
https://doi.org/10.3758/s13428-022-02024-x

Accelerating item factor analysis on GPU with Python package
xifa

Po-Hsien Huang1

Accepted: 8 November 2022
© The Psychonomic Society, Inc. 2023

Abstract
Item parameter estimation is a crucial step when conducting item factor analysis (IFA). From the view of frequentist
estimation, marginal maximum likelihood (MML) seems to be the gold standard. However, fitting a high-dimensional
IFA model by MML is still a challenging task. The current study demonstrates that with the help of a GPU (graphics
processing unit) and carefully designed vectorization, the computational time of MML could be largely reduced for large-
scale IFA applications. In particular, a Python package called xifa (accelerated item factor analysis) is developed, which
implements a vectorized Metropolis–Hastings Robbins–Monro (VMHRM) algorithm. Our numerical experiments show that
the VMHRM on a GPU may run 33 times faster than its CPU version. When the number of factors is at least five, VMHRM
(on GPU) is much faster than the Bock–Aitkin expectation maximization, MHRM implemented by mirt (on CPU), and the
importance-weighted autoencoder (on GPU). The GPU-implemented VMHRM is most appropriate for high-dimensional
IFA with large data sets. We believe that GPU computing will play a central role in large-scale psychometric modeling in
the near future.

Keywords Item factor analysis · Item response theory · Deep learning · Parallel computing

Item factor analysis (IFA; Bock, Gibbons, & Muraki,
1988) is a statistical technique that aims to explain the
dependency among item-level data by introducing latent
factors. Usually, the item-level data are binary or, more
generally, ordered categorical. Ability tests with yes–no
questions provide a simple example. A generalization of
this is the Likert-type response scale used in attitude
and personality questionnaires (strongly disagree, disagree,
neither, agree, and strongly agree). If modeling category
response probability is the main purpose, IFA can be also
regarded as a methodology of item response theory (IRT, for
an equivalence, see Takane & de Leeuw, 1987). In practice,
IFA is often used to evaluate the underlying factor structure
of a psychological measurement. This structure provides a
basis for latent trait estimation and dimension reduction,
which are useful in statistical tasks such as regression,
classification, and clustering.

� Po-Hsien Huang
psyphh@nccu.edu.tw

1 Department of Psychology, National Chengchi University,
64, Section 2, Zhi-Nan Road, Taipei City, Taiwan

Item parameter estimation is a crucial step in IFA, which
can be achieved by frequentist or Bayesian estimation (see
Chen, Li, Liu, & Ying, 2021; Wirth & Edwards, 2007, for
reviews). From the view of frequentist estimation, marginal
maximum likelihood (MML; Bock & Lieberman, 1970)
seems to be the gold standard because of its consistency, and
asymptotical efficiency and normality. MML tries to find an
estimate that maximizes the so-called marginal likelihood.
To determine marginal likelihood in the optimization
process, MML must integrate over M latent factors. If the
number of latent factors is small (e.g., M < 5), the integral
can be efficiently computed by Gauss–Hermite quadrature
(e.g., Bock & Aitkin, 1981; Bock & Lieberman, 1970;
Gibbons & Hedeker, 1992) or by its adaptive variation
(e.g., Schilling & Bock, 2005). Otherwise, stochastic
algorithms are used. Famous stochastic algorithms for IFA
include Monte Carlo expectation maximization (MCEM;
e.g., Meng & Schilling, 1996; Song & Lee, 2005),
stochastic expectation maximization (StEM; including
an improved version, see Zhang, Chen, & Liu, 2020),
and Metropolis–Hastings Robbins–Monro (MHRM; e.g.,
Cai, 2010a, b) algorithms. Some of these implementations
are available in mainstream IFA programs such as IRTPRO
(Cai, Du Toit, & Thissen, 2011), flexMIRT (Cai, 2017),

Behavior Research Methods (2023) 55:4403–4418

/ Published online: 10 January 2023

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-02024-x&domain=pdf
http://orcid.org/0000-0002-4820-1245
mailto: psyphh@nccu.edu.tw

Behavior Research Methods (2023) 55:4403–4418

Mplus (Muthén & Muthén, 1998–2017), and mirt
(Chalmers, 2012).

Nevertheless, fitting a high-dimensional IFA model by
MML is still a time-consuming task. For example, MML
might take about 36 min for fitting an IFA model with
ten factors to a data set with 2500 observations and
300 items (see Chen, Li, & Zhang, 2019). Note that 36
min is just for single analysis. In practice, researchers
may try many IFA models under different data conditions
for searching an optimal result, which definitely spends
more time. The computational burden of MML precludes
researchers from exploring data-model fit thoroughly. Even
for a relatively small IFA model, it still becomes very time-
consuming when implementing resampling methods for
robust statistical inferences (e.g., Liou & Yu, 1991; Patton,
Cheng, Yuan, & Diao, 2014).

To make up for the deficiency of MML, psychometri-
cians develop less computationally intensive procedures,
including variational inference (VI) methods (Cho, Wang,
Zhang, & Xu, 2020; Hui, Warton, Ormerod, Haapaniemi, &
Taskinen, 2017; Wu, Davis, Domingue, Piech, & Goodman,
2020), the constrained joint maximum likelihood (CJML)
(Chen et al., 2019; Chen, Li, & Zhang, 2020), and the
importance-weighted autoencoder (IWAE) method (Urban
& Bauer, 2021). However, these alternative methods are still
restrictive in several ways. (1) The consistency of CJML and
VI require a large number of items for each latent trait (Chen
et al., 2019; Cho et al., 2020). Most empirical settings, how-
ever, use less than six items for measuring a latent trait
(see Jackson, Gillaspy Jr, & Purc-Stephenson, 2009, for a
review). (2) Both the theoretical properties and the empirical
performance of CJML and IWAE rely on tuning parame-
ters. The tuning parameter values are usually determined by
cross-validation, which complicates the implementation of
these methods. (3) The existing findings on statistical infer-
ences for MML (for reviews, see Swaminathan, Hambleton,
& Rogers, 2006; Yuan, Cheng, & Patton, 2014) cannot be
directly applied to the above alternative methods. Based on
these reasons, we believe that most IFA users still prefer
using MML unless its implementation is totally infeasible.

If we stay with the implementations of MML, we can
still search for computationally more feasible answers.
The aim of the current study is to invoke help from the
GPU (graphics processing unit) and a carefully designed
vectorization to handle large-scale IFA applications. The
GPU is an electronic circuit that helps the CPU (central
processing units) for handling computer graphics. After
the release of CUDA (NVIDIA, Vingelmann, & Fitzek,
2020), the GPU gradually entered scientific computing due
to its parallelization capability (Keckler, Dally, Khailany,
Garland, & Glasco, 2011; Nickolls & Dally, 2010).

We believe that parallelization with GPU has two
advantages. First, GPU machines are readily available

today. Some online coding platforms such as Colab and
Kaggle even provide free GPU computing resources. In
contrast, powerful multi-core CPUworkstations are difficult
to access for end users. Second, it is not necessary to
write source code for GPU computing. Today, GPU is
supported by many user-friendly deep learning libraries
such as TensorFlow (Abadi et al., 2015), PyTorch
(Paszke et al., 2019), and Jax (Bradbury et al., 2018). These
libraries provide highly optimized functions with both CPU
and GPU backends depending on the availability of GPU.
Therefore, programmers are only required to vectorize most
operations by using these functions.

Note that accelerating psychometric modeling by paral-
lelization is not new. There were several works considering
this issue on either GPU or CPU (e.g., von Davier, 2017;
Loossens et al., 2021; Sheng, Welling, & Zhu, 2014, 2015;
Verdonck, Meers, & Tuerlinckx, 2016). However, none
of them study GPU computing for high-dimensional IFA.
The unique contribution of the present work is to intro-
duce a Python package called xifa (accelerated item
factor analysis), which implements a vectorized MHRM
(VMHRM) algorithm for a wide class of high-dimensional
IFA models. The vectorized algorithm could be greatly
speeded up on GPU. In addition, the present work estab-
lishes benchmarks for xifa by empirically comparing
it with some popular or state-of-the-art implementations,
including Bock–Aitkin EM (BAEM) (Bock & Aitkin,
1981), MHRM, and IWAE. As we shall see in our simula-
tions, the VMHRM on GPU could run 33 times faster than
its CPU version. We believe this progress is a breakthrough.

