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Abstract
Hierarchical Bayesian modeling is beneficial when complex models with many parameters of the same type, such as item 
response theory (IRT) models, are to be estimated with sparse data. Recently, Koenig et al. (Applied Psychological Meas-
urement, 44, 311–326, 2020) illustrated in an optimized hierarchical Bayesian two-parameter logistic model (OH2PL)  how 
to avoid bias due to unintended shrinkage or degeneracies of the posterior, and how to benefit from this approach in small 
samples. The generalizability of their findings, however, is limited because they investigated only a single specification of the 
hyperprior structure. Consequently, in a comprehensive simulation study, we investigated the robustness of the performance 
of the novel OH2PL in several specifications of their hyperpriors under a broad range of data conditions. We show that the 
novel OH2PL in the half-Cauchy or Exponential configuration yields unbiased (in terms of  bias) model parameter estimates 
in small samples of N = 50. Moreover, it outperforms (especially in terms of the RMSE of the item discrimination param-
eters) marginal maximum likelihood (MML) estimation and its nonhierarchical counterpart. This further corroborates the 
possibility that hierarchical Bayesian IRT models behave differently than general hierarchical Bayesian models. We discuss 
these results regarding the applicability of complex IRT models in small-scale situations typical in psychological research, 
and illustrate the extended applicability of the 2PL IRT model with an empirical example.

Keywords  Bayesian psychometrics · Bayesian hierarchical modeling · Item calibration · Item response theory · Small-
sample calibration

In hierarchical Bayesian models, the specification of the 
prior distributions for individual parameters of the same 
type is inferred from the data by hyperprior distributions for 
their grand means and variances. This hierarchical Bayesian 
modelling approach is, in theory, beneficial when complex 
models with many parameters of the same type are to be 
estimated with sparse data (Betancourt & Girolami, 2015). 
It makes it possible to use information from all parameters of 
the same kind to estimate individual parameters, thus maxi-
mizing the information contained in a given data set. There-
fore, precision in individual parameter estimates is increased, 
which is typically reflected by narrower 95% highest density 
intervals (HDIs) compared to parameter estimates obtained 

with nonhierarchical approaches. The narrower HDIs are 
the result of a partial pooling process inherent to the hier-
archical structure of the prior distributions. As the variance 
in the individual parameters decreases, their estimates are 
drawn towards their grand mean, that is, to the mean of their 
hyperprior distribution (Jackman, 2009).

This is also referred to as shrinkage. Because the vari-
ance of the model parameter estimates is seldom zero and is 
inferred from empirical data (Fox, 2010), individual param-
eter estimates in hierarchical Bayesian models exhibit a cer-
tain amount of bias compared to estimates obtained in non-
hierarchical approaches. Since the partial pooling process 
adapts the amount of shrinkage to the variance present in the 
data, the bias in the model parameters should be negligible 
as long as the variance components of the parameters are 
estimated accurately. If the variance components either are 
under- or overestimated, the amount of shrinkage will be 
incorrect and lead to biased model parameters (especially 
in case of underestimated variance components). Thus, the 
hyperprior distributions for the parameter variances play 
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a pivotal role in the performance of hierarchical Bayesian 
models. Another potential source of bias in hierarchical 
Bayesian models is caused by the dependencies of the indi-
vidual parameters with their grand means. These depend-
encies cause funnel degeneracies, where high-density/low-
volume regions are below low-density/high-volume regions 
(Betancourt & Girolami, 2015). These regions exhibit con-
siderable changes in the curvature of the posterior distribu-
tion. This makes it difficult for the Markov chain Monte 
Carlo (MCMC) sampler, which is used to estimate the model 
parameters, to explore the posterior distribution efficiently 
(Betancourt, 2017).

Thus, in order to benefit from the hierarchical Bayesian 
approach, the hyperprior distributions for the parameter vari-
ances must be considered carefully. Although in the methodo-
logical literature researchers are frequently discouraged from 
using the inverse Gamma and inverse Wishart distributions 
(Alvarez et al., 2016; Gelman, 2006; Polson & Scott, 2012; 
Simpson et al., 2014), those two distributions are still widely 
used in Bayesian hierarchical models (e.g., Lu et al., 2020; 
Tijmstra et al., 2018). The alternative half-Cauchy and Expo-
nential distributions as priors for variance components have 
been investigated only recently (Koenig et al., 2020; Liu & 
Yang, 2018; Sheng, 2017). Another aspect that requires care-
ful consideration is the parameterization and complexity of 
the model at hand. This also applies to item response theory 
(IRT) models, which are mostly nonlinear and feature many 
parameters of the same kind, making them ideal candidates 
for hierarchical Bayesian modeling. Due to their complexity, 
however, they require rather large sample sizes to obtain accu-
rate person and item parameter estimates, especially when 
no prior information is available: The two-parameter logistic 
(2PL) model, for instance, has a recommended sample size 
of N ≥ 500 (De Ayala, 2009; smaller sample sizes are possible 
when prior information is available). Hence, the applicability 
of this frequently used class of models to small-scale situa-
tions, as they often occur in psychological research, is limited.

To extend the applicability of the 2PL model to small-scale 
situations, Koenig et al. (2020) illustrated a novel, optimized 
hierarchical two-parameter logistic (OH2PL) IRT model. 
More recently, Gilholm et al. (2021) successfully applied the 
OH2PL to a six-dimensional case with N = 115 students. In 
the OH2PL, Koenig et al. (2020) combined several adjust-
ments with the aim of eliminating bias caused by the choice 
of the hyperprior distributions and of avoiding the degenera-
cies of the standard hierarchical 2PL. They showed that it is 
applicable to situations with 100 respondents. Moreover, the 
OH2PL outperformed its nonhierarchical counterpart in terms 
of bias of the item parameter estimates, especially regarding 
the item discrimination parameters. This is a remarkable find-
ing because it contradicts the theoretical behavior of hierarchi-
cal Bayesian models in general. Both results, however, were 
found only for a single weakly informative specification of the 

variance-related hyperprior distributions under a small number 
of carefully selected simulation conditions.

Whether the findings by Koenig et al. (2020) can be gen-
eralized to a broader range of data conditions, and beyond a 
single weakly informative specification of the variance-related 
hyperprior distributions, is still unclear. The specific focus on 
the variance-related hyperprior distributions arises from the 
theoretical proposition that, for complex nonlinear hierarchi-
cal models such as IRT models, variance components play a 
crucial role in the accuracy of item parameter estimates: given 
partial pooling, the bias in the estimates of variance compo-
nents relates directly to the bias in the associated item param-
eter estimates. Moreover, it remains unclear how the non-cen-
tered parameterization of the OH2PL responds to different 
specifications of its variance-related hyperprior distributions.

