the same array, e.g. MFCC and
pitch. Finally, the properties record details of the extraction
pipeline, such as the name of the input audio file and
processing parameters values.

The Features class is designed to store a sin-
gle matrix corresponding to a single Audio object.

Several Features are usually grouped into a
FeaturesCollection, for instance, to manage a
whole dataset represented as an Utterances easily. This
class indexes Features by name and allows saving and
loading features to/from various file formats (see Table 2).
The pickle format is the native Python one. It is very fast
in writing and reading times and should be the preferred
format for small to medium datasets. The h5features for-
mat (Schatz, Bernard, & Thiollière, 2020) is specifically

4493Behavior Research Methods (2023) 55:4489–4501

Table 2 File formats supported by Shennong for reading and writing a FeaturesCollection

Format File size Write time Read time

pickle 883 MB 0:00:07 0:00:05

h5features 873 MB 0:00:21 0:00:07

numpy 869 MB 0:02:30 0:00:22

matlab 721 MB 0:00:59 0:00:11

kaldi 1.3 GB 0:00:06 0:00:07

csv 4.8 GB 0:03:02 0:03:11

The read/write times and file size have been obtained on MFCC features computed on the Buckeye English Corpus (Pitt et al., 2007) (40 speakers,
about 38 hours of speech in 254 files) using a Linux machine with an Intel Xeon CPU, 16 GB RAM, and an SSD hard drive

designed to handle extensive datasets, as it allows partial
writing and reading of data larger than RAM. The formats
numpy, matlab and kaldi propose compatibility layers to
those respective tools. Finally, the csv format stores fea-
tures into plain text CSV files, one file per Features in
the collection, along with the features properties in JSON
format.

The Processor class abstracts the features extrac-
tion algorithms (see Fig. 1). Therefore, all algorithms
implemented in Shennong expose a homogeneous inter-
face to the user: the parameters are specified in the
constructor, and a process() method takes Audio or
Features as input and returns Features. A generic
method process all() is also provided to compute fea-
tures from a whole Utterances in a single call, using
parallel jobs and returning a FeaturesCollection.

High-level extraction pipeline

The modular design described above allows the creation of
arbitrary pipelines involving multiple steps, such as features
extraction, pitch estimation, and normalization. To simplify
the use of such complex pipelines, Shennong exposes a
high-level interface made of three steps, which can be used
from Python using the pipeline module or from the
command-line using the speech-features program.

The first step is to define a list of utterances on which
to apply the pipeline, as a list of audio files, with optional
utterances name, speaker identification, and onset/offset
times. The second step is configuring the extraction pipeline
by selecting the extraction algorithms. This step generates
a configuration with default parameters, which the user
can further edit. The third and final step is to apply the
configured pipeline to the defined utterances. Figure 2
illustrates two use-cases: the use of the low-level API to
extract MFCCs on a single file (Fig. 2a) and the use of
a high-level pipeline to extract both MFCCs and pitch on
three utterances from two speakers, from the Python API
(Fig. 2b) and command line (Fig. 2c).

Applications

This section illustrates the use of Shennong on three
experimental setups: a benchmark of features extraction
algorithms available in Shennong on a phone discrimination
task, an analysis of the VTLN model performance as
a function of speech duration used for training, and a
comparison of pitch estimation algorithms on various
noise conditions. After having detailed the background
and motivation for each experimental setup, the remainder
of this section presents their methods and discusses the
obtained results. The code to replicate those experiments
is distributed with Shennong3 and can be used as
introductory material by new users, along with the toolbox
documentation.

Phone discrimination task

The goal of speech recognition systems is to decode words
from raw speech. They must rely on a representation of
speech sounds that is robust to within- and across-talker
variations, thus supporting the identification of phones,
syllables and words. For such applications, it is critical
for the extracted features to allow for the classification of
speech frames into phonetic categories. This experiment
compares the discriminative power of the features extraction
algorithms available in Shennong on a phone discrimination
task, within- and across-talkers, in two languages.

