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Abstract
Fair performance assessment requires consideration of the effects of rater severity on scoring. The many-facet Rasch model 
(MFRM), an item response theory model that incorporates rater severity parameters, has been widely used for this purpose. 
Although a typical MFRM assumes that rater severity does not change during the rating process, in actuality rater severity 
is known to change over time, a phenomenon called rater severity drift. To investigate this drift, several extensions of the 
MFRM have been proposed that incorporate time-specific rater severity parameters. However, these previous models estimate 
the severity parameters under the assumption of temporal independence. This introduces inefficiency into the parameter 
estimation because severities between adjacent time points tend to have temporal dependency in practice. To resolve this 
problem, we propose a Bayesian extension of the MFRM that incorporates time dependency for the rater severity param-
eters, based on a Markov modeling approach. The proposed model can improve the estimation accuracy of the time-specific 
rater severity parameters, resulting in improved estimation accuracy for the other rater parameters and for model fitting. We 
demonstrate the effectiveness of the proposed model through simulation experiments and application to actual data.

Keywords  Item response theory · Many-facet Rasch model · Rater effects · Rater drift · Bayesian modeling · Educational/
psychological measurement

Introduction

In performance assessment, raters assess examinee outcomes 
or the processes for performing tasks. Such assessment is 
used in various fields and has attracted much attention as 
a means of measuring higher-order abilities, such as prob-
lem-solving, critical reasoning, and logical thinking skills 
(Linlin, 2019; Mislevy, 2018; Murtonen & Balloo, 2019; 
Palm, 2008; Shavelson, Zlatkin-Troitschanskaia, Beck, 
Schmidt, & Marino, 2019; Zlatkin-Troitschanskaia, Shavel-
son, Schmidt, & Beck, 2019). Performance assessments can 
be implemented in various formats, including essay writ-
ing, oral presentations, interview examinations, and group 
discussions.

A typical drawback of performance assessments is that 
the evaluation results depend on the severity (or leniency) 
of the raters, which decreases the reliability of the ability 

measurement (Deng, McCarthy, Piper, Baker, & Bolt, 2018; 
Eckes & Jin, 2021; Hua & Wind, 2019; Myford & Wolfe, 
2003; Nguyen, Uto, Abe, & Ueno, 2015; Uto & Ueno, 
2018). Therefore, the influence of rater severity needs to be 
considered in order to ensure reliable evaluation.

For this reason, item response theory (IRT) models that 
can estimate the abilities of examinees while considering 
the effects of rater severity have been proposed (Eckes & 
Jin, 2021; Jin & Wang, 2018; Linacre, 1989; Shin, Rabe-
Hesketh, & Wilson, 2019; Uto & Ueno, 2018; Wilson & 
Hoskens, 2001). One such model is the many-facet Rasch 
model (MFRM) (Linacre, 1989). The MFRM and its exten-
sion models have been applied to various performance 
assessments to investigate rater effects, including rater sever-
ity, and to estimate examinee ability while removing the 
influence of those effects (Chan, Bax, & Weir, 2017; Deng 
et al., 2018; Hua & Wind, 2019; Jin & Wang, 2017; Kaliski 
et al., 2013; Linlin, 2019; Myford & Wolfe, 2004; Tavakol 
& Pinner, 2019).

These MFRMs generally assume that rater severity 
does not change during the rating process. However, it is 
known that this assumption is not often satisfied in practice, 
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especially when each rater grades many examinees over a 
period of several hours or several days. The phenomenon in 
which rater severity changes over time is generally called 
rater severity drift, which is a component of rater drift, also 
called differential rater functioning over time (Casabianca 
& Lockwood, 2013; Harik et al., 2009; Hoskens & Wilson, 
2001; Leckie & Baird, 2011; Myford & Wolfe, 2009; Park, 
2011; Sgammato & Donoghue, 2017; Wilson & Case, 1997; 
Wind & Guo, 2019; Wind & Wesolowski, 2018; Wolfe et al., 
2001; Wolfe, Myford, Engelhard, & Manalo, 2007). Several 
studies have proposed extension of MFRMs to investigate 
rater severity drift (Hoskens & Wilson, 2001; Myford & 
Wolfe, 2009; Wind & Wesolowski, 2018; Wolfe et al.,, 2001, 
2007).

A simple extended model can be formulated as an MFRM 
that incorporates a time-specific parameter (Wind & Weso-
lowski, 2018; Wolfe et al.,, 2001; 2007), where the time indi-
cates a time period for continuous rating, such as a rating 
session, an hour, or a day. This model enables investigation 
of severity changes averaged across raters. However, the 
severity drift of each individual rater cannot be assessed 
with this model due to the lack of information about the 
interaction between times and raters.

To resolve this problem, several MFRMs have been 
proposed that incorporate time-specific rater severity 
parameters (Myford & Wolfe, 2009; Wind & Wesolowski, 
2018). These models provide each rater’s severity at each 
time point, enabling the severity drift to be determined for 
each rater. In these models, the time-specific rater severity 
parameters are estimated under the assumption of tempo-
ral independence. In practice, however, severities between 
adjacent time points are known to have temporal depend-
ency. For example, several studies have reported that there 
are some raters whose severity remains stable over time, 
meaning that their time-specific severities are strongly cor-
related across time points (Casabianca & Lockwood, 2013; 
Hoskens & Wilson, 2001; Myford & Wolfe, 2009; Wilson 
& Case, 1997; Wind & Wesolowski, 2018). Furthermore, it 
is also known that the severity of some raters with severity 
drift tends to change gradually over time, meaning that their 
severity at a time point depends on that at the previous point 
and does not change randomly from point to point (Casabi-
anca & Lockwood, 2013; Hoskens & Wilson, 2001; Wilson 
& Case, 1997). If rater severity is assumed to have this sort 
of time dependency, then we can expect that considering it 
will be helpful for improving the estimation accuracy of the 
time-specific severity parameters.

Therefore, we propose a Bayesian extension of the 
MFRM that assumes time dependency for the time-specific 
rater severity parameters, based on the approach of Markov 
modeling. In the proposed model, the time-specific severity 
parameters of each rater are modeled as a Markov chain, 
such that the severity at a time point depends on that at the 

previous point. Furthermore, we append rater-specific stand-
ard deviation parameters and a prior distribution on those 
parameters to the model. The rater-specific standard devia-
tion parameters reflect the degree of the severity drift for 
each rater, and the prior distribution on those parameters 
reflects an analyst’s prior knowledge about how the extent 
of severity drift differs among raters. We adopt a Bayesian 
estimation method based on the No-U-Turn (NUT) Hamil-
tonian Monte Carlo (HMC), a popular Markov chain Monte 
Carlo (MCMC) algorithm (Hoffman & Gelman, 2014), as 
the parameter estimation method for the proposed model. 
The proposed model has the following features.

1.	 It can estimate time-specific rater severity parameters 
by considering their time dependency, resulting in 
more accurate estimation of the parameters than can be 
obtained by conventional models that assume their tem-
poral independence.

2.	 It provides summarized information representing the 
degree of severity drift for each rater as the rater-specific 
standard deviation parameters.

3.	 It uses the prior distribution on the rater-specific stand-
ard deviation parameters to reflect our prior knowledge 
of how often rater severity drift occurs.

