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Abstract
Self-regulation, the ability to guide behavior according to one’s goals, plays an integral role in understanding loss of control 
over unwanted behaviors, for example in alcohol use disorder (AUD). Yet, experimental tasks that measure processes underly-
ing self-regulation are not easy to deploy in contexts where such behaviors usually occur, namely outside the laboratory, and 
in clinical populations such as people with AUD. Moreover, lab-based tasks have been criticized for poor test–retest reliability 
and lack of construct validity. Smartphones can be used to deploy tasks in the field, but often require shorter versions of tasks, 
which may further decrease reliability. Here, we show that combining smartphone-based tasks with joint hierarchical modeling 
of longitudinal data can overcome at least some of these shortcomings. We test four short smartphone-based tasks outside the 
laboratory in a large sample (N = 488) of participants with AUD. Although task measures indeed have low reliability when 
data are analyzed traditionally by modeling each session separately, joint modeling of longitudinal data increases reliability 
to good and oftentimes excellent levels. We next test the measures’ construct validity and show that extracted latent factors 
are indeed in line with theoretical accounts of cognitive control and decision-making. Finally, we demonstrate that a resulting 
cognitive control factor relates to a real-life measure of drinking behavior and yields stronger correlations than single measures 
based on traditional analyses. Our findings demonstrate how short, smartphone-based task measures, when analyzed with 
joint hierarchical modeling and latent factor analysis, can overcome frequently reported shortcomings of experimental tasks.

Keywords Behavioral tasks · Smartphone · Reliability · Validity · Working memory · Stop signal task · Information 
sampling · Risk-taking

Introduction

Self-regulation, the ability to guide feelings and behaviors 
according to one’s needs and goals, relates to a range of out-
comes, including somatic and mental health (Goschke, 2014; 

Moffit et al., 2011). Consequently, there is a growing interest 
in self-regulation across research domains, using a variety of 
measurement methods (Eisenberg et al., 2019; Nigg, 2017). 
Whereas questionnaires primarily capture explicit aspects 
of self-regulation, experimental tasks are designed to cap-
ture distinct cognitive and motivational mechanisms under-
lying self-regulation. Further added value of experimental 
tasks is their ability to manipulate physiological and brain 
states in a controlled manner. Research using experimental 
tasks thus promises an improved mechanistic understanding 
of phenomena such as self-regulation and its failures, and 
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ultimately the development of targeted, mechanism-based 
treatments for psychiatric conditions such as substance use 
disorder (SUD).

However, although bespoke experimental tasks can out-
perform questionnaires in measuring distinct processes, link-
age to real-life outcomes has so far been less successful than 
questionnaire-based measures. In a recent study, Eisenberg 
et al. (2019) assessed the ecological validity of 22 question-
naires and 37 task measures. While questionnaires modestly 
predicted real-world outcomes, experimental tasks showed 
no relationship to real-world outcomes. In the domain of 
SUD, Ekhtiari et al. (2017) reviewed studies that attempted 
to link decision-making tasks to drug use and concluded that 
these measures may not be sufficient to predict drug use in 
real life. These findings mirror a more widely held view that 
experimental tasks lack “realism” and generalizability (Falk 
and Heckman, 2009).

Here, we argue that experimental tasks do not inherently 
lack real-world relevance, but instead that shortcomings 
regarding their psychometric properties can explain their 
lack of realism. An important psychometric property is 
test–retest reliability—or a task’s consistency in measuring 
between-participant differences. Recent reports revealed low 
test–retest reliability for many tasks (Enkavi et al., 2019; 
Hedge et al., 2018). Low test–retest reliability is a challenge 
when we relate one measurement to another (e.g., relating 
working memory to alcohol consumption in SUD)—because 
mathematically low reliability limits the observable correla-
tion between two measures (Spearman, 1904/2010: Eq. 1).

As an illustration, if working memory and drinking have a 
high true correlation of .8, but working memory is measured 
with a low reliability of .31 (which is the median reliability 
of experimental tasks reported by Hedge et al., 2018), then 
any observable correlation between the two measures would 
mathematically decrease to an upper limit of .44. Thus, weak 
or no relations between task measures and real-life outcomes 
may simply arise from the low reliability of task measures 
(Enkavi et al., 2019; Hedge et al., 2018).

In addition to these psychometric shortcomings, experi-
mental tasks—unlike questionnaires—are more difficult to 
deploy outside the laboratory in real-life scenarios (Zech 
et al., 2022). Most experimental tasks have been designed 
to run on laboratory computers, requiring specialized soft-
ware and, in some cases, specialized hardware. This makes 
it difficult to link task measures to critical real-life events. 
For example, binge drinking happens occasionally and may 
take place in highly specific real-life environments (e.g., in 
the bar). Indeed, studies that successfully connected task 
measures to self-control failures used smartphones to meas-
ure self-control failures in the field (Berkman et al. 2011; 

(1)robserved = rtrue ∗

√

reliabilityx ∗ reliabilityy

Krönke et al., 2018, 2020a, 2020b, 2021a, 2021b; Lopez 
et al. 2014; Overmeyer et al., 2021). Some of these studies 
even suggest that state-like mobilization of control rather 
than trait self-control can explain self-control failures in 
daily life (Krönke et al., 2018). The lack of mobility of labo-
ratory tasks makes it difficult to measure such state-like pro-
cesses. Their lack of mobility also makes it difficult to target 
large samples of specifically vulnerable patient populations. 
Together with their low reliability, the lack of mobility of 
tasks could therefore explain the difficulty of linking task 
measures to real-life variables.