Methods

This experiment replicates the sub-word modeling task
of the Zero Speech Challenge 2015 (Versteegh, Anguera,
Jansen, & Dupoux, 2016; Versteegh et al., 2015), using the
same dataset and evaluation pipeline. The dataset is com-
posed of curated segments from two free, open access, and

3https://github.com/bootphon/shennong/tree/v1.0/examples

4494 Behavior Research Methods (2023) 55:4489–4501

https://github.com/bootphon/shennong/tree/v1.0/examples

Fig. 2 Examples of use of Shennong. In (a) MFCC are extracted and
saved from an input audio file. The features have 13 dimensions, the
default number of Mel coefficients. In (b) and (c), a pipeline is used
for MFCC and pitch extraction on three utterances from two speakers,

the two scripts in Python and bash being strictly equivalent and giv-
ing the same result. For each utterance, the extracted features have 16
dimensions: 13 for MFCC and 3 for pitch estimates

annotated speech corpora: the Buckeye Corpus of Ameri-
can English (Pitt et al., 2007) (12 speakers, 10h34m44s) and
the NCHLT Speech Corpus of Xitsonga (De Vries et al.,
2014), a low resource Bantu language spoken in south-
ern Africa (24 speakers, 4h24h37s). The English corpus
contains spontaneous, casual speech, whereas the Xitsonga
corpus contains read speech constructed out of a small
vocabulary, tailored for producing speech recognition appli-
cations. The original recordings were segmented into short
files that contain only clean speech, i.e. no overlap, pauses,

or nonspeech noises, and contain only the speech of a sin-
gle speaker. The gold phone-level transcriptions have been
obtained from a forced alignment using Kaldi (Versteegh
et al., 2015).

The evaluation of phone discriminability uses a minimal
pair ABX task, a psychophysically inspired algorithm
that only requires a notion of distance between the
representations of speech segments (Schatz, Feldman,
Goldwater, Cao, & Dupoux, 2021; Schatz et al., 2013;
2014). The ABX discriminability, for example, between

4495Behavior Research Methods (2023) 55:4489–4501

[apa] and [aba], is defined as the probability that the
representations of A and X are more similar those of B and
X, overall triplets of tokens such that A and X are tokens
of [aba] and B a token of [apa]. The discriminability is
evaluated within speakers, where A, B, and X are uttered
by the same speaker, and across speakers, such that X is
emitted by a different speaker than A and B. The global
ABX phone discriminability score aggregates over the
entire set of minimal triphone pairs such as ([aba], [apa])
to be found in the dataset. The metric used for ABX
evaluation is the Dynamic Time Warping divergence using
the cosine distance as the underlying frame-level metric.

We consider the following algorithms: spectrogram,
filterbank, MFCC, PLP, RASTA-PLP, and multilingual
bottleneck network. All the algorithms are used with default
parameters. Each algorithm is declined in three pipeline
configurations. The raw features alone are first considered,
noted as raw in Table 3, and of dimension n. Then the
concatenation of the raw features with their first and second-
order derivatives, along with pitch estimates, are used and
noted +�/F0, giving a dimension 3n + 3. The cross-
correlation pitch estimation algorithm from Kaldi is used.
It outputs three channels: the probability of voicing, the
normalized log pitch, and the raw pitch derivative. Finally,
CMVN is applied on a per-speaker basis on the +�/F0
configuration, giving a zero mean and unitary variance on

each channel independently, and is noted as +CMV N .
Furthermore, a VTLN model is trained on 10 minutes of
speech per speaker for each of the two corpora and is
applied to the spectrogram, filterbank, MFCC, PLP, and
RASTA-PLP, for each of the three pipeline configurations.

Results

Experimental results are presented in Table 3. First, con-
sidering the overall scores, the bottleneck deep neural net-
work largely outperforms the spectro-temporal algorithms
in every configuration. We expected those results as the bot-
tleneck model is trained for phone discrimination. Among
the spectro-temporal algorithms, the filterbank model per-
forms very well and reaches the best score on seven over
eight configurations, except on English across speakers with
VTLN. This result is unexpected and has to be underlined,
as it beats MFCC, which is by far the most used algorithm
in the literature.