Consequently, the primary purpose of this study is to inves-
tigate the performance of the OH2PL in terms of parameter 
estimation accuracy in calibration sample sizes below 500 
respondents across different specifications of the hyperprior 
structure of the OH2PL and a broader range of data condi-
tions. More specifically, we aim to answer the following 
research question: How sensitive is the bias in the parameter 
estimates of the OH2PL against different specifications of the 
half-Cauchy, Exponential, and inverse Gamma hyperprior dis-
tributions in different sample sizes and test lengths, as well as 
different variances and correlations of the item parameters? 
We consider the performance of the OH2PL to be robust if (a) 
the model parameter estimates are unbiased and (b) if the con-
ditional bias and RMSE do not distinctively differ across the 
specifications of the respective hyperprior distribution. Lastly, 
we illustrate the advantage of the OH2PL with regard to an 
increased applicability of the 2PL IRT model to suboptimal 
testing conditions with an empirical example.

The answer to this research question adds to the litera-
ture in three ways. First, it provides guidance on how to 
specify the half-Cauchy, Exponential, and inverse Gamma 
distribution properly as weakly informative hyperpriors for 
variance components in hierarchical Bayesian IRT models. 
Second, it provides insights into the relationship between 
the accuracy of the estimated variance components and the 
respective item parameter estimates in hierarchical Bayes-
ian IRT models. Third, it provides further evidence for the 
applicability of the OH2PL in very small calibration sample 
sizes and for the utility of the hierarchical Bayesian approach 
to IRT modeling in general.

The optimized hierarchical two‑parameter 
logistic IRT model

Let yij ∈ {0, 1} be the response of person j to item i, and θj 
the ability of person j (the person parameter), which is typi-
cally assumed to follow a standard normal prior distribution. 
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Moreover, αi is the discrimination of item i, and βi is its dif-
ficulty. Let the logit of a function x be defined by

then the OH2PL is specified by

The novel OH2PL integrates three different adjustments 
to the common hierarchical specification of the 2PL model. 
First, it uses a separation strategy regarding the hyperprior 
distributions for the correlation between the item parameters 
and their variance components (Barnard et al., 2000; Ulitzsch 
et al., 2020). It is based on the Cholesky factor of the correla-
tion matrix of the item parameters ξi = {log αi, βi}, i = 1, …, 
I items, and their variance components τα and τβ. This strat-
egy introduces more flexibility for the specification of these 
hyperprior distributions. Moreover, it eliminates the a priori 
dependencies between the variance components and the 
covariances commonly associated with the inverse Wishart 
specification as the standard distribution for the covariance 
matrix of the item parameters Σξ (e.g., Alvarez et al., 2016).

Second, the OH2PL uses either the half-Cauchy or the 
Exponential as the hyperprior distribution for the variance 
components τα and τβ of the item parameters, instead of the 
more commonly applied inverse Gamma distribution. The 
inverse Gamma distribution has a low mass near zero. It is 
therefore quite informative even when specified as nonin-
formative and it behaves erratically when the true variance is 
close to zero (Gelman, 2006). Using either the half-Cauchy 
or the Exponential distribution eliminates the bias resulting 
from this erratic behavior (Koenig et al., 2020; Polson & 
Scott, 2012). Thus, using these distributions as hyperprior 
distributions yields more accurate variance estimates; their 
accuracy in turn plays a crucial role in the accuracy of the 
item parameter estimates in hierarchical models.

(1)logit =
exp(x)

1 + exp(x)
,

(2)Pr
(

yij = 1|θj, αi, βi
)

= Bernoulli
(

logit
[

αi
(

θj − βi
)])

(3)θj ∼ N(0, 1)

(4)
∼

�i ∼ N(0, 1)

(5)μα ∼ N(0, 1)

(6)μβ ∼ N(0, 2)

(7)L� ∼ LKJ(2)

(8)ταunif ,βunif ∼ U(0, π∕2).

Third, due to its specific parameterization, the OH2PL 
does not suffer from two problematic dependencies that 
are common for hierarchical models, especially for small-
sample situations (Betancourt & Girolami, 2015): The 
cross-level dependency of the item parameters ξi and their 
grand means  μξ = {μα, μβ}, as well as the correlation 
between the item parameters. Following Koenig et  al. 
(2020), for each item  i,a vector of uncorrelated 
z-scores �̃

i
=

(

�̃1,… , �̃
I

)

 is drawn from a standard normal 

distribution. Each individual vector is then multiplied by 
the diagonal matrix of the variance components Λ and the 
Cholesky factor of the item correlation matrix LΩ to obtain 
the item parameters ξi, that is, �

i
=

(

�L��̃i

)T . Two addi-

tional transformations, αi = exp(μα + ξαi) and βi = μβ + ξβi, 
leave only the uncorrelated person parameters θj and a 
vector of uncorrelated z-scores 

∼

�i as actively sampled sub-
stantial parameters, yielding a joint posterior that is much 
easier to explore and that results in a more efficient sam-
pling process (Koenig et al., 2020). In the current version 
of the OH2PL, we introduce an additional optimization 
related to the hyperpriors for the variance components τα 
and τβ. With respect to sampling efficiency, the Cauchy 
distribution may be problematic due to its heavy tails. 
Thus, instead of sampling the variance components 
directly, we introduce auxiliary parameters ταunif  and τβunif 
with lower and upper bounds of zero and π/2, respectively. 
We sample these auxiliary parameters from a uniform dis-
tribution U(0, π/2), and transform them to the actual vari-
ance components by τα, τβ = 2.5

(

tan
(

ταunif , τβunif

))

 , where 
tan is the tangent  (see also Stan Development Team, 
2022). The transformation in this example implies a 
half − Cauchy(0,2.5) hyperprior on the variance compo-
nents. A similar transformation is available if we want to 
use the Exponential distribution. In this case, the afore-
mentioned auxiliary parameters are sampled from a U(0, 1) 
distribution and transformed into the actual variance com-
ponents by τα, τβ = 2.5

(

− log
(

ταunif , τβunif

))

 , implying an 
Exponential(2.5)  hyperprior.

Lastly, LΩ is given a  LKJ
�

L��η
�

=
∏K

k=2
L
K−k+2η−2

kk
 prior 

distribution with shape parameter η > 0, where k is the number 
of dimensions of the K × K lower triangular Cholesky factor 
(Lewandowski et al., 2009). As η → ∞, extreme correlations 
become less likely. The parameter η provides direct control 
over how closely the sampled matrix resembles the identity 
matrix (Stan Development Team, 2020). Setting η = 2 results 
in a weakly informative prior distribution that slightly favors 
smaller correlations. The prior specifications in (5) and (6) 
represent specifications for item discrimination and difficulty 
parameters commonly found in the literature on hierarchical 
Bayesian IRT models (e.g., Levy & Mislevy, 2016).
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Method

To answer the research question, we conducted a compre-
hensive simulation study. Models, data, results, and scripts 
of this study are included in the supplementary material 
available at the Open Science Framework (OSF) repository 
https://​doi.​org/​10.​17605/​osf.​io/​m3zaq.

Design

The fully crossed design of the study consisted of the fol-
lowing factors: (1) sample size (N = 50, 75, 100, 150, 200, 
500), (2) test length (k = 25, 50), (3) variance components 
of the item discrimination and difficulty parameters (τα, 
τβ = {0.10, 0.40}, {0.25, 0.90}, {0.75, 1.50}), (4) correla-
tion of the item discrimination and item difficulty param-
eters (ραβ = .0, .3), and (5) specifications of the hyperprior 
distributions for the variance components (half-Cauchy, 
Exponential, and inverse Gamma distributions). We chose 
sample sizes and test lengths that mimic testing conditions 
where accurate item parameter estimates would generally be 
difficult to obtain (Koenig et al., 2020; Sheng, 2017).

