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Abstract
Having large sets of predictor variables from multiple sources concerning the same individuals is becoming increasingly
common in behavioral research. On top of the variable selection problem, predicting a categorical outcome using such data
gives rise to an additional challenge of identifying the processes at play underneath the predictors. These processes are
of particular interest in the setting of multi-source data because they can either be associated individually with a single
data source or jointly with multiple sources. Although many methods have addressed the classification problem in high
dimensionality, the additional challenge of distinguishing such underlying predictor processes from multi-source data has
not received sufficient attention. To this end, we propose the method of Sparse Common and Distinctive Covariates Logistic
Regression (SCD-Cov-logR). The method is a multi-source extension of principal covariates regression that combines with
generalized linear modeling framework to allow classification of a categorical outcome. In a simulation study, SCD-Cov-
logR resulted in outperformance compared to related methods commonly used in behavioral sciences. We also demonstrate
the practical usage of the method under an empirical dataset.

Keywords Multiblock data · Principal covariates regression · Common and distinctive processes · Data integration ·
Classification · Logistic regression

Introduction

In behavioral research, it is often of interest to classify sub-
jects, e.g., by constructing a logistic regression model. For
example, in mental health research, scores on various tests
are used to classify subjects into having versus not hav-
ing a disorder such as alcoholism (Babor, Higgins-Biddle,
Saunders, & Monteiro, 2001), dementia (Mioshi, Dawson,
Mitchell, Arnold, & Hodges, 2006), and eating disorders
(Hill, Reid, Morgan, & Lacey, 2010; Botella, Huang, &
Suero, 2015). By constructing a classification model, the
factors predicting class membership can be investigated.
For example, Barnes et al. (2009) studied the importance
of various measures such as genotype, fMRI, and cogni-
tive tests in predicting dementia among older adults through
logistic regression. As a result, a risk index that stratifies
older adults into different risk groups depending on their
scores on certain risk factors was put forward.
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Many studies in behavioral sciences of today involve
datasets comprised of multiple blocks of predictor variables
obtained for the same individuals, with each block of vari-
ables originating from different measurement instruments.
Examples of such blocks include demographic data, social
media, genetic profiling, and questionnaires. These joint
datasets are referred to as multiblock data (more details on
the conceptual framework are given in Van Mechelen and
Smilde, 2010). A unique feature of multiblock data is that
they can reveal two different kinds of sources of interindi-
vidual variation; those that concern single individual data
blocks and those that jointly encompass multiple blocks.
These sources of variation are referred to as distinctive and
common, respectively, and they are used to reveal the pro-
cesses underlying the emergence of particular conditions. To
explain more concretely, let us consider a block of genotype
data and another block of self-reported health behavior data
collected from two groups of children; ADHD-diagnosed
and healthy. Studying the onset of ADHD by adopting
this multiblock dataset, processes that only underlies the
genotype data may be found. For example, a dopaminer-
gic pathway involving dopamine transporter gene (DAT1)
and a serotonergic pathway incorporating serotonin trans-
porter gene (5HTTT) have been reported to play a role in
ADHD (Gizer, Ficks, & Waldman, 2009). These biological
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pathways would be considered as distinctive processes as
they entail only the genotype data block. On the other
hand, the multiblock data could also reveal a process that
involves both blocks of genotype and health behavior. Kahn,
Khoury, Nichols, and Lanphear (2003) found the combina-
tion of maternal prenatal smoking with a DAT1 genotype
leading to ADHD, while in another study, maternal stress
during pregnancy together with dopamine receptor 4 gene
(DRD4) were associated with severity of ADHD symptoms
(Grizenko et al., 2012). Such cases of gene–environment
interplay are examples of common processes as they involve
multiple data blocks.

Methods based on PCA have been actively proposed
to disentangle the common and distinctive processes from
multiblock data, but without considering the prediction
problem of an outcome variable (e.g., simultaneous com-
ponent analysis with distinctive and common components,
DISCO-SCA; Schouteden et al., 2013). As multiblock
datasets are often characterized by a large number of
variables, these PCA based methods have been further
extended. The presence of many variables complicates
the interpretation of the components derived by SCA as
they are associated with a large set of variables. The
introduction of sparseness penalties—limiting the number
of variables associated with a component—yields inter-
pretable components that represent common and distinctive
processes (e.g., sparse common and distinctive SCA
(SCaDS); de Schipper & Van Deun, 2018).

Recently, a method that identifies common and distinc-
tive processes from a multiblock dataset in the context
of a regression problem for a continuous outcome has
been proposed (Sparse Common and Distinctive Covariates
Regression (SCD-CovR); Park et al., 2020). The method
is an extension of principal covariates regression (PCovR)
which finds summary variables that explain variance in
both predictors and outcome by combining PCA and linear
regression (De Jong & Kiers, 1992). SCD-CovR incorpo-
rates SCaDS into the PCovR framework to obtain sparse
common and distinctive predictor processes. In order to
address the classification problem, the current paper extends
the SCD-CovR method to logistic regression; this means
that here we develop sparse common and distinctive covari-
ates logistic regression method (SCD-Cov-logR). SCD-
Cov-logR reveals the common and distinctive predictor
processes that play a role in classification of the outcome
and does so in an interpretable/insightful way by relying on
sparse representations.

The paper is arranged as follows. First, we provide the
methodological background and mathematical details of
SCD-Cov-logR. Then, the results from simulation studies
that comparatively demonstrate the performance of SCD-
Cov-logR against an existing method with a similar set of
objectives are presented. After further illustration of the

current method on an empirical multiblock dataset, the
paper is concluded by formulating some limitations and
directions for future research. The implementation of SCD-
Cov-logR was done in R and Rcpp, which can be found
on GitHub: https://github.com/soogs/SCD-Cov-logR, along
with the code used to generate the results reported in the
paper.

Methods

Notation

The following notation is used throughout the paper: scalars,
vectors and matrices are denoted by italic lowercase, bold
lowercase and bold uppercase letters respectively. Transpos-
ing is indicated by the superscript T . Lowercase subscripts
running from 1 to corresponding uppercase letters denote
indexing: i ∈ {1, 2, . . . , I }. Subscript C indicates con-
catenation of multiple data blocks, while superscripts (X),
(y) and (g) highlight affiliation with predictor, continuous
outcome and binary outcome variables, respectively. To
denote estimates, a ˆ over the symbol denoting the popu-
lation parameter is used (i.e., b̂ is the estimated logistic
regression coefficients). X refers to a matrix containing
the standardized scores of J predictors corresponding to I

observation units (that is, each column has mean zero and
variance equal to one). In the context of multiple predic-
tor blocks, Xk (with size I × Jk) indicates a kth predictor
block matrix with its predictors column-scaled and stan-
dardized; with k ∈ {1, 2, . . . , K}. XC = [X1, . . . ,XK ] (of
size I × ∑K

k=1 Jk) denotes the supermatrix that concate-
nates the predictor blocks. g indicates a dummy vector of
size I containing the scores on the binary outcome variable,
while y is a vector of size I of a continuous outcome. In the
context of an outcome variable with multiple categories, G
(with size I ×M) refers to a dummy matrix for the categori-
cal outcome with M total categories. For the ith observation
unit, gim = 1 if the response is in the mth category and
gim = 0 otherwise. Lastly, Ia denotes a a×a identity matrix
where the subscript a indicates the size of the matrix.

Model and objective function

SCD-Cov-logR is a classification method for a categorical
outcome. The method is particularly suitable when multiple
large blocks of predictor variables are available as it
allows to take the block structure into account and
to limit the number of variables contributing to the
predictive processes. SCD-Cov-logR constructs two types
of summary covariates: distinctive covariates based on a
linear combination of the predictor variables of one single
data block and common covariates that combine variables
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of multiple data blocks. Identification of different types of
predictor processes helps understanding of processes that
play important roles in the classification of the outcome. To
further facilitate the interpretation of these processes, SCD-
Cov-logR introduces regularization penalties to select a
subset of the predictor variables in constructing the common
and distinctive covariates. Taken together, an effective
classification method results where common and distinctive
predictor processes are identified in a sparse and therefore
interpretable manner; the method is also flexible in the
sense that it includes several other methods as a special
case such as logistic regression and PCovR for categorical
outcomes. We start with a brief description of the building
blocks, namely logistic regression and PCovR, before
moving onto SCD-Cov-logR. While the current method
allows classification of both binary and multiclass outcome
variables via logistic regression, we focus on binary
logistic regression in the following subsections in describing
our method. The multiclass classification via multinomial
logistic regression will be discussed thereafter, as it is a
straightforward extension of the binary problem.

Logistic regression

Logistic regression assumes that the log-odds (logit) of
the binary outcome are linearly dependent on the predictor
variables. Let xi be the vector of predictor scores for subject
i and gi the score on the outcome (either 0 or 1). The
log-odds for subject i is modeled by:

log

(
p(gi = 1)

1 − p(gi = 1)

)

= xT
i b + b0 (1)

where p(gi = 1) denotes the probability that the ith subject
would fall under the category represented by a 1. The vector
b indicates the logistic regression weights and the scalar b0

the intercept. From this model, it follows that

p(gi = 1) = 1

1 + e−(xT
i b+b0)

p(gi = 0) = 1 − p(gi = 1), (2)

which can be used to set up the likelihood equation. The
estimates of the logistic regression parameters can then be
obtained by maximizing the log-likelihood or minimizing
the negative log-likelihood; here, the latter will be used
for integration with the PCovR objective. The following
negative log-likelihood is minimized:

L(b, b0) = −
I∑

i

(gi(b0 + xT
i b) − log(1 + e(b0+xT

i b))). (3)

Typically, the minimum of this function is found via a
numerical procedure as it has no closed form. A popular
approach is the Newton–Raphson method for finding the
root of the first derivative which amounts to iteratively

reweighted least squares. It boils down to formulating local
quadratic approximations of the negative log-likelihood
in an iterative scheme that, after initialization, uses the
minimum of the quadratic approximation for updating in the
next iteration.

PCovR

In a setting with a large set of predictor variables, the ordi-
nary (least-squares) approach to linear regression involves
several drawbacks. It is difficult to interpret the large set of
regression coefficients corresponding to each of the predic-
tors. Also, in the case of multicollinearity (highly correlated
predictors), the estimates are instable. When the number
of predictors exceeds the number of observations (high-
dimensionality), the method has no unique solution. In order
to alleviate these difficulties, Principal Covariates Regres-
sion (PCovR; De Jong & Kiers 1992) was put forward by
combining PCA with linear regression. PCovR introduces
summary variables, the so-called ‘principal covariates’, in
modeling the predictor and outcome variables. The covari-
ates summarize the predictors by a linear combination of the
original variables that is obtained in such a way that they
account for variation in both predictor and outcome vari-
ables. Regression coefficients are found for these limited
number of covariates instead of for each of the original pre-
dictor variables, resolving the challenges of finding a unique
and stable regression model in the setting of a large number
of predictors. Since the covariates summarize the predictors,
they can be understood to represent the predictor processes
behind the outcome. Let R be the pre-specified number of
covariates to be derived. PCovR then assumes the following
models for the predictor and outcome variables:

y = XWp(y) + e(y)

X = XW(P(X))T + E(X). (4)

Both the models for the outcome y and for the predictor
variables X rely on the same summary predictor scores XW
with W referring to the weights matrix of size J × R. The
weights prescribe the linear combination of the predictors to
compose the principal covariates (namely, T = XW). The
first line of Eq. 4 shows the model underlying the outcome;
in that model p(y) indicates a vector of R regression
coefficients while e(y) denotes the residuals pertaining to
the outcome. The second line of Eq. 4 gives the model
for the predictors. P(X) indicates the loadings matrix of
size J × R. Similar to the regression coefficients p(y) for
the outcome variable in the first line, the loadings matrix
linearly combine the covariates to reconstruct back the
predictors. It can be seen as regression coefficients obtained
from regressing the predictor variables on the principal
covariates. Note that this model formulation also underlies
the methods of principal components regression (PCR; see
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Jolliffe, 1982) and partial least squares (PLS; Wold, 1982;
Wold et al., 1983).

The aim of PCovR to find covariates that effectively
reconstruct X and simultaneously predict y is expressed by
the following joint loss function (De Jong & Kiers, 1992):

L(W,P(X), p(y)) = α

∥
∥y − XWp(y)

∥
∥2

2

‖y‖2
2

+(1 − α)

∥
∥X − XW(P(X))T

∥
∥2

2

‖X‖2
2

, (5)

with 0 ≤ α ≤ 1, a known constant which specifies the
balance between fitting the outcome and the predictors.
With α set at 0, the method is the same as PCR where the
outcome variable is regressed on the principal components
found by PCA. On the other hand, with α = 1, the method
is equivalent to linear regression.1 The solution of Eq. 5 is
not identifiable without imposing constraints. Therefore, the
covariates are often constrained to be orthonormal (TT T =
IR) to identify the solution (De Jong & Kiers, 1992).