Considering now the impact of raw, +�/F0, and
+CMNV pipelines for the different algorithms, it is
demonstrated that adding pitch, deltas, and CMVN to raw
features are beneficial for both MFCC, PLP, and Rasta-PLP
in all configurations, except for the bottleneck algorithm.
Spectrogram and filterbank algorithms benefit from pitch
and deltas as well, but the addition of CMVN degrades

Table 3 Comparison of features extraction algorithms available in Shennong on a phone discrimination task, within and across speakers, with and
without VTLN, for English and Xitsonga datasets

Algorithm Within speakers Across speakers

without VTLN with VTLN without VTLN with VTLN

raw +�/F0 +CMNV raw +�/F0 +CMNV raw +�/F0 +CMNV raw +�/F0 +CMNV

(a) ABX scores for English

Spectrogram 16.7 15.2 20.2 − − − 30.3 27.9 29.7 − − −
Filterbank 12.8 11.6 18.2 12.6 11.4 18.1 24.9 22.1 26.5 23.2 20.7 25.4

MFCC 13.0 12.5 12.4 12.8 12.3 12.0 27.2 26.4 24.0 23.4 22.7 20.0

PLP 12.5 12.4 11.9 12.5 12.4 11.9 28.0 26.6 23.8 24.7 23.5 19.7

Rasta-PLP 14.3 14.2 12.5 14.2 14.1 12.5 28.5 26.8 25.3 24.6 23.6 21.3

Bottleneck 8.5 8.5 8.6 − − − 12.5 12.5 12.5 − − −
(b) ABX scores for Xitsonga

Spectrogram 19.2 16.8 19.2 − − − 34.6 32.0 26.5 − − −
Filterbank 13.8 11.7 15.2 13.6 11.4 15.2 28.1 25.1 21.5 26.9 24.0 20.7

MFCC 17.1 16.2 14.6 17.5 16.5 14.6 33.6 32.8 26.0 31.4 30.6 22.7

PLP 16.2 14.6 14.0 16.2 14.7 14.2 33.5 31.2 26.2 31.7 29.5 22.2

Rasta-PLP 13.7 12.5 12.3 13.5 12.2 12.0 27.9 25.2 23.9 25.0 22.8 21.7

Bottleneck 6.9 7.0 7.3 − − − 9.5 9.6 9.6 − − −

Scores are ABX error rates in % (random score is 50%). The raw configuration is based on raw features alone. The +�/F0 adds first/second
order derivatives and Kaldi pitch estimates. The +CMVN adds a CMVN normalization by speaker on top of +�/F0. VTLN is not available for
spectrogram and bottleneck features. The best scores for each configuration are in bold font

4496 Behavior Research Methods (2023) 55:4489–4501

the ABX score, with the exception of the Xitsonga across
speakers configuration. This is expected as CMVN is
tailored towards the cepstral domain, but spectrogram and
filterbank are in the spectral domain. Rasta filtering on
PLP gives different results across languages: it degrades
the score in English but improves them on Xitsonga.
RASTA filtering is used to reduce distortions from the
communication channel (Hermansky & Morgan, 1994), so
this difference can be explained by the recording conditions
of the two corpora.

The use of VTLN for speaker normalization improves
both MFCC and PLP scores by about 4% on the across
speakers context, whereas filterbank gains about 1%. No or
slight improvement is attested within speakers for all the
algorithms. Those results are expected because ABX scores
are computed on a single speaker, but VTLN normalizes
features across speakers.

Finally, our results are in line with those from the subword
modeling task of the Zero Speech 2015 challenge.4 Indeed,
the challenge baseline used raw MFCCs from Kaldi and
obtained an error rate 1.4% higher than ours (mean over the
two languages and within/across conditions). Since the data
and the features extraction algorithm are the same, this small
difference is explained by improvements and fixes in the ABX
evaluation code since the release of the challenge in 2015.

VTLNmodel training

Vocal Tract Length Normalization (VTLN) is used to reduce
the variability of individual voices in the features space.
“Phone discrimination task” section has shown that VTLN
significantly improves the phone discriminability score in
the across-speakers context. Nevertheless, we trained the
VTLN model on 10 minutes of speech per speaker without
further justification. This section thus explores the influence
of the amount of speech duration used for VTLN training on
the resulting VTLN coefficients and phone discriminability
scores. To the best of our knowledge, there is no such
experiment available in the literature. The same dataset
and evaluation pipeline that in “Phone discrimination task”
section are used here.