4.	 Because this model is a Bayesian extension of a conven-
tional MFRM, its parameter estimates approach those 
of a non-Bayesian conventional MFRM when we have 
a large amount of data, which is a desirable property.

5.	 Improving the estimation accuracy of the time-specific 
rater severity parameters increases the estimation accu-
racy for other parameters and improves model fitting.

We demonstrate the effectiveness of the proposed model 
through simulation experiments and application to actual 
data.

Many‑facet Rasch models for rater severity 
drift

For scoring and analysis in various assessment set-
tings, there has been an increase in the use of IRT (Lord, 
1980). The Rasch model and the two-parameter logistic 
model are the most widely used IRT models, and they are 
applicable to test items for which responses are scored 
as correct or incorrect. Furthermore, there are various 
polytomous IRT models that are applicable to ordered cat-
egorical data, including the rating scale model (Andrich, 
1978), the partial credit model (Masters, 1982), and the 
generalized partial credit model (Muraki, 1997). These 
types of traditional IRT models are applicable to two-
way data consisting of examinees × test items. However, 
they cannot be applied directly to performance assessment 
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data in which the examinees’ responses for test items are 
scored by multiple human raters. This is because we 
would then have three-way data consisting of examinees 
× test items × raters. Extended IRT models for such 
multi-faceted data have been proposed to address this 
problem (Eckes, 2015; Jin & Wang, 2018; Linacre, 1989; 
Shin et al., 2019; Uto & Ueno, 2018; Wilson & Hoskens, 
2001). The MFRM is the most common type of model 
used for IRT with rater parameters (Linacre, 1989). Fur-
thermore, there are various alternative models such as a 
two-parameter logistic model with rater severity parame-
ters (Patz & Junker, 1999), generalized partial credit mod-
els incorporating various rater parameters (Uto, 2021b; 
Uto & Ueno, 2020), hierarchical rater models (DeCarlo, 
Kim, & Johnson, 2011; Patz, Junker, Johnson, & Mariano, 
2002; Qiu, Chiu, Wang, & Chen, 2022), extensions based 
on signal detection models (DeCarlo, 2005; Soo Park & 
Xing, 2019), rater bundle models (Wilson & Hoskens, 
2001), and trifactor models (Shin et al., 2019). However, 
this study focuses on the MFRM because it is the most 
widely used and well-established of these models.

Although conventional MFRMs assume that rater severity 
does not change during the rating process, this assumption is 
not satisfied when rater severity drift occurs as explained in 
“Introduction” section. Consequently, several studies have 
investigated extended MFRMs that are designed to detect 
rater severity drift (Hoskens & Wilson, 2001; Myford & 
Wolfe, 2009; Wind & Wesolowski, 2018; Wolfe et al.,, 2001, 
2007).

A simple example of such an extension is the incorpora-
tion of a time facet parameter (Wind & Wesolowski, 2018; 
Wolfe et al., 2007). This model defines the probability that 
the performance of examinee j for item i will receive a score 
of k from rater r at time point t as

where 𝜃j is the latent ability of examinee j, βi is a difficulty 
parameter for item i, βr is the severity of rater r, βt is the 
parameter representing the averaged rater severity at time 
point t, and dm is a step parameter denoting the difficulty 
of transitioning between scores m − 1 and m. D = 1.7 is the 
scaling constant used to minimize the difference between 
the normal and logistic distribution functions. This model 
enables investigation of the averaged changes in rater sever-
ity over time. However, because it ignores the interaction 
between time and raters, we cannot interpret the temporal 
changes of severity within each rater.

Several MFRMs incorporating time-specific rater severity 
parameters have been proposed to overcome this limitation. 
For example, Wind and Wesolowski (2018) has examined 
the following model:

(1)Pijrtk =
exp

∑k

m=1

�
D(�j − �i − �r − �t − dm)

�
∑K

l=1
exp

∑l

m=1

�
D(�j − �i − �r − �t − dm)

� ,

Here, βrt is a time-specific severity parameter that represents 
the severity of rater r at time point t.

In addition, Hoskens and Wilson (2001) investigated the 
model

in which βirt gives the time-specific rater severity parameter 
for each item, representing the severity of rater r for item 
i at time point t, and dim is an item-specific step parameter 
denoting the difficulty of transitioning from score m − 1 to 
m for item i.

These models provide each rater’s severity at each time 
point, enabling us to analyze the severity drift for each rater. 
In these models, the time-specific rater severity parameters 
are estimated by assuming that they have temporal inde-
pendence, namely that �rt ∼ i.i.d . ∀r,t and βirt ∼ i.i.d . ∀i,r,t. 
In practice, however, the severities between adjacent time 
points tend to depend on each other, as described in “Intro-
duction. When rater severity is assumed to have a time 
dependency, we can expect that considering the dependency 
will be helpful in improving the estimation accuracy of the 
time-specific severity parameters. For this reason, our study 
aims to develop a Bayesian extension of the MFRM that 
assumes time dependency for the time-specific rater severity 
parameters, based on a Markov modeling approach.

Proposed model

Settings

As described above, some of the previous studies that 
have investigated rater severity drift have considered situ-
ations where a performance test offers multiple items and 
the score data for those items are analyzed simultaneously 
in a single IRT model that considers the effects of raters, 
items, times, and some interactions among them. However, 
in this study, to focus on our main aim, which is to accu-
rately investigate rater severity drifts, we consider situa-
tions where a test consists of only one item or where IRT 
models are applied to each item separately. Specifically, we 
assume that the observed data U are defined as a collec-
tion of ujrt, which indicate a score assigned to the perfor-
mance of examinee j ∈ J = {1, 2,⋯ , J} for an item by rater 
r ∈ R = {1, 2,⋯ ,R} at time point t ∈ T = {1, 2,⋯ , T} . 
The scores are given by an ordinal category scale 
K = {1, 2,⋯ ,K} . Note that, as in previous studies, a time 

(2)Pijrtk =
exp

∑k

m=1

�
D(�j − �i − �rt − dm)

�
∑K

l=1
exp

∑l

m=1

�
D(�j − �i − �rt − dm)

� .

(3)Pijrtk =
exp
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m=1

�
D(�j − �i − �irt − dim)
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point indicates a time period for continuous rating: an hour, 
a day, or a rating session of some other significant length of 
time. This means that each rater evaluates multiple exami-
nees at every time point t.

In this setting, the conventional MFRMs with time-spe-
cific rater severity parameters, namely, Eqs. (2) and (3), can 
be rewritten in the same form as

This formula is also consistent with the model introduced by 
Myford and Wolfe (2009). We call this model the baseline 
model in the following, and we will develop the proposed 
model as an extension of it.

Model definition

Assuming data U, the proposed model defines the probabil-
ity for ujrt = k ∈ K as

where drm is a rater-specific step parameter denoting the 
severity for rater r of transitioning from score m − 1 to m, 
which is often used to examine the central tendency and 
the range restriction of each rater (Eckes, 2015; Myford 
& Wolfe, 2004; Qiu et al., 2022; Uto, 2021a). Moreover, 
N(μ,σ) indicates a normal distribution of mean μ and stand-
ard deviation σ, and LN(μ,σ) indicates a log-normal distri-
bution of mean μ and standard deviation σ on the log scale. 
Moreover, σr is a rater-specific standard deviation parameter 
that reflects the degree of severity drift for rater r, and μσ is 
a hand-tuning hyperparameter. The details of σr and μσ are 
discussed in “Rater-specific standard deviation parameters” 
and “Prior distribution on rater-specific standard deviation 
parameters” sections. For model identification, dr1 = 0 and ∑K

m=2
drm = 0 are assumed.

