
https://doi.org/10.3758/s13428-022-01996-0

Power analysis for conditional indirect effects: A tutorial
for conducting Monte Carlo simulations with categorical exogenous
variables

Samuel Donnelly1 · Terrence D. Jorgensen2 · Cort W. Rudolph1

Accepted: 29 September 2022
© The Author(s) 2022

Abstract
Conceptual and statistical models that include conditional indirect effects (i.e., so-called “moderated mediation” models) are increas-
ingly popular in the behavioral sciences. Although there is ample guidance in the literature for how to specify and test such models,
there is scant advice regarding how to best design studies for such purposes, and this especially includes techniques for sample size
planning (i.e., “power analysis”). In this paper, we discuss challenges in sample size planning for moderated mediation models
and offer a tutorial for conducting Monte Carlo simulations in the specific case where one has categorical exogenous variables.
Such a scenario is commonly faced when one is considering testing conditional indirect effects in experimental research, wherein
the (assumed) predictor and moderator variables are manipulated factors and the (assumed) mediator and outcome variables are
observed/measured variables. To support this effort, we offer example data and reproducible R code that constitutes a “toolkit” to
make up for limitations in other software and aid researchers in the design of research to test moderated mediation models.

Keywords Moderation · Mediation · Moderated mediation · Monte Carlo simulation · Power analysis

Introduction

This paper demonstrates how to conduct Monte Carlo power
analyses (Muthen & Muthen, 2002) for tests of (moderated)
mediation using the R package simsem (Pornprasertmanit
et al., 2021). While similar tutorials already exist (e.g., Sch-
oemann et al., 2014), our scope extends these methods by
considering previously ignored aspects of sampling designs:
first, the inclusion of fixed covariates, as in the case of exper-
imental1 designs; second, the flexibility of multigroup SEM

to model moderation of indirect effects. We begin with a
brief comparison of established methods for estimating sta-
tistical power, noting the current gaps that our tutorial is
designed to fill.

Statistical power defined under the frequentist logic of
null hypothesis testing is the probability of detecting a sig-
nificant effect in a sample if that effect in fact exists in the
population. Power is equal to 1 − β (β being the probability
of a type II error), or the probability of correctly rejecting the
null hypothesis (Cohen, 1988). Statistical power has a rela-
tionship with sample size, effect size, and alpha (α), where
α is the probability of making a type I error, or incorrectly
rejecting the null hypothesis (i.e., one’s “significance level”).
In this relationship, power increases as sample size, effect
size, or α increases. In the case of moderated mediation,
power is estimated specifically for the difference between
indirect effects across levels of the moderator, also known
as an equivalence test of indirect effects (MacKinnon, 2008).

Often researchers are interested in estimating the
required sample size for obtaining the smallest effect size
of interest (SESOI), which is the smallest effect size one
would consider meaningful (e.g., Anvari & Lakens, 2021;
Lakens et al., 2018). Too small of a sample size may
result in making a type II error (which is debilitating to

 * Samuel Donnelly
 samuel.donnelly@slu.edu

1 Department of Psychology, Saint Louis University, 3700
Lindell Blvd, St. Louis, MO 63103, USA

2 Graduate School of Child Development and Education,
University of Amsterdam, Amsterdam, Netherlands

1 Fixed covariates need not be randomly assigned treatment groups.
Fixed covariates can follow from stratified sampling techniques (e.g.,
sampling from chosen age groups) or from characteristics of populations
that arise in practice (e.g., employees with fixed distributions of qualities
determined by tests administered as part of a hiring process). The sin-
gle-group methods in this paper apply generally to any case when fixed
covariates are relevant, but we focus on an example of experimental
design because it also enables comparing single- and multigroup SEM.

/ Published online: 28 November 2022

Behavior Research Methods (2023) 55:3892–3909

1 3

http://orcid.org/0000-0002-6954-1230
https://orcid.org/0000-0001-5111-6773
https://orcid.org/0000-0002-0536-9638
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01996-0&domain=pdf

scientific progression), whereas too large of a sample may
unnecessarily consume valuable resources (e.g., money to
compensate unneeded participants, participant’s time in
completing study procedures). Therefore, being prudent and
properly conducting an a priori power analysis should very
much be of interest to researchers.

There are analytic approaches to estimate power using
general linear models (GLM; e.g., G*Power; Faul et al.,
2007), based on functions of (specified or estimated) power,
sample size, H0 test criterion, and standard effect size. There
are also analytic approaches for structural equation models
(SEMs) such as likelihood ratio test (e.g., LRT; Satorra &
Saris, 1985) and root mean square error of approximation
(e.g., RMSEA; MacCullum et al., 1996) that are capable
of power analysis for more complex multivariate models.
However, these methods are generally limited to ideal data
(i.e., normally distributed, complete observations) and have
yet to be extended to common real-data scenarios (e.g., dis-
crete indicators, incomplete data). A more recently adopted
method, Monte Carlo (MC) simulation, is more flexible and
resolves many of the limitations noted above by estimating
power of various test statistics (e.g., normal-theory-based
t and F statistics in GLM, asymptotic z and χ2 statistics
in SEM). MC-based power analyses also enable estimat-
ing power of more flexible (e.g., resampling) methods of
testing a H0, such as percentile-based bootstrap confidence
intervals, which can have differential power from analyti-
cally derived test statistics (Fossum & Montoya, 2021). MC
is a resampling-based method which simulates data from a
specified population model with parameters selected by the
researcher (potentially derived from estimated parameters
using pilot data). Empirical estimates of power to reject the
null hypothesis (H0: effects = 0 in the population) under the
specified effect sizes and sample size are calculated from
the proportion of samples found to be significant at a given
criterion (e.g., p < .05). For instance, if 10,000 simulated
samples were taken and the effect of interest (e.g., ab) was
found to be statistically significant for 8000 simulated sam-
ples, then the empirically estimated power to reject H0 would
equal 80%.

Despite advances in the use of MC power analysis in the
literature, specific gaps remain. Below we describe these
gaps and illustrate our motivation for this tutorial. Generat-
ing data from a population model typically involves mul-
tivariate normal data generated from the model-implied
mean and covariance matrix. These may be discretized with
a threshold model, or missing-data mechanisms may be
imposed. However, popular software facilitating MC simula-
tions for SEM (e.g., Mplus; Muthén and Muthén, 2002) gen-
erally do not provide a way to simulate different distributions
of exogenous predictors, making it difficult to design a MC

study for power analysis that accurately reflects the real data-
generating process a researcher expects to encounter. For
instance, age or income distributions might be determined
by the study design, or more complex stratified sampling
might be involved (Kroese et al., 2011, ch. 9). Incorporating
fixed covariates falls under a larger set of variance-reduction
techniques for Monte Carlo research (Dagpunar, 2007, ch. 5)
that, in the context of power analysis can provide more stable
estimates of power (Mayer & Thoemmes, 2019).

The general lack of user-friendly software capable of
accepting a set of fixed covariates to be used for data-gen-
eration—in conjunction with the absence of explanatory
literature on conducting MC simulation power analyses for
conditional indirect effect models with categorical exog-
enous variables—has left researchers with a discernible
methodological deficiency. An urgency to address this gap
is indicated by the advocation of such models for experi-
mental research (e.g., Lench et al., 2014), empirical inves-
tigations (e.g., Rudolph et al., 2015; Welsh et al., 2020) and
numerous online inquiries2 (e.g., Research Gate, lavaan
forum, WebPower). As far as we know, only the package
simsem (Pornprasertmanit et al., 2021) in the open-source
programming language R (R Core Team, 2021) can facilitate
user-friendly3 simulations of SEM data that contain fixed
exogenous predictors with arbitrary distributions. This tuto-
rial seeks to comprehensively demonstrate how MC power
analysis works in the case of moderated mediation in experi-
mental designs, although in principle the same feature can be
exploited for other cases mentioned above (e.g., fixed age or
income distributions in a common-factor model).

In pursuit of this objective, we first briefly introduce mod-
erated, mediated, and moderated mediation with categorical
exogenous variables, as well as single-group and multigroup
model approaches, each of which are employed throughout
the tutorial. For both approaches, we begin the demonstra-
tion with a simple mediation model and then extend it to

2 Links to online inquiries from
 Research gate: https:// www. resea rchga te. net/ post/ How_ to_ do_a_
moder ated_ media tion_ with_ categ orical_ IV_ and_a_ categ orical_
moder ator;
lavaan forum: https:// groups. google. com/g/ lavaan/ c/ otcOc c7Rclw/ m/
4xwhC ODyAw AJ;
Web Power: https:// webpo wer. psych stat. org/ qanda/ 55/ sample- size-
for-a- 3- way- moder ation- and- moder ated- media tion;
Web Power: https:// webpo wer. psych stat. org/ qanda/ 57/ repre senti ng-
inter action- terms- in- monte carlo- sem- power.
3 Many programming languages are capable of MC simulations with
fixed covariates, however only simsem provides user-friendly tools
automating some of the more difficult details of programming such
MC studies.