The principal covariates in the PCovR model are used
to represent the processes that underlie both the predic-
tor and outcome variables. Therefore, it is important to
interpret the derived covariates to understand the nature
of these processes. There are two ways of interpreting the
covariates. Firstly, the loadings matrix P(X) can be studied.
When the principal covariates are scaled to variance equal
to one (TT T = I IR) and the predictor variables have
been centered and scaled to variance equal to one, the
loadings are equal to the correlation between the principal
covariates and the predictor variables. Therefore, P(X) can
be conveniently interpreted in two ways; regression coeffi-
cients that reconstruct the predictors (namely, T(P(X))T =
(XW)(P(X))T = X) and covariate-predictor correlations.
The loadings derived within PCA are also commonly stud-
ied in the same manner. On the other hand, the second way
to understand the covariates is by observing the weights
matrix W. The weights are used in combining the predictors
to construct the covariates, and therefore they describe the
composition of the covariates. They also play an important
role in applying the model to new data, in the context of pre-
diction for new observations, as they are used to transform
the new predictor variables to covariate scores. Studying the
loadings or the weights are both valid ways to understand
the nature of the covariates and the two estimates can both
be inspected in a complementary manner. However, if one
of the estimates should be chosen for inspection, the choice
should depend on the research aim of interest; loadings
reflect the strength of association of the predictor variables

1ŷi = ∑
r p

(y)
r tir = ∑

r (
∑

j p
(y)
r xijwjr ) = ∑

j (
∑

r p
(y)
r wjr )xij ,

with
∑

r p
(y)
r wjr as a regression coefficient for the j th predictor,

where r is an index for each covariate.

with the principal covariates while weights prescribe how
the covariates are constructed. We refer to Guerra-Urzola,
Van Deun, Vera, and Sijtsma (2021) for a thorough discus-
sion of the issue of loadings versus weights in the context of
sparse PCA.

SCD-Cov-logR

Here, we propose a method for binary classification that
is suitable for multiblock data where several blocks of
predictor variables are available: besides the fact that
the method can handle many predictors or even high-
dimensional data, it yields particular insight in the data by
revealing common and distinctive predictor processes in a
sparse and therefore interpretable manner.

Model We make use of a model formulation that integrates
the logistic regression and PCovR models in Eqs. 2 and
4. More specifically, the model for the outcome variable
is adapted. Let the vector xCi denote the ith row of the
supermatix XC resulting from the concatenation of the
predictor blocks and let WC of size

∑K
k=1 Jk × R denote

the corresponding weights matrix, then the log-odds of the
binary outcome can be modeled by the principal covariates
as follows:

log

(
p(gi = 1)

1 − p(gi = 1)

)

= xC
T
i WCp(g) + p

(g)

0

xCi =
[
xC

T
i WC(P(X)

C )T
]T + e(X)

i , (6)

where p(g) in the first line of the equation denotes the vector
of R regression coefficients and p

(g)

0 the intercept. As in
the PCovR model (Eq. 4), the weights matrix dictates the
composition of the covariates (TC = XCWC). In the second
line, P(X)

C indicates the loadings matrix of size
∑K

k=1 Jk×R.
They recover the predictor variables from the covariates, as
done in the PCovR model. Therefore, the covariates in this
model explain both the variance of predictor variables and
the log-odds of the binary outcome variable.

The model in Eq. 6 includes all predictor variables in
constructing the principal covariates while often it is of
interest to find the subset of variables that are relevant
for the predictor processes represented by the principal
covariates. Hence, our proposed model is subject to a
sparsity inducing penalty that limits the number of predictor
variables contributing to the covariates. SCD-Cov-logR
therefore imposes the sparsity on the weights, as we are
interested in finding a subset of predictors that together
make up the predictor processes. In this way, understanding
the covariates becomes much easier as they are based on a
smaller subset of predictors.

To understand the composition of the covariates not only
at the level of the individual variables but also at the level
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of the blocks, sparsity is imposed in two ways: On the one
hand at the level of the blocks (blockwise sparsity) and,
on the other hand, at the level of the individual variables
(elementwise sparsity). Blockwise sparsity refers to forcing
the weights corresponding to an entire set of predictors in
a data block to zero. By doing so, distinctive covariates
which are only comprised of predictors from a single data
block can be obtained. If more than one predictor blocks but
not all make up a covariate, that would be referred to as a
locally common covariate, as opposed to a globally common
covariate where all of the predictor blocks are involved in
deriving the covariate (Måge, Smilde, & Van der Kloet,
2019). Elementwise sparsity indicates dropping individual
predictors out of the model. Combining these two types
of sparsity encouraged at different levels, only a subset of
predictors within the blocks that are chosen by blockwise
sparsity would be left in the model to make up a covariate.
Common and distinctive covariates that are comprised of
a small interpretable subset of predictors can therefore be
found to represent the underlying predictor processes.

Objective function In setting up the objective function of
SCD-Cov-logR, the objectives for logistic regression and
PCovR are combined. As discussed, for a binary outcome
the log-odds are regressed on the covariates. Hence, the
squared error pertaining to the outcome (the left term in
Eq. 5) is replaced by a negative log-likelihood function
based on the PCovR logistic regression model (first line in
Eq. 6). Furthermore, the two types of sparsity on the weights
WC are accomplished by imposing two different penalties.
We employ the group lasso penalty (Yuan & Lin, 2006)
which shrinks and sparsifies the weights at the block level,
and the lasso penalty (Tibshirani, 1996) that does the same
but for individual weights. This combination of penalties is
also known as the sparse group lasso (Friedman, Hastie, &
Tibshirani, 2010a; Simon, Friedman, Hastie, & Tibshirani,
2013). The objective of SCD-Cov-logR is to minimize the
following loss function,

L(WC,P(X)
C , p(g), p

(g)

0 )

= α

l0

[

−
I∑

i

(gi(p
(g)

0 +xC
T
i WCp(g))−log(1+e(p

(g)
0 +xC

T
i WCp(g))))

]

+ 1 − α

‖XC‖2
2

I∑

i

∥
∥
∥xC

T
i − xC

T
i WC(P(X)

C )T
∥
∥
∥

2

2

+
R∑

r

λLr |wCr |1 +
R∑

r

K∑

k

λGr

√
Jk

∥
∥
∥w(k)

r

∥
∥
∥

2
+ λR

∥
∥
∥p(g)

∥
∥
∥

2

2
(7)

where the loadings associated with the predictors P(X)
C are

constrained to be column-orthogonal ((P(X)
C )T P(X)

C = IR)
in order to identify the solution (and to avoid an ill-posed
problem resulting in ever-decreasing weights compensated

by ever-increasing loadings). l0 refers to the negative log-
likelihood of the null model fitted without any predictors
l0 = −∑I

i (gi log(p̄) + (1 − gi) log(1 − p̄)), where p̄ =
1
I

∑I
i gi is the proportion of observations in the first

category. The terms with λGr and λLr refer to the group
lasso and the lasso penalties corresponding to the rth
covariate. w(k)

r indicates the weights corresponding to the
covariate r and the predictor block k. The last term denotes
the ridge penalty imposed on the regression coefficients
p(g) to prevent divergence occurring due to covariates being
correlated.

The first term of the loss function represents the negative
log-likelihood function based on Eq. 6. It is in the same
format as the negative log-likelihood function commonly
used for logistic regression, except that it has been adapted
according to the multiblock PCovR model structure. This
term is divided by the log-likelihood of the null model2 l0,
while the second term of sum of squared predictor errors is
divided by the total sum of squared predictor scores. The
two types of losses are therefore placed within a comparable
scale between 0 and 1. With respect to the penalties on the
weights, it can be seen that the group lasso penalty ‖·‖2
concerns a group of weights connecting the predictors in the
kth predictor block with the rth covariate, while the lasso
penalty |·|1 is imposed on all of the

∑K
k=1 Jk individual

weights corresponding to rth covariate. The two penalties
together make up the sparse group lasso.

It is possible to re-express the objective function by
scaling the α parameter such that it already takes account of
the negative log-likelihood of the null model l0 and the sum
of squared predictor scores ‖XC‖2

2. The scaled weighting
parameter β is defined by:

β = α ‖XC‖2
2

α ‖XC‖2
2 + (1 − α)l0

(8)

β can then replace α
l0

in the objective function (7) while

(1 − β) replaces (1−α)

‖XC‖2
2
, leading to a different expression

of the same objective. Such rescaling of the weighting
parameter has been shown in Vervloet, Van Deun, Van den
Noortgate, and Ceulemans (2013).

Relation to existing methods Several existing methods rely
on objective functions that are similar to the objective intro-
duced here in Eq. 7. A method called Sparse Principal
Component Regression (SPCR; Kawano et al., 2018) has
been proposed and combined with generalized linear model-
ing. SPCR and SCD-Cov-logR are characterized by similar
objective functions; our method can be viewed as an exten-
sion of SPCR for the setting of multiple predictor blocks.

2This ratio of negative log-likelihoods is used in computation of
McFadden’s pseudo R2 (McFadden & et al. 1973) that provides insight
on explained variance in the context of logistic regression.

4147Behavior Research Methods (2023) 55:4143–4174



Likewise, several other methods can be seen as a special
case of the objective function in Eq. 7. First, if the balancing
parameter α is fixed at zero, common and distinctive
sparse covariates would be found only optimizing the fit
to the predictor variables. This solution would be equiva-
lent to that of SCaDS (de Schipper & Van Deun, 2018),
which finds common and distinctive sparse components
from multiblock data. For this reason, and also because
the algorithm for SCD-Cov-logR is infeasible when α is
equal to exactly zero, we rely on SCaDS to find the solu-
tions when α = 0. Second, if the negative log-likelihood
term is replaced by squared error pertaining to a continuous

outcome (
∥
∥y − XCWCp(y)

∥
∥2

2 / ‖y‖2
2), the objective function

becomes that of SCD-CovR (Park, Ceulemans, & Van Deun,
2020), which shares the same aims as SCD-Cov-logR except
it targets a continuous outcome. Third, starting from the
SCD-CovR formulation, if the group lasso parameter is fixed
at zero and only a single block of predictors are employed,
the problem boils down to SPCovR (Van Deun, Crompvoets,
& Ceulemans, 2018) which finds sparse covariates. As these
methods serve as the basis for the current SCD-Cov-logR,
further details of these directly related methods are provided
in Appendix A. Finally, fixing the lasso and group lasso
parameters at zero such that weights are found without spar-
sity, the problem can be seen as an extension to PCovR to
account for a binary classification problem.

Algorithm The minimizing solution of Eq. 7 can be found
by an alternating procedure where the loadings P(X)

C and

the regression coefficients p(g) and p
(g)

0 are solved for
conditional upon fixed values for the weights WC and vice
versa. Such an alternating approach has been effective for
SCaDS, SCD-CovR and SPCovR. To treat the minimization
of Eq. 7 which is complicated by the negative log-likelihood
term, we make use of a local quadratic approximation,
similar to the iteratively reweighted least squares approach
that is usually taken to solve the logistic regression prob-
lem (Friedman, Hastie, & Tibshirani, 2010b). The alter-
nating routine continues until the algorithm converges to
a stationary point, usually a local minimum. Since the
iteratively reweighted least squares procedure is known to
sometimes lead to divergence, we also employ the max-
imum number of iteration of 5000 as another form of
stopping criterion. As the objective function in Eq. 7 is
not a convex problem, it is subject to local minima. We
recommend using multiple random starting values, along
with rational starting values based on PCovR (administered
by treating the binary outcome as a continuous variable).
Furthermore, employing multiple starting values is partic-
ularly important because the estimation of WC is often a
high dimensional regression problem prone to instable esti-
mates (Jia & Yu, 2010; Guerra-Urzola, Van Deun, Vera, &
Sijtsma, 2021), meaning that different starting values may

result in different estimates. The sparse group lasso problem
for WC is treated via coordinate descent (Friedman et al.,
2010a), while closed-form solutions exist for the conditional
updates of P(X)

C , p(g) and p
(g)

0 . Further details on the algo-
rithm for minimizing the objective function can be found
in the Appendix B, including the schematic outline of the
algorithm and the derivation of solutions to the conditional
updates (Appendices C and D).