Recently, several lab-based tasks have been translated to 
smartphones, which makes it easier to deploy tasks in the 
field and in relevant populations (for a summary of advan-
tages of using smartphones in behavioral studies, see Miller 
2012 and Zech et al., 2022). However, especially when using 
smartphone tasks in longitudinal designs, they often need to 
be shorter than lab-based tasks to assure participant compli-
ance outside the laboratory and in repeated testing sessions. 
Making tasks shorter (i.e., reducing the number of trials), 
however, reduces task reliability and thus further aggra-
vates existing psychometric problems of experimental tasks 
(Miller & Ulrich, 2013; Rouder & Haaf, 2019; Smittenaar 
et al., 2015; Zech et al., 2022). Researchers consequently 
find themselves in a dilemma: Either they have to rely on 
long tasks that may sacrifice compliance even in the lab, or 
they use short tasks that may be unreliable.

Here, we thus outline an approach to overcome shortcom-
ings in the applicability of experimental tasks to real-life 
scenarios: firstly, this entails moving task measures to plat-
forms such as smartphones, which allows for the collection 
of rich longitudinal data in real-life contexts; secondly, it 
analytically exploits this longitudinal data to produce more 
reliable task metrics. Using this method, we test the reli-
ability and construct validity of four smartphone-based tasks 
in a large (N = 488) sample of participants with mild to 
moderate alcohol use disorder. Little is known about the 
psychometric properties of experimental tasks in this popu-
lation, although it is often the target of task-based research 
that strives toward clinical application (e.g., Heinz et al., 
2020; Stavro et al., 2013; but see Kräplin et al., 2016). The 
tasks were gamified to increase participant engagement and 
designed to capture four distinct cognitive and motivational 
processes: working memory (McNab et al., 2015), response 
inhibition (Smittenaar et al., 2015), risk-taking (Rutledge 
et al., 2014), and information sampling (Hunt et al., 2016; 
see Fig. 1).

Beyond reliability, which is agnostic to what is meas-
ured, a theoretical assumption that tasks are particularly 
well suited to assess distinct cognitive-motivational pro-
cesses requires the empirical investigation of their construct 
validity. In vulnerable populations, such as individuals with 
SUD, widespread cognitive alterations are well known 
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(Hildebrandt et al., 2021) and may impede the detection 
of specific cognitive-motivational processes. Instead, mul-
tiple experiments may return a more general impairment, 
an undesirable scenario for mechanism-based research that 
aims to improve clinical stratification and ultimately indi-
vidualized treatments. In fact, both reliability and construct 
validity do not depend on the task alone but also on the char-
acteristics of an investigated sample (Knekta et al., 2019). 
When striving for future clinical applicability, there is an 
urgent need to assess psychometric criteria in populations 
such as people with SUDs. We therefore also assessed the 
tasks’ validity by analyzing their latent factor structure and 
by correlating the resulting factor scores with real-life meas-
ures of drinking.

Together, this study aimed to show how smartphones can 
be used to overcome shortcomings of experimental tasks by 
using joint modeling of longitudinal data from outside the 
laboratory to produce reliable and valid task measures in 
a clinical population diagnosed with alcohol use disorder.

Results

Study design Data were collected as part of a larger research 
consortium on substance use disorder (SUD) employing a 
smartphone-based longitudinal Ecological Momentary 
Assessment (EMA) of up to 1 year (Heinz et al., 2020, 
see Materials and methods). After study inclusion, indi-
viduals with alcohol use disorder and associated comor-
bidities (Materials and methods, Table S1) commenced a 
smartphone-based data collection. On the first day of data 
collection, they completed four experimental tasks twice in 
pseudo-random order (randomized within each session; see 

Fig. 1), which allowed us to assess reliability and construct 
validity in N = 488 individuals. Of these, 373 participants 
(76.4%) completed the four tasks again 3 weeks later, allow-
ing us to assess test–retest reliability at a longer retest inter-
val. The tasks were taken from the Great Brain Experiment 
(GBE) app (Brown et al., 2014, see Materials and methods). 
Tests of response inhibition, working memory, risk taking, 
and information sampling were included and presented as 
games. In addition to completing the tasks, participants also 
self-reported how many days in the past 3 months they had 
consumed alcohol as well as how much alcohol they con-
sumed on a regular drinking day. The study protocol was 
pre-registered (https:// osf. io/ 9ze2u/).

Reliability We initially assessed split-half reliability (or 
internal consistency) for each task, and each of the two ses-
sions. This indicates consistency of a measure within a ses-
sion by splitting trials into two halves and comparing scores 
across each half. Subsequently, we analyzed test–retest 
reliability, the temporal consistency across two distinct ses-
sions, comparing two analytic approaches in this regard. 
In a commonly used approach (Enkavi et al., 2019; Hedge 
et al., 2018; Rouder & Haaf, 2019), we computed task scores 
for each session separately and then examined test–retest 
reliability based on the resulting scores. We refer to this as 
a separate modeling approach. A problem in this popular 
approach is that it does not consider the dependency of data 
within participants (the hierarchical longitudinal structure 
of the data) and, both theoretically and empirically, this has 
been shown to lead to exaggerated residual variance, which 
depresses reliability (Brown et al., 2020; Rouder & Haaf, 
2019; Waltmann et al., 2022). Therefore, we next analyzed 
the data with a joint modeling approach by modeling data 

Fig. 1  Illustration of study timeline and smartphone-based tasks. 
After an in-lab session for study inclusion and app installation, par-
ticipants performed four tasks (twice in random order) from a cus-

tomized version of the Great Brain Experiment (GBE, translated to 
German) at home. This included a response inhibition, a working 
memory, a risk-taking, and an information sampling task

https://osf.io/9ze2u/
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jointly from both sessions using hierarchical mixed models 
(for details, see Materials and methods and Supplementary 
Materials). These models account for a dependency of data 
within participants, thereby regularizing scores by moving 
session scores towards participant means, with further regu-
larization by moving participant means towards the sample 
mean. Indeed, Waltmann et al. (2022) showed that this joint 
modeling approach yields more accurate session score esti-
mates, leading to both higher and more accurate estimates 
of reliability than a separate modeling approach. Test–retest 
reliability was assessed using intra class coefficients (ICCs), 
which compare the variance of interest—the between-partic-
ipant variance—with the total residual variance (including 
systematic within-session variance, e.g., repetition effects). 
We report ICC(1) (Liljequist et al., 2019) as a primary out-
come because it can be computed for separate and joint mod-
eling approaches (see Supplementary Materials).