3893Behavior Research Methods (2023) 55:3892–3909

1 3

https://www.researchgate.net/post/How_to_do_a_moderated_mediation_with_categorical_IV_and_a_categorical_moderator
https://www.researchgate.net/post/How_to_do_a_moderated_mediation_with_categorical_IV_and_a_categorical_moderator
https://www.researchgate.net/post/How_to_do_a_moderated_mediation_with_categorical_IV_and_a_categorical_moderator
https://groups.google.com/g/lavaan/c/otcOcc7Rclw/m/4xwhCODyAwAJ
https://groups.google.com/g/lavaan/c/otcOcc7Rclw/m/4xwhCODyAwAJ
https://webpower.psychstat.org/qanda/55/sample-size-for-a-3-way-moderation-and-moderated-mediation
https://webpower.psychstat.org/qanda/55/sample-size-for-a-3-way-moderation-and-moderated-mediation
https://webpower.psychstat.org/qanda/57/representing-interaction-terms-in-montecarlo-sem-power
https://webpower.psychstat.org/qanda/57/representing-interaction-terms-in-montecarlo-sem-power

conditional indirect effect models. Lastly, we briefly note
how to test and estimate power for (conditional) indirect
effects using two4 methods: (1) Wald tests based on delta-
method SEs (which should suffice in large samples), and
(2) a parametric bootstrap technique referred to as Monte
Carlo confidence intervals (MCCI), which are more robust
in smaller samples (Preacher & Selig, 2012) and provide a
less computationally intensive alternative to nonparametric
bootstrap with similar results (Fossum & Montoya, 2021;
Hayes & Scharkow, 2013).

Model conceptualizations and approaches

Testing theories and hypotheses proposing moderated and
mediated relations have become increasingly common
throughout behavioral research. Moderation (see Fig. 1A)
is commonly modeled as a statistical interaction effect by
using the product of a focal predictor and moderator as an
additional covariate and is broadly said to occur when the
effect (i.e., strength and/or direction) of a focal predictor X
on an outcome variable Y depends on the level of another
variable W (moderator). In the simplest case, mediation

(i.e., an indirect effect, see Fig. 1B) can be described as
an independent variable X affecting an outcome variable Y
through a third variable M (mediator). That is, the independ-
ent variable X affects the mediator M, which in turn affects
the dependent variable Y, where the effect of X on M repre-
sents the “a path,” and the effect of M on Y controlling for
X represents the “b path.” Mediation effects may be quanti-
fied as the product of the a and b paths (MacKinnon, 2008).
Additionally, the total effect of X on Y depicts the “c path”
in the bottom portion of Fig. 1B, which is equal to the sum
of direct (c′) and indirect effects (ab).

Theories and hypotheses may also posit relations involv-
ing the combination of moderation and mediation processes,
often referred to as “moderated mediation5,” which implies
“conditional indirect effects.” We loosely describe this

Fig. 1 Illustrative model examples. Note. Panel A depicts a common case of moderation, Panel B depicts a common case of mediation, and
Panel C depicts a common case of moderated mediation

4 A third more computationally efficient approach derived from ana-
lytical power analysis of the likelihood ratio test statistic (Satorra &
Saris, 1985) is not discussed in the manuscript but is comprehen-
sively described in the OSF appendix linked below.

5 “Mediated moderation” is another term for models that combine
both features, but this is not conceptually or statistically distinct from
moderated mediation (Preacher et al., 2007). For example, the term
“moderated mediation” implies the focus is on the indirect effect (ab)
of X on Y via M, and how ab is moderated by W. In contrast, the
term “mediated moderation” implies the focus is on the moderat-
ing effect of W (e.g., the statistical interaction effect, or slope of the
product XW) and how that slope is mediated by M. The same model
can be used to focus on either aspect of the model. We only refer to
“moderated mediation” throughout, focusing on conditional indirect
effects.

3894 Behavior Research Methods (2023) 55:3892–3909

1 3

integrated model as one where the magnitude or direction
of an indirect effect depends on levels (e.g., assumed values
or contexts) of a moderating variable, although it is impor-
tant to note that there are multiple conceptual and analytical
definitions of moderated mediation (e.g., Muller et al., 2005;
Preacher et al., 2007). Figure 1C illustrates a common case
of moderated mediation in which an indirect effect is made
conditional as a function of W moderating the a path (e.g.,
Hayes model 7; Hayes, 2017). That is, the differences in the
a path across levels of W produce differences in the indirect
effect ab as well. Preacher et al. (2007) discussed this case
along with four other ways ab could be moderated (e.g., X
or W moderates the b path, W moderates both a and b paths,
or a and b paths are moderated by separate moderators), but
we keep our focus on W moderating the a path throughout
the paper briefly noting extensions to the other four models
to simplify our presentation of examples.

A classic approach to mediation used separate regres-
sion models (Baron & Kenny, 1986); however, SEM is a
multivariate approach that simultaneously models multi-
ple systems of equations, making it more ideally suited to
model hypotheses involving mediation. Indirect effects in
SEMs may be investigated to be conditional of a categorical
variable via single-group (e.g., moderator is represented by
a variable(s) in the model) and multigroup analysis (e.g.,
observations are segregated into groups using the levels of
the moderator such that the variable is not included in the
model; Ryu & Cheong, 2017). The strengths and weaknesses
of each approach are discussed throughout the tutorial.

Technical tutorial

Given the lack of intuitive resources on facilitating MC sim-
ulation power analyses with fixed covariates in simsem, we
created a comprehensive repository to house all the coding
syntax rather than compromise detail to make it fit in the
text. Each section in this paper has a corresponding section
in an R-code vignette, which can be accessed via our online
appendix (https:// osf. io/ mpd74/). The core syntax related to

the tutorial is provided in tables, but we occasionally refer
to some additional material in the more comprehensive
vignette. Each row of text in the vignette is numbered, which
will be used to reference specific chunks of code throughout
the technical discussion. Only text lines (including code out-
puts) are numbered, therefore chunks of code are specified
in brackets denoting the row number immediately preceding
the referenced code (e.g., [45] referencing the first block of
code in the vignette). The exception to this formatting is
when referencing R Console output, which will correspond
to the exact row number. Our tutorial assumes a degree of
familiarity with R basics and structural equation modeling
(SEM) software; thus, those with less experience may ben-
efit from the following resources covering R (https:// swirl
stats. com/ stude nts. html) and SEM (Beaujean, 2014; Ros-
seel, 2012) more thoroughly.

To aid in the interpretability of our discussion, we intro-
duce a running example of moderated mediation with
dichotomous treatment effects in Fig. 2 below. That is, self-
efficacy (control vs. treatment categorical exogenous vari-
able) affects task performance (continuous endogenous vari-
able) through effort (continuous endogenous variable) while
performance feedback ambiguity, or “feedback ambiguity”
for short (unambiguous control vs. ambiguous treatment cat-
egorical exogenous variable) moderates the a path and thus
the indirect effect ab. In this example, self-efficacy (one’s
belief in their capacity to execute behaviors necessary for
goal attainment; Bandura, 1977) is manipulated in the treat-
ment group by providing subjects false normative informa-
tion to decrease their perception of task difficulty (increase
self-efficacy). Whereas feedback ambiguity is manipulated
in the treatment group by restricting subject’s feedback on
performance while engaging in the task, feedback is pro-
vided continuously in the control condition.

For simplicity and pedagogical purposes, we first discuss
the simple mediation version of self-efficacy affecting task
performance through effort, and then build on this model
in the second half of the tutorial by incorporating the mod-
erator, feedback ambiguity. For both simple mediation and

Fig. 2 Running example of moderated mediation. Note. Illustrative case of moderated mediation used as a running example throughout the tuto-
rial

3895Behavior Research Methods (2023) 55:3892–3909

1 3

https://osf.io/mpd74/
https://swirlstats.com/students.html
https://swirlstats.com/students.html

moderated mediation sections, we walk through single- and
multigroup approaches. Lastly, a general simsem workflow
is illustrated in Table 1, which is consistent in each of the
following sections.