Methods

The same segment of the Buckeye English corpus as in
“Phone discrimination task” section is used. It is composed
of 10h34m44s of speech balanced across 12 speakers. In
order to train several VTLN models on variable speech
duration, this corpus is split into sub-corpora containing a
given speech duration per speaker. The considered durations
are 5s, 10s, 20s, 30s, 60s, and up to 600s by steps of 60s. The

4https://zerospeech.com/tracks/2015/results

subcorpora are built without overlap: the first blocks of fixed
duration for each speaker are joined together, then for the
second blocks, etc. This gives a total of 1010 corpora, from
479 for 5s per speaker to 2 for 600s per speaker, following
a power law. For each of those corpora, a VTLN model is
trained using the default parameters, and VTLN coefficients
are extracted.

Then MFCC features are extracted from those corpora,
using default parameters, and normalized with their
associated VTLN coefficients. MFCC features are declined
over the 3 pipeline configurations raw, +�/F0 and
+CMV N , as detailed in “Phone discrimination task”
section. The ABX discriminability score is then computed
across speakers as before. To mitigate the computational
cost, a maximum of 10 corpora per duration are randomly
sampled and considered for MFCC extraction and ABX
scoring. Moreover, MFCC and ABX are computed without
VTLN and with a VTLN model trained on the entire corpus,
giving 102 discriminability scores for all the considered
durations.

Results

Figure 3 shows the evolution of the VTLN coefficients for
different speakers as a function of the amount of speech per
speaker used for training. With 300s per speaker, or 1h of
speech in total, the coefficients have largely converged and
remain overall stable when more data is added for training.
This demonstrates that training a VTLN does not require a
large amount of data, thus reducing the computational needs
and training time. Moreover, the differentiation comes very

Fig. 3 Average VTLN coefficients for different speakers according to
the speech duration per speaker used for VTLN training. The lines
correspond to coefficients of 7 representative speakers out of 12,
with VTLN warps spanning from 0.85 to 1.08 after convergence. The
remaining five speakers, not displayed here for clarity, show similar
and overlapping patterns to the lines shown. The shaded areas are
standard deviations

4497Behavior Research Methods (2023) 55:4489–4501

https://zerospeech.com/tracks/2015/results

early: with 30s of speech per speaker only, the VTLN
coefficients are already clustered.

Figure 4 shows the ABX error rate obtained on MFCC
features without VTLN normalization and with VTLN
computed using different speech durations per speaker.
First considering the scores obtained without VTLN and
with VTLN trained on the whole dataset, results match
those displayed in Table 3: in raw configuration the
scores go from 27.2% to 23.4%, from 26.4% to 22.7%
for +�/F0 and from 24.0% to 20.0% for +CMV N . The
three configurations follow the same tendency and rapidly
converge to a nearly optimal score, starting with 60s of
speech per speaker for VTLN training. Consolidating from
results on Fig. 3, it is shown here that the VTLN coefficients
do not need to have fully converged to yield a close to
optimal normalization. This conclusion has to be underlined
because researchers usually train a VTLN model on all the
available data, as for instance in VTLN-based Kaldi recipes.

Pitch estimation

Shennong includes two pitch estimators. The Kaldi algo-
rithm performs an auto-correlation of the speech signal and
the CREPE one is a deep neural network trained on music
datasets. In order to quantify the capacity of CREPE to gen-
eralize from music to speech, this section compares pitch
estimation algorithms on speech, under various noise con-
ditions. We also compare Kaldi and CREPE algorithms
from Shennong to two popular alternatives for speech pitch
estimation: PRAAT and YAAPT.

Methods

The KEELE Pitch Database (Plante, Meyer, & Ainsworth,
1995) is used for evaluation. It consists of approximately

Fig. 4 ABX error rate obtained for MFCC features across speakers on
English, for three pipeline configurations, and various speech duration
per speaker used for VTLN training. The shaded areas are standard
deviations

6 minutes of clean speech with pitch estimates, separated
into ten phonetically balanced sentences by five male and
five female speakers. The pitch is estimated from the
auto-correlation of a laryngograph signal using frames of
25.6 ms with a 10 ms overlap. As noise robustness is key
to applications with real-world data, the KEELE dataset has
been corrupted by additive noise at seven signal-to-noise
ratios (SNR) ranging from -15 dB to 15 dB. We consider
two kinds of noise: white Gaussian noise and babble noise,
which consist of a recording of a restaurant ambiance.