We manipulated the variance components and the cor-
relations to examine the performance of the OH2PL in typi-
cal and atypical data conditions. We selected the variance 
components to reflect small (τα, τβ = {0.10, 0.40}), typical 
(τα, τβ = {0.25, 0.90}), and extreme (τα, τβ = {0.75, 1.50}) 
variances in the item parameters. The rationale for choosing 
these variance levels, and considering them as small, typical, 
and extreme, is as follows. In operational applications of IRT 
models for dichotomously scored items, item discrimination 
and difficulty parameters typically fall in a relatively narrow 
range. For instance, item discriminations typically fall in the 
interval [0.5, 3.0], while item difficulties are typically found 

to be in the interval [−4, 4] (e.g., OECD, 2021). Parameter 
values outside of these intervals are seldom observed for 
latent traits with typical variance. This also restricts the 
variance of the item parameters: for instance, the variance 
components of the item discrimination and difficulty param-
eters of the 2018 cycle of the Programme for International 
Student Assessment (PISA) – a worldwide study to evalu-
ate educational systems and relying on IRT – were mostly 
smaller than 0.4 and 1.0, respectively (cf. OECD, 2021). 
Thus, the levels of the variance components connect to item 
characteristics of operational IRT applications. The selected 
correlations reflect independent and correlated item param-
eters. Regarding the hyperprior distributions for the variance 
components, we focused on weakly informative and nonin-
formative specifications, relative to the generating values 
for τα and τβ (see Table 1).

The rationale for selecting weakly and non-informative 
prior distribution follows Gelman (2009) who argues that 
regularization of parameters is necessary when working 
with complex hierarchical models in small sample situa-
tions. Weakly informative prior distributions strike a balance 
between unwarranted influences on the posterior distribu-
tion, while at the same time avoiding unrealistic parameter 
values that may have detrimental effects on the sampling 
behavior and unwanted effects on the posterior (which may 
be the case for non-informative prior distributions).

The different specifications of the prior distributions 
under investigation differ in their range of uncertainty 
around the plausible values of the variance components 
(Gelman & Hill, 2007); this range of uncertainty increases 
when moving from the weakly to the non-informative 
specifications considered in this simulation. We aimed at 
including a relatively broad range of possible specifica-
tions. The choice of their specific hyperparameters is based 
on previous comparisons, recommendations and use-cases 

Table 1   Specifications of the variance-related hyperprior distributions

Hyperprior Parameters Specifications

Half-Cauchy Location, Scale 1 – weakly informative I μ = 0, σ = 1
μ, σ 2 – weakly informative II μ = 0, σ = 2.5

3 – noninformative I μ = 0, σ = 5
4 – noninformative II μ = 0, σ = 25

Exponential Inverse scale 1 – weakly informative I b = 1
b 2 – weakly informative II b = 0.4

3 – noninformative I b = 0.2
4 – noninformative II b = 0.04

Inverse Gamma Shape, Scale 1 – weakly informative I a = 3, b = 2
a, b 2 – weakly informative II a = 1, b = 0.5

3 – noninformative I a = 1, b = 2
4 – noninformative II a = 0.001, b = 0.001

https://doi.org/10.17605/osf.io/m3zaq
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found in the methodological literature (e.g., Bürkner, 2021; 
Koenig et al., 2020; Luo & Jiao, 2018; Natesan et al., 2016; 
Röver et al., 2021; Sheng, 2017), with a focus on the com-
parability of the resulting densities. Please note that due 
to its low mass near zero, it is inherently difficult to spec-
ify inverse Gamma distributions that are fully compara-
ble to the half-Cauchy and Exponential distributions. We 
included, however, specifications that are approximately 
comparable and that are used in methodological and empir-
ical studies (e.g., Depaoli et al., 2021; Gardini et al., 2021; 
Koenig et al., 2020; Matzke et al., 2018; Sheng, 2017; 
Smid & Rosseel, 2020; Smid & Winter, 2020). Lastly, we 
did not focus exclusively on the commonly used highly 
noninformative specifications of the inverse Gamma distri-
bution, because they are already known to be problematic 
(Gelman, 2006; Röver et al., 2021). Illustrations of the dif-
ferent densities are included in the electronic supplemen-
tary material in the OSF respository (Supplement 1).

In total, 864 conditions were examined across the five 
simulation factors. To provide a complete picture of the 
robustness of the OH2PL, we compared its performance 
with its nonhierarchical counterpart, its more common 
inverse Wishart specification (e.g., Levy & Mislevy, 2016), 
and with MML estimation, which is implemented in most 
modern non-Bayesian IRT modeling software packages.

Data generation and analysis

The generation of data aimed to yield parameter values 
typically found in operational tests based on the unidimen-
sional 2PL model and to avoid unrealistic item discrimina-
tions and item difficulties. We used the following procedure 
to achieve this.

First, for each item i, a parameter vector ξi was drawn 
from a truncated bivariate normal distribution with grand 
mean vector μξ = {1, 0}, lower limits LL = {0.65, −4.5} 
and upper limits UL = {4.0,4.5}, and diagonal matrix τ, 
resulting in the auxiliary matrix Z. Second, the param-
eter matrix Ξ with the desired variances and correlations 
was obtained by � = S L

−1
S

L� , where S is the covari-
ance matrix of Z, L−1

S
 is the inverse of the Cholesky 

factor of S, and LΣ is the Cholesky factor of the pop-
ulation covariance matrix Σ = τ Ω τT, with τ being a 
diagonal matrix of the variance components and Ω being 
the population correlation matrix. Lastly, the generat-
ing item parameters were obtained by mean centering 
each column of Ξ and adding the true (marginal) means 
of the truncated bivariate normal distribution, which 
ensured that the grand means of the item parameters μξ 
were correct. This procedure generated item parameters 
in the ranges of 0.5 < αi < 3.5 and −4 < βi < 4 with the 
desired grand means, variances, and correlations. Person 

parameters were drawn from a standard normal distri-
bution θj~N(0, 1), yielding a 99% CI [−3.11, 3.11]. For 
each of the 864 simulation conditions, 100 data sets were 
generated. Different sets of item and person parameters 
were drawn for each data set.

The standard inverse Wishart H2PL was specified with 
θ j~N(0, 1),  ξi~MVN(μξ, Σ),  μα~N(0, 1),  μβ~N(0, 2), 
and Σ~IW(3, I), where I is the identity matrix. The nonhi-
erarchical 2PL was specified with θj~N(0, 1), αi~logN(0, 1), 
and βi~N(0, 2). These prior configurations are widely used 
in Bayesian IRT modeling, and represent common ways to 
specify the 2PL hierarchically and nonhierarchically (e.g., 
Fox, 2010; Levy & Mislevy, 2016).