Split‑half reliability For the risk taking task, split-half relia-
bilities for the gain and loss gambles were adequate (accord-
ing to interpretations by Nunnally and Bernstein, 1994; rsb 
gain session 1 = .84; rsb_gain session 2 = .91; rsb loss ses-
sion1 = .77; r_sb_loss_session_2 = .82) but lower for mixed 
gambles (rsb_mixed_session_1 = .67; r_sb_mixed_session_2 
= .71). For the information sampling task, split-half reliabil-
ities were adequate (r_sb_session_1 = .86; r_sb_session_2 
= .86). Split-half reliabilities for the working memory task 
and for the inhibition task could not be analyzed in this way 
due to their adaptive task design (see Methods section).

Test–retest reliability Test–retest reliability increased for 
all tasks when calculating scores based on the joint com-
pared to the separate modeling approach (see Table 1 and 
Fig. 2). The inhibition task had moderate reliability when 
scores were calculated based on separate modeling (ICC1 = 
.51; according to interpretations by Koo and Li, 2016), but 
good reliability when scores were calculated based on joint 
modeling (ICC1 = .70). For comparison1, the reliabilities of 
SST scores reported by Hedge et al. (2018) ranged between 
.36 and .49. The working memory task had poor reliability 
in all conditions when scores were calculated based on sepa-
rate modeling (ICC1s ≤ .43), but this reliability increased to 
moderate levels when scores were calculated based on joint 
modeling (ICC1 ranging from .51 to .64). For comparison, 
Lo et al. (2012) reviewed the reliability of similar lab-based 
tasks and reported reliabilities ranging from .56 to .60. The 
risk-taking task had moderate reliability in all conditions 
when scores were calculated based on separate modeling 
(ICC1s ranging from .52 to .65), with reliability increasing 

to moderate to good when scores were calculated based on 
joint modeling (ICC1s ranging from .73 to .80). For com-
parison, in a similar lab-based task, Petzold et al. (2019) 
report retest correlations between .02 and .65. Finally, the 
information sampling task had good reliability when scores 
were calculated based on separate modeling (ICC1 = .78), 
which further improved when scores were calculated based 
on joint modeling (ICC1 = .91). For comparison, Grum-
mit et al. (as cited in Enkavi et al., 2019) reported an ICC 
of .53 in a sample of 312 children and Enkavi et al. (2019) 
report an ICC of .31 in a computer-based online information 
sampling task.

To assess whether reliability decreases with increasing 
retest periods, we also assessed reliabilities between the 
first measurement and a 3-week follow-up measurement. As 
expected, reliabilities for all tasks were slightly lower for the 
longer retest period (see Table 1).

Construct validity To assess construct validity, we used 
exploratory factor analysis, an approach commonly used to 
assess discriminant and convergent validity (Eisenberg et al., 
2019; Russel, 2002). Factor analysis seeks to reduce the 
dimensionality of measurements with the aim of revealing 
common factors underlying several measurements outcomes 
(Eisenberg et al., 2019). This allows researchers to assess 
whether measures designed to assess different processes, e.g., 
cognitive control and decision-making, also capture these 
differences in the variance of a given dataset. Generally, little 

Table 1  Test–retest reliabilities (ICCs) for the different task meas-
ures, analysis approaches, and at 3-week follow-up. Note that for 
the joint modeling, only ICC1s can be calculated. Additional ICCs 
(ICC2s) are reported in Supplementary Table S3

Task measure Separate 
modeling
(ICC1)

Joint mod-
eling
(ICC1)

Joint 
mod-
eling
(ICC1, 
3 
weeks)

Response inhibition task
Stop signal reaction times .51 .70 .60
Working memory task
No distractor (long) .36 .64 .63
No distractor (short) .42 .59 .56
Encoding distractor .34 .51 .51
Delayed distractor .43 .63 .63
Risk-taking task
Win .65 .80 .70
Loss .57 .73 .67
Mixed .52 .75 .61
Information sampling task
Sampling bias .78 .91 .84

1 Note that all comparison studies used a traditional, separate mod-
eling approach.
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is known about the factor structure of smartphone-based 
experimental task measures. Importantly, the factor struc-
ture of measurements can differ depending on the population 
(Knekta et al., 2019) such as healthy individuals or clinical 
populations—in our case individuals suffering from SUD. 
A common concern is that, in the face of known widespread 
cognitive deficits (Hildebrandt et al., 2021), distinct task 
measures may load on a single factor, potentially hampering 
inference on different cognitive processes in patient popula-
tions. This concern can be amplified for experiments in the 
field that utilize a smartphone (as increased external distrac-
tions could lead to correlated errors).

We conducted the factor analysis based on the average 
scores across both sessions from joint modeling, based on 
evidence that joint modeling yielded the highest reliabil-
ity estimates. A scree plot indicated that the data was best 
represented by three factors (see Fig. 3A). Factor loadings 
indicated the first factor, which we labeled cognitive con-
trol (following terminology by, Nigg, 2017), represented 
measures of working memory and response inhibition. The 
different conditions in the working memory task had factor 

loadings of .75 to .82, and the response inhibition task had 
a factor loading of .46. The second factor represented risk-
taking to avoid losses (factor loading of 1.00) and the third 
factor risk-taking for gains (factor loading of .86). Risk tak-
ing for mixed gambles loaded equally on Factor 2 (factor 
loading of .34) and Factor 3 (factor loading of .38). Informa-
tion sampling loaded on none of the factors (all loadings ≤ 
-.06; see Fig. 3). However, an eigenvalue around 1 (Fig. 3A) 
may indicate, albeit weakly, a separate factor for information 
sampling (see Supplementary Materials).