Multiclass classification

Our method can be slightly adapted to address a classifica-
tion problem in the presence of more than two categories.
The method is posed in the same manner as the binary prob-
lem, except it relies on multinomial logistic regression. The
logit model in Eq. 6 is generalized to a ‘baseline-category
logit model’ (Agresti, 2003) which is a common approach
to extend logistic regression to a multiclass problem. Let
p(gim = 1) and p(giM = 1) denote the probability that sub-
ject i would fall under the category m and the last category
M , respectively. Treating the last category as the baseline,
the log-odds of the ith observation being in category m as
opposed to being in the baseline category is modeled:

log

(
p(gim = 1)

p(giM = 1)

)

= xC
T
i WCp

(g)
m + p0

(g)
m ,

for m = 1, . . . ,M − 1

xCi =
[
xC

T
i WC(P(X)

C )T
]T + e(X)

i , (9)

where p(g)
m and p0

(g)
m refer to the regression coefficients and

the intercept that correspond to category m. By calculating
M − 1 sets of the regression coefficients, the log-odds of
any pairs of response categories can be determined. As for
the objective function, the negative log-likelihood function
based on the baseline-category logit model replaces the
negative log-likelihood concerning the binary classification
provided in Eq. 7:
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where the loadings P(X)
C are constrained to be column-

orthogonal ((P(X)
C )T P(X)

C = IR) as done for the binary
problem (Eq. 7). Other quantities and penalty terms are also
defined the same. l0 here refers to the negative log-like-

lihood of the null model l0 = −∑I
i

[∑M−1
m gim log(p̄m)+

giM log(p̄M)
]

where p̄m = 1
I

∑I
i gim is the proportion of

observations in the mth category. Hence, the negative log-
likelihood and the sum of squared errors are also scaled
in this objective function. The weighting parameter α can
be rescaled to β in the same manner as for the binary
classification problem (see Eq. 8). Furthermore, note that
both the model (Eq. 9) and the objective function (Eq. 10)
become equal to those of the binary problem (Eqs. 6 and
7) when the total number of categories M are set at two.
To find the minimizing solution of Eq. 10, an alternating
algorithm very similar to that for the binary problem is
employed. The only difference is that the negative log-
likelihood term with multiple categories is treated with
partial quadratic approximation with respect to the category
m where only p(g)

m and p0
(g)
m are allowed to vary at a

time. This partial quadratic approximation has been used for
treating a penalized multinomial logistic regression problem
(Friedman et al., 2010b). Details on the algorithm are
provided in the Appendix E.

Toy example

In order to provide a clearer picture of the goals that the
method targets and the estimates it provides, we showcase
the method on a toy example dataset for a binary classi-
fication problem in this section. We generated the dataset
according to one of the conditions of the simulation study
which follows later. The dataset is composed of two data
blocks and its underlying model assumes three covariates.
Two of these covariates represent processes that are distinc-
tive to the first and the second data blocks, respectively,
while the third covariate is a common process, affiliated
with both data blocks. In addition, the model was defined
such that the covariate distinctive to the second block is not
relevant in the classification of the outcome variable. Each
of the two data blocks consists of 15 predictors concerning
the same set of 100 observation units. There is one binary
outcome variable. Details of the data generation setup can
be found in the simulation study section.

A few technicalities come with the application of the
SCD-Cov-logR to data. First, it is important to note that the
solution is influenced by several tuning parameters that need
to be fine-tuned via model selection. Second, also different
starting values may yield different solutions because the algo-
rithm can converge to a local minimum. The model selection
procedure we adopted to find the solutions presented in the
following will be discussed in the next section, along with

our consideration regarding multiple starting values. Third,
a pre-processing step precedes method application. All of
the predictor variables are centered and scaled to unit sum
of squares. Subsequently, the different predictor blocks are
weighted such that the sum of squares are equal across the
blocks, in order to account for the differing block sizes.

The estimates retrieved by the method along with the
population parameters used to generate the dataset are pro-
vided in Table 1. It first shows that the weights ŴC are
found sparse and correctly reflect the population weights
zero-nonzero structure. Most of the estimated weights are
smaller in magnitude than the population weights because
the lasso and group lasso penalties not only enforce sparsity
but also shrink the coefficients towards zero. The weights
are interpreted as the coefficients in the linear combina-
tion that forms the covariates from the predictor variables;
tir = ∑

j wjrxij . Therefore, the weights correctly repre-
sent that the first two covariates are distinctive for each
of the data blocks while the third is common. The logis-
tic regression coefficients and the intercept p̂(g) and p̂

(g)

0
are also obtained and are in agreement with the popula-
tion parameters; the covariate distinctive to the second data
block is much less relevant than the other covariates in the
classification problem. These coefficients can be combined
with the covariates to yield the predicted log-odds;

∑
r (p̂

(g)
r

t̂ir )+p̂
(g)

0 = ŷi . The inverse-logistic function (Eq. 2) is used
to transform the ŷi log-odds into predicted probabilities
for the categories of the outcome variable; if the proba-
bility is larger than 0.5, the class predicted by the model
is 1. Let us take an example of the first observation xC1,
the covariate scores of this observation t̂1 = xC

T
1 ŴC =

[2.875, 0.046, 3.384]T are combined with the regression
coefficients to get the predicted log odds

∑
r (p̂

(g)
r t̂1r ) +

p̂
(g)

0 = log
(

p(ĝ1=1)

1−p(ĝ1=1)

)
= 0.862. Applying the inverse

logistic function, the predicted probability for this observa-
tion to be classified as 1 is 1

1+e−0.862 = 0.703. Since this
probability is larger than 0.5, we predict the observation as
being in class 1, which is indeed true for the first observation
in our toy example dataset.

Altogether, examining this solution, it would be con-
cluded that there are two underlying predictor processes
that exclusively involve predictor variables of only one of
the two data blocks and one process that involves predic-
tors from both data blocks. Predictors x9 to x15 and x24 to
x30 are filtered out of the model; they are not related with
any of these processes. Only two processes out of the three
are important in classifying the binary outcome variable.
The predictor process distinctive to the second data block
is irrelevant for the classification problem. Concerning the
performance of classifying the outcome, the method clas-
sified 92 in-sample observations. To gauge the quality of
predicting the classes of unseen data, we applied the fitted
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Table 1 Population weights, and the solution found by SCD-Cov-logR from the toy example dataset: weights and logistic regression coefficients

WC ŴC

D1 D2 C D1 D2 C Logistic regression coefficients

Block 1 Block 1 Population

x1 0.5 0 0 x1 0.358 0 0 D1 −0.600

x2 0.5 0 0 x2 0.391 0 0 D2 −0.010

x3 0.5 0 0 x3 0.463 0 0 C 0.800

x4 0.5 0 0 x4 0.475 0 0 intercept 0

x5 0 0 0.354 x5 0 0 0.359

x6 0 0 0.354 x6 0 0 0.319 Estimated

x7 0 0 0.354 x7 0 0 0.276 D1 −0.735

x8 0 0 0.354 x8 0 0 0.233 D2 −0.072

x9 0 0 0 x9 0 0 0 C 0.907

x10 0 0 0 x10 0 0 0 intercept −0.090

x11 0 0 0 x11 0 0 0

x12 0 0 0 x12 0 0 0

x13 0 0 0 x13 0 0 0

x14 0 0 0 x14 0 0 0

x15 0 0 0 x15 0 0 0

Block 2 Block 2

x16 0 0 0.354 x16 0 0 0.358

x17 0 0 0.354 x17 0 0 0.401

x18 0 0 0.354 x18 0 0 0.342

x19 0 0 0.354 x19 0 0 0.307

x20 0 0.5 0 x20 0 0.483 0

x21 0 0.5 0 x21 0 0.415 0

x22 0 0.5 0 x22 0 0.381 0

x23 0 0.5 0 x23 0 0.453 0

x24 0 0 0 x24 0 0 0

x25 0 0 0 x25 0 0 0

x26 0 0 0 x26 0 0 0

x27 0 0 0 x27 0 0 0

x28 0 0 0 x28 0 0 0

x29 0 0 0 x29 0 0 0

x30 0 0 0 x30 0 0 0

The column names D1, D2, and C indicate that the corresponding covariate is defined as being distinctive to block 1, distinctive to block 2 and
common

model to 100 observations of out-of-sample data that were
generated from the same population as the in-sample obser-
vations. The method was able to classify 92 out-of-sample
observations correctly.

Model selection

The SCD-Cov-logR method involves several (usually)
unknown parameters that govern the characteristics of the
derived model; the number of covariates R, the weighting
parameter α, the lasso and group lasso parameters λLr, λGr

for the sparse weights and the ridge parameter λR for
the logistic regression coefficients. These parameters are
usually tuned in accordance with a certain optimality
criterion such as prediction error. Several model selection
strategies can be used for different model parameters,
while we adopt cross-validation for all of the parameters
except for the number of covariates. A straightforward
way to administer cross-validation is the grid search that
exhaustively compares all possible combinations of the
ranges of values for the different parameters in optimizing
the criterion of cross-validation error. However, as the
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current method entails many parameters to be tuned, such a
scheme involves a very heavy computational load. Instead,
a sequential approach where sets of parameters are tuned
in turn can be considered as it was demonstrated to work
well for model selection for PCovR (Vervloet, Van Deun,
Van den Noortgate, & Ceulemans, 2016) and also for SCD-
CovR (Park et al., 2020). In the following, we propose a
sequential cross-validation model selection procedure and
demonstrate it with the toy example dataset.

The first step of the sequential approach is to determine
the number of covariates. This was recommended in a
study that compares model selection strategies for PCovR
(Vervloet et al., 2016). Park, Ceulemans, and Van Deun
(2020) also selected the number of covariates first and
obtained models with good performance in SCD-CovR. For
finding the number of covariates in SCD-Cov-logR, we
first perform PCA on the predictor variables with varying
number of principal components. Instead of the well-known
scree test that manually looks for an ‘elbow’ in the plot of
eigenvalues (representing the amount of variance explained
by each principal component) which involves an element of
subjectivity, the acceleration factor technique proposed by
Raı̂che, Walls, Magis, Riopel, and Blais (2013) is adopted. It
finds the elbow by computing at which point the slope of the
graph of eigenvalues change most sharply. The technique
retains the principal components that derived prior to the
principal component where the sharp change in slopes
occurs. The R package “nFactors” is employed for this
purpose (Raiche, Magis, & Raiche, 2020).

With the number of covariates fixed, cross-validation
is administered to simultaneously select the optimal val-
ues of α and λR . For each combination of values, the
mean of squared residuals is computed. These residu-
als are discrepancies between the binary outcome scores
of the observations in held-out samples and their cor-
responding predicted probabilities computed by: 1

n

∑n
i

(
gi − 1/

(
1 + e−(xC

T
i ŴC p̂(g)+p̂

(g)
0 )

))2
where n denotes the

size of the held-out samples. In the case of the multiclass
problem, the residuals are computed by 1

n(M−1)

∑M−1
m

∑n
i

[
gim−exC

T
i ŴC p̂

(g)
m +p̂0

(g)
m /

(
1 + ∑M−1

m ep0
(g)
m +xC

T
i WCp

(g)
m

)]2
.

The one standard error rule (Friedman, Hastie, Tibshirani,
& et al. 2001) is adopted, which selects the least complex
model within one standard error of the best-performing
model. For α, higher values are associated with model com-
plexity and overfitting because it places a heavier emphasis
on the prediction problem of the outcome which becomes
prone to overfitting with increasing number of predictor
variables (Babyak, 2004; McNeish, 2015). Similarly, lower
values of λR are related with overfitting as it leads to high
variance of parameter estimates across samples. Therefore,
the one standard error rule aims to select the models with

the lowest α and the highest λR values. When the two
parameters are not in agreement, the model with lower α is
preferred over the model with higher λR as the former is
seen to exert more impact on the final model. Note that the
rescaled parameter β can be tuned instead of directly tuning
for α. Higher values of β are related to overfitting, in the
same manner as for α. The one standard error rule would
thus choose the models comprised with the lowest β and
the highest λR values in this case.

We tune the sparsity parameters for the weights at the
final stage of the model selection procedure because they
exert relatively small influences on the fit of the model
with respect to both classification or reconstruction of the
blocks of predictor variables (de Schipper & Van Deun,
2021; Park et al., 2020). In a paper that examined the
efficacy of various model selection strategies for sparsity
penalty parameters in sparse PCA that retrieves sparse
weights like SCD-Cov-logR, it was reported that even a very
sparse model yields good recovery of summary component
scores (de Schipper & Van Deun, 2021). The authors advise
using cross-validation with the one standard error rule to
select the parameters, when the aim of the analysis includes
understanding of underlying processes. For our proposed
method, the one standard error rule is set up such that
the model with the highest values of λLr and λGr are
chosen within models with minimal cross-validation error.
Between the two parameters, the model with higher λLr

is preferred over the model with higher λGr because λLr

encourages the sparse solution in a more direct manner
than λGr . While different values of the parameters can
be specified concerning the weights corresponding to each
of the rth covariate, we usually adopt the same values
across multiple covariates to ease the computational burden.
Additionally, in choosing the ranges of sparsity parameters
to be considered for model selection, values separated by
a reasonable interval can be selected between a near-zero
value and another value that leads to complete sparsity. One
way to choose such an interval is by selecting a sequence
of equally spaced values on the log scale, as done in
de Schipper and Van Deun (2021) and recommended in
Friedman, Hastie, and Tibshirani (2010b).