To estimate the Bayesian models, Stan (Carpenter et al., 
2017) and its R interface RStan were used (see Jiang & 
Carter, 2019, for benefits of Stan other than flexibility in 
prior specification). Three chains, each 4000 iterations 
long, with 1000 burn-in cycles were set up. Different ran-
dom starting values were supplied to each chain. Conver-
gence was assessed using the Gelman–Rubin R-statistic 
(Gelman & Rubin, 1992), where R < 1.05 indicated conver-
gence. There was no systematic clustering of non-conver-
gent solutions (non-convergence rate smaller than ten per-
cent) except for the second non-informative specification 
of the half-Cauchy distribution (NI2, cf. Table 1). Here, 
the non-convergence rate ranged between 18% and 36% 
across all design factors (sample size, test length, correla-
tion, and variance components). This illustrates the theo-
retically expected problem of the half-Cauchy distribution: 
in non-informative specifications, it allows for very large 
values; thus, it is more likely for the sampler to be stuck in 
regions with low probability mass. This leads to sampling 
inefficiencies and convergence issues. In contrast, both 
the Exponential and the inverse Gamma distribution yield 
estimates that are more conservative. The higher conver-
gence rate of these distributions, even in non-informative 
specifications, reflects this behavior. For the MML estima-
tion of the model, the R package mirt was used (Chalmers, 
2012). To compare the resulting item parameter estimates, 
they were transformed from slope/intercept to classical IRT 
parameterization. Here, inadmissible solutions systemati-
cally clustered in the extreme variance conditions. Here, 
the rate ranged between 10% and 99%; the proportion of 
inadmissible solutions was highest in case of a sample size 
of N = 50 for both test lengths (range between 75% and 
89%). Additionally, MML estimation produced a number of 
solutions that apparently converged but produced negative 
item discriminations. These solutions clustered in condi-
tions with small sample sizes (N < 100); their proportion 
ranged between 11% and 25%). Non-convergent (in case of 
the Bayesian models) and inadmissible (in case of MML 
estimation) were discarded and not used for the calculation 
of the results.
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Evaluation criteria

To assess the performance of the OH2PL we used the bias 
and the root mean square error (RMSE) of the estimates of 
the variance components, the item parameters, and the per-
son parameters; smaller bias and RMSE values indicated bet-
ter performance. We calculated the bias as B = πest − πtrue, 
and the RMSE as RMSE =

�

∑

R

�

π
est

− π
true

�2

∕R , with πest being 
the estimated value of a parameter, πtrue the true value of 
a parameter, and R the number of replications. For item 
parameters, we averaged the bias across items in each repli-
cation. We averaged these averaged indices and the bias in 
the variance components across replications. We considered 
the performance of the OH2PL robust if the conditional bias 
and RMSE do not distinctively differ across the specifica-
tions of the respective hyperprior distribution. Therefore, for 
a single simulation condition, we calculated the conditional 
mean (averaged across hyperprior distributions) of the aver-
age bias and RMSE and assessed whether the average bias 
and RMSE produced by the individual hyperprior specifica-
tions significantly differed from the conditional mean.

Results

Performance of the OH2PL is robust for small 
and typical variances τα, τβ

Figures 1 and 2 illustrate the average bias in the variance 
components τα and τβ across small, typical, and extreme vari-
ances of the item parameters for correlated item parameters 
and short (upper half) and long (lower half) test lengths. Cor-
relations of the item parameters did not have a substantial 
impact on the performance of the OH2PL with regard to the 
average bias of the variance components; the results for inde-
pendent item parameters are included in the electronic sup-
plementary material in the OSF repository (Supplement 2).

Figure 1 shows that the OH2PL was robust against 
specifications of its variance-related hyperprior distribu-
tions if either the half-Cauchy or Exponential distribu-
tions were used, especially when the true variance was 
small or typical. It made no difference whether weakly 
informative or non-informative specifications were used. 
In contrast, in case of the inverse Gamma distribution, 
the average bias in the item discriminations was highly 
dependent of the specification of the prior. In case of 
small and typical variances, the average bias remained 
below 0.1 across all sample sizes for the half-Cauchy 
and Exponential distributions. The variance component 
τα was marginally overestimated when sample sizes 
were smaller than N = 100. In contrast, when the inverse 
Gamma distribution was used, we observed that the aver-
age bias ranged between –0.1 and 0.3, depending on the 
specification of the prior distribution.

In case of extreme variances, the variance component 
τα was underestimated regardless of which distribution 
was used. The average bias remained largely independent 
of specification in case of the half-Cauchy and Exponential 
distributions when N ≥ 100; here, the most informative spec-
ification was associated with the largest amount of average 
bias. The dependency related to the inverse Gamma distribu-
tion reduced, but it was still more distinct compared to the 
half-Cauchy and Exponential distributions.

Moreover, the OH2PL performed better in terms of aver-
age bias (it was consistently smaller across simulation con-
ditions) than the standard inverse Wishart specification of 
the H2PL, especially when either the half-Cauchy or the 
Exponential distribution was used. The differences between 
the OH2PL specifications and the standard inverse Wishart 
specification of the H2PL disappeared, however, when the 
variance τα was extreme.

This pattern of results was similar for both test lengths. As 
illustrated in Fig. 1, the difference in average bias between 
short and long tests was negligible.

As shown in Fig. 2, when the true variance τβ was small, 
the pattern of results was similar to small and typical τα: the 
OH2PL was robust against the specification of its hyperprior 
distribution when the half-Cauchy or the Exponential dis-
tribution was used. The average bias remained below 0.05, 
regardless of specification used. It was sensitive, however, to 
the specification of the inverse Gamma distribution, where 
the average bias depended on the specification of the prior 
distribution. Moreover, the half-Cauchy and Exponential 
distributions consistently performed better than the stand-
ard inverse Wishart specification of the H2PL. Estimates of 
τβ exhibited smaller average bias than the standard inverse 
Wishart specification of the H2PL across sample sizes, test 
lengths and correlations in the case of the half-Cauchy and 
Exponential specifications.

When the true variance τβ increased to typical values, 
the differences between the half-Cauchy, Exponential, 
and inverse Gamma specifications decreased: average 
bias was marginally dependent of the specification of 
both the half-Cauchy and Exponential distributions, 
where the most informative specification yielded the 
least amount of bias. Most specifications of the inverse 
Gamma distribution yielded an average bias comparable 
to the alternative distributions, except for the first non-
informative distribution, which was associated with the 
largest amount of average bias. In this condition, esti-
mates of τβ were moderately overestimated (the average 
bias remained below 0.1).

In case of extreme τβ, the performance of the inverse 
Gamma distribution improved further and was similar to 
the performance of the half-Cauchy and Exponential dis-
tributions. The average bias depended on the specifica-
tion for all three hyperprior distributions, and the variance 
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component was overestimated, especially in sample sizes 
smaller than N < 100. In general, the most informative speci-
fication yielded the least amount of bias. Lastly, estimates 
of τβ obtained by the standard inverse Wishart specification 

of the H2PL exhibited smaller average bias compared to the 
half-Cauchy and Exponential specifications of the OH2PL 
across sample sizes and test lengths.