The article is organized as follows: First, an IFA
framework and the steps of MHRM are presented. Second,
we introduce the VMHRM and demonstrate how to use
xifa. The technical details of VMHRM can be found
in Appendix A and B. Third, numerical experiments of
algorithm comparison are executed. Fourth, a real data
example illustrates the powerfulness of our approach.
Finally, merits and limitations of the current study are
discussed.

Item factor analysis andmarginal likelihood

A framework for item factor analysis

Let v = (v1, v2, ..., vI) denote an I -dimensional response
vector of I polytomous items. For each item vi , Ci denotes
the number of response categories, that is, vi takes on a
value in {0, 1, ..., Ci − 1}. The value of vi is regarded to
satisfy an ordinal scale (Stevens, 1946). To make things a
bit simpler, we assume Ci = C for now, and return to
the general case later. The IFA characterizes the response
probability of vi as a function of an M-dimensional latent

4404

Behavior Research Methods (2023) 55:4403–4418

factor vector, say η = (η1, η2, ..., ηM). This probability is
expressed as:

πi(η) = (πi0(η), πi1(η), ..., πi(C−1)(η)), (1)

where πic(η) is the conditional probability of the event vi =
c given the trait level η, i.e., πic(η) = Pr(vi = c|η). Note
that η is a latent variable that cannot be directly observed.
The latent factor is often assumed to be normally distributed
with zero mean, i.e., Pr(η) = Normal(0, �). In particular,
the covariance matrix � is set to be standardized with φmm′
being the correlation of ηm and ηm′ .

The exact functional form of πi(η) depends on the
IFA model class. For example, the graded response model
(GRM; Samejima, 1969) assumes that:

πic(η) = 1

1 + exp
(−νic − λT

i η
)− 1

1 + exp
(−νi(c+1) − λT

i η
) , (2)

where vic is the intercept for the cth response category
of item i such that −∞ = νiC < νi(C−1) < ... <

νi0 = ∞, and λi = (λi1, λi2, ..., λiM) is an M-dimensional
loading vector for item i. Another famous example is the
generalized partial credit model (GPCM;Muraki, 1992) that
assumes:

πic(η) = exp
∑c

j=0

(
νij + λT

i η
)

∑C−1
k=0 exp

∑k
j=0

(
νij + λT

i η
) , (3)

where νi0 + λT
i η is defined as zero. Both GRM and GPCM

use linear predictors of the form:

τic = νic + λT
i η. (4)

Hence, GRM and GPCM can be formulated as generalized
linear multivariate models (Fahrmeir & Tutz, 1994) if η can
be directly observed. For more IFA model classes, refer to
van der Linden (2016).

Marginal likelihood via MHRM

Consider a random sample V = (vn)
N
n=1 of size N .

Let θ denote the parameter vector containing all freely
estimated model parameters including the intercepts (νic),
the loadings (λim), and the correlations among factors
(φmm′). To estimate θ , MML adopts the following log-
marginal likelihood function:

(θ; V) = 1

N

N∑

n=1

(θ; vn), (5)

where

(θ; v) = log

[∫
Pr(v|η; θ)Pr(η; θ)dη

]
. (6)

Any maximizer θ̂ for
(θ; V) is called an MML estimate
of θ . When M ≥ 5, the integral is generally evaluated by
Monte Carlo methods, among which MHRM is one of the
most often used.

Let H = (ηn)
N
n=1 denote the N × M array with

ηn as the true factor level corresponding to vn. The
MHRM can be understood as an expectation maximization
(EM; Dempster, Laird, & Rubin, 1977) algorithm that
augments latent factors into the so-called complete data
likelihood, denoted by
(θ; V,H), and then maximizes
this likelihood to obtain an MML estimate. In particular,
MHRM uses the Metropolis–Hastings (MH) method to
sample latent factors from their posterior distributions and
then implements a Robbins–Monro (RM) step to update
the current parameter estimate. An implementation of
MHRM is presented in Algorithm 1 (for details, see Cai,
2010a).

Algorithm 1 Metropolis–Hastings Robbins–Monro (MHRM)
algorithm.

4405

Behavior Research Methods (2023) 55:4403–4418

Vectorization on GPU and xifa

GPU and vectorizedMHRM

GPU was originally designed for graphical processing.
Today, GPU also serves as a tool for general purpose
scientific computing. While CPU runs still much faster than
a single GPU thread, the advantage of GPU computing
lies in its high capacity of parallelization. In fact, most
modern deep learning implementations highly rely on GPU
(see CH12 in Goodfellow, Bengio, & Courville, 2016).
According to the GPU computing era, “Today’s GPUs
use hundreds of parallel processor cores executing tens of
thousands of parallel threads to rapidly solve large problems
having substantial inherent parallelism.” (Nickolls & Dally,
2010, p. 59). For example, NVIDIA GeForce RTX 2080 Ti,
the local GPU used in our study, possesses 68 streaming
multiprocessors (SMs), each SM containing 64 CUDA
cores. Hence, a total of 4352 cores can be used for floating
point operations.

Based on the powerfulness of GPU, we propose a
vectorized version of the former MHRM algorithm for IFA.
We call it vectorized MHRM (VMHRM) and its details can
be found in Appendix A. The principle here is to stack data
into higher order arrays and then use vectorized operations

during computation. Besides the VMHRM itself, several
practical considerations are also presented in Appendix B.
These considerations include handling missing data, dealing
with different numbers of categories, imposing simple
parameter constraints, tuning jumping standard deviation,
avoiding non-positive definite correlation matrices, and
evaluating log-marginal likelihood .

Python package xifa

xifa is a Python package for accelerated item factor
analysis. It is established on Jax (Bradbury et al., 2018),
which uses the XLA (accelerated linear algebra) compiler
for efficient array computation on GPUs. In addition, Jax
provides a complete treatment for automatic differentiation
allowing us to easily modularize our code for different
IFA models. xifa supports IFA by GRM (Samejima,
1969) and GPCM (Muraki, 1992). The analysis can be
either exploratory or confirmatory. Moreover, xifa is able
to handle the presence of missing responses and unequal
category items.

The design of xifa is highly motivated by
scikit-learn (Pedregosa et al., 2011), a famous
machine learning library in Python. An example xifa
syntax for conducting GRM is

>>> from xifa import GRM # import GRM from xifa

>>> grm=GRM(data=data, n_factors=5) # create a GRM object

>>> grm.fit() # fit model to data

>>> grm.params["loading"] # extract loading estimates

Here, data and n factors are used to specify the data
for analysis and the number of factors for exploratory IFA.
Note that in this example the data set, also called data, is
already prepared.

A complete tutorial with details for analyzing big-
five personality data is available on GitHub.1 The online
material is a Jupyter notebook that can be interactively
run on Colab. Thus, here we only mention several key
points regarding using xifa. First, the data set must be
an N × I NumPy array with integers coded from 0 to
C−1, whereC is the maximal number of ordered categories.
Missing values must be represented by nan provided by
NumPy. Second, xifa allows users to flexibly change
hyperparameters for VMHRM. However, our simulations
showed that the default setting generally performed well
(see next section). Hence, in most cases users could simply
use this default setting. In the fitting process, xifa prints
the acceptance rate of MH samples and the value of minus
complete data likelihood for each step. This information
would be useful to monitor the convergence of VMHRM. If

1https://github.com/psyphh/xifa/blob/master/examples/ipip50.ipynb.

the algorithm unfortunately doesn’t converge, one might (1)
try more steps for warm up and RM updating; (2) change
hyperparameters for MH sampling (e.g., jumping variance,
or number of chains). Third, when N , I , and M are large
(e.g., N ≥ 50000, I ≥ 200, M ≥ 20), we may encounter
GPU out-of-memory errors. An effective way to handle
this error is to use the mini-batch approach described in
Appendix B. To determine a “good” batch size, just try
batch size = round(N/L) with L = 2, 3, 4, ... and
use the smallest L such that no GPU out-of-memory error
arises.

Numerical experiments

Overview of experiments

In this section, two numerical experiments are presented.
Experiment A was designed to compare the performance
of VMHRM implemented by xifa with standard of
care methods under small number of factors (M = 1,
3, 5). In particular, we chose the BAEM and MHRM

4406

https://github.com/psyphh/xifa/blob/master/examples/ipip50.ipynb.

Behavior Research Methods (2023) 55:4403–4418

performed by mirt (Chalmers, 2012), a popular R package
for multidimensional IRT. Experiment B was designed
to compare VMHRM with an IFA procedure for high-
dimensional settings (M = 10, 15, 20). We chose IWAE
because: (1) it performed well in the work (see Urban &
Bauer, 2021); (2) its code is available in PyTorch, which
can be run on GPU.