Together, the factor loadings indicated a single cogni-
tive control dimension and several decision-making dimen-
sions. However, some measures, such as risk-taking for 
mixed gambles, did not clearly load on a distinct factor 
but instead spread over several factors, potentially because 
they involve a consideration of potential gains and losses. 
To gain further insight into the structure of the data, we, 
therefore, conducted a hierarchical clustering analysis based 
on factor loadings. Rather than showing to which extent a 
measurement is represented by each individual factor, cluster 
analyses can reveal which variables load similarly to one 

Fig. 2  Test–retest reliabilities (ICC1s) for the four tasks split by 
separate (blue) vs. joint approach (red). Panels show reliabilities for 
the main outcomes of the experimental tasks. A Stop signal reaction 
times (SSRTs) for the inhibition task. B Four task outcomes of the 
working memory task, consisting of no distractor with long encoding 
time (no [long]), no distractor with short encoding time (no [short]), 

distractor cues presented at the same time as the patterns (encod-
ing), and distractors presented after the patterns (delayed). C Three 
main outcomes of the risk-taking task, consisting of risk-taking in a 
gain context (win), risk-taking in a loss context (loss), and risk tak-
ing when gains and losses are mixed (mixed). D Main outcome of the 
information sampling task, the degree of sampling bias
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or several factors. To illustrate, factors can be understood 
as dimensions in a “psychological space” and cluster anal-
ysis determines how distant task measures are from each 
other within this space (Eisenberg et al., 2019). Notably, the 
clusters that emerged from this analysis mirrored the factor 
analysis regarding a large cognitive control cluster consisting 
of the working memory and inhibition task (see Fig. 3B). In 
addition, the analysis revealed two to three decision-making 
clusters (depending on where one chooses to cut the tree dia-
gram) consisting of one cluster for risk-taking in the context 
of losses, and one for risk taking when rewards were avail-
able. The latter further split into a risk taking for gains and 
mixed gambles cluster and an information sampling bias 
cluster. The factor structure, as well as the clustering, are 
broadly consistent with theoretical predictions of a cognitive 
control dimension separate from a decision-making dimen-
sion that segregates gain and loss contexts (Deza Araujo 
et al., 2018).

Reliability of factor scores Integrating several noisy meas-
ures onto latent variables can further increase reliability 
potentially by reducing measurement error (Eisenberg et al., 

2019; Nigg 2017; Shahar et al., 2019). To test whether this 
was the case in our dataset, we calculated factor scores for 
each participant and session based on each task measure’s 
factor loading. The resulting cognitive control scores (based 
on the cognitive control factor) showed higher test–retest 
reliability than each of the underlying task measures (ICC1 
= .81; compare Table 1). In the decision-making domain, 
reliabilities were similar to those of the underlying scores 
both for the risk taking for gains factor (ICC1 = .79) and for 
the risk taking to avoid losses factor (ICC1 = .82).

Correlation of task measures with drinking As proof of 
concept, we correlated latent factor scores derived from 
joint modeling with measures of drinking. We observed a 
correlation between cognitive control and the number of 
reported drinking days over the last three month (Spearman 
correlation with Bonferroni corrected p values: r = – 0.230, 
95% CI [– 0.31, – 0.14], p < .001, see supplement). When 
estimating this correlation based on single components of 
the cognitive control factor derived from separate modeling 
(focusing on the first session), the five correlations were 
overall weaker (working memory [short]: r = – 0.181, 95% 

Fig. 3  A Scree plot used to determine the number of factors best rep-
resenting the data. B Factor loadings for each of the three extracted 
factors and each of the tasks’ main outcome variables (for explana-
tions of the task outcomes, see Fig.  2). Factor loadings can range 
from – 1 to 1, where 1 indicates that a variable is fully described by a 

factor, 0 that there is no relationship between the factor and the varia-
ble, and -1 indicates that the variable is fully described by the inverse 
of the factor. On top of the factor loadings, Panel B shows the hierar-
chical tree diagram generated by the clustering analysis.
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CI [– 0.27, – 0.09]; p < .001; working memory [long]: r = – 
0.131, 95% CI [– 0.22, – 0.04]; p = .005; working memory 
[encoding]: r = – 0.187, 95% CI [– 0.27, – 0.10]; p < .001; 
working memory [delayed]: r = – 0.210, 95% CI [– 0.30, – 
0.12]; p < .001; SSRT: r = 0.111, 95% CI [– 0.10, 0.08]; 
p = .016). This pattern indicates that improving reliability, 
through joint modeling and deriving latent factor scores, can 
uncover significant correlations between task measures and 
real-world outcomes such as drinking.

Discussion

We assessed the reliability and validity of four smartphone-
based experiments in a large sample of participants suffering 
from alcohol use disorder. We showed that split-half reliabil-
ity was high. Test–retest reliability ranged from moderate to 
good when modeling task data separately for each session, and 
increased to good to excellent when modeling sessions jointly. 
This emphasizes a need for adequate modeling of within-sub-
ject longitudinal data for sufficient reliability estimates and 
highlights the value of smartphones for larger data collection 
than can be accomplished within a laboratory setting. With 
respect to construct validity, we identified a cognitive control 
factor distinct from two factors reflecting decision-making in 
the context of losses versus rewards. Latent variables based on 
factor loadings further increased test–retest reliability, demon-
strating that combining several measures into latent variables 
is a further useful denoising step. As proof of concept, we 
demonstrate that a latent cognitive control score based on joint 
modeling indeed yielded stronger correlations with drinking 
behavior than single task scores based on separate modeling. 
Together, our data show that distinct cognitive-motivational 
aspects can be measured experimentally with sufficient reli-
ability and validity in substance use disorder (SUD) through 
smartphone-based data collection.