Comparing Eqs.  (4) and (5) shows that the proposed 
model is consistent with the baseline model when the rater-
specific step parameter drm is replaced with the rater-inde-
pendent step parameter dm. The main difference between 
the two models is the addition of the prior distributions for 

(4)Pjrtk =
exp

∑k

m=1

�
D(�j − �rt − dm)

�
∑K

l=1
exp

∑l

m=1

�
D(�j − �rt − dm)

� .

(5)Pjrtk =
exp

∑k

m=1

�
D(�j − �rt − drm)

�
∑K

l=1
exp
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m=1

�
D(�j − �rt − drm)
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(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜃j ∼ N(0, 1)

𝛽r1 ∼ N(0, 1)

𝛽rt ∼ N(𝛽r,t−1, 𝜎r);t > 1

𝜎r ∼ LN(𝜇𝜎 , 1)

drm ∼ N(0, 1)

,

the model parameters that are defined in Eq. (6). Conse-
quently, the proposed model can be regarded as a Bayesian 
extension of the baseline model. The use of the rater-specific 
step parameter drm to capture rater effects more flexibly is a 
notable feature of the proposed model, but this modification 
is not the main focus of this study.

Next, we will look at the unique features of the proposed 
model in greater detail.

Markov modeling for time‑specific severity 
parameters

The main feature of the proposed model is that the time-spe-
cific rater severity parameters βrt are modeled as a Markov 
chain in which the severity at a given time point depends on 
that at the previous time point. Figure 1 depicts an outline of 
the formulation for βrt in the proposed model. As shown by 
this figure and the model definition, our model assumes that 
the parameter βrt (t > 1) follows a normal distribution that 
has the severity at the previous time point βr,t− 1 as its mean 
and the rater-specific standard deviation σr. This formulation 
is based on a typical first-order Markov model. Using this, 
our model can estimate the severity at each time point βrt 
while considering its dependency on severity at the previous 
time point βr,t− 1.

Rater‑specific standard deviation parameters

As described above, our model estimates βrt using βr,t− 1 and σr. 
Here, σr is the rater-specific standard deviation parameter that 
reflects the degree of severity drift for rater r. The proposed 
model produces small positive values of σr for raters whose 
severity is stable across time because N(βr,t− 1,σr) provides high 
probabilities only around βr,t− 1 when σr is close to zero. As a 
result, the adjacent severities βr,t− 1 and βrt tend to have similar 
values. On the other hand, the proposed model produces large 
values of σr for raters with a stronger severity drift. This makes 
N(βr,t− 1,σr) wider and allows the model to easily produce a 
value of βrt that is very different from the value of βr,t− 1.

Thus, we can determine the degree of severity drift for 
each rater from the rater-specific standard deviation param-
eter estimates.

Fig. 1   Outline of Markov modeling for time-specific severity param-
eters
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Prior distribution on rater‑specific standard 
deviation parameters

Another feature of the proposed model is the addition of a 
prior distribution on σr. Specifically, we use a log-normal 
distribution LN(μσ,1) as the prior distribution, where μσ is 
a hand-tuning hyperparameter. This prior distribution can 
reflect our assumption of the extent to which rater severity 
drift occurs across target raters.

Figure 2 depicts the probability density functions for log-
normal distributions with various mean values. If we have 
a strong prior knowledge that no, or only a few, raters have 
strong severity drift, then we can reflect this knowledge by 
selecting a small value for μσ. As μσ decreases, the prior dis-
tribution tends to provide small positive values for σr overall, 
as shown in Fig. 2. Because a smaller σr indicates a weak 
rater severity drift, we can see that setting a small value of 
μσ reflects the assumption that no, or only a few, raters have 
strong severity drift. Conversely, if we assume that there 
are likely raters with strong severity drifts, then selecting a 
larger value for μσ will ensure that the prior distribution can 
easily provide large values for σr.

We recommend using μσ with less than − 2 when we 
have a strong assumption that no, or only a few, raters have 
severity drift. This is because LN(μσ,1) for these values of 
μσ becomes a strongly skewed distribution providing high 
probabilities only for extremely small σr values, as shown in 
Fig. 2. Conversely, we recommend using μσ within the range 
from − 1 to 0 when we assume the existence of various raters 
with strong severity drifts because LN(μσ,1) for those values 
of μσ allows us to easily produce relatively large values for 
σr, as shown in Fig. 2. Note that we discourage using μσ > 0 
because LN(μσ,1) in this case provides high probabilities 
for σr values that are too large, as shown in the right-side 
of Fig. 2. We can say, however, that σr = 1.0 would be large 

enough, but σr greater than 1.0 is generally too large because 
the scale of βrt is consistent with that of βr1, which follows 
the standard normal distribution.

When no prior knowledge is available, the hyperparam-
eter can be selected through model comparison experi-
ments. We will demonstrate this in “Model comparison 
using information criteria” section. For the remainder 
of this paper, we use μσ = − 2 as the default setting 
when considering the results of our model comparison 
experiments.

Note that in this study we fix the standard deviation of 
the prior distribution to one (i.e., LN(μσ,1)). Although the 
standard deviation can also be tuned in the same way as the 
mean value, doing so makes the change in the shape of the 
prior distribution complex. As an example, Fig. 3 shows the 
probability density functions for the log-normal distributions 
with various standard deviation values. We fix the standard 
deviation to one to facilitate tuning and interpretation of the 
hyperparameter.

Asymptotic property and parameter estimation 
accuracy

As explained in “Model definition” section, the proposed 
model can be regarded as a Bayesian extension of the 
baseline model, in which dm has been replaced with drm. 
The parameter estimates of a Bayesian model are known 
to approach those of its non-Bayesian counterpart as the 
amount of data increases. This is because the influence of 
the prior distribution decreases (Gelman et al., 2013). Thus, 
the parameter estimates of the proposed model asymptoti-
cally converge to those of its non-Bayesian counterpart, the 
baseline model with drm.

However, when the amount of data is limited, the pro-
posed model estimates the time-specific severity parameters 

Fig. 2   Probability density function for LN(μσ,1) with different values of μσ. The figure on the left depicts the functions with μσ ≤ 0.0, and the fig-
ure on the right depicts those with μσ ≥ 0.0

3914 Behavior Research Methods  (2023) 55:3910–3928

1 3



while strongly considering the influence from the prior dis-
tributions, including the Markov modeling of the severity 
parameters. Consequently, when there is time dependency in 
rater severity and proper prior distributions are set, the pro-
posed model is expected to provide more accurate estimates 
of the time-specific severity parameters than the baseline 
model. Furthermore, an improvement in the estimation accu-
racy of time-specific rater severity parameters is expected 
to increase the estimation accuracy of other parameters and 
improve model fitting.