In both experiments, we varied the number of factors
(M), the number of items (I), and the case size (N).
These factors were mainly used to manipulate the degree of
computational complexity. The number of items was set to
I = 5 × M and I = 10 × M . The case size was set to
N = 500, 1000, 2000, 4000, and 8000. The levels of our
manipulation partly covered the simulation design used in
Chen et al. (2019) and Urban and Bauer (2021). As a result,
there were 60 = 3 × 2 × 5 settings considered in each
experiment. For each setting, the number of replications
was 100. Both experiments were conducted on a HP Z4
workstation with Intel Xeon W-2123 CPU (3.60 GHz), 32
GB RAM, and NVIDIA GeForce RTX 2080 Ti GPU.

For each replication, a data set was generated by GRM.
Let 1M denote an M-dimensional vector with all elements
being one. An individual latent factor was first sampled
through η ∼ Normal(0, �), where� = 0.3×1M1T

M +0.7×
IM . The corresponding linear predictor was an I × (C + 1)
matrix τ = N + �η with

N = 1I ⊗ (−∞, −1, −.4, .4, 1, ∞)T ,

� = IM ⊗ [1K ⊗ (2, 1.5, 1, 1.5, 2)] ,
(7)

where K = 5, 10, and ⊗ denotes the Kronecker product.
The ordinal response v was obtained by Eq. 2. These
parameter values represent an ideal setting which assumes
symmetric thresholds and large communalities ranged from
.5 to .8. We believe that this ideal setting could reduce
the occurrence of non-converged solution (e.g., Li, 2016).
To make the comparison fair, the different algorithm
implementations used the same data set for fitting.

The performance evaluation was based on three metrics:
mean square error (MSE), average computational time
(speed), and average number of iterations (efficacy). MSE
evaluated the overall estimation quality through:

̂MSE = 1

100

100∑

r=1

1

P

P∑

p=1

(
ϑ̂ (r)

p − ϑ∗
p

)2
, (8)

where ϑ∗
p denotes the true value of the pth model parameter,

and ϑ̂p denotes the corresponding estimate at the rth

replication.

Experiment A: Low-dimensional settings

Experiment A compared four implementations under
M = 1, 3, and 5, including xifa-VMHRM1,

xifa-VMHRM5, mirt-MHRM, and mirt-BAEM. The
number after VMHRM indicates how many MH draws
were used to approximate complete data likelihood. As
mentioned before, VMHRM generated K samples by con-
structing K parallel chains, different from the Markov chain
Monte Carlo (MCMC) practice. In theory, larger K results
in better approximation for the complete data likelihood.
For mirt-MHRM, only K = 1 was used, so we omitted the
indicator after the name. Only non-zero loadings, the finite
intercepts, and the factor correlations were estimated here.
In other words, confirmatory IFA was considered.

Both VMHRM and MHRM were conducted through
three stages: (1) 150 warmup steps for MCMC; (2) 200
StEM iterations to obtain a starting value for RM update;
(3) at most 500 MHRM iterations for computing an MML
estimate. In each StEM and MHRM iteration, there were
four warmup steps for MH sampling. The gain sequence
γt = 1

t
was used for RM updating. BAEM used the number

of quadrature points per dimension as 61, 15, and 7 for 1, 3,
and 5 factor conditions, respectively. The maximal number
of BAEM iterations was set as 700. For all implementations,
the tolerance for declaring convergence was set as ε =
10−4. As VMHRM and MHRM are stochastic algorithms,
they were considered to converge when three successive
differences between the estimates were below the tolerance.

Figure 1 displays the evaluation metrics of Experiment
A. The MSE of xifa-VMHRM1, xifa-VMHRM5, and
mirt-MHRM were almost the same, suggesting equal
quality estimates. However, the mirt-BAEM estimates
only coincided with those of other methods under M = 1
and M = 3. For M = 5, mirt-BAEM resulted in higher
MSE because of too few quadrature points per dimension.
Note that using more quadrature points here is not a remedy
either due to its extra computational time.

The average computational time indicates that
xifa-VMHRM1 and xifa-VMHRM5 were reasonably
fast, ranging from 3.45 s to 9.43 s across all conditions.
They were the fastest under M = 3 and M = 5. Here,
xifa-VMHRM1 was slightly faster than xifa-VMHRM5.
On the other hand, the average running time of
mirt-MHRM and mirt-BAEM varied largely across con-
ditions. The average running time of mirt-MHRM ranged
from 4.69 s to 472.61 s, and for mirt-BAEM, it ranged
from 0.11 s to 499.56 s. The mirt-BAEM was the fastest
implementation for M = 1 (below 1 s), but the slowest for
M = 5 (499.56 s).

The average number of iterations shows that
mirt-BAEM was the most effective, followed by
xifa-VMHRM5, xifa-VMHRM1, and mirt-MHRM. The
lower number of iterations of mirt-BAEM is likely related
to its deterministic nature. The efficacy of xifa-VMHRM5
over xifa-VMHRM1 is due to the higher number of MH
draws for approximation. The inefficacy of mirt-MHRM

4407

Behavior Research Methods (2023) 55:4403–4418

Fig. 1 Mean square error, average computational time, and average number of iterations for Experiment A

is unexpected. For most conditions, the average number
of iterations for mirt-MHRM was 700, indicating the
lack of convergence.2 In spite of the lack of convergence,
mirt-MHRM still yielded estimates with comparable MSE.

To better understand the acceleration due to GPU, we
conducted two supplemental analyses. (1) For each condi-
tion, we calculated the ratio of average computational times

2By default, the mirt sets the tolerance to 10−3 for MHRM. This
looser criterion could yield better convergence results. However, it
resulted in estimates with unacceptably high MSE. Hence, we decided
to use ε = 10−4 for mirt-MHRM in the final experiment versions.

per iteration between mirt-MHRM and xifa-VMHRM1.
This metrics ignored that mirt-MHRM made more iter-
ations. The five-number summary (i.e., minimum, first
quartile, median, third quartile, and maximum) of these
ratios across conditions was 0.57, 2.20, 5.53, 10.53, and
37.08, respectively. In general, GPU had more effect under
larger conditions (with respect to M , I , and N). We
only found xifa-VMHRM1 slower than mirt-MHRM per
iteration when M = 1 and N ≤ 1000. (2) We ran
xifa-VMHRM1 on CPUwith only ten replications, and cal-
culated the ratio of average computational times between

4408

Behavior Research Methods (2023) 55:4403–4418

CPU and GPU implementations. The resulting five-number
summary was 1.74, 5.13, 9.54, 15.99, and 28.72. The accel-
eration increased with either of M , I , and N . The GPU-
implemented VMHRM was at least 7 times faster than its
CPU version MHRM when M ≥ 3 and N ≥ 2000. Note
that these computational times were determined from the
same Jax code.

Experiment B: High-dimensional settings

Experiment B compared four implementations under
M = 10, 15, and 20, including xifa-VMHRM1,
xifa-VMHRM5, torch-IWAE5, and torch-IWAE25.
The number after IWAE indicates how many IW samples
were used. In theory, more IW samples result in more
accurate approximation for marginal likelihood at the price
of higher computational complexity. Because the available
IWAE code was made for exploratory IFA, only factor
loadings and intercepts were estimated in Experiment
B. MSE was calculated from rotated results made by
GEOMIN (Yates, 1987) via R package GPArotation
(Bernaards & Jennrich, 2005). The maximal number of
iterations for rotation was set to 5000. Note that the gradient
projection algorithm (GPA; Jennrich, 2002) might not
converge. Hence, for each rotation task, GPA was conducted
repeatedly with different starting values up to 20 times. If no
attempts converged, we chose the solution with the lowest
GEOMIN function value.

The implementation of VMHRM was the same as in
Experiment A. For IWAE, the implementation and the
hyperparameter values were established mainly according
to Urban and Bauer (2021). The maximal number of
iterations was set to 700. Note that IWAE utilized the
AMSGrad method (Reddi, Kale, & Kumar, 2018) that
updated estimates with mini-batches of size 32. Hence, each
iteration updated estimates ceil(N/32) times.