Improving task reliability through joint modeling Recent 
analyses of multiple task measures indicate that most tasks 
show poor test–retest reliability (Enkavi et al., 2019; Hedge 
et al. 2018). This poses a major problem because reliabil-
ity limits the observable correlation between two variables, 
one possible account of why many task measures show only 
weak or no correlation to real-life outcomes (Eisenberg 
et al., 2019). Here, we demonstrate that modeling task out-
comes jointly based on two measurement sessions improves 
a tasks’ test–retest reliability from moderate to good and 
often excellent levels compared to traditional methods that 
model each session separately. Previous work indicated 
that this method of jointly modeling task data produces 
more reliable laboratory task measures (Brown et al., 2020;  
Waltmann et al., 2022). A recent simulation showed that this 
moves reliability estimates closer to true reliability levels by 

regulating task outcomes based on all available data, thereby 
reducing measurement noise (Waltmann et al., 2022). Our 
smartphone tasks are very short (~5 min per task) and the 
observed improvement rests on data from more than one 
session and more than one person. Here, smartphone-based 
tasks have a major advantage over laboratory-based tasks 
by allowing researchers to collect data more efficiently from 
several shorter sessions in the field (Miller, 2012; Zech et al., 
2020, 2022). Future research could aim at moving tasks to 
smartphone to obtain reliable scores from two or potentially 
even more sessions.

Reliability based on factor scores In line with prior research 
(Enkavi et al., 2019; Eisenberg et al., 2019; Shahar et al., 
2019), we show that a tasks’ reliability is further increased 
when measurements are based on factor scores rather than 
on individual tasks scores. In addition to reducing dimen-
sionality, factor analysis can be regarded as a “denoising” 
step when data from several related tasks is available. How-
ever, having multiple tasks available in the same subjects is 
relatively unusual and here again smartphone-based tasks 
can be useful. As participants need to complete more tasks, 
the burden of participating in experimental sessions in the 
lab increases (e.g., Eisenberg’s participants had to complete 
150 tasks) while smartphone-based tasks can spread this 
burden over time, thus making participation more engaging 
for participants.

State‑dependent process? A major goal of most smart-
phone-based studies is to detect state-dependent changes. 
Our data reveal excellent split-half reliability, a finding that 
is especially encouraging given participants completed the 
tasks outside a controlled lab environment, where more 
measurement noise (e.g., because of distractions) could have 
led to reduced reliability. Moreover, estimates of split-half 
reliability were consistently higher as compared to test–retest 
reliability. This indicates that at least part of the unexplained 
variance in experimental task measures might be driven by 
state-dependent changes in cognitive and motivational pro-
cesses (Hedge et al., 2018). As most tasks measuring such 
processes use cross-sectional designs, little is Zech et al. 
(2022) known about whether and at what frequency cogni-
tive and motivational processes fluctuate (). There are a few 
notable exceptions. For example, in a week-long smartphone 
experiment, Eldar et al. (2018) showed that reward-learning 
processes fluctuate at two distinct timescales—one fast and 
one slow—and that these fluctuations were linked to changes 
in mood. In SUD, Konova et al. (2020) linked longitudinal 
fluctuations in risky decision making to prospective opioid 
use. Importantly, they varied the sampling rate (between 1 
week and 1 month) and only found the expected association 
at the weekly sampling rate. In a citizen science sample, 
smartphone-based assessments of risk-taking were linked to 
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circadian rhythm (Bedder et al., 2020). These studies under-
line the importance of understanding whether, and at which 
frequencies, cognitive processes fluctuate. Future research 
should investigate such fluctuations more deeply by deploy-
ing experimental tasks in longitudinal settings. We propose 
that smartphone-based tasks with sufficient psychometrics, 
as outlined in the current study, can help in this endeavor. 
Indeed, they can easily be deployed in real-world environ-
ments with high measurement frequencies, and we are cur-
rently implementing this in a multi-center study (Heinz 
et al., 2020).

Construct validity Next to reliability, construct validity is an 
important psychometric criterion. Construct validity refers 
to the extent to which associations between measurements 
reflect theoretical relationships between underlying con-
structs. Although it is as important as reliability, construct 
validity is rarely assessed for experimental tasks (for an 
exception, see Eisenberg et al., 2019). We assessed construct 
validity by creating a psychological space using factor anal-
ysis and then categorizing tasks within this psychological 
space using cluster analysis (following the method described 
in Eisenberg et al., 2019). This revealed a large cognitive 
control cluster consisting of working memory and inhibition, 
in addition to several smaller clusters related to risk taking, 
the latter broadly splitting into risk taking for gains and risk 
taking to avoid losses. In line with Eisenberg et al. (2019), 
our findings do not support the notion of a unifying construct 
of self-regulation, which may lack coherence as a construct. 
Instead, we show key factors of cognitive control and moti-
vation that align well with theoretical accounts. In a recent 
historical review, Nigg (2017) concluded that most theories 
include working memory and inhibition in cognitive control 
(see also Botvinik & Braver, 2015), but separate them from 
decision-making such as risk taking. In a review of behavio-
ral and genetic studies, Friedman and Miyake (2017) further 
concluded that response inhibition and working memory are 
robustly correlated. Furthermore, empirical evidence shows 
a distinction in neural circuits underlying risk taking to avoid 
losses and risk taking for gains (Deza Araujo et al., 2018). 
Risk taking for gains decreases with age, putatively reflect-
ing decreases in dopamine (Rutledge et al., 2016), and risk 
taking for losses has been linked to circadian rhythms (Bed-
der et al., 2020). This distinction is also in line with prospect 
theory which posits that people assess risks differently in 
the context of gains compared to losses (Kahneman & Tver-
sky, 1979; Tversky & Kahneman, 1981). Prospect theory 
has been extensively tested in both healthy populations and 
populations with SUD (Cabedo-Peris et al., 2022). We con-
clude that our tasks have theoretically plausible construct 
validity. This is the first demonstration of theoretically plau-
sible construct validity for smartphone-based tasks, in this 
case within a sample of participants suffering from SUD.