Simple mediation

Given that our exogenous variables represent assigned/
manipulated groups rather than numeric values, we employ
“dummy coding” to denote self-efficacy group notation. In
our simple mediation model, assuming a 0 = control, 1 =
treatment dummy coding pattern, the a path represents the
difference in means of effort between the self-efficacy con-
trol and treatment groups, while the b path is the effect (i.e.,
the partial coefficient) of effort on task performance control-
ling for self-efficacy, which is constant across self-efficacy
treatment and control groups. Lastly, the c′ path is expressed
as the adjusted mean difference in task performance between
self-efficacy groups, controlling for effort.

Specify a single‑group population model

We begin by installing and loading the simsem pack-
age (http:// simsem. org/) in R using standard syntax.>
install.packages("simsem")> library(simsem)

In simsem, the effects of our dichotomous predictor self-
efficacy can be generated according to our study design as
fixed dummy-coded variables. The self-efficacy conditions
are coded as 0 for control (no self-efficacy manipulation) and
1 for treatment (increased self-efficacy). We design a matrix
of these dummy codes by first specifying the number of sub-
jects to be randomly assigned per group. In our example,
we arbitrarily assigned 50 participants per group (Table 2,
line 1), but this is only a starting point because sample size
can be adjusted later as a function of our power analysis
results. After assigning the number of participants per group,
we use the data.frame() function to populate a matrix

comprised of a column X (self-efficacy) with 100 rows indi-
cating which group (self-efficacy condition = 1 or 0) each
observation in the data frame corresponds to (Table 2, line
2). Note that these are balanced groups, so 50 of the rows are
filled with dummy code = 1 and 50 with dummy code = 0.
We name this data frame containing the dummy codes of our
fixed self-efficacy variable “exoData” to be integrated into
our model later. Lastly, sample size is equal to the number
of rows within exoData (N = 100), which we specify by
using the nrow() function and assigning the object to “N”
(Table 2, line 3). Because sample size is coded as a function
of the number of rows in exoData, we only have to update
the number of subjects per group when iteratively increas-
ing/decreasing sample size to obtain desired power later on.

Next, we define our population parameters from which we
will repeatedly draw simulated samples. These parameters
include the effect of self-efficacy on effort (a path), the effect
of effort on task performance (b path), and the direct effect
of self-efficacy on task performance controlling for effort (c′
path). To do so, we simply assign a value for each effect to
an object in R (see Table 2, lines 4–6). These effects should
correspond to the smallest effect size of interest (SESOI)
thought to exist in the population (see Lakens et al., 2018
and [651] for discussion on determining SESOI and drawing
estimated power curves). The simsem package can accept
standardized slopes, so the SESOI input for the population
parameters may be in their standardized forms; however,
unstandardized effect sizes can be accommodated as well.
We elaborate further below on how simsem facilitates
standardized parameters.

Once standardized values for the a, b, and c′ paths have
been assigned to objects, we design matrices correspond-
ing to the exogenous and endogenous paths to be passed to
simsem. This is done using LISREL-style matrices, sup-
plemented by additional matrixes that capture the effects of
exogenous predictors (X) on observed (kappa: κ; Muthén,
2002, Eq. 1) or latent (gamma: Γ; Muthén, 2002, Eq. 2)
variables. This requires us to create a “kappa” matrix for
exogenous paths (i.e., effects of the treatment variable on
the mediator and outcome) and a “beta” matrix for endog-
enous paths (i.e., the effect of the mediator on the outcome).
The structure of both kappa and beta matrices contains one
row for each outcome and one column for each predictor.
Within each kappa and beta matrix, simsem requires us to
separately specify (a) which parameters are freely estimated
vs. fixed to a particular value and (b) the values for popula-
tion parameters when generating data. We break this process
down into the following four steps: (1) design the structure
of the matrix, (2) specify the matrix of free/fixed parameters,
(3) specify the matrix of population parameters, and (4) inte-
grate and store both matrices into a SimMatrix object.
The subsequent two sections walk through these steps for

Table 1 Simsem workflow

Steps outlining the simsem workflow for Monte Carlo power analysis.

Step Description

1) Specify fixed distribution of predictor(s) – in our
example, an experimental design matrix, but can be
any arbitrary distribution(s).

2) For each parameter matrix, specify (1) fixed/free
estimates and (2) data-generating parameter values
and bind() each pair together.

3) Collect all parameter matrices into a model().
4) Use sim() to simulate and analyze nReps=

samples of n= simulees.
5) Summarize Monte Carlo results.

3896 Behavior Research Methods (2023) 55:3892–3909

1 3

http://simsem.org/

both our exogenous parameters (kappa matrix) and endog-
enous parameters (beta matrix).

Beginning with creating a kappa matrix to store our
exogenous parameters, we first build the structure using
the matrix() function to specify the dimensions, col-
umn names, and row names (Table 2, line 7). Initially, we
fill the matrix with “NA” (the missing-data code in R) as
place holders in each element, followed by the number of
rows and columns, which in this case is 2 and 1 respectively,
corresponding to our two outcomes and one dummy-coded
exogenous predictor. Note that “NA” or a character string
(e.g., “b”) indicates to simsem that the parameter should

be estimated freely, opposed to being fixed when a numerical
value is input. Then we label the names of the dimensions
using the list() function, specifying the rows first (“M”,
“Y”) followed by the column (“X”). We assign this matrix
to both “kappa.pop” and “kappa.free” objects, for we use
this same structure in the second and third steps to populate
the two matrices independently in order to be compatible
with simsem. That is, we create two matrices (kappa.free
and kappa.pop) with the same dimensions and labels. Sec-
ond, we replace the “NA” values in the kappa.free matrix
with character-string labels for the a path and c′ path with
“a” and “c” respectively (Table 2, lines 8–9). Using labels

Table 2 R syntax for Monte Carlo power analysis of simple-mediation model, single-group approach

Line R syntax
1 N.per.group <- 50 # balanced group sample sizes
2 exoData <- data.frame(X = rep(1:0, each = N.per.group))
3 N <- nrow(exoData)
4 a <- .5 # effect of X on M
5 b <- .4 # effect of M on Y, controlling for X
6 c <- .2 # effect of X on Y, controlling for M
7 kappa.free <- kappa.pop <- matrix(NA, # estimate all effects

 nrow = 2, # 2 outcomes (M and Y)
 ncol = 1, # 1 dummy coded X
 dimnames = list(c("M","Y"), "X"))

8 kappa.free["M","X"] <- "a"
9 kappa.free["Y","X"] <- "c"
10 kappa.pop["M","X"] <- a
11 kappa.pop["Y","X"] <- c
12 exoPaths <- bind(free = kappa.free, popParam = kappa.pop)
13 beta.free <- beta.pop <- matrix(0, nrow = 2, ncol = 2,

 dimnames = list(c("M","Y"), c("M","Y")))
14 beta.free["Y", "M"] <- "b"
15 beta.pop["Y", "M"] <- b
16 endoPaths <- bind(free = beta.free, popParam = beta.pop)
17 residCor <- binds(free = diag(as.numeric(NA), 2), popParam = diag(2))
18 userParams <- ' ind := a * b

 total := ind + c '
19 simMod1 <- model.path(BE = endoPaths, RPS = residCor,

 KA = exoPaths, con = userParams,
 indLab = rownames(kappa.free),
 covLab = colnames(kappa.free))

20 rejectMCCI <- function(object) {
 CIs <- semTools::monteCarloCI(object)
 apply(CIs, 1, function(CI) 0 < CI["ci.lower"] | 0 > CI["ci.upper"])
}

21 out1 <- sim(nRep = 100, model = simMod1, covData = exoData,
 n = nrow(exoData), seed = 777, outfun = rejectMCCI)

22 summaryParam(out1, matchParam = TRUE, digits = 3)
23 testMCCI <- do.call(rbind, getExtraOutput(out1))
24 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs

3897Behavior Research Methods (2023) 55:3892–3909

1 3

rather than merely “NA” will later allow us to specify user-
defined parameters in lavaan syntax, such as indirect and
total effects. Third, the “NA” values in the kappa.pop matrix
are replaced with the actual population parameters (Table 2,
lines 10–11) consisting of the standardized effects assigned
above for the a and c′ paths in their respective elements.
Lastly, we use the bind() function in simsem to cre-
ate a SimMatrix object comprised of both kappa.free and
kappa.pop matrices. This new SimMatrix we assign to an
object “exoPaths” (Table 2, line 10).