Figure 2 displays the evaluation metrics of Experiment B.
The four implementations resulted in quite different MSEs,
except for two cases: (1) M = 10 and I = 50; (2) M =
15 and I = 75. Under other conditions, torch-IWAE5
and torch-IWAE25 resulted in much higher MSE
than xifa-VMHRM1 and xifa-VMHRM5. Unfortunately,
IWAE seemed to yield inconsistent estimators when both M

and I were large. For example, the MSE did not change by
sample size when M = 20 and I = 200 were used. The
inconsistency of IWAE might be fixed by tuning the model
and optimization hyperparameters. However, it is a difficult
and time consuming task.

The average computational time of xifa-VMHRM1 and
xifa-VMHRM5 were the lowest among the four, ranging
from 6.07 s to 27.73 s. The minimum corresponded to the
smallest condition: M = 10, I = 50, N = 500. The

maximum corresponded to the largest condition: M = 20,
I = 200, N = 8000. Since xifa-VMHRM1 sampled
fewer MH draws than xifa-VMHRM5, it was slightly
faster under most conditions. In contrast, torch-IWAE5
and torch-IWAE25 were much slower. Their average
computational times ranged from 86.21 s to 206.46 s.

It is worth noting that xifa-VMHRM5 was occasionally
faster than xifa-VMHRM1 even under a small sample
size like N = 500. The reason is that xifa-VMHRM5
used fewer iterations to finish the optimization task. This
result demonstrates the usefulness of VMHRM on GPU
even under small sample sizes. By sampling more MH
draws, xifa-VMHRM5 could yield a better approximation
for complete data likelihood in each iteration. The average
number of iterations were the highest among the four with
torch-IWAE25 and torch-IWAE5 under N = 500.
However, it decreased with N . Because the MSE of IWAE
under large sample sizes became unacceptably high, it is
meaningless to appreciate the smaller number of iterations
of IWAE. Perhaps, the current convergence criterion of
IWAE is too loose for large IFA models (e.g., M ≥ 15
and I ≥ 150). However, this speculation requires further
experimentation to confirm.

To better understand the acceleration due to GPU, we
also ran Experiment B on CPU with only ten replications,
and calculated the ratio of average computational times
between CPU and GPU implementations. For VMHRM, the
five-number summary of the ratio was 6.42, 16.51, 25.84,
29.06, and 33.80, indicating large accelerations under most
settings. In contrast, the summary for IWAE was only 0.28,
0.55, 0.70, 0.97, and 2.10. The GPU version was only
faster than the CPU with larger M , I , and N . These results
indicate that a GPU implementation alone is not sufficient
for speed-up. The nature or the design of an algorithm is
still important. By default, the IWAE code only processes
a small batch of data for updating estimates. This mini-
batch approach might reduce the capacity and effectiveness
of parallelization. However, a more detailed analysis and
experiment are required to understand this phenomenon.

A real data example

In this section, we demonstrate the powerfulness of
VMHRM on GPU through a real data example. Two
versions of IPIP-NEO (International Personality Item
Pool NEO) data sets were used for demonstration
(Johnson, 2015, 2018). The IPIP-NEO scale is com-
posed of 300 items to measure 30 personality facets
belonging to the Big Five traits — neuroticism, extro-
version, openness, agreeableness, and conscientiousness.
For each item, a personality description is presented (e.g.,

4409

Behavior Research Methods (2023) 55:4403–4418

Fig. 2 Mean square error, average computational time, and average number of iterations for Experiment B

worries about things), and then the respondent is required
to choose a degree of agreement from very inaccu-
rate, moderately inaccurate, neither accurate nor inac-
curate, moderately accurate, and very accurate. The
first version, IPIPv1 included the responses of 20,993
subjects (Johnson, 2015). The second version, IPIPv2,
included 307,313 subjects (Johnson, 2018). Zhang et al.
(2020) used IPIPv1 to demonstrate their improved
StEM.

We fit a 30-dimensional confirmatory GPCM model
to both IPIPv1 and IPIPv2. Each item was assumed to

be influenced by only one of the 30 personality facets.
The correspondence between items and facets could be
found in Johnson (2021). These personality facets were
set to be correlated. To find MML estimates under IPIPv1
and IPIPv2, we used the same implementation described
in our numerical experiments except that: (1) the factor
correlation matrix was updated by an empirical method to
avoid non-positive definiteness; (2) because of the large
sample size of IPIPv2, an mini-batch approach was used
to calculate the gradient with a batch size of 80000 (for
details, see Appendix B). Code for the real data example is

4410

Behavior Research Methods (2023) 55:4403–4418

Table 1 The marginal maximum likelihood estimate for factor loadings under IPIPv2

Subtraits V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Neuroticism

N1: Anxiety 1.32 1.07 1.21 2.01 1.36 1.00 1.04 0.80 0.83 0.83

N2: Anger 2.21 2.18 1.71 1.05 2.20 1.83 1.40 1.47 1.17 0.69

N3: Depression 1.70 2.31 2.19 2.10 0.90 1.35 0.77 0.96 1.92 1.72

N4: Self-consciousness 0.94 0.77 1.18 0.99 0.72 0.53 0.71 0.61 0.78 0.96

N5: Immoderation 0.57 0.56 0.63 0.73 0.41 0.95 0.88 0.98 0.40 0.51

N6: Vulnerability 1.53 1.26 1.37 0.72 1.27 1.39 0.74 1.28 0.82 1.34

Extroversion

E1: Friendliness 1.36 1.02 2.09 1.76 0.95 0.74 1.05 1.46 0.57 1.08

E2: Gregariousness 1.30 1.10 1.07 0.76 0.68 1.12 1.10 1.41 1.65 1.05

E3: Assertiveness 1.68 1.38 0.68 0.56 1.50 1.20 1.06 0.74 0.63 0.67

E4: Activity Level 1.28 1.39 0.96 0.70 0.36 0.53 0.34 0.39 0.30 0.45

E5: Excitement-seeking 1.46 1.39 1.34 0.74 0.89 1.08 0.57 0.92 0.43 0.44

E6: Cheerfulness 1.26 1.77 0.56 0.80 1.37 1.32 0.82 0.76 0.60 0.45

Openness

O1: Imagination 1.20 1.12 1.96 1.58 0.88 0.71 1.41 0.92 0.83 1.15

O2: Artistic Interests 1.96 0.54 0.98 0.49 1.02 2.58 0.28 1.39 0.24 0.43

O3: Emotionality 1.30 0.65 0.34 0.13 0.32 1.23 1.40 0.61 0.82 0.90

O4: Adventurousness 0.68 0.61 0.55 0.82 1.02 1.91 1.90 0.64 0.32 0.71

O5: Intellect 0.67 1.13 1.05 0.84 0.93 1.02 1.20 1.49 1.42 1.25

O6: Liberalism 0.76 0.37 0.79 0.33 0.86 0.49 0.75 0.89 1.18 0.38

Agreeableness

A1: Trust 1.52 1.72 1.66 1.00 1.20 0.53 2.12 0.90 0.66 0.96

A2: Morality 0.40 0.58 0.42 1.06 0.63 1.30 0.61 0.66 1.70 0.95

A3: Altruism 1.07 0.88 1.38 1.49 0.67 0.77 1.05 0.68 1.00 1.17

A4: Cooperation 0.32 0.26 0.38 0.66 0.70 0.51 0.95 1.25 0.85 0.54

A5: Modesty 0.34 0.45 0.36 0.29 0.75 2.79 2.86 0.41 0.42 0.49

A6: Sympathy 0.97 1.24 0.00 0.62 0.82 0.84 0.34 0.70 0.59 0.49

Conscientiousness

C1: Self-efficacy 1.17 1.32 1.46 0.90 1.25 1.62 0.79 0.82 0.98 0.61

C2: Orderliness 1.31 1.31 0.48 1.19 0.92 0.85 1.07 0.90 0.57 0.78

C3: Dutifulness 0.96 0.93 0.42 1.06 0.73 1.02 1.01 0.83 1.02 0.86

C4: Achievement-striving 0.78 1.59 0.97 0.93 1.27 0.67 0.40 0.63 1.13 1.16

C5: Self-discipline 0.96 0.88 1.51 1.20 1.26 1.61 1.22 1.32 1.77 0.74

C6: Cautiousness 0.46 0.50 0.34 1.85 1.42 0.86 1.65 0.75 2.22 0.61

Note that V1, V2,..., V10 are not the labels for the 300 IPIP items. They represent the ten prespecified indicators for the corresponding subtraits

available as supplemental material.3 The analyses were run
on Kaggle (https://www.kaggle.com), a platform for data
science. Fantastically, Kaggle provided GPU with 16 GB
memory, exceeding our local GPU machine.