Bayesian estimation using Markov chain Monte 
Carlo

Two parameter estimation methods are commonly used for 
IRT models: marginal maximum likelihood estimation using 
an expectation–maximization algorithm and maximum a 
posteriori estimation using a Newton–Raphson algorithm 
(Baker & Kim, 2004). However, for complex models such 
as ours, expected a posteriori (EAP) estimation, a type of 
Bayesian estimation, is known to provide more robust results 
(Fox, 2010; Uto & Ueno, 2020).

EAP estimates are calculated as the expected value of 
the marginal posterior distribution for each parameter. The 
marginal posterior distribution is derived by marginal-
izing across every parameter except the target parameter. 
For complex models, however, it is not generally feasible 
to derive or calculate the marginal posterior distribution 
due to there being high-dimensional multiple integrals. 
MCMC, a random sampling-based estimation method, has 
been widely used in various fields to address this problem, 
including in IRT studies (Brooks, Gelman, Jones, & Meng, 

2011; Fontanella et al., 2019; Fox, 2010; Uto, 2021b; Uto 
& Ueno, 2020; van Lier et al., 2018; Zhang, Xie, You, & 
Huang, 2011).

The Metropolis-Hastings-within-Gibbs sampling method 
(Patz & Junker, 1999) is a common MCMC algorithm used 
for IRT models. It is simple and easy to implement but 
requires a long time to converge to the target distribution 
(Girolami & Calderhead, 2011; Hoffman & Gelman, 2014). 
An efficient alternative MCMC algorithm is the NUT sampler 
(Hoffman & Gelman, 2014), which is a variant of the HMC. It 
was recently developed along with a software package called 
“Stan” (Carpenter et al., 2017), which makes implementation 
of a NUT-based HMC easy. Thus, NUT has recently been 
widely used to perform parameter estimations for various sta-
tistical models, including IRT models (Jiang & Carter, 2019; 
Luo & Jiao, 2018; Uto, 2021b; Uto & Ueno, 2020).

Therefore, we use a NUT-based MCMC algorithm for 
parameter estimations in the proposed model. The estima-
tion program was implemented in RStan (Stan Develop-
ment Team, 2018). The Stan code that we developed is pro-
vided in the Appendix. The EAP estimates are calculated 
as the mean of the parameter samples obtained from 2,000 
to 5,000 periods using three independent chains. We set a 
tuning parameter “adapt_delta” in Stan, which controls the 
step size during a NUT-based MCMC, to 0.98 to reduce the 
divergent transitions.

Simulation experiments

In this section, the effectiveness of the proposed model is 
evaluated through simulation experiments.

Parameter recovery experiments

This subsection describes the parameter recovery experi-
ment for the proposed model. The following experi-
ment was carried out for different numbers of examinees 
J ∈{100,200,500}, raters R ∈{5,10}, and time points T 
∈{3,5}.

1.	 For J examinees, R raters, and T time points, randomly 
generate true model parameters, except for σr, from the 
distributions given in Eq. (6). We generated σr from 
LN(− 3,1) for 60% of the raters and from LN(− 1,1) for 
the remaining 40% in order to simulate the scenario 
where more than half of the raters have stable severity 
while the others have strong severity drift. The number 
of score categories K was fixed at 5 to match the condi-
tion of the actual data (see “Experiments using actual 
data” section).

2.	 Given the true parameters, randomly generate score data 
from the proposed model.

Fig. 3   Probability density function for LN(0,δσ) with different values 
of δσ
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3.	 Estimate the model parameters from the generated data. 
Here, we assumed LN(− 2,1) to be the prior distribution 
for σr, the default setting in this study.

4.	 Calculate the root mean square errors (RMSEs) and the 
biases between the estimated and true parameters.

5.	 Repeat the above procedure 50 times, and calculate the 
average values of the RMSEs and biases.

For the results shown in Table 1, the Average row indi-
cates the RMSE and bias values after averaging over all 
experimental settings. Based on the RMSE values that 
were obtained, we can observe some clear trends. (1) The 
RMSEs for the ability tend to decrease as the number of 
raters increases. Similarly, the RMSEs for the rater param-
eters tend to decrease as the number of examinees increases. 
These tendencies are caused by the increase in the amount 
of data per parameter. (2) An increase in the number of time 
points leads to a decrease in the RMSEs for σr because the 
number of the parameters βrt that are used to estimate σr 
increases. By contrast, an increase in the number of time 
points tends to increase the RMSEs for βrt because the 
amount of data at each time point decreases.

Moreover, Table 1 shows that the average bias was nearly 
zero overall, indicating that there was no overestimation or 
underestimation of the parameters. We also confirmed that 
the Gelman–Rubin statistic R̂ (Gelman et al., 2013; Gel-
man & Rubin, 1992), a well-known convergence diagnos-
tic index, the effective sample size (ESS), and the number 
of divergent transitions. Consequently, the R̂ values were 
less than 1.1 in all cases (where the average and maximum 
R̂ were 1.000 and 1.009, respectively), indicating that the 

MCMC runs converged. Furthermore, the ESS values were 
7,637 on average and 786 at minimum. According to Zitz-
mann and Hecht (2019), the ESS over 400 is large enough, 
and our ESSs satisfy this criterion. Furthermore, we found 
46.1 divergent transitions on average in each parameter esti-
mation run, which corresponds to 0.5 % of the total transi-
tion. Although some divergent transitions existed, we can 
conclude that our MCMC runs converged, and we obtained 
appropriate posterior draws because we confirmed appropri-
ate R̂ statistics and sufficient ESSs.

Based on this, we conclude that the parameter estimation 
for the proposed model can be appropriately conducted by 
using the MCMC algorithm.

Effectiveness of Markov modeling for time‑specific 
severity parameters

This subsection investigates the effectiveness of Markov 
modeling for the time-specific severity parameters βrt. For 
this purpose, we compared the parameter recovery accu-
racy between the proposed model and the model without 
Markov modeling. Specifically, using the data that were 
generated in procedure 2 of the experiment just dis-
cussed, we tested the proposed model under the assump-
tion that there was an i.i.d standard normal distribution 
for all of the time-specific severity parameters: namely, 
�rt ∼ N(0, 1)∀r, t . Then, following experimental procedures 
4 and 5 in “Parameter recovery experiments” section, the 
averaged RMSE and the bias between the true and esti-
mated parameter values were calculated. The true param-
eters were the same as those used in “Parameter recovery 
experiments” section.