Next, we repeat these four steps (with minor alterations
to design) to populate beta matrices for our endogenous
parameter (Table 2, lines 13–16). Again, we first use the
matrix() function to set the dimensions, row names, and
column names; however, now we populate each element
with the value 0 rather than “NA” and design a 2 (effort,
task performance) × 2 (effort, task performance) matrix
because most values will be fixed to zero (Table 2, line
13). The list() function is then used to label the rows
(“M”, “Y”) and columns (“M”, “Y”). This matrix structure
is then assigned to both “beta.free” and “beta.pop,” which
we populate in the following two steps. Second, in the beta.
free matrix, the 0 in row-Y, column-M is replaced with the
character-string label “b”, representing our freely estimated
b path (Table 2, line 14). Third, in the beta.pop matrix, the
0 in row-Y, column-M is replaced (Table 2, line 15) with
the parameter previously assigned to object “b” (b=.4).
The remaining zeros in our beta matrices are fixed values
for elements M–M and Y–Y specify that our endogenous
variables cannot cause themselves, and for Y–M in order to
freely estimate only the effect of M on Y and not the other
way around. Finally, the bind() function passes both beta.
free and beta.pop matrices into a SimMatrix, which we
assign to an object “endoPaths” (Table 2, line 16).

The next step in specifying the population parameters
for our simple mediation model requires us to create a
covariance matrix of residuals among endogenous vari-
ables (Table 2, line 17). This process is quite similar to that
of step 4 in the previous section, for we again create two
2 (effort, task performance) × 2 (effort, task performance)
matrices and pass them both to the bind() function. The
first matrix indicates which parameters to freely estimate or
fix to specific values (only variances on the diagonal), and
the second specifies what population parameter values to
use to generate data (optimal vector of variances). Because
we specify a regression path between M and Y rather than
a residual variance, we use the diag() function to eas-
ily create diagonal matrices in which off-diagonal elements
are zero. The only freely estimated parameters are residual
variances of effort and task performance, specified with
“NA”, but now we also use the as.numeric() function

so “NA” is interpreted as a (missing) numeric rather than
logical value (the default). Rather than specifying popula-
tion parameters for the residual variances, instead we specify
that the marginal (total) variances of M and Y should be 1,
using diag(2) to generate a 2 × 2 identity matrix (i.e., all
zeros except for ones on the diagonal). We assign this object
specifying our residual matrix to the object “residCor”.
When we assemble all matrices of model parameters using
the model.path()function, we will pass the residCor
object to the argument RPS= (residual correlation matrix)
rather than PS= (residual covariance matrix). That tells
simsem to automatically choose residual variances that
equal 1 minus the explained variance, which standardizes
our population parameters because now the sum of explained
and residual variances is equal to 1 (total variance = 1).

Next, we specify user-defined parameters using lavaan
syntax (Table 2, line 18), as shown in the online mediation
tutorial (https:// lavaan. ugent. be/ tutor ial/ media tion. html).
User-defined parameters should be included in the model.
path()function whenever users want their simulation
results to include calculations of power, bias, etc., for func-
tions of parameters, such as the indirect effect represented
as the product of the a and b paths, and the total effect as the
sum of the indirect (ab) and direct effects (c path). Defining
a model in lavaan syntax requires all functions of param-
eters to be specified in a character string (i.e., within quota-
tion marks). Note in Table 2, line 18, how we specify each
function of parameters using the lavaan operator “:=”,
which is assigned to the object “userParams”.

Finally, we combine all the specified elements above
into a single SimSem model object using the model.
path()function (Table 2, line 19). In addition to includ-
ing the “endoPaths”, “residCor”, “exoPaths”, and “userPar-
ams” objects, we can also specify custom variable names
using the indLab= argument for endogenous variables
and covLab= for exogenous variables. Because we speci-
fied these names in our matrices of regression slopes, we
can use the rownames()and colnames()functions to
assign the same labels as our endogenous (effort, task per-
formance) and exogenous (self-efficacy) variables, but we
could also simply pass the variable names as a vector, such
as c(“M”,”Y”). We assign the SimSem object to “sim-
Mod1,” which stores all specifications for the population
model of our simple mediation example. Although it is not
discussed here, in the vignette we use this simMod1 object
to generate a single data set [85], which we use to illustrate
how to analyze data using both single-group [83–126] and
multigroup data analyses [127–191], which happens itera-
tively in the MC power analysis. This also serves as a dem-
onstration comparing the single-and multigroup approaches,
as described by Ryu and Cheong (2017).

3898 Behavior Research Methods (2023) 55:3892–3909

1 3

https://lavaan.ugent.be/tutorial/mediation.html

Monte Carlo power analysis for single‑group model

The sim() function in simsem automates the process of
generating a sample and then fitting the model to the simu-
lated data. This process is iterated many times in the sim()
function, repeatedly fitting models to thousands of simulated
samples. Power is then calculated as the proportion of sam-
ples in which the null hypothesis is rejected for each param-
eter estimated in the model. By default, lavaan uses an
asymptotic approximation—the delta method (e.g., Oehlert,
1992; Sobel, 1982, 1986)—to calculate standard errors for
functions of parameters, which may result in inflated type
1 error rates when indirect effect estimates have nonnormal
sampling distributions (which is often the case; MacKin-
non et al. 2002, 2004), particularly when sample sizes are
relatively small (also common in behavioral sciences). MC
estimates of confidence intervals (MCCI) are more robust
than the delta method because only parameter estimates
themselves (i.e., a and b paths) are assumed to have nor-
mal sampling distributions (Preacher & Selig, 2012). Using
the semTools package (Jorgensen et al., 2021), we can
easily obtain MCCIs for indirect effects by passing a fitted
lavaan model to the monteCarloCI() function (e.g.,
[117, 191]), and test the H0 by checking whether the MCCI
contains that value. To estimate the power using this more
robust test, a custom function can be written that accepts
a fitted lavaan model and returns the result of a H0 test
(Table 2, line 20), and that custom function will be applied
for each simulated sample by passing the function to the
outfun= argument in the sim() function (Table 2, line
21).

The remaining information must also be passed to the
sim() function (Table 2, line 21): First is the number of
repeated samples to be simulated (in the vignette we specify
100 for faster computations, but 1000 to 5000 samples are
recommended to ensure convergence and more robust esti-
mates; Muthén & Muthén, 2002) via the nRep= argument,
as well as the size of each sample n=, which must match
the number of rows in exoData. The covariate data in exo-
Data must also be passed to the covData= argument, along
with the population parameters in the simMod1 object via
model=. To ensure replicability of results, a default seed=
for the random-number generator is set to 12345, but can be
any integer (e.g., seed=777 in Table 2, line 21).

We assign the sim output to an object “out1” and pass
it to the summaryParam() function to inspect power for
each parameter (Table 2, line 22). Note that it may take sev-
eral minutes for the MC simulation to complete, especially
with larger sample sizes and number of samples. The output
of the summaryParam() function displays 10 columns;
for detailed information of each, enter “?summaryParam”
into the R console to open the help page. Of immediate
interest to us is the “estimate average” column, which is the

average of the parameter estimates across all samples; the
“power (Not equal 0)” column, which is the estimated power
to reject a H0 of zero for each parameter (note power for the
indirect effect is 57%); the “average bias” column, which is
the difference between average estimates and corresponding
population parameters (as a rule of thumb, “good” average
bias has an absolute value less than .10); and the “cover-
age” column, which is the percentage of (1 – α) × 100%
confidence interval covering the parameters underlying the
data (by default, alpha=.05). Coverage rates that deviate
substantially from nominal values (e.g., 95%) indicate the
practical impact of biased point or SE estimates.

It is important to note that power in this output is derived
from the default delta-based method, and to extract the
power results from our custom MCCI function, we must
pass our out1 object to the getExtraOutput() function
to extract the list of sampled MCCI results stored in out1,
then use rbind() to convert the list into a matrix with
parameters in columns and replications in rows, which we
assign to the object “testMCCI” (Table 2, line 23). We then
pass the testMCCI object to the colMeans() function
(Table 2, line 24) to get the average of the dummy codes
indicating whether the H0 was rejected for the indirect and
total effects. These results indicate power of 72% and 64%
for the indirect and total effects respectively, which is sub-
stantially higher than the power produced using the default
delta method (power for indirect effect = 57%). Since power
is still less than 80% for the indirect effect, we must go back
to the first few lines of code where we specify the number of
subjects in each group—this value is assigned to the “N.per.
group” object (Table 2, line 1). We would then iteratively
increase the number of subjects per group and re-run all the
code until power for the indirect effect is at an acceptable yet
practical level. Keep in mind that the relationship between
sample size and power is not linear; thus, it may take a large
increase in sample size to obtain a small increase in power,
especially in more complex models with more parameters.