3https://github.com/psyphh/xifa/blob/master/examples/ipip300v1.ipy-
nb; https://github.com/psyphh/xifa/blob/master/examples/ipip300v2.
ipynb.

With a GPU on Kaggle, the VMHRM used 30 s to finish
the optimization tasks under IPIPv1. The same took 16
min under IPIPv2. As a comparison, the improved StEM
used 32 min to find an estimate based on only the 7325
complete data cases in IPIPv1 (Zhang et al., 2020). The
VMHRM did not drop any incomplete case due to the
full information approach we introduced to handle missing
values. Since the sample size of IPIPv2 is large, we only

4411

https://www.kaggle.com
https://github.com/psyphh/xifa/blob/master/examples/ipip300v1.ipynb
https://github.com/psyphh/xifa/blob/master/examples/ipip300v1.ipynb
https://github.com/psyphh/xifa/blob/master/examples/ipip300v2.ipynb
https://github.com/psyphh/xifa/blob/master/examples/ipip300v2.ipynb

Behavior Research Methods (2023) 55:4403–4418

Fig. 3 Visualization of the estimated factor correlation matrix under IPIPv2

present its corresponding MML estimate. Table 1 shows the
estimates for the non-zero loadings, and Fig. 3 visualizes the
estimated factor correlation matrix. Their relative values are
quite similar to those found in Zhang et al. (2020).

The log-marginal likelihood under the MML estimate
was evaluated by Monte Carlo integration with 5000
quadrature points. To avoid out of memory problems, the
batch size was set to 128. The evaluation took 8 s for
IPIPv1 and 205 s for IPIPv2. The likelihood value was
−388.535 for IPIPv1 and negative infinity for IPIPv2. We
found that the 53, 557th and 103, 686th cases corresponded
to negative infinity. It seems that the two cases correspond
to “weird” response patterns. The log-marginal likelihood
without these two cases was −391.606.

Discussion

MML estimation in IFA is a challenging task under high
dimensionality. In this study, we proposed a VMHRM
algorithm for both the GRM and the GPCM. The algorithm

is implemented by xifa, a Python package. Our
numerical experiments demonstrated that VMHRM onGPU
may run 33 times faster than its CPU implementation. The
medians of acceleration were nine times for dimensions
≤ 5, and 25 times for dimensions ≥ 10. The degree
of acceleration increases with the number of factors, the
sample size, and the number of items. Therefore, the
GPU-implemented VMHRM is most appropriate for high-
dimensional IFA with large data sets. Even for small data
sets, VMHRM is useful for handling more MH samples.

When the number of factors is at least five, the GPU-
implemented VMHRM is much faster than existing IFA
implementations such as the BAEM, MHRM implemented
by mirt, and the IWAE. With 20 factors, 200 items,
and 8000 cases, VMHRM used about 28 s to finish the
optimization task. This progress in computation time is
a breakthrough for high-dimensional IFA. With the help
of GPU, it is possible to use MML for many large-scale
psychological and educational applications.

The fact that GPU acceleration exists does not imply
that every code could be accelerated on GPU without

4412

Behavior Research Methods (2023) 55:4403–4418

modification. For example, the IWAE code written by
Urban and Bauer (2021) is surprisingly slower on GPU
under most conditions. The degree of GPU acceleration
depends on whether related operations can be parallelized.
We have seen that GPU takes advantage of larger input
arrays. Otherwise, a CPU-based serial computation remains
faster.

VMHRM is not limited to rely on GRM or GPCM. Other
types of IFA models (e.g., item response tree, Bockenholt,
2012) could be used after replacing Eqs. 11 and 12 by
category response functions. The deep learning libraries
would automatically calculate the gradients via automatic
differentiation. As a result, VMHRM would still compute
the corresponding MML estimates. Our proposed algorithm
could even be modified by other sampler and updating
methods. It is possible to design new algorithms using
the No-U-Turn Sampler (NUTS; Hoffman & Gelman,
2014), Polyak-Ruppert averaging (Polyak & Juditsky, 1992;
Ruppert, 1988), and stochastic proximal methods (Zhang
& Chen, 2021). It would be interesting to compare
the empirical performance of VMHRM with these new
algorithms.

The major limitation of the present work is that VMHRM
was only evaluated under very restricted simulation settings.
Our simulation uses a GRM model with “ideal” parameter
values to generate data. In addition, the simulation only
considers simple stochastic gradient descent with γt = 1

t

after a fixed number of StEM steps. It would be interesting
to see the behavior of VMHRM under γt = 1

tα
for α ∈

(0.5, 1) after an adaptive number of StEM steps (e.g., Zhang
et al., 2020). With the acceleration made by GPU, it is
possible to evaluate MML algorithms for IFA in a more
comprehensive manner.

We believe that many psychometric modeling methods
would also benefit from GPU provided that their relevant
operations are appropriately vectorized. For example,
Bayesian psychometric models (e.g., Edwards, 2010;
Muthén & Asparouhov, 2012) could be speeded up by
constructing parallel Markov chains as we have done it with
our VMHRM. We expect that GPU computing will play a
central role in large-scale psychometric modeling in the near
future.

Open practices statements

The source code of the software package and real data
example are available at https://github.com/psyphh/xifa.
Data derived from public domain resources. None of the
experiments were preregistered.

Appendix A: The VMHRM algorithm

Before introducing the VMHRM, we first go through the
notations. Recall that vn = (vn1, vn2, ..., vnI) denotes the
response vector of nth subject on I polytomous items. The
event vni = c can be represented by a C-dimensional
one-hot encoding vector yni , that is,

vni = c ⇐⇒ yni =
C elements︷ ︸︸ ︷

(0, ..., 0︸ ︷︷ ︸
c 0’s

, 1, 0, ..., 0︸ ︷︷ ︸
C − c − 1 0’s

) . (9)

In other words, the (c + 1)th element of yni is used to
indicate whether the event vni = c occurs. Hence, the
random sample V can be equivalently represented by Y , an
N × I × C array with yn = (yn1, yn2, ..., ynI) being its nth

element. In addition, the log-probability of vni given ηn can
be expressed in inner product form:

log Pr(yni |ηn) =
C−1∑

c=0

ynic logπic(ηn)

= yT
ni logπi(ηn).

(10)

In each MH step, we sample K valid draws for each
observation. Hence, the MH samples can be represented by
a K ×N ×M array H̃ with η̃knm being its (k, n, m) element.
The intercepts νic are packed into N, which is an I × C∗
matrix, where C∗ = C + 1 for GRM and C∗ = C for
GPCM. Note that N is the uppercase form of ν so that it
is different from N , the sample size. The loadings λim are
placed into �, which is an I × M matrix. The correlation
of η is already a M × M matrix, denoted by �. The three
model parameter matrices can be joined into θ = {N, �, �}.
Here, θ is not a vector anymore. θ can be understood as
a container in programming languages, such as list and
dict in Python. Note that most psychometric works use
θ to pack the freely estimated elements of N, �, and�. That
approach would result in unnecessary data manipulation for
us regarding reformatting parameters and their gradients.

We separate the computations related to VMHRM
algorithm into four main parts: (1) computing category
response probabilities, (2) evaluating complete data log-
likelihood, (3) sampling MH draws, and (4) updating
parameter estimates by RM. Because standard linear algebra
only handles 1D and 2D array computations, we will use
functions in NumPy (Harris et al., 2020) and the rule of
broadcasting (The NumPy Community, 2021) to express
higher order array operations in the following discussion. It
should be noted that the rule of broadcasting plays a central
role in vectorization with deep learning libraries.

4413

https://github.com/psyphh/xifa

Behavior Research Methods (2023) 55:4403–4418

1. To calculate category response probabilities, we intro-
duce the linear predictor τknic = νic ± λT

i η̃kn for each
combination of k, n, i, c. For GRM, these quantities can
be computed by the following vectorized operations:

T︸︷︷︸
K×N×I×(C+1)

= − N︸︷︷︸
I×(C+1)

−expand dims4

K×N×I︷ ︸︸ ︷⎛

⎝ H̃︸︷︷︸
K×N×M

�T
︸︷︷︸
M×I

⎞

⎠

︸ ︷︷ ︸
K×N×I×1

,

(11)

where expand dims4(·) adds a new dimension
(or axis) to the fourth axis of H̃�T . Note that
expand dims4(·) doesn’t change the actual data in
H̃�T . Let� denote aK×N×I×C array with πic(̃ηkn)

being its (k, n, i, c) element. The GRM-implied � can
be obtained from T by:

�︸︷︷︸
K×N×I×C

= diff4

⎛

⎝expit

⎛

⎝ T︸︷︷︸
K×N×I×(C+1)

⎞

⎠

⎞

⎠ .