Table 1   Results of parameter recovery experiments for the proposed model

 A result of 0.000 indicates that the value was less than 0.001

RMSE Bias

J R T 𝜃j βrt drm σr 𝜃j βrt drm σr 

100 5 3 0.373 0.175 0.263 0.226 − 0.002 0.014 0.000 0.016
5 0.372 0.193 0.271 0.158 − 0.006 − 0.007 0.000 − 0.011

10 3 0.272 0.163 0.268 0.267 0.006 0.009 0.000 0.023
5 0.283 0.240 0.290 0.251 0.004 0.017 0.000 0.046

200 5 3 0.363 0.165 0.180 0.217 0.001 0.000 0.000 0.025
5 0.370 0.160 0.192 0.164 0.000 0.002 0.000 0.015

10 3 0.271 0.143 0.208 0.220 0.000 0.011 0.000 0.014
5 0.277 0.209 0.216 0.192 − 0.004 − 0.024 0.000 − 0.005

500 5 3 0.365 0.081 0.121 0.179 0.000 − 0.008 0.000 0.000
5 0.381 0.160 0.135 0.144 0.001 0.004 0.000 0.021

10 3 0.270 0.118 0.129 0.272 0.001 − 0.007 0.000 0.040
5 0.269 0.169 0.128 0.241 0.001 0.015 0.000 0.041

Average 0.322 0.165 0.200 0.211 0.000 0.002 0.000 0.019
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Table 2 shows the results. Note that the results for the 
rater-specific standard deviation parameter are not reported 
in it because the model without Markov modeling does not 
have this parameter. In this experiment, the R̂ statistics for 
all the parameters were less than 1.1 (1.000 on average and 
1.003 at maximum), and the ESS values were over 400 
(8629 on average and 1492 at minimum). Furthermore, no 
divergent transitions were observed. These results suggest 
that the MCMC runs converged and that appropriate poste-
rior draws were obtained.

Comparing Tables 1 and 2, we can confirm that the incor-
poration of Markov modeling tends to improve the parameter 
estimation accuracy overall. The accuracy for βrt in particu-
lar is substantially improved. Figure 4 plots the RMSE val-
ues for βrt in the proposed model with and without Markov 
modeling. The vertical axis indicates the RMSE values for 
βrt in the proposed model, while the horizontal axis indicates 
the same but without the Markov modeling. Each plot indi-
cates the result for an experimental setting. As this figure 
shows, the incorporation of Markov modeling improves the 
RMSEs for βrt in all cases.

Furthermore, to confirm that the improvements are sta-
tistically significant, we conducted a paired t-test for the 
averaged RMSE values between the proposed model and 
the model without Markov modeling. We also performed 
a power analysis with a significance level of 0.05 for the 
paired t-tests. The p-value and Power rows in Table 2 show 
the results, which indicate that the proposed model signifi-
cantly improves the RMSE for βrt at a 5% significance level 
and with a statistical power over 0.80, a threshold that Cohen 

(1992) recommended. Furthermore, the improvement leads 
to significant increases in the estimation accuracy of the 
other parameters at a 5% level, although the statistical pow-
ers for them are relatively low.

From these results, we can conclude that using Markov 
modeling for βrt, which is the main feature of the proposed 
model, is effective for improving the accuracy of the param-
eter estimation.

Evaluation under realistic settings

In the experiments described above, the score data were gen-
erated under the assumption of a fully crossed design, where 

Table 2   Results of the parameter recovery experiments for the proposed model without Markov modeling

 A result of 0.000 indicates that the value was less than 0.001

RMSE Bias

J R T 𝜃j βrt drm 𝜃j βrt drm 

100 5 3 0.377 0.216 0.269 − 0.008 − 0.010 0.000
5 0.393 0.306 0.302 − 0.005 − 0.008 0.000

10 3 0.285 0.253 0.299 0.016 0.025 0.000
5 0.303 0.491 0.311 − 0.010 − 0.015 0.000

200 5 3 0.374 0.177 0.214 0.003 0.001 0.000
5 0.377 0.277 0.200 0.001 0.033 0.000

10 3 0.271 0.169 0.219 0.001 0.002 0.000
5 0.280 0.247 0.232 − 0.009 − 0.020 0.000

500 5 3 0.376 0.112 0.149 0.001 0.007 0.000
5 0.373 0.291 0.146 0.000 0.025 0.000

10 3 0.267 0.169 0.135 0.002 − 0.007 0.000
5 0.276 0.218 0.158 − 0.002 − 0.014 0.000

Average 0.329 0.244 0.219 -0.001 0.002 0.000
p-value 0.007 0.001 < 0.001 
Power 0.122 0.935 0.266

Fig. 4   RMSEs for βrt in the proposed model with and without 
Markov modeling
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all raters evaluate all examinees. However, in practical situ-
ations, the fully crossed design is often infeasible when the 
number of examinees is large. Thus, to decrease the raters’ 
assessment workload, the grading of each examinee is per-
formed by a few different raters, who are selected from a 
collection of raters. In such cases, the amount of data per 
parameter decreases because of the increased data sparsity. 
As discussed in “Asymptotic property and parameter esti-
mation accuracy” section, the effectiveness of the proposed 
model is expected to be emphasized as the amount of data 
decreases. In this section, we evaluate this point.

For this purpose, we conducted the same experiment 
as described in “Parameter recovery experiments” and 
“Effectiveness of Markov modeling for time-specific sever-
ity parameters” section, assuming a more realistic setting 
where a few raters are assigned to each examinee. Specifi-
cally, in experimental procedure 2 in “Parameter recovery 
experiments” section, we assigned two or three raters to 
each examinee based on a systematic link design (Shin et al., 
2019; Uto, 2021a; Wind and Jones, 2019) and generated 
score data based on the rater assignment. The systematic link 
design is a method for creating a rater-examinee assignment 
under conditions where test linking is possible. Tables 3 
and 4 illustrate examples of a fully crossed design and a 
systematic link design; checkmarks indicate an assigned 
rater and blank cells indicate that no rater was assigned. The 
procedures for generating rater-examinee assignment based 
on the systematic link design are detailed by Uto (2021a). 
With the exception of the data generation procedure, the pro-
cedures for this experiment were the same as those detailed 
in “Parameter recovery experiments” and “Effectiveness of 
Markov modeling for time-specific severity parameters” sec-
tions. Note that in this section we discuss only the RMSE 
values because, as can be seen in Tables 1 and 2, the aver-
age bias was nearly zero for all cases. As in the simula-
tion experiments above, we confirmed that all MCMC runs 
in this experiment converged and that sufficient posterior 
draws were obtained. Specifically, we confirmed for all of 
the parameters that the R̂ statistics were less than 1.1 (1.000 
on average and 1.031 at maximum) and that the ESSs were 

over 400 (10,223 on average and 996 at minimum), although 
a few divergent transitions existed (33.8 on average, which 
corresponds to 0.4 % of the total transitions).

Table 5 shows the RMSE values for the proposed model under 
a systematic link design where two or three raters were assigned 
to each examinee. Furthermore, Table 6 shows the results for the 
proposed model without Markov modeling, where the p-value and 
Power rows indicate the results of the paired t-test and the cor-
responding power analysis for the averaged RMSE between the 
proposed model with and the model without Markov modeling.

First, according to these tables and Tables 1 and 2, the 
parameter estimation accuracy tends to decrease as the num-
ber of raters assigned to each examinee decreases. This is 
caused by a decrease in the amount of data per parameter, 
which is a reasonable tendency. Next, comparing Tables 5 
and 6, the proposed model with Markov modeling tends to 
have lower RMSE values, especially for the rater parameters 
βrt and drm. It also improves the average RMSE values for all 
of the parameters. Furthermore, the improvements in βrt are 
statistically significant at a 5% significance level and with a 
statistical power over 0.80.

Next, we take a look at the averaged improvement in the 
RMSE of βrt by incorporating Markov modeling. According 
to Tables 1, 2, 5, and 6, the improvement in the average RMSE 
for βrt is 0.079 under the fully crossed design, 0.089 under the 
systematic design with three assigned raters, and 0.124 under 
the systematic design with two assigned raters. This result 
suggests that the effectiveness of the proposed model tends 
to increase as the amount of data per parameter decreases.