The Kaldi and CREPE pitch estimators from Shennong
(see “Implemented algorithms” section) are compared with
two other popular models: the Praat algorithm (Boersma,
1993; 2001), which uses an auto-correlation method, and
the YAAPT algorithm (Zahorian & Hu, 2008) based on
a combination of time and frequency domain processing
using normalized cross-correlation. To match the gold pitch
estimates from the KEELE dataset, the Kaldi, CREPE,
and YAAPT algorithms are parameterized to use frames of
25.6 ms with a 10 ms overlap. The Praat algorithm does not
support frame parametrization, so its estimates have been
linearly interpolated to match the gold timestamps.

Finally, a significant amount of frames is estimated as
unvoiced on clean speech: only 50.3% of the KEELE gold
estimates are valid pitches. Other values indicate an absence
of voiced speech or a corrupted laryngograph signal. The
algorithms as well estimate some frames as unvoiced. This
is detected by a zero pitch estimate for Praat and YAAPT
models, or by low confidence for Kaldi and CREPE. To
avoid estimation biases, the union of all the frames classified
as unvoiced within the KEELE dataset and by the 4
algorithms on clean speech is removed from the evaluation.
This leads to 36.3% of the total number of frames being
conserved for the evaluations at different SNRs.

We consider two performance measures. The Mean
Absolute Error (MAE) is the mean of the absolute error
between the pitch estimates and the ground truth. The Gross
Error Ratio (GER) is the proportion of pitch estimates that
differ from more than 5% from the ground truth. Thus, given
a speech signal with n frames, its ground truth and

its pitch estimates for each frame, the MAE and
GER metrics are expressed as follows:

MAE(x̃, x) = 1

n

n∑

i=1

|x̃i − xi |, (1)

(2)

where is 1 when the predicate p(.) is true and 0
otherwise.

4498 Behavior Research Methods (2023) 55:4489–4501

Fig. 5 Pitch estimation error for the Kaldi, CREPE, Praat, and YAAPT
algorithms using Mean Absolute Error and Gross Error Rate on the
KEELE dataset. White Gaussian noise or babble noise is added at

various signal-to-noise ratios. Lines are mean errors over all the ten
speakers, and shaded areas are standard deviations

Results

Figure 5 shows the evaluation error obtained for the four
algorithms and the two kinds of noises at the considered
SNR for both MAE and GER metrics. Considering first the
errors obtained on Gaussian noise (Fig. 5a and b), MAE
and GER follow similar patterns for all the algorithms.
When there is little noise, all models obtain a low error that
is stable across speakers. The Praat algorithm is the first
to have degraded performances, starting at 10 dB, where
CREPE and YAAPT start at 5 dB. The Kaldi algorithm is
robust against this noise, with a stable error up to -5 dB.
CREPE and YAAPT have similar errors across SNR, with
CREPE being more robust to noise up to -5 dB and YAAPT
below -5 dB. When considering the effect of additive babble
noise (Fig. 5c and d), the algorithms performance starts to
decrease at 10 dB. Across the SNR range, Kaldi and CREPE
performances are very close and give the lowest errors.
CREPE is more reliable with the lowest GER, excepted at
-15 dB, where Kaldi performs better. YAAPT and Praat do
not perform well on babble noise and have high error rates
and standard deviations.

Overall, the four estimators have equivalent perfor-
mances on clean speech signals. Kaldi, CREPE, and
YAAPT perform better on Gaussian noise than babble noise,
YAAPT being the most sensitive to the latter. Praat is the
only algorithm with an increase in performance on babble
noise. Finally, both CREPE and Kaldi appear to be more

reliable estimators than Praat and YAAPT, with Kaldi being
more robust to Gaussian noise and CREPE to babble noise.
The PRAAT estimator appears to be the less reliable estima-
tor under noise, both for Gaussian and babble noises. The
good performances of CREPE have to be emphasized as it
is trained initially on musical signals but demonstrates good
generalization to speech.