Clinical sample and correlation with drinking A task’s reli-
ability and construct validity do not only depend on the task 
itself, but also on other factors such as the investigated sam-
ple (Knekta et al., 2019). Most large-scale assessments of 
task reliability and construct validity have been conducted 
so far in healthy individuals or rather unselected samples 
(Eisenberg et al., 2019; Enkavi et al., 2019; Hedge et al. 
2018; Shahar et al., 2019; Waltmann et al., 2022). We dem-
onstrate that latent cognitive control factor scores derived 
from joint modeling yielded higher correlations with a 
measure of drinking behavior as compared to individual 
scores derived from separate modeling. This result confirms 
Spearman’s (1904/2010) prediction that better reliability 
will increase observed correlations between variables while 
underlining the importance of increasing reliability through 
joint longitudinal data modeling and by combining task 
measures into latent factor scores in clinical populations.

Limitations We show that—when analyzing data using 
traditional analytic approaches—the four tasks tested in 
this study had already moderate to good reliability, thereby 
sometimes already exceeding the median reliability of other 
tasks reported in previous studies (Enkavi et al., 2019; Hedge 
et al., 2018). The gamification of the tasks may play a role 
in this regard. For example, gamification of tasks may ren-
der tasks more engaging, thereby motivating participants to 
complete them to the best of their abilities leading to higher 
between-participant variance and in turn higher reliability. 
However, our study design did not allow us to systematically 
assess differences in this regard.

We further demonstrate that one of the extracted factor 
scores (cognitive control) correlated with real-life meas-
ures of drinking in the expected direction (lower cognitive 
control was related to more drinking). Although this find-
ing is promising with regard to the task measures’ ecologi-
cal validity, we did not find similar correlations between 
the two risk taking factors and drinking. On the one hand 
this finding might point toward a mechanistic insight that 
cognitive control is more important than risk preferences 
in SUDs. However, we are hesitant to interpret null-results 
as it is also possible that characteristics of the task explain 
these null-results. For example, it is possible that risk tak-
ing using abstract rewards does not generalize to risk taking 
involving real, health-related rewards. Future research could 
investigate this idea by designing risk taking tasks that are 
more closely related to risk taking in SUD. It is also possible 
that increasing the number of trials (for example by includ-
ing additional measurement sessions) reveals correlations. 
Finally, future research could explore whether different tasks 
correlate with other aspects of addictive behaviors that were 
not investigated in the current project.

The temporal spacing between test sessions is an inter-
esting target for ongoing and future research. Varying this 
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interval systematically could lead to new insights as to when 
tasks are most sensitive to state- or training-related changes. 
A noteworthy advantage of our study is that we included 
two sessions for each task on the first study day, enabling us 
to specifically assess reliability and validity. Many existing 
studies on task reliability commonly use data from longitu-
dinal studies that were designed to test clinical or develop-
mental effects (e.g., Shahar et al., 2019, Brown et al., 2020). 
We also demonstrated that modeling session scores jointly—
that is using data from all sessions—further improves reli-
ability to good-to-excellent levels. It should be noted that 
this approach only works if data from several sessions is 
available, which might not be feasible for complex studies 
(e.g., studies involving brain scans). The method is therefore 
especially advantageous for remote studies such as this one.

One possible limitation of smartphone-based research is, 
however, that missing data might not be random. For exam-
ple, it is possible that participants that have generally lower 
working memory also perform fewer working memory tasks. 
If data is missing in a systematic way, it should decrease 
overall variance and make subsequent analyses more con-
servative. Finally, as both reliability and construct validity 
depend both on tasks and on populations (Knekta et al., 
2019), it should be noted that our results do not necessarily 
generalize to other populations (e.g., healthy participants or 
participants with other pathologies).

Conclusions We demonstrate good reliability and plausible 
construct validity of four smartphone-based tasks deployed 
in a large sample of participants suffering from SUD. We 
show that reliability can be further improved to good to 
excellent levels when modeling data from several sessions 
jointly and when combining several measures into latent 
variables. Finally, we demonstrate that latent factor scores 
from joint modeling increase correlations with a measure of 
drinking. Together, our results demonstrate the strong poten-
tial of smartphones to help overcome psychometric short-
comings of lab-based experimental tasks and to investigate 
real-life outcomes, which require sufficient psychometrics 
and an easy mobile deployment in real life and in clinically 
relevant populations. These results represent a critical mile-
stone towards longitudinal experimental studies in SUD 
research and in psychiatry and psychology more generally.