Model selection for the toy example We demonstrate the
model selection procedure by applying it on the toy example
dataset. First, PCA is administered to the concatenated set of
centered and standardized predictor variables with various
numbers of principal components. Figure 4 in Appendix F
depicts the variance explained by each component. With
the acceleration factor technique, the number of covariates
is chosen to be three because the sharpest change in the
slopes occurs at the fourth principal component. With the
number of covariates fixed, we administered a five-fold
cross-validation, simultaneously varying the values of β and
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λR . Instead of directly controlling the values for α, we
varied the values for its rescaled version β. The parameters
λLr and λGr were fixed at zero for the cross-validation.
We considered the values of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9] for β and [0.1, 0.5, 1, 3, 5, 10, 30, 50] for
λR . With the one standard error rule, a β value of 0.2 and
λR of 1 was selected. Given these parameters, we finally
conducted another five-fold cross-validation for λLr and
λGr . The range of [0.5, 1, 5, 7, 10, 15, 30, 45, 100] was
employed for λLr and [0.1, 0.5, 1, 2, 5, 10] for λGr . The
one standard error rule selected the model with λLr = 45
and λGr = 2. The solution provided above in Table 1 was
obtained by adopting these values for the analysis of the
data. It is worth noting that using an exhaustive approach
to cross-validation that considers all combinations of these
ranges of parameters also resulted in models that are similar
to this reported model. The results from this exhaustive
approach can be found in Appendix G.

In the above model selection procedures, rational starting
values (i.e., the PCovR solution) were used in initializing
the SCD-Cov-logR algorithm. To account for the problem
of local minima, 20 different sets of random starting values
were generated. Using each set of starting values, we
conducted the same model selection procedures to find the
tuning parameters and the final model estimates. We found
that the solution resulted from the rational starting values
were associated with the lowest minimum, compared with
the other starting values. Comparing the estimates obtained
by different starting values, although some starting values
yielded estimates that are quite different from those of the
rational starting values, the starting values that resulted in
smaller loss led to estimates that are very similar to those of
the rational starting values. These estimates also correctly
classified the same numbers of in-sample and out-of-sample
observations as the estimates from the rational starting
values. Since the rational starting values led to the lowest
minimum, we reported these estimates in the previous
section. It also seems sensible that the rational starting
values from PCovR finds a lower minimum because the data
was generated from a clear PCovR model structure (as seen
in the Simulation Study section). However, in practice, it
is recommended to adopt multiple random starting values
and the rational values to initialize the algorithm and
subsequently choose the solution that attains the lowest
minimum. This applies especially if the underlying true
model structure is unknown, unlike for the current toy
example.

Relatedmethods

SCD-Cov-logR is a classification method with three main
objectives. It (a) classifies a categorical outcome, (b)
recovers the underlying common and distinctive predictor

processes via dimension reduction, and (c) derives sparse
weights and therefore interpretable covariates. The method
offers a solution that achieves all of these objectives in a
flexible manner such that the user can emphasize one goal
over another according to the research aim. In this section,
we will present two methods that are related to SCD-Cov-
logR, in the sense that they target a similar set of goals.
Alongside, regularized logistic regression is also discussed
as a benchmark method for classification with a large set of
predictors.

PCR (logistic regression)

A commonly used method that aims both at classification
and modeling the variation in the block of predictors is
based on principal component regression (PCR; see
Jolliffe, 1982). This method first performs PCA on the
predictors and then, in a second and separate step, builds
a classification model using the retrieved components
as the predictor variables. In order to derive common
and distinctive processes from multiblock data, the PCA
step can be conducted with SCaDS (de Schipper & Van
Deun, 2018). We will refer to this two-step approach of
SCaDS followed by logistic regression by SCaDS-logR.
As discussed above, this is the special case of SCD-Cov-
logR with the weighting parameter α is specified at zero.
Hence, it addresses the same research goals of SCD-Cov-
logR, except that it does not take the outcome variable into
consideration when deriving the components. Due to this,
the underlying processes that play important roles for the
outcome variable rather than the predictor variables may be
omitted (Vervloet et al., 2016).

DIABLO

Data Integration Analysis for Biomarker discovery using
a Latent component method for Omics (DIABLO; Singh
et al., 2016) is a partial least squares (PLS)-based
framework that addresses the multiple aims of prediction
and sparse modeling of the variation in the predictors. PLS
(Wold, 1982; Wold, Martens, & Wold, 1983) is a widely
used method that has the same model structures as PCovR;
it finds components that represent the underlying processes
among the predictors while predicting the outcome variable.
PLS can also be seen as an approach to structural
equation modeling (SEM) when complex models are
built without being mainly guided by theory (Tenenhaus,
Tenenhaus, & Groenen, 2017). DIABLO is an extension
of PLS that jointly analyzes multiple predictor blocks and
obtains sparse components. Simultaneously, these sparse
components explain the variation in the outcome variable.
Therefore, DIABLO meets all of the research aims of
SCD-Cov-logR. While our proposed method treats the
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multiblock problem by concatenating the predictor matrix
to construct a single model that covers several data blocks,
DIABLO derives one model separately for each data
block; predictions from each model are accumulated via
majority voting to give the overall classification. Therefore,
DIABLO can be seen to only find components that are
distinctive to each block. However, it is possible to specify
how correlated these components built on each block
would be. This would encourage capturing of the variance
accounted for by common predictor processes, although
they may not be explicitly obtained. Singh et al. (2016)
demonstrated that when building a classification model for
breast cancer subtypes with predictors from multiple data
blocks (mRNA, miRNA, methylation and proteins) from
The Cancer Genome Atlas (TCGA), DIABLO was able to
select more variables that are strongly correlated with each
other than elastic net regression.

Another core difference between SCD-Cov-logR and
DIABLO lies with the parameter α that balances between
reconstruction of the predictors and prediction of the
outcome variable. PLS-based methods do not offer such
an option and tend to lean closer to a PCovR model
emphasizing prediction, this is α close to one (Vervloet
et al., 2016; Van Deun et al., 2018). Furthermore, methods
based on PLS are often more prone to overfitting than
those derived from PCovR, which in turn results in a
diminished quality of out-of-sample prediction. The results
from Park et al. (2020) demonstrated this pattern of results
in a multiblock regression setting.

Moreover, DIABLO does not adopt a generalized linear
model framework to treat the classification of categorical
outcome variables. Instead, when constructing a classifica-
tion model, DIABLO adopts a simple heuristic where the
categorical outcome is coded into a binary matrix with each
column indicating the membership of the observation unit
in a certain class. The classification model is then estimated
in the same manner as the regression model by treating the
binary matrix as continuous outcome variables. Among the
fitted values given for each of the classes, the class that cor-
responds to the largest fitted value is the class determined by
the DIABLO model. This approach of administering PLS
for a classification problem has also been shown to be equiv-
alent to performing discriminant analysis (Barker & Rayens,
2003). There are PLS methods that are formulated in com-
bination with the generalized linear model framework such
that a logistic regression model can be constructed (Ding &
Gentleman, 2005; Chung & Keles, 2010), but these meth-
ods are only suitable for the analysis of a single data block.
Additionally, Lê Cao, Boitard, and Besse (2011) reported
that this approach performs comparatively with the binary
indicator matrix approach of DIABLO.

Regularized logistic regression

Regularized logistic regression is a logistic regression
method that performs variable selection (Friedman et al.,
2010b). Due to the regularization penalties, the method can
also be applied to high dimensional datasets. Hence, it can
be considered as a benchmark method for classification in
the setting of many predictors, being actively applied in
behavioral sciences; for example to detect psychological
symptom patterns from large-scale questionnaires (Tutun
et al., 2019) and to classify different emotions using EEG
signal patterns (Chen et al., 2020). However, since it does
not extract covariates or factors, the method does not meet
all of the aims of SCD-Cov-logR such as identifying the
underlying processes governing the predictors.

Toy example illustration

In order to compare the two related methods that share the
goals of SCD-Cov-logR, we administered them along with
the benchmark of regularized logistic regression on the toy
example dataset. As the population model parameters are
known, we configured the methods such that they return
the solutions that reflect the population model structure as
closely as possible. For regularized logistic regression, the
lasso penalty parameter was tuned by cross-validation, as
it is not possible for the method to derive the covariate
structures. For principal component (logistic) regression,
we administered SCaDS (de Schipper & Van Deun, 2018)
on the predictor matrix with three components. Lasso and
group lasso parameters were chosen such that they reflect
the population model. The outcome variable was regressed
on the derived sparse principal components via logistic
regression.

In order to fit the DIABLO model in accordance with
the population model such that the common and distinctive
predictor processes can be explicitly found, we fitted a one-
component model separately from each of the two data
blocks which would match the two distinctive covariates
generated. For the common covariate, we constructed a one-
component model from a supermatrix that concatenates the
two data blocks. These components across the blocks were
specified to be uncorrelated, as the true covariates were
defined to be uncorrelated. As DIABLO allows the users
to specify the number of non-zero weights per component,
we specified these in correspondence with the number of
non-zero weights in the true weights matrix.

Table 2 presents the estimates resulting from the differ-
ent methods. The table shows that only the two-step princi-
pal component logistic regression approach of SCaDS-logR
finds the covariates that perfectly represent the population
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Table 2 Estimates provided by PCR, DIABLO and regularized logistic regression

WC SCaDS-logR DIABLO LogR

D1 D2 C D1 D2 C D1 D2 C b

Block 1

x1 0.5 0 0 0.392 0 0 0 0 0 -0.198

x2 0.5 0 0 0.399 0 0 0 0 0 -0.304

x3 0.5 0 0 0.430 0 0 0 0 -013 -0.262

x4 0.5 0 0 0.496 0 0 0 0 0 -0.112

x5 0 0 0.354 0 0 0.328 0.606 0 0.480 0.265

x6 0 0 0.354 0 0 0.291 0.411 0 0.330 0.336

x7 0 0 0.354 0 0 0.262 0.636 0 0.502 0.333

x8 0 0 0.354 0 0 0.217 0.242 0 0.200 0.221

x9 0 0 0 0 0 0 0 0 0 0

x10 0 0 0 0 0 0 0 0 0 0

x11 0 0 0 0 0 0 0 0 0 0

x12 0 0 0 0 0 0 0 0 0 0

x13 0 0 0 0 0 0 0 0 0 0

x14 0 0 0 0 0 0 0 0 0 0

x15 0 0 0 0 0 0 0 0 0 0

Block 2

x16 0 0 0.354 0 0 0.357 0 0.537 0.364 0.180

x17 0 0 0.354 0 0 0.370 0 0.533 0.353 0.189

x18 0 0 0.354 0 0 0.311 0 0.525 0.335 0.232

x19 0 0 0.354 0 0 0.281 0 0.389 0 0

x20 0 0.5 0 0 0.443 0 0 0 0 0

x21 0 0.5 0 0 0.424 0 0 0 0 0

x22 0 0.5 0 0 0.419 0 0 0 0 0

x23 0 0.5 0 0 0.479 0 0 0 0 0

x24 0 0 0 0 0 0 0 0 0 0

x25 0 0 0 0 0 0 0 0 0 0

x26 0 0 0 0 0 0 0 0 0 0

x27 0 0 0 0 0 0 0 0 0 0

x28 0 0 0 0 0 0 0 0 0 0

x29 0 0 0 0 0 0 0 0 0 0

x30 0 0 0 0 0 0 0 0 0 0

The true weights WC is also provided as a reference

model structure. DIABLO can find the distinctive covari-
ates, but does not perform well at correctly finding the
non-zero parameters. It is difficult to interpret the regu-
larized logistic regression coefficients as they do not go
hand-in-hand with the population model. However, it can be
seen that the predictors that do not have any relations with
the covariates were filtered out, yet, also some of the pre-
dictors that do have a relation with the covariates were also
filtered out.

With respect to the performance to classify the outcome
variable, the number of correctly classified in-sample and
out-of-sample observations for each of the methods are

provided in Table 3. The results pertaining to SCD-Cov-
logR are also given to offer comparison. It appears that
SCD-Cov-logR and SCaDS-logR lead to comparable and
good predictive performances, although the four methods
don’t exhibit large differences.