Influence of the prior distribution on rater‑specific 
standard deviations

The proposed model assumes a prior distribution on the 
rater-specific standard deviation parameter σr. As previ-
ously explained, this prior distribution reflects our assump-
tion regarding the extent to which rater severity drift occurs 
across target raters, and the distribution can be controlled 
by the hyperparameter μσ. In this subsection, we investigate 
how the prior distribution influences βrt estimates.

Table 3   Example of a fully crossed design

Rater

1 2 3 4 5

Examinee 1  ✓  ✓  ✓  ✓  ✓ 
Examinee 2  ✓  ✓  ✓  ✓  ✓ 
Examinee 3  ✓  ✓  ✓  ✓  ✓ 
Examinee 4  ✓  ✓  ✓ ✓  ✓ 
Examinee 5  ✓  ✓  ✓ ✓  ✓ 
Examinee 6  ✓  ✓  ✓ ✓  ✓ 

Table 4   Example of a systematic link design

Rater

1 2 3 4 5

Examinee 1  ✓  ✓ 
Examinee 2  ✓  ✓ 
Examinee 3  ✓  ✓ 
Examinee 4  ✓  ✓
Examinee 5  ✓  ✓ 
Examinee 6  ✓  ✓ 
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To do this, we conducted the following experiment.

1.	 For J = 500 examinees, R = 10 raters, and T = 5 time 
points, true model parameters were randomly generated 
from the distributions following procedure 1 in “Param-
eter recovery experiments” section.

2.	 Given the true parameters, score data was randomly gen-
erated from the proposed model following procedure 2 
in “Parameter recovery experiments” section. We gener-
ated three datasets in which the fully crossed design and 
the systematic link design with two or three assigned 
raters were applied, respectively.

3.	 The model parameters were estimated from each dataset 
by using the proposed model with three different hyper-
parameters μσ ∈{− 5,− 2,0} and the proposed model 
without Markov modeling (i.e., �rt ∼ N(0, 1);∀r, t).

Figures 5, 6, and 7 show the estimated βrt that was 
obtained using the three datasets, respectively. Moreover, 
Fig. 8 shows the true values of βrt that were generated in 
experimental procedure 1. In each figure, the horizontal 
axis indicates the time point, the vertical axis indicates 
the true or estimated βrt values, and each line indicates 
a rater.

Table 5   Accuracy of the parameter recovery for the proposed model under systematic link design when two or three raters were assigned to each 
examinee

2 raters assigned 3 raters assigned

J R T 𝜃j βrt drm σr 𝜃j βrt drm σr 

100 5 3 0.541 0.254 0.396 0.264 0.455 0.235 0.308 0.272
5 0.579 0.336 0.402 0.268 0.480 0.315 0.328 0.248

10 3 0.556 0.391 0.493 0.331 0.472 0.321 0.441 0.302
5 0.570 0.430 0.504 0.318 0.467 0.362 0.436 0.277

200 5 3 0.535 0.197 0.286 0.294 0.460 0.234 0.263 0.298
5 0.544 0.205 0.294 0.181 0.467 0.280 0.266 0.219

10 3 0.557 0.357 0.409 0.375 0.471 0.239 0.329 0.388
5 0.551 0.339 0.399 0.301 0.478 0.346 0.354 0.262

500 5 3 0.548 0.137 0.199 0.254 0.452 0.101 0.157 0.170
5 0.550 0.180 0.199 0.170 0.464 0.131 0.160 0.156

10 3 0.538 0.210 0.280 0.288 0.466 0.202 0.232 0.291
5 0.554 0.285 0.290 0.227 0.469 0.196 0.247 0.182

Average 0.552 0.277 0.346 0.273 0.467 0.247 0.293 0.255

Table 6   Accuracy of the parameter recovery for the proposed model without Markov modeling and under systematic link design when two or 
three raters were assigned to each examinee

2 raters assigned 3 raters assigned

J R T 𝜃j βrt drm 𝜃j βrt drm 

100 5 3 0.560 0.408 0.380 0.472 0.284 0.344
5 0.573 0.474 0.404 0.482 0.429 0.384

10 3 0.580 0.534 0.527 0.497 0.465 0.445
5 0.625 0.626 0.542 0.523 0.559 0.514

200 5 3 0.555 0.274 0.316 0.469 0.268 0.272
5 0.573 0.383 0.333 0.479 0.287 0.282

10 3 0.566 0.397 0.431 0.463 0.271 0.335
5 0.592 0.582 0.463 0.489 0.439 0.406

500 5 3 0.541 0.174 0.211 0.468 0.137 0.182
5 0.546 0.289 0.224 0.466 0.281 0.185

10 3 0.551 0.262 0.292 0.470 0.300 0.240
5 0.563 0.413 0.313 0.476 0.314 0.269

Average 0.569 0.401 0.370 0.480 0.336 0.322
p-value 0.005 < 0.001 0.001 0.010 < 0.001 0.001
Power 0.869 0.934 0.189 0.895 0.866 0.251
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A comparison of these figures shows that in all models 
the estimated βrt values approach the true values as the num-
ber of raters per examinee is increased. This shows that the 
influence of the prior distributions, including Markov mod-
eling for βrt, decreases in the proposed model as the amount 
of data increases, which supports our discussion in “Asymp-
totic property and parameter estimation accuracy” section.

Conversely, the influence of the prior distributions and 
Markov modeling increases when the amount of data per 
parameter decreases, as in the systematic link designs. For 
example, Figs. 5 and 6 show that when we use a strongly 
skewed prior distribution LN(− 5,1) by selecting μσ = − 5, 
the proposed model tends to estimate the time-specific sever-
ity parameters βrt in such a way that their temporal changes 

Fig. 5   βrt estimates under a systematic link design when two raters were assigned

Fig. 6   βrt estimates under a systematic link design when three raters were assigned

Fig. 7   βrt estimates under a fully crossed design
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become smaller overall. In contrast, when we assume a 
weakly informative (flatter) prior distribution LN(0,1) for the 
proposed model or a time-independent βrt for the proposed 
model without Markov modeling, the estimated βrt become 
unstable over time, even for raters whose true βrt values are 
stable. Using the proposed model with a moderate setting for 
the prior distribution LN(− 2,1), namely μσ = − 2, provides 
relatively good estimates for βrt overall.

From these results, we can confirm that the prior distri-
bution LN(μσ,1) works well, as we expected in “Prior dis-
tribution on rater-specific standard deviation parameters” 
sections. Note that, as was explained in “Prior distribution 
on rater-specific standard deviation parameters” section, the 
hyperparameter can be selected either by practitioners when 
they have strong prior knowledge or by a model selection 
approach when no prior knowledge exists. An example of 
using information criteria for hyperparameter selection is 
described in “Model comparison using information criteria” 
section.

Experiments using actual data

In this section, we evaluate the effectiveness of the proposed 
model through experiments using actual data.

Actual data

For this experiment, we collected actual data from an essay 
writing test as follows:

1.	 We recruited 134 Japanese university students as par-
ticipants. The participants were asked to complete an 
essay-writing task. This was created by translating a task 
used in the National Assessment of Educational Pro-
gress (NAEP) assessments (Persky, Daane, & Jin, 2003) 

into Japanese. No specific or preliminary knowledge was 
needed to complete the task.