Discussion

This paper introduced Shennong, an open-source Python
package for audio speech features extraction. The toolbox
covers many well-established state-of-the-art algorithms,
primarily implemented after Kaldi. Shennong’s software
architecture and components focus on ease of use,
reliability, and extensibility. The main benefit of Shennong
is for non-technical users who need to extract speech
features from an algorithm available in Kaldi. Shennong
hides the complexity inherent to Kaldi and exposes all
the features-related algorithms and parameters in a clear
and consistent way. Compared to other available toolboxes,
Shennong is specialized on speech processing and, as such,
provides advanced functionalities such as Rasta filtering
or VTLN out-of-the-box, as well as an extensive set of
parameters for each algorithm. Finally, Shennong covers
different use cases: few lines of code are sufficient to
configure and apply a complex extraction pipeline, but

4499Behavior Research Methods (2023) 55:4489–4501

power-users can benefit from the Python API to hand-tune
any part of the pipeline or integrate Shennong in their
projects.

Three experiments on speech features extraction using
the Shennong toolbox are detailed. They show that
Shennong can be integrated into complex processing
pipelines. The source code of those experiments is
distributed with Shennong and can be used as introductory
examples to new users. Moreover, those experiments
draw some interesting insights. The first experiment
demonstrated that Mel filterbank performs better than the
popular MFCC on a phone discrimination task. It also
showed that VTLN speaker normalization reduces the error
rates by 5 %. The second experiment analyzed the amount
of speech required to train a VTLN model and demonstrated
that 5 to 10 minutes of signal per speaker are enough to
reach near-optimal performances, whereas the common use
is to use several hours of speech. Finally, the last experiment
compared pitch estimation algorithms under various noise
conditions and demonstrated that the CREPE algorithm
provided by Shennong, although trained on music, shows
a good generalization capacity to speech. It is also more
robust to noise than YAAPT and Praat algorithms, popular
alternatives commonly used in phonology.

The development of Shennong is not over. Indeed we
plan to add more features extraction algorithms, such as
Voice Activity Detection and Contrastive Predictive Coding
(Oord et al., 2018). Furthermore, because Shennong is free
and open-source software, the user’s needs and requests will
also impact its future. We hope Shennong’s community of
users and contributors will grow as its visibility increases.

Open Practices Statement

The authors declare that they have no conflict of inter-
est. The Shennong software and materials for all experi-
ments are available online at https://github.com/bootphon/
shennong. None of the experiments was preregistered.

Acknowledgements This work is funded by Inria (Grant ADT-
193), the Agence Nationale de la Recherche (ANR-17-EURE-
0017 Frontcog, ANR-10-IDEX-0001-02 PSL, ANR-19-P3IA-0001
PRAIRIE 3IA Institute), CIFAR (Learning in Minds and Brains) and
Facebook AI Research (Research Grant).

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . ,
et al (2016). Tensorflow: A system for large-scale machine learn-
ing. In 12th USENIX symposium on operating systems design and
implementation (OSDI16), (pp. 265–283).

Benzeghiba, M., De Mori, R., Deroo, O., Dupont, S., Erbes, T.,
Jouvet, D., . . . , et al. (2007). Automatic speech recognition and

speech variability: A review. Speech Communication, 49(10-11),
763–786.

Boersma, P. (1993). Accurate short-term analysis of the fundamental
frequency and the harmonics-to-noise ratio of a sampled sound.
In Proceedings of the institute of Phonetic sciences, (Vol. 17,
pp. 97–110).

Boersma, P. (2001). Praat, a system for doing phonetics by computer.
Glot International, 5(9/10), 341–345.

Can, D., Martinez, V. R., Papadopoulos, P., & Narayanan, S. S. (2018).
Pykaldi: A python wrapper for kaldi. In 2018 IEEE international
conference on acoustics, speech and signal processing (ICASSP):
IEEE.

Cieri, C., Miller, D., & Walker, K. (2004). The fisher corpus: A
resource for the next generations of speech-to-text. In LREC,
(Vol. 4, pp. 69–71).

De Vries, N. J., Davel, M. H., Badenhorst, J., Basson, W. D., De
Wet, F., Barnard, E., & De Waal, A. (2014). A smartphone-based
ASR data collection tool for under-resourced languages. Speech
Communication, 56, 119–131.