Fig. 1   Average bias in τα for correlated item parameters. Note. Upper 
half k = 25 items (short), lower half k = 50 items (long). Specifica-
tions of the hyperprior distributions: 1 = weakly  informative I, 2 = 

weakly informative II, 3 = noninformative I, 4 = noninformative II 
(see Table 1 ). Dashed red lines indicate the conditional average bias, 
averaged across prior specifications. Error bars indicate ± 2 SE 
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Overall, the OH2PL was robust in terms of average 
bias for small and typical τα. For extreme τα, estimates 
were moderately underestimated. Similarly, for small τβ, 
the OH2PL was robust in terms of average bias. In these 

situations, the average bias was independent from the 
specification of the half-Cauchy and Exponential distri-
butions, and highly dependent from the specification of 
the inverse Gamma distribution. When τβ increased, the 

Fig. 2   Average bias in τβ for correlated item parameters. Note. Upper 
half k = 25 items (short); lower half k = 50 items (long). Specifica-
tions of the hyperprior distributions: 1 = weakly  informative I, 2 = 
weakly informative II, 3 = noninformative I, 4 = noninformative II 

(see Table 1 ). Dashed Dashed red lines indicate the conditional aver-
age bias, averaged across prior specifications. Error  bars indicate ± 
2SE 
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amount of bias increased to the moderate range, and the 
hyperprior distributions performed similarly. The stand-
ard inverse Wishart specification of the H2PL performed 
worse than the OH2PL, especially with the half-Cauchy 
and Exponential configurations, except for extreme τα 
and typical/extreme τβ. In general, average bias decreased 
slightly with an increasing test length.

The OH2PL is robust in terms of the accuracy 
of the item parameters α, β

Figure 3 shows the average bias in the item discrimination 
parameter α and item difficulty parameter β for small, typi-
cal, and extreme variances of both item parameters. Because 
test length and correlation did not have a substantial impact 
on average bias (the pattern of results was virtually the same 
across these conditions), Fig. 3 illustrates results for corre-
lated item parameters and short test lengths only (all comple-
mentary results are included in the electronic supplementary 
material in the OSF repository; Supplement 2).

The results showed that the OH2PL yielded unbiased 
estimates of the item discrimination parameters α: with the 
exception of the inverse Gamma configuration for N = 50 
and extreme τα, average bias was close to zero across all 
simulation conditions. Hence, the negligible bias was 
independent of the specification of the hyperprior distri-
butions and sample size. Thus, we considered the OH2PL 
in its half-Cauchy or Exponential configuration robust in 
terms of the accuracy of the item discrimination param-
eters α. Moreover, the OH2PL with either the half-Cauchy 
or the Exponential configuration showed considerable 
advantages in comparison to MML estimation in sample 
sizes smaller than N < 150 across all simulation condi-
tions (the larger number of inadmissible solutions in the 
respective conditions could explain the increased standard 
errors of MML estimation). For typical and extreme τα, 
the performance of the OH2PL was slightly better than 
the standard inverse Wishart specification of the H2PL 
and its nonhierarchical counterpart; there were no distinct 
differences in average bias for small variances.

There were no differences in the average bias of the item 
difficulty parameters β between the OH2PL configurations 
(see the lower half of Fig. 3), the standard inverse Wishart 
specification of the H2PL, its non-hierarchical counterpart, 
and MML estimation. The amount of bias was near zero 
(well within ± 0.04) across all simulation conditions for 
small, typical, and extreme variances τβ. Thus, we consid-
ered the OH2PL robust in terms of the accuracy of the item 
difficulty parameters β.

Overall, the OH2PL was robust in terms of the accuracy 
of the item parameters α, β, especially with the half-Cauchy 
or exponential configuration. In general, average bias in α 

increased slightly with increasing variances τα, τβ, while the 
average bias in β did not.

The OH2PL is robust in terms of the accuracy 
of the person parameter θ

Figure 4 illustrates the average bias in the person param-
eters θ for correlated item parameters and k = 25 (results 
for k = 50 and independent item parameters were indis-
tinguishable; they are included in the electronic supple-
mentary material in the OSF repository; Supplement 2).

Overall, we considered the OH2PL robust in terms of 
the accuracy of the person parameters θ. The average bias 
remained between ± 0.03 across all simulation condi-
tions and specifications of the hyperprior distributions 
in question. Furthermore, the average bias was largely 
independent of sample size. Again, the larger number of 
inadmissible solutions in the respective conditions could 
explain the increased standard errors of MML estima-
tion. Moreover, differences between the OH2PL configu-
rations, the standard inverse Wishart specification of the 
H2PL, its nonhierarchical counterpart, and MML estima-
tion were negligible.

Superior performance of the OH2PL for small 
and typical τα, τβ in smallest samples

Figure 5 illustrates the RMSE in the variance components τα, 
τβ for correlated item parameters and k = 25. Compared to 
the standard inverse Wishart specification of the H2PL, 
the OH2PL, especially in its half-Cauchy or Exponential 
configuration, exhibited a superior performance when τα 
was small or typical, and when τβ was small. Moreover, the 
superior performance was independent of the specification 
of the half-Cauchy or Exponential distribution. Although, 
from a strict statistical point of view, there were differences 
in RMSE between the specifications, these differences were 
too small to be practically relevant. When τα was extreme, 
the standard inverse Wishart specification of the H2PL per-
formed slightly better in the smallest sample sizes (N < 100). 
When τβ was typical or extreme, the standard inverse 
Wishart specification of the H2PL performed better across 
all sample sizes. Differences to the inverse Gamma configu-
ration of the OH2PL were not that distinct, although the for-
mer remained highly sensitive to its specification. Increasing 
the test length (not shown) lead to a decrease in RMSE of 
around 0.05 across all model specifications. Correlation did 
not have an impact on the RMSE of the estimated variance 
components.

The upper half of Fig. 6 shows (for correlated item param-
eters and k = 25) that in case of small τα, the OH2PL, regard-
less of its configuration, exhibited a superior performance 
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in terms of the average RMSE of the item discrimination 
parameters α, compared to the standard inverse Wishart 
specification of the H2PL, its nonhierarchical counter-
part and to MML estimation across simulation conditions, 
except for N = 500. The advantages of the OH2PL compared 

to the standard inverse Wishart specification of the H2PL 
decreased as τα, τβ increased. Regarding the item difficulty 
parameters β, the OH2PL and the standard inverse Wishart 
specification of the H2PL showed a superior performance 
compared to their nonhierarchical counterpart and MML 

Fig. 3   Average bias in the item discrimination and difficulty param-
eters α, β.  Note. Results for correlated item parameters and  k = 25. 
Specifications of the hyperprior distributions: 1 = weakly informative 

I, 2 = weakly informative II, 3 = noninformative I, 4 = noninforma-
tive II (see Table 1). Dashed red lines indicate the conditional average 
bias, averaged across prior specifications. Error bars indicate ± 2 SE 
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estimation for sample sizes N < 500 (see the lower half 
of Fig. 6). The advantage compared to its nonhierarchical 
counterpart decreased when τα, τβ were extreme. Moreo-
ver, between the OH2PL and the standard inverse Wishart 
specification of the H2PL, there were no differences in the 
average RMSE of the item difficulty parameters. For both 
item parameters, the performance of the OH2PL in terms 
of RMSE was independent of the specific specification of 
its variance-related hyperprior distribution. It has to be 
noted, however, that the performance of the inverse Gamma 
distribution in case of the item discriminations, especially 
when the true variance is small, was relatively sensitive to 
its specification. Neither test length nor correlation had a 
distinct impact on the RMSE of the estimated item param-
eters. Lastly, as can be seen by the inflated standard errors 
of the RMSE estimates, the MML estimation had severe con-
vergence issues in smaller sample sizes and when the true 
variance components of the item parameters were extreme.