2.	 The written essays were evaluated by ten raters using a 
rubric with five score categories, which was created by 
translating a rubric used in the NAEP assessments. Each 
rater was asked to complete their evaluation of the 134 
essays in four days while grading 1/4 of them each day. 
The order of the given essays was randomized for each 
rater. In this experiment, we regard a day as a time point.

3.	 We also collected score data from intentionally biased 
raters. Specifically, we gathered the other five raters and 
asked them to grade essays according to the following 
instructions.

•	 Rater 11: Grade essays while gradually increasing 
severity so that the average scores decrease day by 
day.

•	 Rater 12 Grade essays while gradually decreasing 
severity so that the average scores increase day by 
day.

•	 Rater 13: Grade essays while changing severity each 
day so that average scores change every day. Specifi-
cally, increase the severity on the second day com-
pared to that on the first day, decrease the severity on 
the third day compared to that on the first day, and 
increase the severity on the fourth day compared to 
that on the second day.

•	 Rater 14: Grade essays mainly using score catego-
ries 2, 3, and 4.

•	 Rater 15: Grade essays mainly using score catego-
ries 1, 3, and 5.

	   The instructions for the first three raters were intended 
to imitate strong rater drift. Those for the last two raters 
were given so that we could investigate the influence of 
the rater-specific step parameter drm. Although, as was 
mentioned in “Model definition” section, the modifica-
tion of dm to drm is not central to the proposed model. 
We refer to these five raters as control raters for the 
remainder of this paper.

Model comparison using information criteria

In this section, we describe model comparison experiments 
using the actual data. In various research domains, model 
comparisons are typically conducted using information criteria, 
such as the Akaike information criterion (AIC) (Akaike, 1974), 
the Bayesian information criterion (BIC) (Schwarz, 1978), the 
widely applicable information criterion (WAIC) (Watanabe, 
2010), and the widely applicable Bayesian information criterion 
(WBIC) (Watanabe, 2013). The AIC and BIC are applicable 
when maximum likelihood estimation is used to estimate model 
parameters, whereas the WAIC and the WBIC are applicable 

Fig. 8   True βrt values corresponding to Figs. 5, 6, and 7
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with Bayesian estimation using MCMC or variational inference 
methods. With the recent increase in complex statistical and 
machine learning models, various studies have used the WAIC 
and the WBIC with a Bayesian estimation (Almond, 2014; Luo 
& Al-Harbi, 2017; Vehtari, Gelman, & Gabry, 2017). Because 
this study uses a Bayesian estimation based on MCMC, we use 
the WAIC and WBIC. The model that minimizes these criteria 
is regarded as optimal.

We first conducted a model comparison experiment to 
determine the hyperparameter μσ. The task of determining 
optimal hyperparameters is generally known as hyperparam-
eter optimization, which can be seen as a subtask of model 
selection (Bertrand et al., 2022; Feurer & Hutter, 2019; 
Watanabe, 2010; 2013). Typical hyperparameter optimiza-
tion approaches are empirical Bayes and cross-validation 
(Bertrand et al., 2022; Feurer & Hutter, 2019; McInerney, 
2017; Pedregosa, 2016; Watanabe, 2010; 2013). Empirical 
Bayes determines hyperparameters based on the marginal 
likelihood. However, because the exact calculation of the 
marginal likelihood is generally infeasible, we usually use 
BIC and WBIC, which are approximations of the marginal 
likelihood (Watanabe, 2013). Furthermore, AIC and WAIC 
often substitute cross-validation because (1) cross-valida-
tion generally requires a significantly higher computational 
cost than WAIC and (2) AIC and WAIC are approxima-
tions of the generalization error, as with cross-validation 
(Pedregosa, 2016; Watanabe, 2010). For these reasons and 
those discussed in the previous paragraph, we used the two 
information criteria WAIC and WBIC for determining the 
hyperparameter μσ. Specifically, we calculated the WAIC 
and WBIC for the proposed model by using the data with 
and without the control raters, respectively, while chang-
ing the hyperparameter value μσ ∈{− 3,− 2,− 1,0}. Table 7 
shows the results of these calculations, with the minimum 
values for each condition being given in bold. The Full Data 
column shows the results for the dataset consisting of the ten 
normal raters and the five control raters, and the w/o Control 
Rater column shows the results for the dataset consisting of 
only the ten normal raters. The table indicates that the WAIC 
and WBIC are minimized when μσ = − 2 for both datasets, 
suggesting that μσ = − 2 is optimal. Thus, we used μσ = − 2 
for the remaining experiments.

Next, we compared the proposed model with the baseline 
model defined in Eq. (4). In this experiment, we calculated 
the WAIC and the WBIC for both the proposed model and 
the baseline model, with and without the Markov modeling 
for βrt, and using the two datasets. We estimated the base-
line model by using the MCMC, just as the proposed model 
did. The prior distributions were also consistent with the 
proposed model. To be more specific, we assumed 𝜃j, βrt, 
and dm ∼ N(0, 1) for the original baseline model and 𝜃j, βr1, 
dm ∼ N(0, 1) , 𝛽rt(t>1) ∼ N(𝛽r,t−1, 𝜎r) , and �r ∼ LN(�� = −2, 1) 
for the baseline model with Markov modeling. Note that the 

step parameter is the only difference between the proposed 
model and the baseline model with Markov modeling. Simi-
larly, the step parameter is the only difference between the 
baseline model and the proposed model without Markov mod-
eling. Thus, by comparing the performance of these pairs, we 
can determine the effectiveness of changing the step param-
eter dm to the rater-specific one drm.

Table 8 shows the results of this comparison, with the 
minimum values for each setting being given in bold. The 
results show that the criteria values for the proposed model 
deteriorate when Markov modeling is omitted in all cases. 
Furthermore, the criteria values for the baseline model 
improved when Markov modeling was added. These results 
demonstrate how effective using Markov modeling for βrt is 
in improving the model fitting.

By comparing the baseline model with the proposed 
model without Markov modeling, we can see that the pro-
posed model provided the better criteria values in almost all 
cases, the exception being the case using the WBIC in the 
dataset of the ten normal raters. Furthermore, a comparison 
between the proposed model and the baseline model with 
Markov modeling shows the same results. These results sug-
gest that the use of the rater-specific step parameters drm is 
likely to be effective.

Note that, as in the simulation experiments, we confirmed 
that all the MCMC runs in the above experiments were con-
verged appropriately and provided posterior draws with 
enough ESSs, although a few divergent transitions existed. 
Specifically, the average and maximum R̂ statistics were 

Table 7   Model comparison of the proposed model with different 
hyperparameters

Bold texts indicate the minimum values for each condition

Full Data w/o Control Raters

WAIC WBIC WAIC WBIC

μσ = − 3 4,665.52 2,828.06 3,138.25 1,907.14
μσ = − 2 4,662.44 2,821.80 3,133.86 1,903.95
μσ = − 1 4,663.85 2,823.12 3,134.41 1,914.35
μσ = 0 4,667.99 2,833.57 3,138.52 1,924.21

Table 8   Model comparison of the proposed model and the baseline 
model

Bold texts indicate the minimum values for each condition

Full Data w/o Control Raters

WAIC WBIC WAIC WBIC

Proposed model 4,662.44 2,821.80 3,133.86 1,903.95
w/o Markov modeling 4,686.79 2,879.36 3,152.27 1,961.55
Baseline model 4,951.87 2,908.21 3,279.42 1,956.79
with Markov modeling 4,924.02 2,843.70 3,257.30 1,896.22
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1.000 and 1.009, respectively, which are less than 1.1. Fur-
thermore, the average and minimum ESSs were 13,714 and 
508, respectively, which are over 400. The average number 
of divergent transitions was 21.1.