Dunbar, E., Cao, X. N., Benjumea, J., Karadayi, J., Bernard, M.,
Besacier, L., . . . , Dupoux, E. (2017). The zero resource speech
challenge 2017. In 2017 IEEE automatic speech recognition and
understanding workshop (ASRU), (pp. 323–330): IEEE.

Dunbar, E., Karadayi, J., Bernard, M., Cao, X. N., Algayres, R.,
Ondel, L., . . . , Dupoux, E. (2020). The zero resource speech
challenge 2020: Discovering discrete subword and word units. In
Interspeech 2020.

Ellis, D. P. W. (2005). PLP and RASTA (and MFCC, and inversion)
in Matlab. http://www.ee.columbia.edu/∼dpwe/resources/matlab/
rastamat. Online web resource.

Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The
munich versatile and fast open-source audio feature extractor.
In Proceedings of the 18th ACM international conference on
Multimedia, (pp. 1459–1462).

Fer, R., Matějka, P., Grézl, F., Plchot, O., Veselỳ, K., & Černockỳ,
J. H. (2017). Multilingually trained bottleneck features in spoken
language recognition. Computer Speech & Language, 46, 252–
267.

Ghahremani, P., BabaAli, B., Povey, D., Riedhammer, K., Trmal,
J., & Khudanpur, S. (2014). A pitch extraction algorithm tuned
for automatic speech recognition. In 2014 IEEE international
conference on acoustics, speech and signal processing (ICASSP),
(pp. 2494–2498).

Harper, M. (2013). The babel program and low resource speech
technology. Proc. of ASRU 2013.

Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of
speech. The Journal of the Acoustical Society of America, 87(4),
1738–1752.

Hermansky, H., & Morgan, N. (1994). Rasta processing of speech.
IEEE Transactions on Speech and Audio Processing, 2(4), 578–
589.

Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1991). RASTA-
PLP speech analysis. In Proc. IEEE int’l conf. acoustics, speech
and signal processing, (Vol. 1, pp. 121–124).

Hung, L. H., Kristiyanto, D., Lee, S. B., & Yeung, K. Y. (2016).
Guidock: Using docker containers with a common graphics user
interface to address the reproducibility of research. PloS ONE,
11(4), e0152686.

Kim, D., Umesh, S., Gales, M., Hain, T., & Woodland, P. (2004).
Using VTLN for broadcast news transcription. In 8th international
conference on spoken language processing.

Kim, J. W., Salamon, J., Li, P., & Bello, J. P. (2018). Crepe:
A convolutional representation for pitch estimation. In 2018
IEEE international conference on acoustics, speech and signal
processing (ICASSP), (pp. 161–165).

4500 Behavior Research Methods (2023) 55:4489–4501

https://github.com/bootphon/shennong
https://github.com/bootphon/shennong
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat

Koolagudi, S. G., & Rao, K. S. (2012). Emotion recognition from
speech: A review. International Journal of Speech Technology,
15(2), 99–117.

Lenain, R., Weston, J., Shivkumar, A., & Fristed, E. (2020). Surfboard:
Audio feature extraction for modern machine learning.

Liu, F., Surendran, D., & Xu, Y. (2006). Classification of statement
and question intonations in Mandarin. Proc. 3rd speech prosody,
(pp. 603–606).

Mauch, M., & Dixon, S. (2014). pYIN: A fundamental frequency
estimator using probabilistic threshold distributions. In 2014
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), (pp. 659–663): IEEE.

Oord, A. v. d., Li, Y., & Vinyals, O. (2018). Representation learning
with contrastive predictive coding. arXiv:1807.03748.

Orozco-Arroyave, J., Hönig, F., Arias-Londoño, J., Vargas-Bonilla, J.,
Daqrouq, K., Skodda, S., . . . , Nöth, E. (2016). Automatic detection
of Parkinson’s disease in running speech spoken in three different
languages. The Journal of the Acoustical Society of America,
139(1), 481–500.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
. . . , et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing
Systems, 32.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . , et al. (2011). Scikit-learn: Machine learning in
Python. The Journal of Machine Learning Research, 12, 2825–
2830.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume,
E., & Fosler-Lussier, E. (2007). Buckeye corpus of conversational
speech (2nd release). Columbus, OH: Department of Psychology
Ohio State University.