Specify a multigroup population model

Alternatively, the multigroup approach does not include our
dichotomous self-efficacy predictor in the model (Ryu &
Cheong, 2017). Instead, a model with endogenous variables
(M and Y) is specified separately within each self-efficacy
(treatment and control) group, and the effects (b paths) are
held constant across the two models. Here, the effect of self-
efficacy on effort (a path) is quantified as the difference in
intercepts for effort between self-efficacy groups, and the
direct effect of self-efficacy on task performance (the c′ path)
is the difference in intercepts for task performance control-
ling for effort. With the effect of effort on task performance
(b path) and residual variances held equal across groups, the
multigroup model is equivalent to the single-group model,

3899Behavior Research Methods (2023) 55:3892–3909

1 3

as our online vignette illustrates using a single simulated
data set.

An advantage of the multigroup approach over the sin-
gle is that both of the above-mentioned constraints may be
lifted. For instance, releasing the constraint on the effect of
effort on task performance allows self-efficacy to moderate
the b path (moderated mediation model 1 in Preacher et al.’s,
2007, Fig. 2; also called model 14 by Hayes, 2017) and thus
to test the assumption of homogeneous slopes. Releasing the
constraint on residual variances enables one to test assump-
tions of homoskedasticity across treatment groups. It is
important to note that these benefits come with a tradeoff,
for power is lost when constraints are lifted. Releasing con-
straints costs degrees of freedom and in turn power when
using the same sample size and data because of the addi-
tional parameters required to be estimated. Conversely, if the
model is too constrictive then its type 1 error rates will be
inflated, which will outweigh the benefits from added power.
Ideally, when employing the more flexible multigroup
approach with parameters unconstrained, one could simply
increase sample size to buy back power. Unfortunately, what
is ideal and what is practical are often in opposition, so we
provide instructions on both constrained and unconstrained
multigroup approaches below.

The multigroup approach requires us to update our sim-
sem model object to include a mean structure because the
effects of self-efficacy are differences in group intercepts.
To facilitate a mean structure, we can specify the population
values to correspond to the distance between intercepts by
creating an “alpha” vector of observed-variable intercepts.
In Table 3 (Lines 1–2), we use the bind() function to
generate an alpha vector for each self-efficacy (treatment and
control) group. The intercepts for M and Y are allowed to be

estimated freely in both groups, labeled with zeroes to indi-
cate the control group (“a0”, “c0”) and ones the treatment
group (“a1”, “c1”). For the population parameter values,
another vector is specified such that the a and c′ paths are cut
in half (divided by 2) and subtracted from zero in the control
group but added to zero in the treatment group. Thus, our
population mean is zero and the differences between self-
efficacy control and treatment groups’ intercepts are equal to
the a and c′ parameters specified in the single-group popula-
tion model. Lastly, we assign our control-group alpha vec-
tor to the object “AL0” (Table 3, line 1) and the treatment
group’s to the object “AL1” (Table 3, line 2). We will pass
both of these vectors as a list to model.path() when
creating our new two-group SimSem model object below
(Table 3, line 7).

Next, we generate a new matrix to specify the residual
variances to be estimated freely, along with population val-
ues of residual variances for effort and task performance.
Population residual variances must be specified slightly dif-
ferent in the multigroup model because simsem is only
able to automatically calculate residual variances implied
by standardized slopes within a single group (as we did in
the single-group approach). To get equivalent standardiza-
tions of population parameters (i.e., in units of pooled SD
across both groups), we can use the findFactorResidu-
alVar() function to extract an estimate of the residual
variances from a single-group model. However, we first
must use the cov.wt() function to extract the population
variance of self-efficacy in exoData (Table 3, line 3) to be
specified as a covariance matrix among the covariates in
the findFactorResidualVar() function. The cov.
wt() function produces a list, which we assign to the object
“exoCov” so we can extract the covariance matrix. Next, we

Table 3 R syntax for Monte Carlo power analysis of simple-mediation model, multiple-group approach

" " " "

" "

" "

" "

" " " "

" " " " " "
''

Syntax depends on some objects created by running syntax in Table 2

3900 Behavior Research Methods (2023) 55:3892–3909

1 3

pass arguments and objects created above to findFactor-
ResidualVar() (Table 3, line 4) to estimate the resid-
ual variances. Note that we use the argument corPsi= to
specify residual correlations and covcov= to denote our
covariance matrix among covariates (self-efficacy popu-
lation variance). The output is then assigned to an object
“resVars”, passed to the popParam= argument when cre-
ating our matrix of residual variances (Table 3, line 5). The
approach is similar to the process used for the single-group
model (Table 2), except we had to specify the population
variances manually rather than having simsem automate
the process.

Additionally, if one wishes to constrain the residual vari-
ances across self-efficacy groups, the “NA” character string
may be replaced with a new character string via the vector
(“eM”, “eY”), by assigning this new character string vec-
tor to “diag(resEq@free)” (Table 3, line 6). That is,
when “NA” is passed, residual variances are freely estimated
for effort and task performance in each self-efficacy group,
whereas specifying the same character string for effort
(“eM”) and task performance (“eY”) constrains residual
variances estimates to be equal across self-efficacy groups
(which also adds two degrees of freedom).

With all our multigroup model specifications constructed,
they can now all be passed to the model.path() func-
tion to create a new SimSem model object (Table 3, line
7). We can pass the same beta object to the BE= argument
used in the single-group model (endoPaths, see Table 2);
however, if we wanted to allow moderation of the b path as
a function of self-efficacy (see Preacher et al.’s, 2007, model
1 in Fig. 2), then we would need to specify a second beta
object for the second group. We pass the same resEq object
to PS= (rather than RPS=). Our mean structure contain-
ing the two alpha vectors of observed-variable intercepts
“AL0” and “AL1” are then passed to AL= as a list using
the list() function so that each vector corresponds to
their respective self-efficacy groups. Note that these vec-
tors would not need to be passed as a list if parameters were
constant across groups (e.g., no effect of X). Next, we pass
a character vector indicating our endogenous variables effort
and task performance (“M”, “Y”) to indLab= and a sepa-
rate character vector indicating our grouping variable self-
efficacy (“X”) to groupLab=. Lastly, user-defined param-
eters specifying our functions can be written in lavaan
syntax (which now additionally includes defining the a and
c paths as differences between estimated group intercepts)
and passed directly to con=. This new SimSem model we
assign to the object “simMod2” (Table 3, line 7).

Monte Carlo power analysis for multigroup model

It is important to note that the simMod1 and simMod2
models are statistically equivalent, but even with the same

set.seed value, they will generate different data because
the population models differ (see example data frame
[275]). Thus, Monte Carlo results will differ in these two
approaches, even when using the same seed for random-
number generation.

Using the sim() function to conduct a power analysis
using the multigroup model (Table 3, line 8) is almost iden-
tical to the process conducted for the single-group model
(Table 2, line 21), with the only differences being simMod2
is passed to model=, sample size per group is specified as
a list (not a vector) containing equal observations in each
group (N.per.group, specified twice because groups are
balanced), and we can omit the specification of the exog-
enous covariate data (exoData was simply used to produce
population residual variances; Table 3, lines 3–4). We assign
this new collection of specifications to the object “out2”,
which is then passed to the summaryParam() function
to produce our results (Table 3, lines 8–9). Lastly, to view
the power from the MCCI test, we repeat the same procedure
used for the single-group model (Table 3, lines 10–11). Note
that power estimated using the default delta-based method
and the MCCI method in the multigroup model produce very
similar results for the indirect effect as the corresponding
estimates in the single-group power analysis (power for ab
single-group: delta-method = 57%, MCCI = 72% vs. power
for ab multigroup: delta-method = 57%, MCCI = 71%).