Interpretation of the rater parameters

In this subsection, we provide an interpretation of the rater 
parameters. Table 9 shows the rater parameter estimates of 
the proposed model for the full data. In it, the first ten raters 
are the normal raters and the latter five raters are the control 
raters. Figures 9 and 10 show the estimates of βrt for the ten 
normal raters and the five control raters, respectively.

According to Table 9 and the figures, we can confirm that 
the tendency for rater severity drift varies across raters. For 
example, among the normal raters, Rater 6 gradually became 
lenient during the first three days, whereas Raters 2 and 8 
became severe during the first two days. Rater 4 showed a 
relatively strong rater drift where the severity changed each 
day. By contrast, the other raters were likely to have either 
weak severity drift or no severity drift because their severity 
values were stable over time. Among the control raters, the 
severity of Rater 11 gradually increased and that of Rater 12 
gradually decreased. The severity of Rater 13 fluctuated up 
and down each day. These tendencies are consistent with the 
expected outcomes of the instructions that we gave to these 
raters, meaning that they followed our instructions and that 
the proposed model succeeded in estimating their behaviors.

From the information presented in Table 9, we can also 
confirm that the rater-specific standard deviation σr appro-
priately reflects the strength of the rater severity drifts. For 
example, the proposed model gave large values of σr for 
Raters 4, 11, 12, and 13, all of whom showed strong severity 

drift. Conversely, it provided low values of σr for the raters 
whose severity was stable.

Table 9 also shows that the step parameters drm differed 
among raters, meaning that they had different criteria for the 
score categories. To confirm whether the step parameters were 
estimated as we expected, Figs. 11 and 12 plot the response 
probability based on the proposed model at time point t = 1 
for Raters 14 and 15, who were given instructions about the 
usage of the score categories. In these figures, the horizontal 
axis shows the examinee ability 𝜃j and the vertical axis shows 
the probability Pj(t= 1)rk. We can see that Rater 14 tended to 
overuse the central score categories, namely, scores 2, 3, and 

Table 9   Parameter estimates based on the proposed model

r βr1 βr2 βr3 βr4 dr2 dr3 dr4 dr5 σr 

1 − 0.48 − 0.48 − 0.49 − 0.60 − 2.06 − 0.18 0.62 1.63 0.13
2 0.05 0.23 0.23 0.23 − 0.86 − 0.52 0.55 0.83 0.16
3 − 0.94 − 0.97 − 1.00 − 0.98 − 0.80 − 1.54 0.29 2.05 0.11
4 − 0.58 − 0.94 − 0.56 − 0.36 − 1.70 − 1.21 0.78 2.12 0.37
5 − 0.19 − 0.23 − 0.24 − 0.28 − 2.39 − 0.30 0.83 1.86 0.11
6 0.44 0.15 − 0.02 0.05 − 1.57 − 0.61 0.46 1.73 0.26
7 − 0.30 − 0.36 − 0.36 − 0.34 − 1.08 − 0.11 0.61 0.58 0.10
8 0.17 0.35 0.37 0.35 − 1.54 − 0.75 0.85 1.43 0.17
9 − 0.71 − 0.71 − 0.68 − 0.72 − 0.99 − 0.38 0.44 0.92 0.10
10 − 0.38 − 0.47 − 0.55 − 0.49 − 1.51 − 0.13 0.39 1.25 0.15
11 − 1.19 − 1.06 0.08 0.32 − 1.82 − 0.78 1.03 1.57 0.67
12 0.73 0.32 0.19 − 0.03 − 1.01 − 0.09 0.20 0.90 0.33
13 − 0.35 0.16 − 0.68 0.17 − 1.17 − 0.74 0.76 1.15 0.72
14 − 0.09 − 0.12 − 0.13 − 0.13 − 1.47 − 0.53 0.37 1.63 0.09
15 − 0.24 − 0.25 − 0.27 − 0.36 0.28 − 1.31 1.50 − 0.47 0.12

Fig. 9   Estimates of βrt for the ten normal raters
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4. Rater 15, on the other hand, tended to prefer score categories 
1, 3, and 5, while avoiding scores 2 and 4. These results are 
consistent with the instructions given to these raters, suggesting 
that the rater-specific step parameters drm can properly capture 
each rater’s criteria for the score categories.

Conclusions

In this study, we proposed a Bayesian MFRM that consid-
ers a time dependency of the time-specific rater severity 
parameters to estimate rater severity drift accurately. Spe-
cifically, in the proposed model, the time-specific sever-
ity parameters for each rater were modeled as a Markov 

chain such that the severity at a time point depended on 
that at the previous point. Furthermore, we designed 
the proposed model so that it has unique components: 
namely, the rater-specific standard deviation parameters 
and the prior distribution for them. A NUT variant of the 
HMC algorithm for the proposed model was implemented 
using the software package Stan. Using simulation and 
actual data experiments, we demonstrated the following 
features: 1) The proposed model can estimate the time-
specific rater severity parameters more accurately than 
conventional models that assume time independence for 
their parameters. 2) The rater-specific standard deviation 
parameters provide summarized information representing 
the degree of severity drift for each rater. 3) The pro-
posed model can represent our prior knowledge of how 
often rater severity drift occurs as the prior distribution 
of the rater-specific standard deviation parameters. 4) 
The parameter estimates of the proposed model approach 
those of its non-Bayesian counterpart as the amount of 
data increases. 5) An improvement in the estimation accu-
racy of the time-specific rater severity parameters leads to 
an increase in the estimation accuracy of the other param-
eters, and to an improvement in model fitting.

In future studies, we plan to evaluate the effectiveness 
of the proposed model using various and more massive 
datasets. In this study, we assumed a situation where 
there was only one test item. Going forward, we hope 
to extend the proposed model to handle situations with 
multiple test items. We would also like to investigate 
the effectiveness of using multi-order Markov models 
for the time-specific rater severity parameters. In this 
study, we only used the first-order Markov model, so 
extending it in this fashion would allow us to investigate 
a longer-term dependency.

Fig. 10   Estimates of βrt for the five control raters

Fig. 11   Probability distribution of the proposed model for Rater 14

Fig. 12   Probability distribution of the proposed model for Rater 15
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Appendix:

The Stan code for the proposed model is as follows.

Note that we implemented the proposed model based on 
the second-line form in the following equation:

The list c defined in the transformed data block in the 
Stan code corresponds to the constants k and l that appear 
between D and 𝜃j in the above equation.
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Note that we implemented the proposed model based on 
the second-line form in the following equation:

The list c defined in the transformed data block in the 
Stan code corresponds to the constants k and l that appear 
between D and 𝜃j in the above equation.
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