Extending this comparative evaluation of the related
methods and SCD-Cov-logR to a simulation study requires
comparison of the methods on all criteria that reflect the
multiple research aims of SCD-Cov-logR. The benchmark
regularized logistic regression does not meet this require-
ment since it fails to meet all of the research aims; it does not
uncover underlying predictor processes via structures such
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Table 3 Number of correctly classified observations provided by PCR,
DIABLO and regularized logistic regression

SCD-Cov-logR SCaDS-logR DIABLO LogR

In-Sample 92 91 83 87

Out-of-Sample 92 92 84 88

as covariates. While both PCR (SCaDS-logR) and DIABLO
address the aims, PCR has been compared in previous works
against PCovR and showed underperformance in discover-
ing the true covariate structure (Vervloet et al., 2016) and
also in prediction of the outcome (Heij, Groenen, & van
Dijk, 2007; Tu & Lee, 2019); the reason that PCR falls short
is because its components are found without considering
the outcome. Moreover, in the setting of multiple predictor
blocks, PCovR resulted in better prediction of the outcome
when some of the underlying predictor processes important
for predicting the outcome only account for a small amount
of variance in the predictors (Park et al., 2020). Therefore,
in the simulation study section below, we evaluate the per-
formance of our current method against the only competitor
that accounts for all criteria, this is DIABLO.

Toy examplemulticlass problem

As an additional demonstration for our current method
under a multiclass classification problem, we generated
a toy example dataset again with a categorical outcome
variable with three categories. The characteristics of the
data and the underlying model were kept the same as
the toy example above, except for the definition of the
regression parameters and the number of observation units
(I = 1000). Appendix H provides further details on the
data generating setup. Out of the three categories, the third
category was taken as the baseline category in forming
the log-odds models. We administered the sequential
model selection procedure as done for the binary problem,
employing fivefold cross-validation considering the same
ranges of parameters as for the binary problem again (see
“Model selection”). The following model parameters were
selected: R = 3, β = 0.1, λR = 0.1, λLr = 100 and λGr =
10. Table 4 shows the solution together with the defined
population parameters used to generate the data. It can
be seen that the estimated weights correctly represent the
true underlying weights. The logistic regression coefficients
found are also in agreement with the population parameters;
two covariates important for discerning the categories from
the third (baseline) category are correctly picked out.
Moreover, the constructed model classified 842 in-sample
observations and 845 out-of-sample observations correctly
(both out of 1000 total observations).

Simulation study

Through a simulation study, we study the performance of
the SCD-Cov-logR and DIABLO with respect to retrieval of
the underlying processes and the classification of a binary
outcome variable. We focus on the binary classification
problem as the multiclass problem is a direct extension of
the binary problem; it is expected that the insights obtained
from the binary problem to be applicable for the multiclass
problem. We hypothesize that SCD-Cov-logR would be better
at out-of-sample classification than DIABLO as it is less
susceptible to overfitting. SCD-Cov-logR would also provide
models that better reflect the true underlying predictor
processes as it allows a good balance between explaining
the predictors and the outcome via the weighting parameter.

Design and procedure

We relied on the data generating setup presented by Chung
and Keles (2010) which was used for examining the
performance of several variants of sparse PLS that were
set up to address the classification problem. Fixing the
number of observations I to 100, the setup was modified
such that two blocks of predictor variables were generated
from three underlying covariates. One distinctive covariate
per each predictor block was defined, while the remaining
covariate reflected a common process involving both of
the blocks. The three covariates were defined to differ in
relevance for predicting the outcome variable, in that only
two of them were defined as being relevant. We generated
J = 200 predictor variables (100 per data block) for the
high dimensional setting and J = 30 (15 per data block) for
the low dimensional. The following setup was used:

T ∼ MVN (0, � = 502I3)

E ∼ MVN (0, �E = σ 2IJ )

XC ← TWT
C + E

z ← 1/(1 + exp(−Tp(g)))

gi ∼ Bernoulli(zi) (11)

T is a I ×3 covariate scores matrix drawn from a multivar-
iate normal distribution defined with the mean vector fixed
to 0 and a diagonal covariance matrix � with all of its diago-
nal elements fixed at 502. The three covariates are there-
fore uncorrelated. The columns of the J × 3 weights matrix
WC is defined such that they reflect the defined common
or distinctive nature of the corresponding covariates. For
example, weights corresponding to a covariate distinctive
to the first predictor block, are non-zero only for predictors
in the first block while the remaining weights correspond-
ing to predictors in the second block are all zero. Likewise,
for a common covariate, non-zero weights are defined for
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Table 4 Population parameters and the solution found by SCD-Cov-logR from the toy example multiclass dataset

WC ŴC Logistic regression coefficients

D1 D2 C D1 D2 C 1 2

Block 1 Block 1 Population

x1 0.5 0 0 x1 0.485 0 0 D1 0.600 0.950

x2 0.5 0 0 x2 0.485 0 0 D2 0.010 0.312

x3 0.5 0 0 x3 0.475 0 0 C -0.800 0.010

x4 0.5 0 0 x4 0.476 0 0 intercept 0 0

x5 0 0 0.354 x5 0 0 0.345

x6 0 0 0.354 x6 0 0 0.344 Estimated

x7 0 0 0.354 x7 0 0 0.348 D1 1.843 2.865

x8 0 0 0.354 x8 0 0 0.338 D2 -0.026 0.941

x9 0 0 0 x9 0 0 0 C -1.966 0.015

x10 0 0 0 x10 0 0 0 intercept 0.033 -0.025

x11 0 0 0 x11 0 0 0

x12 0 0 0 x12 0 0 0

x13 0 0 0 x13 0 0 0

x14 0 0 0 x14 0 0 0

x15 0 0 0 x15 0 0 0

Block 2 Block 2

x16 0 0 0.354 x16 0 0 0.350

x17 0 0 0.354 x17 0 0 0.345

x18 0 0 0.354 x18 0 0 0.348

x19 0 0 0.354 x19 0 0 0.349

x20 0 0.5 0 x20 0 0.482 0

x21 0 0.5 0 x21 0 0.475 0

x22 0 0.5 0 x22 0 0.480 0

x23 0 0.5 0 x23 0 0.482 0

x24 0 0 0 x24 0 0 0

x25 0 0 0 x25 0 0 0

x26 0 0 0 x26 0 0 0

x27 0 0 0 x27 0 0 0

x28 0 0 0 x28 0 0 0

x29 0 0 0 x29 0 0 0

x30 0 0 0 x30 0 0 0

The column names D1, D2 and C indicate that the corresponding covariate is defined as being distinctive to block 1, distinctive to block 2 and
common. The third category is chosen as the baseline category; the regression coefficients construct the log-odds of the first or the second category
as opposed to the third

predictors in both blocks. On top of these zero weights that
determine the common or distinctive nature of the covariates,
further sparsity is added by defining more elements of WC as
zeros. The sparsity levels of the weights matrix is fixed at
82% and 85% for low and high dimensional settings, respec-
tively. It is important to note that the weights matrix was
constructed such that it is column-orthogonal: WT

CWC =
IR . Together with the covariates T which are orthogonally
defined, this model corresponds to the well-known PCA
decomposition where the weights are equal to the loadings

(Guerra-Urzola et al., 2021, for discussion;). This is why
the weights WT

C in Eq. 11 linearly combine the covariates T
to generate the predictors XC in the same manner as load-
ings in PCA decomposition. An example of the population
weights matrix in a low dimensional setting is presented in
“Toy example” (Table 1) along with the toy example dataset,
and the weights are defined in a similar manner for a high
dimensional setting.

The predictors XC are generated by multiplying the
covariate scores matrix with the weights matrix and adding
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random error on top. The residual matrix E is generated
from a multivariate normal distribution with zero mean
vector and a diagonal covariance matrix �E such that the
residuals are uncorrelated with each other and also with
the covariate scores. The variance of the error variables
is adjusted according to one of the manipulated design
factors of the simulation study: proportion of variance in
XC explained by the underlying covariates. p(g) indicates
the regression coefficients. gi is sampled from a Bernoulli
distribution with the probability defined by the linear
combination of T and p(g) transformed by the inverse-
logitic function (see Eq. 2).

Based on this data generating model, we manipulated
three data characteristics which are listed in the overview
below. The different levels taken by these manipulated
factors are provided between square brackets.

Study setup

1. Number of predictors Jk in each block: [100], [15]
2. Covariates relevant to the response g: [D1, D2], [D1, C]
3. Proportion of variance in XC explained by the

covariates: [0.8], [0.5], [0.2]

The number of predictors manipulated by the first design
factor determines whether the dataset would be low or
high-dimensional. The second design factor indicates which
covariates are relevant for the classification of the binary
outcome with D1, D2, and C denoting the two distinctive
and the common covariate, respectively. The relevance of
the covariates is manipulated by specification of regression
coefficients p(g), which equals [0.60,−0.80, 0.01] and
[0.60, 0.01,−0.80] for the two levels respectively. For the
first level, the two distinctive covariates are made relevant
in explaining the outcome variable, while the covariate
distinctive to the first block and the common covariate are
relevant in the second level. As stated above, the proportion
of variance in the predictors accounted for by the covariates
is controlled by the variance of the error variables E.
Fully crossing these factors and generating 50 datasets per
condition, 2 × 2 × 3 × 50 = 600 datasets were produced.

Two different analyses were administered to each of
these datasets: SCD-Cov-logR and DIABLO. As done for
DIABO for the toy example dataset, a one-component
model was fitted for each of the two data blocks to match
the two distinctive covariates generated. For the common
covariate, we constructed a one-component model from a
supermatrix that concatenates the two data blocks.

Model selection

As the true underlying structure of the datasets is already
known, several tuning parameters were tailored to corre-
spond to the true structure. For SCD-Cov-logR, the number

of covariates was fixed at three. The weighting parame-
ter α and the ridge penalty parameter λR that regularizes
the logistic regression coefficients were tuned together via
fivefold cross-validation. As done in the toy example in
“Model selection”, we used the rescaled weighting param-
eter β instead of α. The ranges of [0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9] and [0.5, 1, 5, 10, 30, 50] respectively were used
for β and λR . We adopted the 1 standard error (SE) rule to
select a set of parameters which provides the most general
model among the set of parameters yielding errors within
1 SE from minimum cross-validation error. We chose the
lowest β and the highest λR . For the toy example, the lasso
λLr and the group lasso λGr parameters were fixed at zero
while tuning β and λR . Instead, for the simulation study,
they were fixed differently for various conditions of the sim-
ulation study to encourage retrieval of one common and two
distinctive covariates (Appendix I).

Finally, with values of β and λR fixed, in order to find the
parameters λLr and λGr that match the population weights
structure the closest, we fitted the method with a range of
values for λLr and λGr . The ranges of [3, 5, 10, 15, 20, 30,
50, 80] and [0.5, 1, 2, 3, 5, 10] were adopted respectively
for λLr and λGr . As in the toy example dataset, the datasets
have been generated such that a PCovR model underlies
the true sparse model structure. This means that the rational
starting values are likely to provide a more optimal solution
than random starting values. Therefore, we only employed
the rational starting values based on PCovR.

For DIABLO, we specified the number of nonzero
weights according to the defined model structure. As done
for the toy example dataset, the components from different
blocks were fitted such that they are not correlated. This
is sensible because the true covariates are generated to be
uncorrelated from each other.

Evaluation criteria

Because the methods have several objectives, including
recovery of the underlying processes and classification
of a binary outcome, two measures are used to study
performance of the methods in relation to each of these
objectives. The performance measures are:

1. Out-of-sample balanced error rate (BER): (false posi-
tive rate + false negative rate)/2.

2. Correct weights classification rate: proportion of the
weights correctly classified as zero and non-zero
elements relative to the total number of coefficients.

An independent test set (of 100 observation units) needed
for computing the out-of-sample BER was generated
following the same data generating procedures as the data
used for model-fitting. A BER equal to zero indicates a
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perfect classification. The correct weights classification rate
represents the method’s ability in retrieving the underlying
processes. SCD-Cov-logR provides weights matrix ŴC

of size
∑2

k=1 Jk × R which covers the entire set of the
multiblock predictors. For the weights provided by SCD-
Cov-logR, we first computed Tucker congruence (Tucker,
1951) between the columns of the true WC matrix and those
of the estimated ŴC matrix. After matching the columns
that resulted in the highest Tucker congruence to account
for the permutational freedom of the covariates, the correct
classification rate was calculated from the matching pairs of
true and estimated WC columns.

On the other hand, for DIABLO, one component each
was estimated for the two predictor blocks and the
concatenated supermatrix. Components derived from the
individual predictor blocks naturally correspond to the true
distinctive covariates. In order to calculate the correct
classification rate, the weights estimated for these estimated
components were compared against true weights that
correspond to the true distinctive covariates. Likewise, the
weights found from the concatenated supermatrix were
compared against the true weights corresponding to the
common covariate.