Moderated mediation

Building on our simple mediation example, we add
another dichotomous variable “feedback ambiguity”,
which is coded as 0 (unambiguous feedback) or 1 (ambig-
uous feedback), assuming that unambiguous feedback
serves as the control condition, and that the primary inter-
est is in comparing the treatment effect between unambig-
uous and ambiguous feedback conditions. In our example
of moderated mediation, feedback ambiguity moderates
the indirect effect of self-efficacy on task performance
through effort (i.e., moderating the a path). However,
there are many ways in which an indirect effect may be
conditional as a function of a categorical exogenous vari-
able, some of which do not include a fourth variable. For
instance, a treatment effect in a three-variable mediation
system (e.g., self-efficacy) could in fact moderate the
indirect effect through the b path (e.g., self-efficacy mod-
erates the effect of effort on task performance, and in turn
the indirect effect on task performance through effort),
which we briefly described above in the multigroup sec-
tion as an example of Preacher et al.’s (2007) model 1 or
Hayes’ (2017) model 14. It is infeasible to thoroughly
discuss all possible moderated mediation configura-
tions in one tutorial, such as the five common moderated

3901Behavior Research Methods (2023) 55:3892–3909

1 3

mediation models [337–341] covered by Preacher et al.
(2007) with dichotomous exogenous variables. In this sec-
tion, we discuss Preacher et al.’s model 2 (moderation of
a by W; also Hayes’, 2017, model 7), and briefly mention
extensions to Preacher et al.’s models 3, 4 and 5 (see also
Hayes’, 2017, models 14 and 21).

Specify a single‑group population model

Specifying population parameters for the single-group mod-
erated mediation model is quite similar to the procedure
implemented for the simple mediation model, but now we
must include our fourth variable, feedback ambiguity, as well
as an interaction term (self-efficacy × feedback ambiguity),
such that feedback ambiguity moderates the a path (Preacher
et al.’s, model 2). We begin by specifying the number of
observations per group (Table 4, line 1), which in this model
contains four groups producing a total sample size equal to
the number of observations per group multiplied by four
(e.g., N = 25 × 4 = 100). Next, we design a covariate matrix
containing our dummy codes for self-efficacy and feedback
ambiguity (Table 4, line 2) and add a third column contain-
ing the interaction of self-efficacy and feedback ambiguity
(Table 4, line 3). When coding both self-efficacy and feed-
back ambiguity as dichotomous dummy codes, there are four
possible dummy code combinations corresponding to each
condition. After inspecting the design matrix, note how the
interaction term is simply the product of the self-efficacy and
feedback ambiguity dummy codes. To populate the covari-
ate matrix with equal group sizes (Table 4, line 4), create as
many copies of it as the desired number of observations per
group (e.g., 25), then stack them within the same data frame
and assign it to the object “exoData.”

Setting population parameters for our moderated media-
tion model requires us to specify population values for the a,
b and c′ paths, similar to the simple mediation example, but
now we must also specify the simple and moderating effects
of feedback ambiguity. We must specify the effect of X on
M (i.e., a) when feedback is unambiguous (W = 0) and how
much the effect changes when feedback is ambiguous (W =
1). In this example (Table 4), we keep the simple effects (a,
b, and c′ paths) the same as in the simple mediation example
(a.w0 = 0.5, b.w0 = 0.4, c.w0 = 0.2; see
Table 4, lines 5, 7, and 9) and add values corresponding to
effect change in ambiguous feedback (a.mod = 0.3,
b.mod = 0, c.mod = 0; see Table 4, lines 6, 8, & 10).
Because only the a path has an interaction with feedback
ambiguity, we specified no change in feedback ambiguity
conditions for the b and c′ paths in this example. Lastly, one
could specify the simple effects of feedback ambiguity on
effort or task performance. Despite this effect not being of
primary interest to us, arbitrary nonzero values may be set
for these two parameters (Table 4, lines 11–12). Recall that

these population parameters may be standardized values and
correspond to the SESOI (e.g., Lakens et al., 2018).

There is currently no overarching prescription for specify-
ing the SESOI, particularly with respect to conditional indi-
rect effects, which veers into a complex and dynamic domain
well beyond the scope of this paper. To help build a general
sense of intuition and direction for researchers estimating
population effect sizes in moderated mediation models with
categorical exogenous variables, we briefly define the effects
often needing to be estimated. The a and c′ paths represent
differences in means between control and treatment groups,
which is often calculated via Cohen’s d (difference in means
divided by the groups’ pooled residual standard deviation),
although Cohen’s d is only truly defined for the two-group
case (i.e., not controlling for a covariate, as in the c’ path).
Given W moderates the a path, the difference in the a path
between treatment and control groups of W may be inter-
preted as the difference in Cohen’s ds representing how
much W moderates the a path. Given a continuous mediator
and outcome, the b path may be interpreted as a standardized
partial regression coefficient, similar (but not equivalent)
to a partial correlation between M and Y controlling for X.
There are also many tools available for calculating ds vs.
betas (e.g., https:// www. campb ellco llabo ration. org/ escalc/
html/ Effec tSize Calcu lator- SMD22. php). Lastly, at the end of
our vignette, we provide a section “Types of Power Analy-
sis” [651] discussing conceptualizations, approaches, and R
tools for estimating various SESOI in detail.

Building on the LISREL matrices from the simple media-
tion examples, we employ the same four steps generating
kappa and beta matrices with the addition of the exogenous
variables feedback ambiguity and its interaction term with
self-efficacy. Again, these steps are: (1) design the struc-
ture of the matrix, (2) specify free/fixed parameters matrix,
(3) specify population values matrix, and (4) integrate and
store both matrices into a SimMatrix. Beginning with
the kappa matrices (Table 4, lines 13–25), we design a 2
× 3 matrix that is populated with “NA” in each cell via the
matrix() function, along with the list() of dimension
names for (a) the rows corresponding to our two endogenous
variables via passing a character vector and (b) the columns
corresponding to our three exogenous variables via pulling
the column names from exoData. This data frame is then
assigned to both kappa.free and kappa.pop objects (Table 4,
line 13). In step 2, parameters estimated freely are specified
with character strings in kappa.free, corresponding to their
respective population value labels (Table 4, lines 13–19). In
our example, we allow all exogenous paths to be estimated
freely except for the effect of the interaction term on task
performance, which we choose to fix to zero for it has no
direct effect on task performance in our model. In step 3,
parameter values are specified to kappa.pop (Table 4, lines
20–25). Finally, in step 4 we use the bind() function to

3902 Behavior Research Methods (2023) 55:3892–3909

1 3

https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD22.php
https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD22.php

Table 4 R syntax for Monte Carlo power analysis of moderated-mediation model, single-group approach

Line R syntax

1 N.per.group <- 25 # balanced group sample sizes
2 designMatrix <- expand.grid(X = 1:0, W = 1:0)
3 designMatrix$XW <- designMatrix$X * designMatrix$W # interaction
4 exoData <- do.call(rbind, lapply(1:N.per.group, function(i)

designMatrix))
5 a.w0 <- .5 # effect of X on M when moderator (W) == 0
6 a.mod <- .3 # how much "a" path is moderated by W (i.e., interaction)
7 b.w0 <- .4 # effect of M on Y when moderator (W) == 0
8 b.mod <- 0 # no moderating effect on "b" path
9 c.w0 <- .2 # effect of X on Y when moderator (W) == 0
10 c.mod <- 0 # no moderating effect on "c" path
11 w.M <- .1 # simple effect of moderator (W) on M when X == 0
12 w.Y <- -.1 # simple effect of moderator (W) on Y when X == 0
13 kappa.free <- kappa.pop <- matrix(NA, # estimate all effects

 nrow = 2, # 2 outcomes (M and Y)
 ncol = 3, # dummy coded X, W, XW
 dimnames = list(c("M","Y"),
 names(exoData)))

14 kappa.free["M","X"] <- "a.w0" # label free parameters
15 kappa.free["M","W"] <- "w.M" # (to define indirect effects)
16 kappa.free["M","XW"] <- "a.mod"
17 kappa.free["Y","X"] <- "c.w0"
18 kappa.free["Y","W" "w.Y"
19 kappa.free["Y","XW"] <- 0 # fixed to 0; label “c.mod” to free
20 kappa.pop["M","X"] <- a.w0 # set population parameters
21 kappa.pop["M","W"] <- w.M # (defined above)
22 kappa.pop["M","XW"] <- a.mod
23 kappa.pop["Y","X"] <- c.w0
24 kappa.pop["Y","W"] <- w.Y
25 kappa.pop["Y","XW"] <- c.mod
26 exoPaths <- bind(free = kappa.free, popParam = kappa.pop)
27 beta.free <- beta.pop <- matrix(0, nrow = 2, ncol = 2,

 dimnames = list(c("M","Y"), c("M","Y")))
28 beta.free["Y", "M"] <- "b"
29 beta.pop["Y", "M"] <- b.w0
30 endoPaths <- bind(free = beta.free, popParam = beta.pop)
31 residCor <- binds(free = diag(as.numeric(NA), 2), popParam = diag(2))
32 userParams <- ' ## conditional indirect effects

 ind.w0 := a.w0 * b
 ind.w1 := (a.w0 + a.mod) * b
 ## Test H0: equivalent indirect effects across W
 ind.diff := a.mod * b
 ## or equivalently:
 # ind.diff := ind.w1 – ind.w0 '

33 modMed1 <- model.path(BE = endoPaths, RPS = residCor,
 KA = exoPaths, con = userParams,
 indLab = rownames(kappa.free),
 covLab = colnames(kappa.free))

34 sim1 <- sim(nRep = 100, model = modMed1, covData = exoData,
 n = nrow(exoData), seed = 777, outfun = rejectMCCI,
 meanstructure = FALSE) # pass this argument to lavaan

35 summaryParam(sim1, matchParam = TRUE, digits = 3)
36 testMCCI <- do.call(rbind, getExtraOutput(sim1))
37 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs

3903Behavior Research Methods (2023) 55:3892–3909

1 3

combine both kapa matrices into one SimMatrix assigned
to the object, “exoPaths” (Table 4, line 26), containing what
parameters to estimate freely and the population values of
each parameter.