Materials and methods

General procedure This study was part of a larger Ger-
man research consortium on substance use disorder (SUD) 
at three sites (Technical University Dresden, Charité Ber-
lin, and Central Institute of Health Mannheim), in which 
a smartphone-based longitudinal Ecological Momentary 
Assessment (EMA) of up to 1 year was performed with a 

range of subjective reports. In addition to subjective reports, 
individuals performed four cognitive-motivational tasks on 
the smartphone once per month. These tasks were taken 
from the Great Brain Experiment (GBE) app (Brown et al., 
2014, see below for details). Before starting the EMA study, 
individuals underwent extensive clinical and neurocognitive 
assessments (see Heinz et al., 2020). During this assessment 
appointment, which was either conducted inside the labora-
tory or online via video chat, the app for running the EMA 
study (Movisens app; movisens GmbH, Germany; Reichert 
et al., 2021) as well as a customized version of the GBE app 
for assessment of the four cognitive-motivational tasks (see 
below) were installed either on participants’ own phone or 
on a study phone. On the first Monday following the assess-
ment, participants were prompted to complete each smart-
phone task twice. The current study focusses on these first 
two measurement sessions. Participants also participated in 
multiple sub-projects of the consortium (see Heinz et al., 
2020), that are unrelated to the present study.

Participants The study procedure was approved by the 
review boards of the local ethics committee at Heidelberg 
University (2018-621N-MA), Charité – Universitätsmedi-
zin Berlin (EA1/212/18), and Technical University Dresden 
(EK 459112018). Data collection took place between Feb-
ruary 2020 and March 2022. All participants gave written 
informed consent before participating in the study. For study 
inclusion at all three sites, participants had to fulfill criteria 
of substance used disorder, specifically mild to moderate 
Alcohol Use Disorder (AUD). According to DSM 5, mild 
to moderate AUD was defined as the presence of at least 
two AUD criteria. Participants were recruited through flyers 
and advertisements. Telephone screenings were conducted 
before study inclusion/exclusion. Exclusion criteria were: 
clinical indication for detoxification treatment, insufficient 
knowledge of the German language, seeking a therapeutic 
intervention, MRI contraindications, medical history of 
DSM-5 bipolar disorder, psychotic disorder, schizophrenia 
or schizophrenic spectrum disorder, or current use of drugs 
or medication nor substance dependence thereof other than 
alcohol, nicotine, or cannabis, as well as medical history of 
severe head injury, or other severe central nervous system 
disorders. Data from 488 participants was analyzed for the 
present study. Participants age ranged from 16 to 65 years (M 
= 36.9, SD = 12.8) and 180 participants (36.9%) reported to 
be female. Participants fulfilled 2 to 9 AUD criteria ranged 
from (M = 4.05, SD = 1.60).

Inhibition task During the Inhibition Task (Smittenaar et al., 
2015), participants tapped left or right on their smartphone 
screen to collect fruits falling from a tree (see Fig. 1). Each 
trial began with two fruits hanging at the top of the screen 
for one to three seconds (randomly selected from a uniform 
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distribution). Next, one of the fruits fell down and passed 
over one of two circles indicating the time during which par-
ticipants should collect the fruit through tapping (Go-Trials 
with a response window spanning from 500 to 800 ms after 
stimulus onset). In 12 of 32 trials (37.5%), the falling fruit 
turned brown, indicating that it was rotten and should not be 
collected (stop trials). At the beginning of each session the 
delay after which the fruit turned brown (stop signal delay; 
SSD) was 350 ms. This delay changed according to staircase 
procedure (Verbruggen et al., 2019): it increased by 50 ms 
after each successful stop trial (rendering the subsequent 
stop trial more difficult) and decreased by 50 ms after each 
unsuccessful stop trial (rendering the subsequent stop trial 
easier).

Working memory task During the working memory task 
(McNab et al., 2015), participants were asked to remember 
the positions of two up to 12 red circles presented on a 4 x 
4 grid (see Fig. 1). The task involved four conditions: In the 
‘long no distractor’ condition circles were presented for 2 
s (encoding phase), then disappeared for 1 s (maintenance 
phase), before participants had to tap on their no-longer vis-
ible locations. In the ‘short no-distractor’ condition, pat-
terns were presented for 1 instead of 2 s. In the ‘encoding-
distractor’ condition, two yellow distractors were presented 
together with the red circles during the encoding phase. In 
the ‘delayed-distractor’ condition, the same two yellow dis-
tractors were presented but during the maintenance phase. 
Each condition started with three circles in trial one. If par-
ticipants failed to respond correctly, two circles were pre-
sented in the second trial. If participants failed at this level, 
the condition was terminated. If a trial was completed cor-
rectly, the number of red circles in the corresponding condi-
tion increased by one in the next trial. If participants failed 
in a trial (from level four onwards), the level was repeated 
once. If they failed again the condition was terminated. A 
maximum of eight trials was completed for each condition.

Risk taking task During the risk taking task (Rutledge et al., 
2014), participants repeatedly chose between a certain out-
come and a gamble, with equal probabilities of the two 
outcomes (see Fig. 1). The task involved three conditions: 
In the ‘gain’ condition participants chose between either a 
certain gain or to gamble for a larger gain against 0 points. 
In the ‘loss’ condition, participants chose between either a 
certain loss or to gamble for 0 points against a larger loss. 
In the ‘mixed’ condition, participants chose between a cer-
tain amount of 0 points or to gamble for a gain against a 
loss amount. The gain and loss conditions consisted of 11 
trials and the mixed condition consisted of eight trials. In 
each trial, a certain amount was first randomly chosen with 
replacement from a fixed list of outcomes. Gamble amounts 
were then calculated by multiplying the certain amount 

with a randomly chosen multiplier from another fixed list 
(for details, see Bedder et al., 2020; Rutledge et al., 2014). 
The task also involved current mood ratings (“How happy 
are you at this moment?”; rating line with endpoints “very 
happy” and “very unhappy”) which were presented after 
every 2–3 trials and are known to be correlated with depres-
sive symptoms (Rutledge et al., 2014), but are not subject to 
the currently reported reliability analysis.