Lastly, as shown in Fig. 7, there were only marginal dif-
ferences between MML estimation and the OH2PL regard-
ing the average RMSE of the person parameters θ when 
τα, τβ were either small or typical. Moreover, the average 
RMSE decreased with increasing test length. Differences in 
the performance of the OH2PL, its nonhierarchical counter-
part, and the standard inverse Wishart specification of the 
H2PL were negligible. The performance of the OH2PL in 
terms of RMSE of the person parameters θ was independent 
of the specification of its hyperprior distribution, across all 
simulation conditions and distributions. Increasing the test 
length (not shown) lead to a small decrease in RMSE across 

all model specifications. Correlation did not have an impact 
on the RMSE of the estimated person parameters θ.

Overall, the OH2PL in its half-Cauchy or Exponential 
configuration showed a similar or superior performance in 
terms of the RMSE of the variance components (compared 
to the standard inverse Wishart specification of the H2PL), 
of the item parameters α, β, and (partly) of the person param-
eters θ, compared to the nonhierarchical counterpart and 
MML estimation.

Results of two supplementary simulations corroborated 
this finding. These simulations focused on two specific 
aspects. First, we wanted to investigate the performance of 
the OH2PL relative to the other model specifications when 
the average item difficulties did not match the average person 
ability. This is a common situation in psychological research 
and may have an impact on model performance. Overall, the 
results of the first supplementary simulation showed that 
shifts in the difficulty distribution against the ability distri-
bution had no impact on the performance of the different 
configurations of the OH2PL. Second, we aimed at provid-
ing further insights by investigating the performance of the 
OH2PL relative to the other model specifications when fol-
lowing a fixed item parameter approach, with a special focus 
on the item discrimination parameter. Overall, the results of 
the second supplementary simulation showed that the OH2PL 
provided item discrimination estimates that were largely unbi-
ased across the whole range of possible discrimination values 
when the sample size was at least N = 100. Detailed results are 
available in the electronic supplementary material in the OSF 
repository (Supplement 1).

Fig. 4   Average bias in the person parameters θ. Note. Results for cor-
related item parameters and k = 25. Specifications of the hyperprior 
distributions: 1 = weakly informative I, 2 = weakly informative II, 

3 = noninformative I, 4 = noninformative II (see Table  1). Dashed 
red lines indicate the conditional average bias, averaged across prior 
specifications. Error bars indicate ± 2 SE 
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Empirical example

To illustrate the increased applicability of the 2PL IRT 
model when using the Bayesian hierarchical approach, we 

used empirical response data from a university exam. This 
exam tested in how far the students have acquired skills 
and knowledge covered by a lecture on the fundamentals 
of empirical research methods in psychology within the 

Fig. 5   RMSE of the estimated variance components τα and τβ. Note. 
Results for correlated item parameters and  k = 25. Specifications of 
the hyperprior distributions: 1 = weakly informative I, 2 = weakly 

informative II, 3 = noninformative I, 4 = noninformative II (see 
Table 1). Dashed red lines indicate the conditional average bias, aver-
aged across prior specifications
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psychology bachelor’s program at a German university. 
The exam consisted of I = 27 items administered to N = 80 
students in the summer term 2021.

Thus, the number of students was well below the sam-
ple size recommended for estimating the 2PL IRT model. 
Moreover, in fact, the exam data had been calibrated using 

Fig. 6   Average RMSE of the item discrimination and difficulty param-
eters α, β. Note. Results for correlated item parameters and  k = 25. 
Specifications of the hyperprior distributions: 1 = weakly informative 
I, 2 = weakly informative II, 3 = noninformative I, 4 = noninforma-

tive II (see Table 1). Dashed red lines indicate the conditional average 
bias, averaged across prior specifications. Error bars indicate ± 2 SE 
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the Rasch model so far, even though this meant limiting 
the amount of information compared to IRT models with 
discrimination parameters. The average difficulty of the 
items was β = −2.13 , and three items had a probability of 
a correct response higher than 90% (there was one item 

that every student answered correctly). In sum, it was 
a relatively easy exam, but from an estimation point of 
view, it nicely represented suboptimal testing conditions 
and therefore was a very good situation to exemplify the 
potential of the OH2PL.

Fig. 7   Average RMSE of the person parameters θ for correlated item 
parameters. Note. Upper half: k = 25 (short), lower half k = 50 (long). 
Specifications of the hyperprior distributions: 1 = weakly informative 

I, 2 = weakly informative II, 3 = noninformative I, 4 = noninforma-
tive II (see Table 1). Dashed red lines indicate the conditional average 
bias, averaged across prior specifications. Error bars indicate ± 2 SE 
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We compared the item parameters obtained from the 
OH2PL in its second weakly informative Exponential con-
figuration (τα, β ~ Exp(0.4)) to the item parameters obtained 
from the inverse Wishart specification, its Bayesian non-
hierarchical counterpart, and obtained from MML estima-
tion. Neither the hierarchical nor the non-hierarchical esti-
mates showed any convergence issues: the Gelman-Rubin 
R-statistics of all parameters were close to one, and their 
effective sample sizes were well over 400 (Zitzmann & 
Hecht, 2019). There were serious convergence issues with 
MML estimation, however. We had to change the optimizer 
and to introduce additional information via a lognormal 
prior for the discrimination parameter of the first item to 
avoid a negative discrimination and to achieve convergence.

Table 2 illustrates the item parameters obtained with the 
three approaches. It is obvious that, although it converged, 
the MML solution was not admissible mostly because of 
the response patterns at the boundary (the number of near 
perfect response patterns was too large). The average dis-
crimination of the OH2PL was α = 1.29 (SD = 0.77), of the 
inverse Wishart specification α = 1.27 (SD = 0.71), and of 
the non-hierarchical 2PL α = 1.52 (SD = 1.24). The aver-
age difficulty of the OH2PL was β = −2.13 (SD = 0.45), 
of the inverse Wishart specification β = −2.12 (SD = 0.45), 
and of the non-hierarchical 2PL β = −1.95 (SD = 0.78). 
Especially the pattern regarding the discrimination was 
quite similar to the results of our simulation for the 
extreme variance component. Thus, it was possible that the 
average item discrimination of the non-hierarchical 2PL 
was inflated due to the items with extreme response pat-
terns; the OH2PL (and the inverse Wishart specification) 
were able to avoid this inflation due to shrinkage. Also, 
note that the average item difficulty of the OH2PL model 
matched the average difficulty of the Rasch-calibrated 
items. In sum, this empirical example illustrated how the 
OH2PL extended the applicability of the 2PL IRT model 
to suboptimal testing conditions: together with the inverse 
Wishart specification, it was better able to handle extreme 
response patterns, which are more likely in smaller sam-
ples, by shrinking extreme parameter estimates towards 
their grand means, thus avoiding inflated estimates. Hence, 
test administrators can keep certain items in an item bank 
after initial calibration and may recalibrate them as new 
response data becomes available.