(12)

Here, expit(·) is an element-wise operator that
transforms τknic to 1

1+exp(−τknic)
, while diff4(·)

is the lagged difference operator along the fourth
axis of the input array, i.e., diff4(·) calculates

1
1+exp(−τknic)

− 1
1+exp(−τkni(c+1))

. For GPCM, we can
obtain the cumulative sum of linear predictors via the
expression:

T∗
︸︷︷︸

K×N×I×C

=

I×C︷ ︸︸ ︷

cumsum2

⎛

⎝ N︸︷︷︸
I×C

⎞

⎠ +
K×N×I×C︷ ︸︸ ︷

expand dims4
(
H̃�T

)

︸ ︷︷ ︸
K×N×I×1

× d︸︷︷︸
C

,

(13)

where d = (0, 1, ..., C − 1) is a scoring vector, and
cumsum2(·) calculates the cumulative sum along the
second axis. The GPCM-implied response probabilities
equal:

�︸︷︷︸
K×N×I×C

= exp(T∗)︸ ︷︷ ︸
K×N×I×C

/

K×N×I×1︷ ︸︸ ︷

expand dims4

⎛

⎜
⎝sum4

(
exp(T∗)

)

︸ ︷︷ ︸
K×N×I

⎞

⎟
⎠ .

(14)

2. To evaluate complete data log-likelihoods, we first
target individual likelihood values, that is, for each pair
of k and n, we compute:

(θ; yn, η̃kn) =
I∑

i=1

yT
ni logπi (̃ηkn) − 1

2

[
M log(2π)

− log |�| − η̃T
kn�

−1η̃kn

]
. (15)

These individual values are necessary for (1) obtaining
the value of overall complete data log-likelihood; and
(2) going through the acceptance rule in MH sampling.
Let
ind(θ; Y, H̃) denote the K ×N matrix of individual
complete data log-likelihoods. It can be expressed
through the following expression:

ind(θ; Y, H̃)︸ ︷︷ ︸
K×N

= sum3,4

K×N×I×C︷ ︸︸ ︷⎛

⎝ Y︸︷︷︸
N×I×C

× log(�)
︸ ︷︷ ︸

K×N×I×C

⎞

⎠

︸ ︷︷ ︸
K×N

− M
2 log 2π
︸ ︷︷ ︸

scalar

− 1
2 log |�|
︸ ︷︷ ︸

scalar

(16)

− 1
2sum3

⎛

⎜⎜
⎜
⎜⎜
⎝
square

K×N×M︷ ︸︸ ︷⎛

⎝ H̃︸︷︷︸
K×N×M

L−1
︸︷︷︸
M×M

⎞

⎠

⎞

⎟
⎟
⎟
⎟⎟
⎠

︸ ︷︷ ︸
K×N

,

where L−1 is the Cholesky factor of �−1, square(·)
is an element-wise operator for square and sumi,j(·)
calculates sums over ith and j th axes. The first term in
Eq. 16 is a vectorzied expression for Pr(yn|ηkm). The
last term calculates the Mahalanobis distances of ηkn’s
from the mean, the central part to calculate multivariate
normal density. The overall likelihood can be obtained
by averaging
ind(θ; Y, H̃) over the first and second
dimensions:

(θ; Y, H̃)︸ ︷︷ ︸
scalar

= mean

⎛

⎝
ind(θ; Y, H̃)︸ ︷︷ ︸
K×N

⎞

⎠ . (17)

3. In order to get K many draws during parallel MH
sampling, we can establish K independent Markov
chains. This approach is more efficient when fewer
per-iteration warmup steps are required. Let Z̃ denote
a K × N × M array with its elements ζ̃knm being
independent samples from Normal(0, σ 2

jump):

Z̃︸︷︷︸
K×N×M

∼ normalK,N,M
(
0, σ 2

jump

)
. (18)

Let H̃′ = H̃ + Z̃. Then, the acceptance probability for
each element of H̃′ can be expressed as:

A︸︷︷︸
K×N

= minimum

⎛

⎝
ind(θ; Y, H̃′)/
ind(θ; Y, H̃)
︸ ︷︷ ︸

K×N

, 1︸︷︷︸
scaler

⎞

⎠ ,

(19)

4414

Behavior Research Methods (2023) 55:4403–4418

and the updated MH sample for the next step can be
expressed as:

H̃︸︷︷︸
K×N×M

= where

⎛

⎝B, H̃′, H̃︸ ︷︷ ︸
K×N×M

⎞

⎠ , (20)

where minimum(·, ·) returns the element-by-element
minimum of two arrays, B is a K × N × M array
with 0-1 elements βknm indicating whether η′

knm should
be accepted, and where(·, ·, ·) is an element-by-
element if-else statement. The condition array B can be
constructed by sampling a Bernoulli distribution with
success probability A. Note that B must be constructed
in such a way that the elements in η′

kn and ηkn be
simultaneously selected.

4. The final step is to update the parameter estimate.
Let ∂

∂θ

̂ ≡ ∂

∂θ

(θ̂; Y, H̃) denote a container with

elements as the gradients for parameter matrices,
i.e., ∂

∂θ

̂ = {

∂
∂N
̂, ∂

∂�

̂, ∂

∂�

̂
}
. The elements of this

gradient container can be calculated via automatic
differentiation in deep learning libraries. The formula
for model parameter update is the following:

θ̂ ← θ̂ + γ × ∂

∂θ

̂. (21)

Here, + and × are interpreted in element-by-element
manner. Note that current libraries for GPU computing
do not have built-in vectorized operations between
standard containers. Hence, N̂, �̂, and �̂ are updated
sequentially, while the elements of each parameter
matrix are updated in parallel. In addition, AD does not
take into account the symmetry of �. Hence, before
updating �, we need to adjust ∂

∂�

̂ by

∂

∂�

̂ ← ∂

∂�

̂ + ∂

∂�T

̂ − ∂

∂�

̂ × IM, (22)

where IM denotes the M × M identity matrix (see
Corollary 1 in McCulloch, 1982).

Appendix B: Practical considerations
for VMHRM

In this appendix, we present several practical considerations
to optimize the performance and applicability of the
VMHRM algorithm.

Handling missing data When conducting IFA, missing
data may be encountered by either chance (e.g., careless
response) or design (e.g., adaptive testing). In Python,
missing response is represented by a special data type nan
defined in NumPy. To vectorize MHRM in the presence

of missing data, we simply fill the corresponding one-hot
encoding vector with C many zero components:

vni = nan ⇐⇒ yni =
C elements︷ ︸︸ ︷

(0, 0, ..., 0︸ ︷︷ ︸
C 0’s

) .

As a result, the log-probability for vni = nan
given any level of ηn will be zero by virtue of
log Pr(yni |ηn) = yT

ni logπi(ηn). The vectorized computa-
tion for log-likelihood can be used as described in Eq. 16.
If the missing mechanism satisfies the so-called missing at
random condition, the full information approach here could
still yield a consistent estimate (Rubin, 1976).

Dealing with different numbers of categories Sometimes,
we encounter the situation that the numbers of categories for
the test items are different, that is, Ci �= C for some i. In
this situation, we could still represent the whole responses
(vi) and intercepts (νic) by an I × C one-hot encoding
matrix y and an I × C∗ intercept matrix N, respectively,
where C∗ = C + 1 for GRM and C∗ = C for GPCM
with C = max{Ci}Ii=1. However, for any item i such that
Ci < C, the ith row of y and N should be respectively
padded by (1) yic = 0 if c ≥ Ci ; and by (2a) νic = −∞
if c ≥ Ci for GRM; or (2b) νic = 0 if c ≥ Ci for
GPCM. By this construction, the vectorized computation for
log-likelihood as described in Eq. 16 remains valid. This
construction implies that πic(η) = 0 and ∂

∂νic

̂ = 0 for

c ≥ Ci , thus the estimate for a fixed threshold does not
change when updating model parameters.