Information sampling task During the information sampling 
task (Hunt et al., 2016) participants were presented with 
four playing cards in rows of two and had to choose the 
row with the largest sum of card values (see Fig 1). Each of 
the 21 trials began with all cards facing down. Participants 
could invest points to turn over one card at a time to sample 
information with increasing costs for each additional card 
(zero points for the first card, 10 for the first card, 15 for the 
third, and 20 for the fourth card). Before turning over a card, 
participants could also choose to guess, at no cost, which 
row had the largest value. A choice at this stage would be 
a gamble (called a guess in the task) at 50/50. Participants 
won 60 points if this guess was correct and lost 50 points 
if the guess was incorrect. If turning over one or multiple 
cards, the costs for information sampling reduced the total 
win. Card values were sampled randomly with replacement 
from a discrete uniform distribution with integers ranging 
from 1–10.

Reliability The first goal of this study was to assess the 
smartphone tasks’ reliability. Where possible, we first 
assessed the tasks’ split-half reliability, i.e., the consistency 
with which a task measures its construct within one meas-
urement session. Next, we assessed the tasks’ test–retest 
reliability, i.e., the consistency with which a task measures 
its construct between two measurement sessions. While 
assessing the tasks’ test–retest reliability, we compared two 
approaches of analyzing task data—the more traditional 
approach in which sessions are modeled separately, and an 
alternative approach in which sessions are modeled jointly. 
The latter has recently been shown to yield superior reliabil-
ity estimates in theory and practice in other cognitive tasks 
(for details, see below; Brown, 2020; Haines et al., 2020; 
Waltmann et al., 2022).

Modeling sessions separately vs. jointly For each task, we 
compared two approaches of analyzing task data: The first 
approach, which we subsequently call separate modeling, 
is traditionally used to analyze task data. In this approach, 
summary scores are first created by aggregating data sepa-
rately for each session of each participant. Next, these sum-
mary scores are used for inference, for example to calculate 
test–retest reliabilities. According to Haines et al. (2020), 
one problem of this approach is that it assumes that scores 
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are estimated without measurement error. This, in turn, leads 
to ignoring uncertainty during inference, which, for exam-
ple, can attenuate test–retest reliability. A second problem 
is that this method assumes that person-level parameters are 
distributed uniformly across an interval that spans beyond a 
reasonable range of task scores. This is because knowledge 
about scores from other participants or scores from other 
sessions of the same participant is not integrated in esti-
mating individual session scores. Prior research shows that 
integrating such information into individual score estima-
tion yields more reliable scores (Brown et al., 2020; Efron 
& Morris, 1977; Haines et al., 2020; Rouder & Haaf, 2019; 
Waltmann et al., 2022; Williams et al., 2021).

The alternative analysis approach, which we subsequently 
call joint modeling, overcomes both problems of the sepa-
rate modeling approach. Instead of first calculating summary 
scores and using them in a second step for inference, the 
prediction approach performs inference directly based on 
all available trial-level data. This allows it to carry, firstly, 
within-session uncertainty into the inference step and, sec-
ondly, to use information from other participants and ses-
sions in each individual session score estimation. Both of 
these aspects improved test–retest reliability in previous 
work. We implemented this approach using hierarchical 
mixed models specifically designed to model each task’s 
outcome measure (for details see Supplementary Materials). 
Hierarchical mixed models allow us to analyze data at the 
trial-level while still accounting for the participant and ses-
sion structure of the data. We validated that scores based on 
mixed models did not substantially differ from task scores 
calculated with established methods when modelled for each 
session separately (see Supplementary Materials).

Split‑half and test–retest reliability Firstly, split-half reli-
ability was assessed based on Spearman–Brown-corrected 
correlations within each session (based on odd-even splits). 
Note that for the working memory task and for the inhi-
bition task, split-half reliabilities could not be computed 
because these tasks are adaptive. Therefore, splitting the task 
into two halves is not appropriate (Draheim et al., 2020).  
Qualitative interpretations of split-half reliabilities are 
given in line with Nunnally and Bernstein (1994; split-half 
reliabilities above .8 were labeled as adequate). Secondly, 
test–retest reliability was calculated based on intra-class 
correlation coefficients (ICCs) based on data from the first 
two measurement sessions. To calculate ICCs directly from  
mixed models, we followed the method recently described 
by Brown et al. (2020), which calculates reliabilities based 
on variance components extracted from mixed models. 
Waltmann et al. (2022) recently showed that this method 
yields more conservative and more accurate reliabilities than  
alternative methods (e.g., first predicting sessions scores and  
calculating reliabilities based on these predictions) and thus 

crucially avoids overestimating reliability. Qualitative inter-
pretations of test–retest reliabilities are given in accordance 
with Koo and Li (2016): ICCs less than .5 were being inter-
preted as “poor”, ICCs between .5 and .75 as “moderate”, 
ICCs between .75 and .9 as “good”, and ICCs above .9 as 
“excellent”.

Factor and clustering analysis Exploratory factor analysis 
was conducted using maximum likelihood estimation fol-
lowed by oblimin rotation, which rotates factors without 
enforcing orthogonality. The analysis was based on average 
joint prediction scores from both sessions. Before conducting 
this analysis, the outcome measure of the inhibition task was 
inverted, so that it could be interpreted in the same direction 
as the outcome measure of the working memory task (i.e., 
higher values indicating better performance). This analysis 
was implemented using the factor_analyzer package (Python 
3.5). The optimal number of factors was determined using a 
scree plot (see Fig. 3). The hierarchical clustering analysis 
was conducted using the SciPy package (Python 3.5). The 
analysis was conducted using Euclidean distances to generate 
a hierarchical tree. As there were no implicit heights at which 
to cut this tree, the cut height was determined based on theo-
retical considerations. To calculate reliability of factor scores, 
factor scores were extracted separately for each session using 
the tenBerge method, which is most appropriate for oblimin 
rotation (Ten Berge et al., 1999).
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