Results

Out-of-sample BER

We first examine the performance of the two methods
concerning the prediction for new data. The estimates
obtained by the methods from the training dataset are
applied on the out-of-sample test set generated under
equal conditions. The results from our simulation study
arranged for each condition are displayed in Fig. 1. It can
first be seen that SCD-Cov-logR resulted in the smaller
out-of-sample BER in almost all of the conditions. With
regards to the manipulated design factors, the relevance
of the covariates seems to have played an important role
in different performances among the methods. When the
two distinctive covariates are defined as being relevant,
the discrepancy in the methods is smaller, but with the
covariate distinctive to the first block and the common
covariate relevant, the outperformance of SCD-Cov-logR
stands out more prominently. The proportion of variance
in XC accounted for by the covariates resulted in the
‘main effect’ - with smaller proportion leading to higher
BER for all of the methods. Finally, it appears that the
discrepancy in the performance of the methods is larger
when the dataset is high-dimensional. Overall, we conclude
that SCD-Cov-logR outperforms DIABLO at predicting the
classes of new observations. However, the methods present
more comparable performance when the processes relevant
for classification are distinctive, under low dimensionality.

Correct weights classification rate

Figure 2 presents the outcome of the correct weights clas-
sification rate. Across all of the conditions, SCD-Cov-logR
resulted in the higher of correct classification. It is also note-
worthy that the classification rate for the method is mostly
above 0.95. The figure shows the influence of the rele-
vance of the underlying covariates and its interaction with
the other manipulated data circumstances. When the two
distinctive covariates were relevant, regardless of the dimen-
sionality, SCD-Cov-logR resulted in a much higher classi-
fication rate than DIABLO. On the other hand, when the
covariate distinctive to the second data block was defined
irrelevant, DIABLO’s performance was closer to SCD-Cov-
logR’s in the conditions with more variance of the predictors
explained and with 15 predictor variables per block. In con-
clusion, SCD-Cov-logR is better than DIABLO at correctly
retrieving the underlying population weights.

Illustration: 500 Family data

Dataset and pre-processing

We demonstrate an example use of SCD-Cov-logR by
administering the method on an empirical dataset. We
adopted the dataset from the 500 Family Study (Schneider
& Waite, 2008) which investigated into how work impacts
the well-being of parents and children in American middle-
class families. Questionnaire data from different members
of the same family were collected. We computed sum scores
from questionnaire items that refer to the same construct.
These scores concern the feelings of the family members,
their recent mutual activities and how they perceive their
relationship. 24 sum score variables were computed and
are used as predictors in constructing the SCD-Cov-logR
model. They can be found in Table 5. Eight of the predictors
pertain to responses from the mother, another eight to
responses from the father and lastly six predictors are based
on the responses of the child. The dataset therefore is
comprised of three blocks according to the member of the
family, and each observation unit refers to a family. All of
the predictors were centered and standardized. Since the
blocks have different sizes, they were weighted such that the
sum of squares is equal across blocks.

The families are categorized into two groups according
to the child’s most recent grade at school. The family with
the child with a grade B or higher is classified as having
academic overachievement (coded as 1), while grade C or
lower is classified as underachievement (coded as 0). We
excluded the families with missing values on any of the
predictor variables, and made a random subset selection of
58 families in order to obtain a balance between the size
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Fig. 1 Box plots of the out-of-sample BER; each panel corresponds to one of the 12 conditions. The column panels indicate the number of
predictors in each data block and the proportion of variance accounted for by the underlying processes. The row panels indicate the two covariates
relevant for the outcome variable; “D1”, “D2” and “C” refer to the covariate distinctive to the first block, the covariate distinctive to the second
block and the common covariate, respectively
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Fig. 2 Box plots of the correct weight classification rate; each panel corresponds to one of the 12 conditions. The column panels indicate the
number of predictors in each data block and the proportion of variance accounted for by the underlying processes. The row columns refer to the
two covariates relevant for the outcome variable; “D1”, “D2” and “C” refer to the covariate distinctive to the first block, the covariate distinctive
to the second block and the common covariate, respectively
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Table 5 Weights and logistic regression coefficients derived by SCD-Cov-logR from the 500 family dataset

ŴC

Child Parents Logistic regression coefficients

Mother Estimated

Relationship with partners 0 0.276 Child 0.288

Argue with partners 0 0.269 Parents 0.034

Child’s bright future 0 0 Intercept -0.007

Activities with children 0 0

Feeling about parenting 0 0.188

Communication with children 0 0.357

Argue with children 0 0.171

Confidence about oneself 0 0.406

Father

Relationship with partners 0 0.091

Argue with partners 0 0.183

Child’s bright future 0 0

Activities with children 0 0

Feeling about parenting 0 0

Communication with children 0 0

Argue with children 0 0.210

Confidence about oneself 0 0.050

Child

Self-confidence/esteem 0.285 0

Social life and extracurricular 0.336 0

Importance of friendship 0.459 0

Self Image 0.381 0

Happiness 0.374 0

Confidence about the future 0.281 0

The covariate labels heading the columns of the table with weights and the rows of the table with logistic regression coefficients indicate which
data blocks the corresponding covariate is associated with

of two categories. We conducted SCD-Cov-logR to target
this classification problem of academic underachievement
while simultaneously constructing a model that describes
the underlying common and distinctive processes of the
three predictor blocks.

Model selection

We employed the sequential cross-validation model selec-
tion strategy discussed in “Model selection” applied to the
toy example dataset. Moreover, 50 sets of random starting
values were employed alongside the rational starting values
in conducting the model selection and final model fitting.

First, the number of covariates was found by administer-
ing PCA on the predictor matrix. By using the acceleration
factor technique, we found that when going from 1 to 2
principal components, the amount of variance explained
by the principal components changes the most drastically

(Figure in the Appendix J). With the number of covariates
determined at two, we carry out the cross-validation to select
the other tuning parameters. The different sets of starting
values were introduced at this stage. The complete process
of model selection and model fitting was conducted for each
set of starting values. The resulting solutions from 50 random
starting values and 1 rational starting value were compared
in terms of the value of the loss function: The solution with
the smallest loss was retained as the final solution.

The cross-validation procedures administered for each
of the starting values were as the following: first, 20-fold
cross-validation was conducted with varying values of the
rescaled weighting parameter β and λR . At this stage, the
tuning parameters λLr and λGr were fixed at zero for the
cross-validation. We considered the values of [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for β and [0.01, 0.05, 0.1, 0.5,
1, 2, 5, 10, 15, 20] for λR . Using the one standard error
rule, values of β and λR are selected. Given these selected
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values, the second sequence of 20-fold cross-validation for
λLr and λGr was conducted. With the ranges of [0, 0.05,
0.1, 0.3, 0.5, 1, 3, 5, 7, 10, 15, 20, 30, 50] adopted for both
parameters, the same parameter value was used concerning
the two covariates. We used the one standard error rule again
to choose the values of λLr and λGr , completing the model
selection procedure.

Similar to the toy example dataset, a smaller minimum
was achieved by the set of rational starting values. The
final values for the tuning parameters selected through the
sequential procedure were: β = 0.1, λR = 2, λLr = 10,
λGr = 10. The final model estimates obtained are presented
in Table 5.

Results

The estimated weights matrix from Table 5 show that
there are two predictive processes for the child’s academic
achievement. The first component is distinctive to the child
block and is associated with all of the variables from the
data block. It appears that all of the variables in the child
block have an impact in the academic achievement. On
the other hand, the second component is locally common,
involving several variables from the mother and the father
blocks but not from the child block. Observing the weights
from the second covariate, it can be seen that parents’ high
confidence in the child’s future and the amount of activities
they partake with the child are not important in predicting
the child’s academic achievement. Also, according to this
model, the father’s positive feeling about parenting and his
level of communication do not exert strong influence in
the child’s academic achievement. Moreover, the logistic
regression coefficients suggest that the Child covariate
is much more relevant in predicting child’s academic
achievement group. It appears that the attitudes that the
children themselves have are the most important in leading
to academic overachievement.

The covariate scores of the 58 families can be seen in
Fig. 3 which presents a fair separation of the two categories
of the families. With the observations separated along the
X-axis, It can be seen that the Child covariate plays a more
important role in separating the two groups. This is in line
with the small magnitude of the coefficient corresponding
to the Parents covariate. Out of the 58 families, the final
model classifies 43 families correctly. In order to also
examine the classification performance of the model on
out-of-sample data, we performed a leave-one-out cross-
validation which resulted in 40 families being correctly
classified. Together, this implies that the model showed
about 70% of classification accuracy for both in-sample and
out-of-sample observations.

To obtain more comparative insight about the quality of
the method under this empirical dataset, we administered

the related methods discussed in the methods section;
regularized logistic regression, PCR (SCaDS-logR) and
DIABLO. The PCA step for the PCR was conducted
with SCaDS to tackle the multiblock nature of the
data, as demonstrated with the toy example dataset in
“Related methods” The number of components for SCaDS
was set at two, so that the model is comparable to the SCD-
Cov-logR model constructed with two covariates. The lasso
and group lasso parameters governing the sparseness of
SCaDS weights were selected with 20-fold cross-validation
with the one standard error rule. Similarly, a two-component
model was estimated with DIABLO. The number of non-
zero weights to be estimated per component was tuned
via 20-fold cross-validation. Lastly, the lasso parameter
for regularized logistic regression was also chosen with
20-fold cross-validation. Table 6 provides the number of
correctly classified in-sample observations from each of
the methods. As done for SCD-Cov-logR, leave-one-out
cross-validation was conducted to gauge the out-of-sample
classification quality. These results are also provided in the
table. It can be seen that the four methods led to very
comparable performances with respect to prediction. The
estimates derived by the methods are provided in Appendix
K and they can be inspected to understand the constructed
models. It was found that only SCaDS-logR identified
predictive processes concerted by several predictors, akin to
the covariates of SCD-Cov-logR. Both regularized logistic
regression and DIABLO found a very sparse model with
only two non-zero coefficients.

In conclusion, our proposed method is capable in meeting
its goals when applied to an empirical dataset. The method
identifies common and distinctive covariates and weights
that are interpretable. At the same time, the method is able
to correctly classify both the samples used for fitting the
model and new samples.

Discussion

A multitude of goals are of interest when building a clas-
sification model from a multiblock dataset. The common
and distinctive predictor processes need to be identified in
an interpretable manner while classifying the outcome vari-
able. We have proposed the method of SCD-Cov-logR that
fulfills these goals in a simultaneous manner. We have eval-
uated the method comparatively against DIABLO; a multi-
block variant of PLS. It was found that the proposed method
outperforms DIABLO in the objectives that the methods
attain: quality of classification and retrieval of weights that
are used to understand the underlying processes. Moreover,
while DIABLO requires prior information for identifying the
common and distinctive processes, our proposed method is
able to explore these structures without explicit specification.

4161Behavior Research Methods (2023) 55:4143–4174



−3

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5
Child

Pa
re

nt
s

Academic: Overachievement Underachievement

Fig. 3 Scatterplot of the two covariates found by SCD-Cov-logR. The colors represent the academic achievement of the child

In particular, SCD-Cov-logR was found to be considerably
better than DIABLO in accurately retrieving the weights
matrix. This finding is in line with existing literature that
compares between the methodologies of PLS and PCovR.
Methods based on PLS tend to place heavier focus on
prediction of the outcome variables, as opposed to exploring
the structure of the underlying predictor processes. In
contrast, the weighting parameter α in the PCovR methods
helps to attain a good balance between emphasizing the
predictor or the outcome variables. In the current paper, all
of the results were based on the rescaled parameter β tuned
via cross-validation. This suggests that the parameter can be
used effectively in a purely data-driven approach.

SCD-Cov-logR also has weaknesses. Model selection
is an inherent challenge since the method requires many
parameters to be tuned to meet its multiple research
aims. There are in total 5 parameters to be selected and
they all play an important role in shaping the retrieved
model. Adopting the solution recommended by Vervloet,
Van Deun, Van den Noortgate, and Ceulemans (2016),
the current paper suggested a sequential model selection
approach where sets of tuning parameters are chosen
through cross-validation with the other parameters fixed.
Models obtained by this approach led to good results in
both simulation experiments and empirical study. We have
not visited the model selection problem of our method in

Table 6 Number of correctly classified observations (out of the total 58) provided by SCD-Cov-logR, PCR, DIABLO and regularized logistic
regression

SCD-Cov-logR SCaDS-logR DIABLO LogR

In-sample 43 43 44 43

Out-of-sample (leave-one-out CV) 40 41 38 40

The out-of-sample classification is computed via leave-out-out cross-validation
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great detail as the main purpose of this paper lies within the
proposal and illustration of the novel method.