Imposing simple parameter constraints So far, all loadings
and factor correlations were freely estimated. In other
words, only the so-called exploratory IFA was considered.
In practice, we may restrict some elements in N, �, and
� to zero or other values, which leads to the so-called
confirmatory IFA. Let m� denote an I × M mask matrix
with only 0 (false) and 1 (true) logical values such that
the (i, j) element of m� is an indicator whether the (i, j)

element of� is freely estimated. Similarly, we can construct
mN and m� for N and �, respectively, and then put all the
mask matrices into a container mθ = (mN, m�, m�). To
restrict the values of parameters, the updating part in Eq. 21
can be modified as:

θ̂ ← θ̂ + γ × mθ × ∂

∂θ

̂.

Hereby, the mask matrices are used to mask the corre-
sponding gradients so that only freely estimated parameters
be updated. As a result, the estimates will stay in the
constrained parameter space once the starting parameters
satisfy the imposed constraints.

4415

Behavior Research Methods (2023) 55:4403–4418

Tuning jumping standard deviation In Metropolis–
Hastings sampling, a value σjump for jumping standard
deviation must be specified. The smaller σjump, the higher
is the rate for accepting a new Metropolis–Hasting candi-
date. It was suggested that 0.23 is an optimal acceptance
rate for (M > 5; Gelman et al., 2013). To control the
acceptance rate around a target value, the jumping vari-
ance can be adjusted adaptively in each warm-up iteration
by σjump ← σjump ± δ, where δ is a preset number. This
simple adjustment can effectively lead towards the optimal
acceptance rate within 100 iterations if σjump is initialized
as 2.4/

√
M and δ is set as 0.01. Note that the value of

σjump can only be adjusted during the warmup stage. Oth-
erwise, the Markov chain might not converge to its target
distribution (Vihola, 2012).

Avoiding non-positive definite correlation matrices Under
higher dimensionality (e.g., M = 20) and highly correlated
factors (e.g., ρmm′ = 0.8 for many pairs m, m′), our
experience shows that line search methods often result in
non-positive definite (NPD) estimates �̂ for the correlation
matrix. This NPD problem can crush the training process.
To avoid the NPD problem, we can estimate �̂ via RM
update and an empirical correlation matrix of MH samples.
More specifically, �̂ can be updated by:

�̂ ← (1 − γ)�̂ + γR,

where R is an empirical correlation matrix based on
the current H̃. By the normality of the latent factors, R

maximizes complete-data likelihood in each iteration under
standardized H̃. The update ensures the positive definiteness
of �̂. Note that this empirical method is only valid when all

correlations are freely estimated.

Analyzing large data sets It is possible to conduct IFA
on large data sets with millions or even billions of
observations. When implementing VMHRM, the most
memory-consuming task is to calculate the gradients. In
principle, the gradient container for ∂

∂θ

̂ stores I · M

(loadings) + I (C+1) (intercepts) + M2 (factor correlations)
floating-point numbers in memory. Note that the gradient
container is the average ofN ·K individual gradients: ∂

∂θ

̂ =

1
N

∑N
n=1

1
K

∑K
k=1

∂
∂θ

(θ̂; yn, η̃kn). Therefore, to calculate
∂
∂θ

̂ in parallel, N · K units of memory is required, which
may cause out-of-memory problem when N is large. A
simple way to deal with large data sets is to use a mini-
batch approach. That is, we can split both Y and H̃ into
B many batches, say {(Y(b)H̃(b))}Bb=1 along their first and
second axis, and then update the estimate sequentially in b

for each iteration:

θ̂ ← θ̂ + γ × ∂

∂θ

(θ̂; Y(b), H̃(b)).

To maximize the degree of parallelism, we suggest using
a large batch size such that the GPU memory can afford
to compute ∂

∂θ

(θ̂; Y(b), H̃(b)). Note that the sample size in

each batch is possibly different.

Evaluating log-marginal likelihood In high-dimensional
settings, the log-marginal likelihood is often evaluated by
Monte Carlo integration methods under the MML estimate

(θ̂; Y). Let � = (ξq)

Q
q=1 denote a Q × M matrix

with ξq generated from Normal(0, �̂) randomly. We can
approximate the likelihood in parallel via:

(θ; Y) ≈ mean

⎛

⎜⎜⎜⎜⎜
⎝
log

⎛

⎜⎜⎜⎜⎜
⎝
mean2

⎛

⎜⎜⎜⎜⎜
⎝
prod3,4

N×Q×I×C︷ ︸︸ ︷⎛

⎝power

⎛

⎝�,expand dims2 (Y)
︸ ︷︷ ︸

N×1×I×C

⎞

⎠

⎞

⎠

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

,

where � is a Q × I × C array with πic(ξq) being its
(q, i, c) element. Because of numerical errors in floating
point arithmetic and 0 < πic(ξq) < 1, the double product
may cause
(θ̂; Y) to be evaluated as negative infinity if the
model fits some data point extremely poorly. Note that the
formula for
(θ; Y) involves a matrix of size N ×Q×I ×C.
To precisely evaluate the likelihood, Q is often set to a large
number such as Q = 5000 (e.g., González, Tuerlinckx,
De Boeck, & Cools, 2006). Hence, when N is large, the
mini-batch approach described in the previous paragraph is
necessary to avoid out-of-memory problems.

Funding This research was supported under grant number MOST109-
2410-H-003-136-MY3 by the Ministry of Science and Technology in
Taiwan.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., &
Zheng, X. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Retrieved from https://www.tensorflow.
org/.

Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection
algorithms and software for arbitrary rotation criteria in factor

4416

https://www.tensorflow.org/
https://www.tensorflow.org/

Behavior Research Methods (2023) 55:4403–4418

analysis. Educational and Psychological Measurement, 65, 676–
696.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood
estimation of item parameters: Application of an EM algorithm.
Psychometrika, 46(4), 443–459.

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information
item factor analysis. Applied Psychological Measurement, 12(3),
261–280.

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n
dichotomously scored items. Psychometrika, 35(2), 179–197.

Bockenholt, U. (2012). Modeling multiple response processes in
judgment and choice. Psychological Methods, 17(4), 665–678.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C.,
& Maclaurin, D. (2018). JAX: Composable transformations of
Python+NumPy programs.

Cai, L. (2010a). High-dimensional exploratory item factor analysis
by a Metropolis–Hastings Robbins–Monro algorithm. Psychome-
trika, 75, 33–57.

Cai, L. (2010b). Metropolis–Hastings Robbins–Monro algorithm for
confirmatory item factor analysis. Journal of Educational and
Behavioral Statistics, 35(3), 307–335.

Cai, L. (2017). flexMIRT®: Flexible multilevel multidimensional item
analysis and test scoring. Chapel Hill, NC: Vector Psychometric
Group.

Cai, L., Du Toit, S., & Thissen, D. (2011). IRTPRO: Flexible,
multidimensional, multiple categorical IRT modeling. Chicago:
Scientific Software International.

Chalmers, R. P. (2012). mirt: A multidimensional item response theory
package for the R environment. Journal of Statistical Software,
48(6), 1–29.

Chen, Y., Li, X., Liu, J., & Ying, Z. (2021). Item response theory
– a statistical framework for educational and psychological
measurement.

Chen, Y., Li, X., & Zhang, S. (2019). Joint maximum likelihood
estimation for high-dimensional exploratory item factor analysis.
Psychometrika, 84(1), 124–146.

Chen, Y., Li, X., & Zhang, S. (2020). Structured latent factor
analysis for large-scale data: Identifiability, estimability, and their
implications. Journal of the American Statistical Association,
115(532), 1756–1770.

Cho, A. E., Wang, C., Zhang, X., & Xu, G. (2020). Gaussian
variational estimation for multidimensional item response theory.
British Journal of Mathematical and Statistical Psychology.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), 39(1), 1–38.

Edwards, M. C. (2010). A Markov chain Monte Carlo approach to
confirmatory item factor analysis. Psychometrika, 75(3), 474–497.

Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling
based on generalized linear models. New York: Springer-Verlag.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin,
D. (2013). Bayesian data analysis, (3rd ed.). New York: Taylor &
Francis.

Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item
bi-factor analysis. Psychometrika, 57(3), 423–436.

González, J., Tuerlinckx, F., De Boeck, P., & Cools, R. (2006).
Numerical integration in logistic-normal models. Computational
Statistics & Data Analysis, 51(3), 1535–1548.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
Cambridge: MIT Press. http://www.deeplearningbook.org.

Harris, C. R., Millman, K. J., Walt, S. J., van der Gommers, R.,
Virtanen, P., & Cournapeau, D. (2020). Array programming with
NumPy. Nature, 585(7825), 357–362.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo.
15(1), 1593–1623.