Specifications for the endogenous paths via beta matrices
(Table 4, lines 27–30) are almost unchanged from the simple
mediation example (Table 2, lines 13–16), with the only dif-
ferences being the population value set in beta.pop (step 3)
is labeled b.w0 rather than just “b” because it is the simple
effect of effort on task performance when feedback is unam-
biguous (control group). Of course, the b path is equal to 0.4
in the simple mediation example as well as in both feedback
ambiguity condition groups in this moderated mediation
example, so the effect of effort on task performance when
feedback is ambiguous (b.w1) is not moderated; thus, the
moderating effect (b.mod) is specified to be zero. Step 4,
both beta matrices are combined into a SimMatrix and
assigned to the object “endoPaths” (Table 4, line 30). The
process of generating a covariance matrix of residuals for
both endogenous variables (Table 4, line 31) is also identical
to that in the simple mediation example (Table 2, line 17).

Again, we specify user-defined parameters in lavaan
syntax (Table 4, line 32), which requires the addition of con-
ditional indirect effects by first defining the indirect effect in
each feedback ambiguity condition. In the vignette we assign
these functions to (ind.w0) and (ind.w1) corresponding
to the indirect effect when feedback is unambiguous and
ambiguous, respectively. Recall that the a path in the treat-
ment condition (ambiguous feedback) is equal to the sum of
the a-path in the control group plus the change in effect in
the treatment; therefore, the a path in ind.w1 is equal to
(a.w0 + a.mod). Lastly, we specify an equivalence test
of indirect effects (Mackinnon, 2008)—also known as an
index of moderated mediation (Hayes, 2015)—in lavaan
syntax by either (a) multiplying the interaction term (a.
mod) by the b path or (b) taking the difference between
ind.w1 and ind.w0, both approaches are statistically
equivalent. We assign the set of user-defined parameters to
the object “userParams” (Table 4, line 32) and pass all the
newly specified elements to the model.path() function
(Table 4, line 33), same as we did for the simple mediation
example (Table 2, line 19), and assign this SimSem model
to the object “modMed1”.

Analyze data using a single‑group SEM

Given the paucity of guidance about using multigroup SEM
to model moderated mediation (Ryu & Cheong, 2017), we
precede the power analysis with single- and multigroup
analyses of a single data set, generated from the population
specified above. For readers unfamiliar with how to analyze
moderated mediation models using single- or multigroup

SEM, these examples can help clarify the MC power analy-
ses that follow.

With our population model specified, we can demonstrate
the process for generating a sample of data based on the
specifications defined in modMed1 (Table 5, lines 1–2), then
fit the single-group moderated mediation model defined in
lavaan syntax (Table 5, line 4) to our generated data.
After setting a random-number seed to ensure replicability
(Table 5, line 1), we pass the sample size (i.e., number of
rows in exoData object), data frame of dummy-coded exog-
enous variables (exoData), and our population model param-
eters (modMed1) to the generate() function, which we
assign to the object “datmod” which contains a single simu-
lated sample (Table 5, line 2). These data may then be fit to
our model using simsem’s analyze() function using
the model specifications in modMed1 (Table 5, line 3), or
by specifying the model in lavaan syntax to pass to the
sem() function (Table 5, lines 4–5). We pass results to
the summary() function (Table 5, line 6) to inspect the
estimated parameters, including the delta-method test of
indirect effects, which we also test with the MCCI method
in semTools (Table 5, line 7).

Analyze data using a multigroup SEM

Building on the multigroup approach for simple mediation,
linear equations are still specified separately in each group
(e.g., self-efficacy conditions), but now the moderator (feed-
back ambiguity) is treated as a grouping variable such that
each simple mediation model is defined separately for each
feedback ambiguity condition. It is important to note that the
example described in this section illustrates using only the
moderator as a grouping variable, although the focal predic-
tor is also a grouping variable (and treated as such in the
simple-mediation multigroup example). The two-way inter-
action between self-efficacy and feedback ambiguity could
be implemented by creating a four-group variable crossing
the control and treatment conditions of self-efficacy and
feedback ambiguity, but the pattern of equality constraints
on intercepts to represent the two-way interaction of inter-
est would be unnecessarily tedious, losing the advantage
of intuitively interpreting moderating effects as differences
between groups’ coefficients. However, if it is useful in some
circumstances (e.g., to allow for heteroskedasticity across all
four conditions), then we encourage future research into how
this can be accomplished.

Residual variances in the multigroup moderated media-
tion model can also vary across groups as in the multigroup
simple mediation model above, but in the multigroup mod-
erated mediation model this accounts for heteroskedasticity
across the feedback ambiguity conditions rather than across
the self-efficacy conditions. Furthermore, the regression

3904 Behavior Research Methods (2023) 55:3892–3909

1 3

slopes for the effect of self-efficacy on effort (a path), effect
of effort on task performance (b path), and effect of self-
efficacy on task performance (c′ path), can differ as a func-
tion of the feedback ambiguity condition. Constraining equal
residual variances and regression slopes (e.g., b and c′ paths)
produces the same effect and standard error estimates as
the single-group model memo.fit1 above. In contrast to the
single-group model, the multigroup model has df > 0, which
offers the advantage of testing homogeneity by releasing
various combinations of constraints.

To generate data and analyze the model fit of a single
sample, we specify user-defined parameters in lavaan
syntax (Table 5, line 8). Parameter labels are specified in a
vector (i.e., one label each for control and treatment groups).

First, task performance (Y) is regressed onto self-efficacy
(X) and effort (M) with equality constraints imposed by
including the same labels within each vector (i.e., slopes for
self-efficacy on task performance (c path) are equivalent in
both control and treatment groups, and slopes for effort on
task performance (b path) are equivalent in both control and
treatment groups). Next effort is regressed onto self-efficacy;
however, because this path is moderated by feedback ambi-
guity, the vector contains different labels denoting the slope
of self-efficacy on effort in the control group (a.w0) and
the treatment group (a.w1). Homoskedasticity constraints
are then defined by specifying the residual variance of task
performance in a vector with the same error labels, as well
as the residual variance of effort in a vector with the same

Table 5 R syntax for single- and multigroup approaches to moderated-mediation analysis

Line R syntax

1 set.seed(1234567) # set seed to generate one random sample
2 datmod <- generate(modMed1, covData = exoData, n = nrow(exoData))
3 memo.fit1 <- analyze(modMed1, data = datmod) # fit using simsem
4 ## Specify SINGLE-group model using lavaan syntax

memo.mod1 <- ' Y ~ c*X + b*M + W # outcome
 M ~ a.w0*X + W + a.mod*XW # mediator
 ## conditional indirect effects
 ind.w0 := a.w0 * b
 ind.w1 := (a.w0 + a.mod) * b
 ## Test H0: equivalent indirect effects across W
 ind.diff := a.mod * b
 ## or equivalently:
 # ind.diff := ind.w1 – ind.w0
'

5 memo.fit1 <- sem(memo.mod1, data = datmod) # fit using lavaan
6 summary(memo.fit1) # single-group approach results
7 monteCarloCI(memo.fit1) # Monte Carlo CI more robust with small N
8 ## Specify MULTIGROUP model

memo.mod2 <- ' Y ~ c(c, c)*X + c(b, b)*M # same label: equal
 M ~ c(a.w0, a.w1)*X # different labels: moderated
 ## homoskedasticity constraints
 Y ~~ c(eY, eY)*Y
 M ~~ c(eM, eM)*M
 ## conditional indirect effects
 ind.w0 := a.w0 * b
 ind.w1 := a.w1 * b
 ## Test H0: equivalent indirect effects across W
 ind.diff := ind.w1 – ind.w0
'

9 memo.fit2 <- sem(memo.mod2, data = datmod, group = "W",
 meanstructure = FALSE, # override default
 # set Group 0 first to match labels above
 group.label = 0:1)

10 summary(memo.fit2) # multigroup approach results
11 monteCarloCI(memo.fit2)

Syntax depends on some objects created by running syntax in Table 4

3905Behavior Research Methods (2023) 55:3892–3909

1 3

error labels. Conditional indirect effects are then defined
for each level of the moderator: one for the indirect effect in
the control group (a.w0 * b) and another for the indirect
effect in the treatment group (a.w1 * b). Additionally, an
equivalence test of indirect effects is defined as the differ-
ence between the indirect effects in each feedback ambiguity
group. These user-parameters defined in lavaan syntax
are assigned to the object “memo.mod2” (Table 5, line 8).