Another remark about the model selection procedure
is the optimality criterion used for cross-validation.
Throughout the paper, we adopted the sum of squared cross-
validation errors concerning the binary outcome variable.
This implies that the model selection procedure is conducted
only considering the out-of-sample prediction quality. Since
our method is not only used for classification of the outcome
but also exploring the predictor processes, the optimality
criterion for cross-validation can be changed to also include
the errors pertaining to the predictor variables. This choice
is in the same spirit of the weighting parameter α; if the
user is interested more in the exploration of the predictor
processes, it may be a viable option to look into such an
optimality criterion different from what is used in this paper.

In our illustration of the toy data example and the
simulation study, DIABLO was fitted in a peculiar manner
to allow for derivation of the distinctive and common
covariates. However, in practice, there may be other ways
of specifying the method. For example, a supermatrix of
concatenated blocks can be provided as the only input
dataset and a single DIABLO model can be constructed on
it.3 We have explored into such a specification, and found
that it results in consistent underperformance compared to
SCD-Cov-logR with respect to prediction and retrieval of
population parameters. It also has a tendency to only find
common covariates.

Finally, the method and the current paper suggest several
future directions of research. It would be a natural extension
to broaden the method to encompass generalized linear
models. This would allow modeling of outcome variables
in diverse nature such as count data. Furthermore, such
an extension would allow other related research questions
to be addressed. For example, within the high-dimensional
multiblock setting, it would be interesting to examine the
impact of using a generalized linear model framework
to model the categorical outcome, as opposed to the
discriminant analysis approach adopted for DIABLO where
the categorical outcome variable is simply changed into
a dummy matrix and a linear regression model is fit.
Although Lê Cao, Rossouw, Robert-Granié, and Besse
(2008) compared the two approaches and reported that they
show comparable performance in practice, the comparison
has not been conducted in the multiblock data setting.
Our proposed method SCD-Cov-logR can also be easily
adapted into the linear regression approach using a dummy
outcome matrix, if it is found to be useful in certain data
circumstances.

3This would then be a single model of sPLS-DA (sparse partial least
squares discriminant analysis).

Appendix A: SPCovR, SCaDS and SCD-CovR

A.1: SPCovR

For easier interpretation of the principal covariates and
consistency of estimates in the high dimensional settings,
regularization penalties have been imposed on the weights
from Eq. 5 to lead to sparse PCovR (SPCovR; Van
Deun et al., 2018). The method finds sparse weights by
minimizing the following objective function:

L(Wk,P
(X)
k , p(y)) = α

∥
∥y − XkWkp(y)

∥
∥2

2

‖y‖2
2

+(1 − α)

∥
∥
∥Xk − XkWk(P

(X)
k )T

∥
∥
∥

2

2

‖Xk‖2
2

+λL |Wk|1 + λR ‖Wk‖2
2 (12)

such that (P(X)
k )T P(X)

k = IR and with λL ≥ 0, λR ≥ 0
and α ≥ 0. The regularization parameters are the lasso,
with |Wk|1 = ∑

jk,r
|wjkr |, and the ridge ‖Wk‖2

2 =
∑

jk,r
w2

jkr
, together forming the elastic net penalty (Zou

& Hastie, 2005). The ridge penalty shrinks the magnitude
of the estimates and encourages stable estimation for high-
dimensional data, while the lasso penalty is involved in
variable selection by shrinking and forcing the estimates to
exactly zero. When both penalties are defined at 0, it can be
seen that the PCovR formulation (Eq. 5) is retrieved.

A.2: SCA and SCD-CovR

SPCovR only targets data with a single predictor block and
hence do not address the questions associated with multiple
predictor blocks. A joint analysis of the K predictor blocks
can be conducted by imposing a multiblock PCovR model,
based on the SCA model (Kiers & Ten Berge, 1989):

XC = XCWC(P(X)
C )T + E(X)

y = XCWCp(y) + e(y) (13)

where XC = [X1, . . . ,XK ] (of size I × ∑K
k=1 Jk)

denotes the supermatrix that concatenates the predictor
blocks. Consequently, WC and P(X)

C are weight and loading

matrices of size
∑K

k=1 Jk × R. p(y) indicates a vector of R

regression coefficients.
When SCA is administered to study the processes

underlying the variables without considering the regression
problem, the concatenated weights matrix WC is examined
to understand the nature of the components. In order to
allow SCA to explicitly distinguish common and distinctive
processes and provide a sparse and interpretable solution
from high dimensional multiblock datasets, de Schipper
and Van Deun (2018) proposed SCaDS. Regularization
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penalties are imposed upon the weights to force certain
elements to zero for handier interpretation, while the WC

matrix is further constrained such that certain components
are a priori fixed as being common or distinctive.

Making use of the multiblock PCovR model (Eq. 13) and
also combining with SCaDS, SCD-CovR extends SPCovR
to allow multiblock analysis. It predicts the outcome, while
providing sparse weights that capture the common and
distinctive processes in the predictor blocks. SCD-CovR
implies minimizing the following objective function:

L(WC,P(X)
C , p(y)) = α

∥
∥y − XCWCp(y)

∥
∥2

2

‖y‖2
2

+(1 − α)

∥
∥
∥XC − XCWC(P(X)

C )T
∥
∥
∥

2

2

‖XC‖2
2

+λL |WC |1 + λR ‖WC‖2
2 (14)

such that (P(X)
C )T P(X)

C = IR , and subject to zero block
constraints on WC that fix weights that correspond to one
or several predictor blocks to zero. This implies that the
component is determined only by predictors of those blocks
for which the weights have not been fixed to zero. Common
components are obtained by not placing such zero block
constraints on the component. The elastic net penalty and
the constraints concerning the weights are the same as
imposed in SCaDS. Also, as in SPCovR, the lasso penalty
achieves sparseness within the common and distinctive
covariates.

Appendix B: SCD-Cov-logR algorithm

The minimizing solution of Eq. 7 can be found by iteratively
reweighted least squares which involves formulating the
quadratic approximation of the negative log likelihood given
the current estimates of the parameters (Friedman et al.,
2010b). The negative log likelihood part of the objective
function is as the following:

Llogr (WC, p(g), p
(g)

0 ) = −
I∑

i

gi(p
(g)

0 + xC
T
i WCp(g))

− log(1+e(p
(g)
0 +xC

T
i WCp(g))) (15)

Quadratic approximation of Eq. 15 given the current
estimates of the parameters is as the following.

LQlogr (WC, p(g), p
(g)

0 )= 1

2

I∑

i

qi(zi−p
(g)

0 −xC
T
i WCp(g))2

(16)

where

qi = p̃i(1 − p̃i)

zi = p̃
(g)

0 + xC
T
i W̃C p̃(g) + gi − p̃i

p̃i (1 + p̃i)

p̃i = e(
˜

p
(g)
0 +xC

T
i W̃C

˜p(g))/(1 + e(
˜

p
(g)
0 +xC

T
i W̃C

˜p(g))) (17)

The parameters denoted with the ˜ symbol are the
current parameters. With the quadratic approximation now
replacing the negative log-likelihood in Eq. 7 and the
rescaled weighting parameter β used instead of α (see
Eq. 8), the objective function becomes:

L(WC,P(X)
C , p(g), p

(g)

0 )

= β

2

I∑

i

qi(zi − p
(g)

0 − xC
T
i WCp(g))2

+(1 − β)

I∑

i

∥
∥
∥xCi − xC

T
i WC(P(X)

C )T
∥
∥
∥

2

2

+
R∑

r

λLr |wCr |1 +
R∑

r

K∑

k

λGr

√
Jk

∥
∥
∥w(k)

r

∥
∥
∥

2

+λR

∥
∥
∥p(g)

∥
∥
∥

2

2
(18)

where qi and zi are defined as in Eq. 17. The optimization
problem in Eq. 18 can be solved with an alternating
procedure where the loadings P(X)

C and the regression

coefficients p(g), p
(g)

0 are solved for conditional upon fixed
values for the weights WC and vice versa. The sparse group
lasso problem for WC is treated via coordinate descent
(Friedman et al., 2010a), while closed-form solutions
exist for the conditional updates of p(g), p

(g)

0 and P(X)
C .

The derivation of these updating rules can be found
in Appendices C and D. After each run of conditional
estimation of the parameters, the quadratic approximation
in Eq. 18 is updated with new values of qi and zi calculated
with the current parameters. To prevent the divergence of
the coefficients, when the absolute difference between the
current probability p̃i and 1 is less or equal to 10−5, p̃i is
fixed at 1. This follows the recommendation of Friedman
et al. (2010b) which proposed a framework of combining
regularization with GLM.

A schematic outline of the algorithm is provided in what
follows. The optimization procedure that we propose here
closely follows those proposed for SCaDS and SPCovR (de
Schipper & Van Deun, 2018; Van Deun et al., 2018). This
procedure boils down to solving for all components together
(unlike deflation methods that solve for each component in
turn). The alternating routine continues until the algorithm
converges to a stationary point, usually a local minimum.
To avoid local minima problems, we recommend using
multiple random and a rational starting value based on
PCovR.
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Algorithm 1 SCD-Cov-logR.

Appendix C: Estimation of WC

Conditional estimation of WC given the other parameters
P(X), p(g) and p

(g)

0 pertains to a sparse group lasso problem.
The SCD-Cov-logR objective function with the quadratic
approximation of the negative log-likelihood (Eq. 18) is
first arranged with respect to the weights corresponding to
predictor block k and component r∗:

L(w(k)
r∗ ,P(X)

C , p(g), p
(g)

0 ) =
β

2

I∑

i

qi

⎛

⎝zi − p
(g)

0 −
R∑

r

K∑

l 	=k

p
(g)
r x(l)

i

T
w(l)

r

−
R∑

r 	=r∗
p

(g)
r x(k)

i

T
w(k)

r − p
(g)
r∗ x(k)

i

T
w(k)

r∗

⎞

⎠

2

+(1 − β)

I∑

i

∥
∥
∥
∥
∥
∥
xCi −

R∑

r

K∑

l 	=k

w(l)
r

T
x(l)
i pC

(X)
r

−
∑

r 	=r∗
w(k)

r

T
x(k)
i pC

(X)
r − w(k)

r∗
T
x(k)
i pC

(X)
r∗

∥
∥
∥
∥
∥
∥

2

2

+λL

∣
∣
∣w(k)

r∗
∣
∣
∣
1
+ λG

√
Jk

∥
∥
∥w(k)

r∗
∥
∥
∥

2
(19)

Taking the derivative with respect to w(k)
r∗ we get:

− β

I∑

i

qip
(g)
r∗ (Z

(k)
i − p

(g)
r∗ x(k)

i

T
w(k)

r∗ )x(k)
i

− 2(1 − β)

I∑

i

(Y
(k)
i − w(k)

r∗
T
x(k)
i )x(k)

i

+ λL∂

∣
∣
∣w(k)

r∗
∣
∣
∣
1
+ λG

√
Jk∂

∥
∥
∥w(k)

r∗
∥
∥
∥

2
(20)

where

Z
(k)
i = zi − p

(g)

0 −
R∑

r

K∑

l 	=k

p
(g)
r x(l)

i

T
w(l)

r

−
R∑

r 	=r∗
p

(g)
r x(k)

i

T
w(k)

r

Y
(k)
i = xC

T
i pC

(X)
r∗ −

K∑

l 	=k

w(l)
r∗

T
x(l)
i (21)

The subdifferential of
∥
∥
∥w(k)

r∗
∥
∥
∥

2
is defined as the follow-

ing:

∂

∥
∥
∥w(k)

r∗
∥
∥
∥

2
=

⎧
⎪⎨

⎪⎩

ŵ(k)

r∗∥
∥
∥ŵ(k)

r∗
∥
∥
∥

2

, if ŵ(k)
r∗ 	= 0

∈ {u : ‖u‖2 ≤ 1} , if ŵ(k)
r∗ = 0

(22)

where u is a vector of equal length as w(k)
r∗ .

The j th element of the subdifferential of ∂

∣
∣
∣w(k)

r∗
∣
∣
∣
1

is

defined as the following:

∂
(∣
∣
∣w(k)

r∗
∣
∣
∣
1

)

j
=

{
sign

(
ŵ

(k)
jr∗

)
, if ŵ

(k)
jr∗ 	= 0

∈ {v : |v| ≤ 1} , if ŵ
(k)
jr∗ = 0

(23)

where v is a scalar.
By equating Eq. 20 to zero and rearranging, the condition

that an optimal solution satisfies with ŵ(k)
r∗ = 0 is the

following:
∥
∥
∥
∥
∥
S

(
I∑

i

(
βqip

(g)
r∗ Z

(k)
i + 2(1 − β)Y

(k)
i

)
x(k)
i , λL

)∥
∥
∥
∥
∥

2

≤ λG

√
Jk (24)
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where S(.) is a element-wise soft-thresholding operator.
In the case that Eq. 24 is not satisfied and thus ŵ(k)

r∗ 	= 0,
we find the conditions for an optimal solution for the hth
element of the weights concerning predictor block k and
component r∗; w

(k)
hr∗ . We first write the objective function

with respect to w
(k)
hr∗ .