Plante, F., Meyer, G., & Ainsworth, W. (1995). A pitch extraction
reference database. In Eurospeech-1995, (pp. 837–840).

Povey, D. (2010). Notes for affine transform-based VTLN. Microsoft
Research.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel,
N., . . . , Vesely, K. (2011). The Kaldi speech recognition toolkit.
In IEEE 2011 workshop on automatic speech recognition and
understanding: IEEE Signal Processing Society.

Ramirez, J., Górriz, J. M., & Segura, J. C. (2007). Voice activity detec-
tion. Fundamentals and speech recognition system robustness.
Robust Speech Recognition and Understanding, 6(9), 1–22.

Riad, R., Titeux, H., Lemoine, L., Montillot, J., Bagnou, J. H., Cao,
X. N., . . . , Bachoud-Lévi, A. C. (2020). Vocal markers from
sustained phonation in huntington’s disease. In Interspeech 2020.

Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S.,
& Liberman, M. (2019). The second dihard diarization challenge:
Dataset, task, and baselines. Interspeech, 2019, (pp. 978–982).

Ryant, N., Singh, P., Krishnamohan, V., Varma, R., Church, K.,
Cieri, C., . . . , Liberman, M. (2020). The third dihard diarization
challenge. arXiv:2012.01477.

Saeed, A., Grangier, D., & Zeghidour, N. (2021). Contrastive learning
of general-purpose audio representations. In IEEE international
conference on acoustics, speech and signal processing (ICASSP),
(pp. 3875–3879).

Schatz, T., Bernard, M., & Thiollière, R. (2020). h5features: Efficient
storage of large features data. https://github.com/bootphon/
h5features/releases/tag/v1.3.3. Software. Version 1.3.3.

Schatz, T., Feldman, N. H., Goldwater, S., Cao, X. N., &
Dupoux, E. (2021). Early phonetic learning without phonetic
categories: Insights from large-scale simulations on realistic input.
Proceedings of the National Academy of Sciences, 118(7).

Schatz, T., Peddinti, V., Bach, F., Jansen, A., Hermansky, H., &
Dupoux, E. (2013). Evaluating speech features with the minimal-
pair ABX task: Analysis of the classical MFC/PLP pipeline. In
Interspeech 2013, (pp. 1–5).

Schatz, T., Peddinti, V., Cao, X. N., Bach, F., Hermansky, H., &
Dupoux, E. (2014). Evaluating speech features with the minimal-
pair ABX task (II): Resistance to noise. In 15th annual conference
of the international speech communication association.

Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ, O., Grezl,
F., . . . , Cernockỳ, J. (2018). But/phonexia bottleneck feature
extractor. In Odyssey, (pp. 283–287).

Tirumala, S. S., Shahamiri, S. R., Garhwal, A. S., & Wang, R. (2017).
Speaker identification features extraction methods: A systematic
review. Expert Systems with Applications, 90, 250–271.

Versteegh, M., Anguera, X., Jansen, A., & Dupoux, E. (2016). The
zero resource speech challenge 2015: Proposed approaches and
results. Procedia Computer Science, 81, 67–72.

Versteegh, M., Thiollière, R., Schatz, T., Cao, X. N., Anguera, X.,
Jansen, A., & Dupoux, E. (2015). The zero resource speech
challenge 2015. In Interspeech 2015.

Zahorian, S. A., & Hu, H. (2008). A spectral/temporal method
for robust fundamental frequency tracking. The Journal of the
Acoustical Society of America, 123(6), 4559–4571.

Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., & Dupoux,
E. (2018). End-to-end speech recognition from the raw waveform.
In Interspeech 2018.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

4501Behavior Research Methods (2023) 55:4489–4501

http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2012.01477
https://github.com/bootphon/h5features/releases/tag/v1.3.3
https://github.com/bootphon/h5features/releases/tag/v1.3.3

	Shennong: A Python toolbox for audio speech features extraction
	Abstract
	Introduction
	The Shennong toolbox
	Implemented algorithms
	Low-level software architecture
	High-level extraction pipeline

	Applications
	Phone discrimination task
	Methods
	Results

	VTLN model training
	Methods
	Results

	Pitch estimation
	Methods
	Results

	Discussion
	Open Practices Statement
	References