Discussion

The primary purpose of this study was to investigate the 
robustness of the performance of the OH2PL in terms 
of parameter accuracy in calibration sample sizes below 
500 respondents. Therefore, we focused primarily on 

differences in performance due to different specifications 
of the hyperprior structure of the OH2PL and investigated 
this performance across a broad range of data conditions. 
We illustrated the advantages of the OH2PL in an empiri-
cal example.

The OH2PL in its half-Cauchy and Exponential config-
urations outperformed the standard inverse Wishart speci-
fication of the H2PL with regard to the bias and accuracy 
of the variance components for small and typical τα, and 
for small τβ. Moreover, in contrast to the inverse Gamma 
configuration, the half-Cauchy and Exponential configu-
rations were consistent, that is, their performance did not 
depend on the specification of the hyperprior distribution. 
This supports and complements Gelman (2006), Polson 
and Scott (2012), and more recently Sheng (2017), who 
all recommended distributions from the half-t family as 
reasonable hyperprior distributions for variance compo-
nents in hierarchical Bayesian (IRT) models. Using these 
distributions resolves the restrictive nature of the inverse 
Gamma distribution near zero by allowing either small or 
large variance components. The smaller advantage of the 
half-Cauchy or Exponential configuration of the OH2PL 
in the case of extreme variance components (and τβ in 
general) can be explained by the larger variances of the 
item discrimination and difficulty parameters in these con-
ditions. Because the inverse Gamma distribution is prob-
lematic especially in cases when the variance is near zero 
(Gelman, 2006), the larger variances allow this distribu-
tion to perform better. The similar or better performance of 
the inverse Gamma distribution observed for extreme vari-
ances, and τβ in general, is expected; when the variance 
component increases and moves away from zero, it moves 
into the highest density regions of the inverse Gamma 
distribution, and away from regions with very low prob-
ability mass. Therefore, the bias due to the true value lying 
outside the highest density region of the inverse Gamma 
distribution should be smaller. This essentially implies that 
if the typical value of a variance component is known to be 
sufficiently large, there is nothing against using the inverse 
Gamma distribution as hyperprior for the variance compo-
nents, potentially helping in case of convergence problems 
with the Cauchy/Exponential distributions. Nevertheless, 
it remains sensitive to its specification, albeit to a lesser 
extent than in case of small or typical variances.

Moreover, our results show that when the variance 
components of the item parameters are large (more spe-
cifically, extreme in case of the item discriminations and 
typical/extreme in case of the item difficulties), the inverse 
Wishart distribution performs similar and even better 
than the alternative distributions and model specifica-
tions, both in terms of bias and RMSE. This indicates that 
the inverse Wishart distribution may be a viable alterna-
tive under these conditions, and contradicts the frequent 



3980	 Behavior Research Methods (2023) 55:3965–3983

1 3

discouragement about its use in the literature (e.g., Gel-
man, 2006). The criticism is because in case of the inverse 
Wishart distribution, there are a-priori dependencies 
between the entries of the covariance matrix, i.e., between 
the variance components, and the variance components 
and correlations (Alvarez et al., 2016; Liu et al., 2016). 
Thus, the inverse Wishart distribution is likely to be highly 
informative in its standard diffuse specification and may 
lead to biased parameter estimates in case of large correla-
tions and small variance components, and small correla-
tions in connection with large variance components (Liu 
et al., 2016). Moreover, as the marginal distribution for 
the variance components is inverse Gamma, the inverse 
Wishart performs worse when the true variance compo-
nent is near zero (Alvarez et al., 2016). Both characteris-
tics make it likely to introduce unintended information into 
the analysis, which may lead to biased model parameters 

(Liu et al., 2016; Tokuda et al., 2012). Even though the 
typical/extreme variance components and correlations 
considered in this study do not point directly to such prob-
lems, the OH2PL provides increased control of the actual 
amount of information that is introduced into the analysis, 
and therefore should be preferred.

In sum, based on our results, we recommend using either 
the half-Cauchy or the Exponential distribution as hyper-
prior for the variance components, although the inverse 
Gamma distribution remains a viable prior choice if we 
know that the true variance component is sufficiently large. 
Their robust performance across specifications further 
allows for an increased flexibility and control when specify-
ing prior distributions for variance components in hierarchi-
cal models. Since the differences in performance criteria are 
largely negligible, researchers will be able to focus on other 
criteria for choosing a specification. For example, we know 

Table 2   Estimated item parameters of the empirical example

Note. Item 6 could not be estimated with MML due to a perfect response pattern (all correct). Problematic estimates in bold