Hui, F. K. C., Warton, D. I., Ormerod, J. T., Haapaniemi, V., &
Taskinen, S. (2017). Variational approximations for generalized
linear latent variable models. Journal of Computational and
Graphical Statistics, 26(1), 35–43.

Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009).
Reporting practices in confirmatory factor analysis: an overview
and some recommendations5. Psychological Methods, 14(1), 6.

Jennrich, R. (2002). A simple general method for oblique rotation.
Psychometrika, 67(1), 7–19.

Johnson, J. A. (2015). Data from Johnson, J. A. (2005). Ascertaining
the validity of web-based personality inventories. Journal of
Research in Personality, 39, 103–129. OSF. Retrieved from osf.io/
sxeq5.

Johnson, J. A. (2018). Data from Johnson, J. A. (2014). Measuring
thirty facets of the five factor model with a 120-item public
domain inventory: Development of the IPIP-NEO-120. Journal of
Research in Personality, 51, 78–89. OSF. osf.io/wxvth.

Johnson, J. A. (2021). Scoring key for the ipip-neo-300 and ipip-neo-
120. OSF. osf.io/ycvdk.

Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., & Glasco, D.
(2011). GPUs and the future of parallel computing. IEEE Micro,
31(5), 7–17.

Li, C. H. (2016). The performance of ML, DWLS, and ULS estimation
with robust corrections in structural equation models with ordinal
variables. Psychological Methods, 21(3), 369–387.

Liou, M., & Yu, L. C. (1991). Assessing statistical accuracy in ability
estimation: A bootstrap approach. Psychometrika, 56(1), 55–67.

Loossens, T., Meers, K., Vanhasbroeck, N., Anarat, N., Verdonck, S.,
& Tuerlinckx, F. (2021). Efficient estimation of bounded gradient-
drift diffusion models for affect on CPU and GPU. Behavior
Research Methods.

McCulloch, C. E. (1982). Symmetric matrix derivatives with
applications. Journal of the American Statistical Association,
77(379), 679–682.

Meng, X. L., & Schilling, S. (1996). Fitting full-information item
factor models and an empirical investigation of bridge sampling.
Journal of the American Statistical Association, 91(435), 1254–
1267.

Muraki, E. (1992). A generalized partial credit model: Application
of an EM algorithm. Applied Psychological Measurement, 16(2),
159–176.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation
modeling: A more flexible representation of substantive theory.
Psychological Methods, 17(3), 313–335.

Muthén, L. K. & Muthén, B. O. (1998–2017). Mplus User’s Guide,
(8th ed.). Los Angeles: Muthén & Muthén.

Nickolls, J., & Dally, W. J. (2010). The GPU computing era. IEEE
Micro, 30(2), 56–69.

NVIDIA, Vingelmann, P., & Fitzek, F. H. (2020). CUDA, release:
10.2.89. https://developer.nvidia.com/cuda-toolkit.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., & Chanan,
G. (2019). Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d’ Alché-Buc, F., Fox, E., & Garnett, R. (Eds.) Advances in neural
information processing systems, (Vol. 32, pp. 8024–8035): Curran
Associates Inc.

Patton, J. M., Cheng, Y., Yuan, K. H., & Diao, Q. (2014). Bootstrap
standard errors for maximum likelihood ability estimates when
item parameters are unknown. Educational and Psychological
Measurement, 74(4), 697–712.

4417

http://www.deeplearningbook.org
osf.io/sxeq5
osf.io/sxeq5
osf.io/wxvth
osf.io/ycvdk
https://developer.nvidia.com/cuda-toolkit

Behavior Research Methods (2023) 55:4403–4418

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12,
2825–2830.

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and
Optimization, 30(4), 838–855.

Reddi, S. J., Kale, S., & Kumar, S. (2018). On the convergence
of Adam and beyond. In International conference on learning
representations.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3),
581–592.

Ruppert, D. (1988). Efficient estimations from a slowly convergent
Robbins–Monro process. Technical report, Cornell University
Operations Research and Industrial Engineering.

Samejima, F. (1969). Estimation of latent ability using a response
pattern of graded scores. Psychometrika, 34(4), 1–97.

Schilling, S. G., & Bock, R. D. (2005). High-dimensional maximum
likelihood item factor analysis by adaptive quadrature. Psychome-
trika, 70(3), 533–555.

Sheng, Y., Welling, W. S., & Zhu, M. M. (2014). A GPU-based Gibbs
sampler for a unidimensional IRT model. International Scholarly
Research Notices, Article ID 368149.

Sheng, Y., Welling, W. S., & Zhu, M. M. (2015). GPU-accelerated
computing with Gibbs sampler for the 2PNO IRT model. In van
der Ark, L. A., Bolt, D. M., Wang, WC., Douglas, J. A., &
Chow, S. M. (Eds.)Quantitative psychology research, (pp. 59–73).
Cham: Springer International Publishing.

Song, X. Y., & Lee, S. Y. (2005). A multivariate probit latent variable
model for analyzing dichotomous responses. Statistica Sinica,
645–664.

Stevens, S. S. (1946). On the theory of scales of measurement. Science,
103(2684), 677–680.

Swaminathan, H., Hambleton, R. K., & Rogers, H. J. (2006). 21
assessing the fit of item response theory models. In Rao, C., &
Sinharay, S. (Eds.) Psychometrics, (Vol. 26, pp. 683–718).

Takane, Y., & de Leeuw, J. (1987). On the relationship between
item response theory and factor analysis of discretized variables.
Psychometrika, 52(3), 393–408.

The NumPy Community (2021). Broadcasting. https://numpy.org/
devdocs/user/basics.broadcasting.html.

Urban, C. J., & Bauer, D. J. (2021). A deep learning algorithm for
high-dimensional exploratory item factor analysis. Psychometrika,
86(1), 1–29.

Verdonck, S., Meers, K., & Tuerlinckx, F. (2016). Efficient simulation
of diffusion-based choice RT models on CPU and GPU. Behavior
Research Methods, 48, 13–27.

von Davier, M. (2017). New results on an improved parallel EM
algorithm for estimating generalized latent variable models. In
van der Ark, L. A., Wiberg, M., Culpepper, S. A., Douglas, J. A.,
& Wang, W. C. (Eds.) Quantitative psychology, (pp. 1–8). Cham:
Springer International Publishing.

van der Linden, W. J. (2016). Handbook of item response theory,
volume one: Models, (1st ed.). London: Chapman and Hall/CRC.

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced
acceptance rate. Statistics and Computing, 22(5), 997–1008.

Wirth, R. J., & Edwards, M. (2007). Item factor analysis: Current
approaches and future directions. Psychological Methods, 12(1),
58–79.

Wu, M., Davis, R. L., Domingue, B. W., Piech, C., & Goodman,
N. (2020). Variational item response theory: Fast, accurate, and
expressive. arXiv:2002.00276.

Yates, A. (1987).Multivariate exploratory data analysis: A perspective
on exploratory factor analysis. Albany: State University of New
York Press.

Yuan, K. H., Cheng, Y., & Patton, J. (2014). Information matrices
and standard errors for MLEs of item parameters in IRT.
Psychometrika, 79(2), 232–254.

Zhang, S., & Chen, Y. (2021). Computation for latent variable model
estimation: A unified stochastic proximal framework.

Zhang, S., Chen, Y., & Liu, Y. (2020). An improved stochastic EM
algorithm for large-scale full-information item factor analysis.
British Journal of Mathematical and Statistical Psychology, 73(1),
44–71.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

4418

https://numpy.org/devdocs/user/basics.broadcasting.html
https://numpy.org/devdocs/user/basics.broadcasting.html
http://arxiv.org/abs/2002.00276

	Accelerating item factor analysis on GPU with Python package xifa
	Abstract
	Item factor analysis and marginal likelihood
	A framework for item factor analysis
	Marginal likelihood via MHRM

	Vectorization on GPU and xifa
	GPU and vectorized MHRM
	Python package xifa

	Numerical experiments
	Overview of experiments
	Experiment A: Low-dimensional settings
	Experiment B: High-dimensional settings

	A real data example
	Discussion
	Open practices statements
	Appendix A: The VMHRM algorithm
	Appendix B: Practical considerations for VMHRM
	Appendix B: Practical considerations for VMHRM
	Handling missing data
	Dealing with different numbers of categories
	Imposing simple parameter constraints
	Tuning jumping standard deviation
	Avoiding non-positive definite correlation matrices
	Analyzing large data sets
	Evaluating log-marginal likelihood

	References