L(w
(k)
hr∗ ,P

(X)
C , p(g), p

(g)

0 )

= β

2
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∥
∥
∥
∥
∥

2

2

+λL

∣
∣
∣w

(k)
hr∗

∣
∣
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Taking the derivative with respect to w
(k)
hr∗ :
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where
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The subdifferential of
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with respect to w
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provided in Eq. 22; it is the hth element of
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subdifferential of ∂
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sign
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, if ŵ
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where v is a scalar.

We can equate the derivate to zero to find the optimality
conditions for ŵ

(k)
hr∗ , which can be summarized by the

following:

ŵ
(k)
hr∗ = S(

∑I
i x

(k)
ih (βp

(g)
r∗ qiZi + 2(1 − β)Yi), λL)

βp
(g)
r∗
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i qix
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∥

2

(29)

With these conditions, we can set up the following coor-
dinate descent algorithm.

Algorithm 2 Coordinate descent for sparse group lasso.

Appendix D: Estimation of p(g),p(g)0 and P(X)C

Closed-form solutions exist for the regression coefficients
and the intercept.

p̂(g) = [(XCWC)T QXCWC + (2/α)λRIR]−1

[(XCWC)T Qz − p
(g)

0 (XCWC)T q] (30)

p̂
(g)

0 =
(

I∑

i

qi

(
zi − xC

T
i WCp(g)

)
)

/

(
I∑

i

qi

)

(31)

where Q is a diagonal matrix with the ith diagonal
element being qi . q and z are vectors with the elements
being qi and zi respectively, which are defined in Eq. 17.

The loadings P(X)
C are also obtained via a closed-form

solution; P(X)
C = UVT where U and V are found through

singular value decomposition of XT
CXCWC = UDVT .

Appendix E: SCD-Cov-logRmulticlass
algorithm

Like for the binary problem, the solution to Eq. 10 is found
by iteratively reweighted least squares. Partial quadratic
approximation can be conducted such that only parameters
that concern the mth category can vary at a time. With
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the quadratic approximation replacing the negative log-
likelihood in Eq. 10 and the rescaled weighting parameter
β used instead of α (see Eq. 8), the objective function
becomes:

L(WC,P(X)
C , p(g)
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m )

= β

2

I∑
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m )2
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i
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T
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C )T
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∥
∥

2

2

+
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r

λLr |wCr |1 +
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r
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√
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∥
∥w(k)
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2
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2
(32)

where

qi = p̃i(1 − p̃i)

zi = p̃0
(g)
m + xC

T
i W̃C p̃

(g)
m + gi − p̃i

p̃i (1 + p̃i)

p̃i = e(p̃0
(g)
m +xC

T
i W̃C p̃

(g)
m )/(1+

M−1∑

m

e(p̃0
(g)
m +xC

T
i W̃C p̃

(g)
m )) (33)

the parameters denoted with the ˜ symbol are the current
parameters. The loadings are constrained to be column-
orthogonal: (P(X)

C )T P(X)
C = IR . This optimization problem

can be solved with an alternating procedure similar to that of
the binary classification. In fact, the conditional estimation
of the parameters is done in the same way as for the binary
problem (shown in Appendices C and D) with a small tweak
on the definition of certain quantities. We can first notice
that this objective function with quadratic approximation
with respect to category m can be considered as a binary
problem between category m and the baseline category
M . It can be seen that the only difference between the
functions for the multiclass (Eqs. 32 and 33) and the binary
(Eqs. 18 and 17) problems is the definition of the current
parameter p̃i . Therefore, from the binary objective function
(Eq. 18), computing p̃i by following (Eq. 33) and replacing
the regression coefficients p(g), p

(g)

0 into p(g)
m , p0

(g)
m specific

for category m would enable us to rely on the same solutions
for the conditional updates of the quantities WC, p(g)

m , p0
(g)
m

and P(X)
C . The algorithm for the multiclass problem however

cycles over the M − 1 categories on top of the conditional
updates of the quantities. After each run of conditional
estimation of the quantities, the quadratic approximation in
Eq. 32 is updated with new values of qi and zi calculated
with the current parameters.

A schematic outline of the algorithm is provided below.
The alternating routine continues until the algorithm con-
verges to a stationary point, usually a local minimum. To
avoid local minima problems, we recommend using multi-
ple random and a rational starting value based on PCovR.

Algorithm 3 SCD-Cov-logR for multiclass classification.
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Appendix F: The scree test with acceleration
factor conducted to determine the number
of covariates for the toy example dataset

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# principal components

pr
op

or
tio

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d

Fig. 4 It can be seen that the sharpest change of slopes occurs at four
principal components. Three components are therefore retained in the
model

Appendix G: Toy example dataset: model
selection via exhaustive grid search of all
parameters

Instead of the sequential model selection procedure adopted
in the toy example dataset (“Toy example”), we have
conducted cross-validation (CV) in which all of the possible
parameters are crossed exhaustively. The ranges of the
parameters considered were the same as in the sequential
procedure:

• β: [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

• λR: [0.1,0.5,1,3,5,10,30,50]
• λL: [0.5,1,5,7,10,15,30,45,100]
• λG: [0.1,0.5,1,2,5,10]

For the number of covariates R, we adopted the range of
[1,2,3,4] because PCA on the predictor data matrix revealed
that from the fifth component onwards, the proportion of
explained variance is smaller than 5% (this has been depicted
in Appendix F). Crossing all of the possible parameters, we
administered fivefold CV to 15552 models in total.

The model with the smallest CV error was characterized
by the parameters: R = 3, β = 0.6, λR = 0.5, λL = 10,

λG = 5. The estimated weights and regression coefficients
are reported in Table 7. It can be seen that the estimates
are very similar to the ones found by the model obtained
through the sequential approach of CV.

If we apply the one standard error rule to select the
simplest model among those within 1 SE from the minimum
CV error, we would need to make a choice regarding which
parameter to look consider first. The number of covariates
R can be considered as the most influential parameter,
followed by the weighting parameter β. Prioritizing these
two parameters, the one standard error rule selects the
model: R = 2, β = 0.5, λR = 0.5, λL = 30, λG = 1.
Table 8 shows the estimates of this two-covariate model.
It can be seen that the covariate which is distinctive to
the second predictor block (D2 in Table 1) is excluded
from this model. This is sensible because this covariate
was defined to have a very small predictive influence on
the outcome variable when generating the data: population
value of the logistic regression weight was set at -0.01.
Hence, it is natural that the exhaustive CV approach that
only considers the prediction error could result in omitting
this covariate. The two covariates extracted are in agreement
to the covariates found by the sequential approach of CV.
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Table 7 Weights and regression coefficients provided by the three-covariate model with the smallest cross-validation error

Weights Logistic regression coefficients

Block 1

x1 0.420 0 0 1 -1.272

x2 0.420 0 0 2 -0.096

x3 0.439 0 0 3 1.499

x4 0.486 0 0 intercept -0.206

x5 0 0 0.330

x6 0 0 0.324

x7 0 0 0.288

x8 0 0 0.261

x9 0 0 0

x10 0 0 0

x11 0 0 0

x12 0 0 0

x13 0 0 0

x14 0 0 -0.021

x15 0 0 0

Block 2

x16 0 0 0.343

x17 0 0 0.361

x18 0 0 0.316

x19 0 0 0.256

x20 0 0.437 0

x21 0 0.429 0

x22 0 0.439 0

x23 0 0.470 0

x24 0 0 0

x25 0 0 0

x26 0 -0.085 0

x27 0 0 0

x28 0 0 0

x29 0 0 0

x30 0 0 0

Appendix H: Data generation for multiclass
toy example dataset

The data generating setup employed for our simulation
study is adapted slightly such that it can generate more than
two categories, in generating the toy example dataset for
the multiclass classification problem. As for the simulation
study, two blocks of predictor variables were generated
from three underlying covariates; one distinctive covariate
per each predictor block and one common covariate. Each

predictor block comprised of 15 variables (J = 30 in
total), and I = 1000 observation units were generated. With
the population weights and logistic regression coefficients
provided in Table 4, the toy example dataset was generated
via the following setup:

T ∼ MVN (0, � = 502I3)

E ∼ MVN (0, �E = σ 2IJ )

XC ← TWT
C + E
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Table 8 Weights and regression coefficients provided by the two-covariate model with the one standard error rule

Weights Logistic regression coefficients

Block 1 1 −1.263

x1 0.369 0 2 1.481

x2 0.380 0 intercept −0.199

x3 0.507 0

x4 0.427 0

x5 0 0.345

x6 0 0.311

x7 0 0.265

x8 0 0.212

x9 0 0

x10 0 0

x11 0 0

x12 0 0

x13 0 0

x14 0 0

x15 0 0

Block 2

x16 0 0.337

x17 0 0.378

x18 0 0.302

x19 0 0.206

x20 0 0

x21 0 0

x22 0 0

x23 0 0

x24 0 0

x25 0 0

x26 0 0

x27 0 0

x28 0 0

x29 0 0

x30 0 0

zm ← exp(Tp(g)
m )/(1 + exp(

M−1∑

m′
Tp(g)

m′ ))

for m = 1, . . . ,M − 1

zM ← 1/(1 + exp(

M−1∑

m′
Tp(g)

m′ ))

gim ∼ Multinoulli(zim) for m = 1, . . . , M (34)

where T, � and WC are all defined in the same manner as
in the simulation study (see “Design and procedure”). The
predictors XC are generated by multiplying the covariate
scores matrix with the weights matrix and adding random

error. The diagonal covariance matrix �E that governs
the variance of error variables E is specified such that
the covariates T account for 50% of variance in XC . p(g)

m

indicates the logistic regression coefficients for the log-odds
of the mth category as opposed to the baseline category
M = 3. The statements in the fourth and the fifth lines
together specify the (I = 1000 × M = 3) matrix Z; zim

denotes the probability of the ith observation belonging to
mth category, defined according to the baseline-category
logit model (Agresti, 2003). gim is therefore sampled
from a Multinoulli distribution defined by the prescribed
probabilities zim.
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Appendix I

Table 9 Lasso and Group lasso penalty parameters initially fixed in the simulation study, per each condition

Dimensions Relevant VAF λG1 λG2 λG3 λL1 λL2 λL3

low D1,D2 0.8 0.5 0.5 0.5 20 10 20

low D1,D2 0.5 0.5 0.5 0.5 30 15 30

low D1,D2 0.2 0.5 0.5 0.5 30 15 30

low D1,C 0.8 0.5 0.5 0.5 30 15 30

low D1,C 0.5 0.5 0.5 0.5 30 15 30

low D1,C 0.2 0.5 0.5 0.5 30 15 30

high D1,D2 0.8 3 3 3 15 7.5 15

high D1,D2 0.5 2 2 2 30 15 30

high D1,D2 0.2 1 1 1 20 10 20

high D1,C 0.8 1 1 1 10 10 10

high D1,C 0.5 1 1 1 30 15 30

high D1,C 0.2 1 1 1 10 10 10

Appendix J: The scree test with acceleration
factor conducted to determine the number
of covariates for the 500 Family dataset
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Fig. 5 It can be seen that the sharpest change of slopes occurs at three
components. Two components are therefore retained in the model
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Appendix K: Models constructed
from the 500 Family dataset using
the relatedmethods

Table 10 Estimates provided by PCR (SCaDS-logR), DIABLO and
regularized logistic regression for the 500 Family dataset

SCaDS-logR DIABLO LogR

1 2 1 2 b

Mother

Relationship with partners 0 0.243 0 0 0

Argue with partners 0 0.247 0 0 0

Child’s bright future 0 0 0 0 0

Activities with children 0 0 0 0 0

Feeling about parenting 0 0.175 0 0 0

Communication with children 0 0.338 0 0 0

Argue with children 0 0.152 0 0 0

Confidence about oneself 0 0.382 0 0 0

Father

Relationship with partners 0 0.097 0 0 0

Argue with partners 0 0.208 0 0 0

Child’s bright future 0 0 0 1 0.058

Activities with children 0 0 0 0 0

Feeling about parenting 0 0 0 0 0

Communication with children 0 0 0 0 0

Argue with children 0 0.255 0 0 0

Confidence about oneself 0 0.047 0 0 0

Child

Child self-confidence/esteem 0.274 0 0 0 0

Social life and extracurricular 0.333 0 0 0 0

Importance of friendship 0.460 0 0 0 0

Self-image 0.360 0 1 0 0.278

Happiness 0.371 0 0 0 0

Confidence about the future 0.275 0 0 0 0
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