Item Discrimination Difficulty

OH2PL IW Single MML OH2PL IW Single MML

Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

1 0.36 0.13 0.36 0.13 0.28 0.13 0.39 0.49 – 1.97 0.71 – 1.94 0.68 – 2.03 1.03 – 1.82 2.24
2 1.64 0.60 1.62 0.56 1.73 0.76 1.77 0.83 – 2.36 0.54 – 2.36 0.49 – 2.20 0.73 – 2.15 0.62
3 3.15 2.28 2.95 1.89 4.37 3.70 49.02 210.11 – 2.66 0.61 – 2.66 0.55 – 2.40 0.71 – 2.10 0.43
4 0.85 0.26 0.85 0.25 0.80 0.31 0.61 0.41 – 2.26 0.59 – 2.23 0.54 – 2.31 0.87 – 2.89 1.76
5 1.41 0.53 1.39 0.50 1.81 0.80 2.18 0.87 – 2.10 0.53 – 2.09 0.48 – 1.65 0.55 – 1.55 0.35
6 3.28 3.49 3.04 1.79 3.77 3.23 NA NA – 3.03 0.72 – 3.02 0.61 – 3.51 1.04 NA NA
7 1.95 0.84 1.89 0.65 1.65 0.73 0.51 1.24 – 2.90 0.69 – 2.88 0.56 – 3.34 1.02 – 8.83 20.43
8 0.65 0.30 0.66 0.31 0.86 0.38 0.87 0.37 – 1.26 0.60 – 1.25 0.61 – 0.57 0.49 – 0.63 0.37
9 1.33 0.43 1.33 0.42 1.28 0.52 1.23 0.63 – 2.44 0.57 – 2.43 0.52 – 2.45 0.80 – 2.50 0.94
10 2.86 2.30 2.73 2.00 5.79 4.20 42.72 277.65 – 1.76 0.43 – 1.76 0.42 – 1.18 0.31 – 1.23 0.23
11 0.57 0.21 0.58 0.20 0.64 0.28 0.62 0.34 – 1.74 0.58 – 1.72 0.58 – 1.34 0.74 – 1.39 0.76
12 1.07 0.45 1.09 0.46 1.53 0.59 1.49 0.55 – 1.47 0.48 – 1.45 0.47 – 0.88 0.40 – 0.98 0.31
13 0.65 0.20 0.65 0.19 0.57 0.22 0.27 0.34 – 2.22 0.60 – 2.20 0.57 – 2.39 0.90 – 4.89 6.07
14 1.04 0.36 1.04 0.36 1.20 0.48 1.35 0.55 – 1.97 0.52 – 1.95 0.50 – 1.61 0.64 – 1.51 0.46
15 1.87 0.81 1.86 0.77 2.17 1.10 1.98 0.93 – 2.26 0.51 – 2.25 0.49 – 1.96 0.61 – 2.03 0.56
16 0.84 0.27 0.85 0.27 0.90 0.35 0.87 0.41 – 2.01 0.54 – 2.00 0.52 – 1.79 0.72 – 1.83 0.74
17 0.89 0.27 0.89 0.26 0.87 0.34 0.79 0.45 – 2.29 0.59 – 2.28 0.53 – 2.30 0.84 – 2.45 1.21
18 0.95 0.32 0.95 0.32 1.12 0.46 1.30 0.51 – 1.91 0.53 – 1.90 0.50 – 1.52 0.65 – 1.40 0.43
19 1.15 0.38 1.15 0.38 1.23 0.52 1.22 0.54 – 2.12 0.52 – 2.09 0.49 – 1.89 0.71 – 1.89 0.64
20 1.42 0.50 1.41 0.48 1.52 0.67 1.56 0.71 – 2.27 0.53 – 2.27 0.49 – 2.07 0.70 – 2.03 0.61
21 1.34 0.42 1.32 0.39 1.07 0.40 0.03 0.72 – 2.84 0.68 – 2.82 0.57 – 3.38 1.01 – 98.75 2169.64
22 1.28 0.42 1.27 0.41 1.29 0.53 1.27 0.61 – 2.28 0.55 – 2.26 0.50 – 2.16 0.74 – 2.17 0.76
23 0.41 0.18 0.42 0.18 0.42 0.21 0.36 0.30 – 1.59 0.68 – 1.56 0.67 – 1.06 0.85 – 1.31 1.19
24 1.39 0.46 1.38 0.44 1.27 0.52 1.08 0.63 – 2.53 0.61 – 2.51 0.53 – 2.65 0.88 – 2.93 1.34
25 0.47 0.21 0.48 0.22 0.58 0.28 0.73 0.34 – 1.37 0.67 – 1.35 0.66 – 0.59 0.63 – 0.56 0.41
26 0.89 0.33 0.90 0.33 1.14 0.45 1.20 0.45 – 1.69 0.53 – 1.67 0.50 – 1.18 0.54 – 1.18 0.39
27 1.11 0.35 1.11 0.34 1.10 0.43 1.04 0.52 – 2.31 0.55 – 2.31 0.53 – 2.26 0.80 – 2.35 0.93
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that especially highly non-informative specifications are 
prone to convergence issues and sampling inefficiencies. We 
could show that there is nothing against using a more weakly 
informative specification of the half-Cauchy or Exponential 
distribution that aids convergence and sampling efficiency.

This is corroborated by the performance of the OH2PL 
regarding the bias in the estimated item and person param-
eters. Estimates of the item discrimination and the item 
difficulty estimates remained relatively unbiased across all 
simulation conditions, with clear advantages compared to 
the nonhierarchical 2PL and MML estimation in terms of 
RMSE. Although there was a slight increase in bias in the 
case of extreme variances, the average bias remained rela-
tively small. This increase may be due to the underestima-
tion of the respective variance components, as shrinkage 
towards the item parameter grand means should increase 
only when the variance in the individual parameters either 
decrease or is underestimated. This results in bias, because 
the true variance is actually larger, and the individual param-
eter estimates should not shrink towards their grand mean. 
It seems, however, that the underestimation of the variance 
components was small enough to cause no distinct bias in 
the individual parameter estimates. Thus, this suggests some 
flexibility with respect to the required accuracy of the ele-
ments of the variance-covariance matrix to obtain unbiased 
item parameters, and sheds new light on the theoretical rela-
tion between the variance components and the item param-
eter estimates in Bayesian hierarchical models.

The fact that the OH2PL outperformed its nonhierarchical 
counterpart provides a further indication that hierarchical 
Bayesian IRT models behave differently than hierarchical 
Bayesian models in general (cf. Koenig et al., 2020). From 
a theoretical point of view, bias in individual parameter esti-
mates should always be slightly larger in the hierarchical 
model, due to the variance-dependent shrinkage effect. In 
the OH2PL, this was not the case. Another aspect that sug-
gests the possibility of different behavior is the fact that the 
average bias in the item parameter estimates did not increase 
with an increasing variance component (at least for small 
and typical variances, and for the bias in the item difficulty 
estimates). Thus, the assumption of the different behav-
ior of hierarchical Bayesian IRT models warrants further 
investigation.

We have to consider three limitations of the current 
study that open up pathways for further research on this 
topic. First, the half-Cauchy distributions exhibits con-
vergence issues especially in its non-informative speci-
fication. It is possible, however, to apply a transforma-
tion based on the hyperbolic tangent function where the 
variance component is sampled from a uniform distribu-
tion bounded by zero and π/2 (as illustrated in the Intro-
duction; Stan Development Team, 2022). As we did not 
implement this transformation in our design, it might be 

useful to investigate whether and how this transformation 
affects the convergence rate of the half-Cauchy distri-
bution. Second, our results imply that both the inverse 
Gamma and inverse Wishart distributions may still be via-
ble choices for hyperpriors in case (1) the variance com-
ponents in question are sufficiently large and (2) the cor-
relation falls into a certain range. Our simulation design, 
however, does not allow determining the critical values 
of the variance components and correlation. Here, we 
would need a more fine-grained resolution of the design, 
especially with respect to the true values of the variance 
components of the item discrimination parameters and the 
correlation between the item parameters. We will address 
this question in a future study. Third, in a similar vein, the 
current simulation design does not allow answering the 
question of the differential behavior of Bayesian hierar-
chical IRT models conclusively. This requires an extended 
and more fine-grained resolution of the design. We will 
address this question in a future study as well.

Summarizing, we showed that the performance of the 
OH2PL in its half-Cauchy or Exponential configuration is 
largely independent of the specification of the hyperprior dis-
tributions. This further strengthens the claim that the hierarchi-
cal Bayesian approach renders the 2PL IRT model applicable 
to small-sample situations that are typical in psychological 
research. In conditions with relatively few items and fewer 
than 100 respondents, where the estimation of item parameter 
variance is typically problematic because of sparse data, the 
OH2PL yields unbiased item and person parameter estimates. 
Moreover, as described in the Data Generation and Analysis 
section and further illustrated in our empirical example, the 
OH2PL shows fewer issues with convergence and inadmissible 
solutions compared to MML estimation. It does not need adjust-
ments in the case of perfect response patterns. This shows that 
we can apply this state-of-the-art technique confidently across 
a broad range of empirical studies in which tests are used and 
that it presents resource-efficient possibilities for accurate item 
calibration under suboptimal assessment conditions.
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