To fit our multigroup moderated mediation model
(Table 5, line 9), the model syntax is passed to the
sem() function, along with the same generated data “dat-
mod” (Table 5, line 2) created for the single-group exam-
ple. Additional arguments include specifying the grouping
variable (group = “W”) and meanstructure=FALSE
to omit the irrelevant mean structure; we also set group.
label=0:1 to guarantee that the control group (0) is the
first group, so the direction of user-defined parameters is
as expected. We then assign this fitted model to the object
“memo.fit2” and pass it to the summary() function to
inspect results (Table 5, line 10). Note that regression and
variance estimates are equivalent across both feedback ambi-
guity groups (group 1 = control, group 2 = treatment), and
to the estimates produced in the single-group moderated
mediation model. Releasing any combination of the four
constraints on variance or slope estimates in lavaan syntax
(memo.mod2) may be done to test assumptions of homo-
skedasticity or homogeneous slopes, respectively. Again,
we pass memo.fit2 to the monteCarloCI() function to
obtain robust MCCIs for user-defined parameters (indirect
effects in each moderator group and difference between
groups), as an alternative to lavaan’s default delta-based
method (Table 5, line 11).

Power analyses

Single‑group simulation

MC power analysis can be carried out for the single-group
moderated mediation model using the sim() function
(Table 4, line 34) and passing nearly the identical arguments
as in the simple mediation example (Table 2, line 21). The
only differences in syntax passed to the sim() function
is we now specify our single-group moderated mediation
model modmed1 and pass FALSE to the argument mean-
structure= (again, the number of repetitions should also
be increased to 1000–5000 to ensure convergence; Muthén
& Muthén, 2002). This object is then assigned to “sim1”
and passed to the summaryParam() function to yield
the results of the MC power analysis (Table 5, line 35).
Lastly, to estimate power using the MCCI method (Table 5,
lines 36–37), we “do a call” of rbind() to the list of test
results returned by getExtraOutput() from our sim1

object, assigning the data frame to the object “testMCCI”
and estimating power by passing testMCCI to the col-
Means() function. Note in our example that power esti-
mates derived from delta-method Ses (e.g., power estimate
of conditional indirect effect = 9%) are lower than estimates
produced via MCCI (power estimate of conditional indi-
rect effect = 13%). The sample size may be increased or
decreased iteratively in Table 5, line 1 to determine the nec-
essary sample size (per group) for the desired power level.

Multigroup simulation

As mentioned in the simple-mediation multigroup section
above, the multigroup approach can facilitate testing hetero-
geneity of variance or slopes, which would be required for
simulating data from any model in Preacher et al.’s (2007) or
Hayes’ (2017) taxonomy. The multigroup simple-mediation
model facilitates Preacher et al.’s model 1 (X moderates b),
and although this section focuses only on Preacher et al.’s
model 2 (W moderates a), multigroup multiple-mediation
models also facilitate Preacher et al.’s model 3 (W moder-
ates b path), model 5 (W moderates both a and b paths), and
model 4 (a and b paths are moderated by different exogenous
variables; facilitated by adding an additional covariate to
moderate b). Although it is not the focus of this article, our
following example shows how the multigroup approach can
be used to model heterogenous variances.

In the multigroup model, the matrix containing dummy-
coded exogenous variables must include the grouping vari-
able (feedback ambiguity; W), despite the grouping variable
not being an explicit predictor in the model. For simsem
to recognize it as a grouping variable, we must first copy
the grouping variable “W” to exoData using the fac-
tor() function (Table 6, lines 1–2), so numeric codes
denote categories rather than numeric values. We indicate
the levels=0:1 should be assigned labels=1:2 cor-
responding to the two levels of feedback ambiguity (control
and treatment group). A grouping variable’s values must
be sequential integers starting with 1 and ending with the
number of groups, which is why they receive the labels=
1:2 rather than 0:1. We do not include the interaction col-
umn (“XW”) from the exoData data frame (Table 6, line 1),
ensuring that the grouping variable is the last (furthest right)
column in the data frame, which is pertinent for compat-
ibility with simsem.

Next, we must update our matrices to accommodate
multigroup moderated mediation with heterogeneity. The
kappa matrices in the single-group simple mediation section
(Table 2, line 7)—which had the same three modeled vari-
ables (X, M, and Y)—can function as the foundation of our
new matrices, with the addition of specifying kappa.free and
kappa.pop for each level of feedback ambiguity and updating
their labels (Table 6, lines 3–13). The beta matrices from

3906 Behavior Research Methods (2023) 55:3892–3909

1 3

single-group simple mediation endoPaths (Table 2, lines
13–16) can be used without any modifications because the
b path has equivalent population values (unless the b path
was also moderated, as in Preacher et al.’s models 3 and 5).
Once kappa.free and kappa.pop matrices have been updated,
a new exoPaths object may be created containing both con-
trol treatment group specifications (Table 6, line 13).

When defining residual variances, we now must specify
which parameters are freely estimated and their population
values in each feedback ambiguity group. The syntax for
freely estimated parameters remains the same (e.g., free
= diag(as.numeric(NA, 2)) as in the previous sec-
tions (Table 2, line 17; Table 3, line 5; Table 4, line 31), but
now we can input the pooled population values from sim1

Table 6 R syntax for Monte Carlo power analysis of moderated-mediation model, multigroup approach

Line R syntax

1 datXW <- exoData[, c("X","W")]
2 datXW$W <- factor(datXW$W, levels = 0:1, labels = 1:2)
3 kappa.free0 <- kappa.free1 <- matrix(NA, nrow = 2, ncol = 1,

 dimnames = list(c("M","Y"), "X"))
4 kappa.free0["M","X"] <- "a.w0" # W == 0
5 kappa.free0["Y","X"] <- "c.w0"
6 kappa.free1["M","X"] <- "a.w1" # W == 1
7 kappa.free1["Y","X"] <- "c.w1"
8 kappa.pop0 <- kappa.pop1 <- matrix(NA, nrow = 2, ncol = 1,

 dimnames = list(c("M","Y"), "X"))
9 kappa.pop0["M","X"] <- a.w0 # W == 0

10 kappa.pop0["Y","X"] <- c.w0
11 kappa.pop1["M","X"] <- a.w0 + a.mod # W == 1
12 kappa.pop1["Y","X"] <- c.w0 + c.mod
13 (exoPaths2 <- list(bind(free = kappa.free0, popParam = kappa.pop0),

 bind(free = kappa.free1, popParam = kappa.pop1)))
14 (exoCov <- cov.wt(exoData, method = "ML"))$cov # divide by N, not N-1
15 resVars <- findFactorResidualVar(beta = beta.pop, corPsi = diag(2),

 #totalVarPsi = rep(1, 2), # default == 1
 gamma = kappa.pop, covcov = exoCov$cov)

16 (heteroVar <- list(binds(free = diag(as.numeric(NA), 2),
 # set parameters to same values from sim1
 popParam = diag(resVars)),
 binds(free = diag(as.numeric(NA), 2),
 # make variances 50% higher in Group 1 than Group 0
 popParam = diag(resVars*1.5))))

17 userDef <- ' ## conditional indirect effects
 ind.w0 := a.w0 * b
 ind.w1 := a.w1 * b
 ## Test H0: equivalent indirect effects across W
 ind.diff := ind.w1 – ind.w0
'

18 modMed2 <- model.path(BE = endoPaths, PS = heteroVar, KA = exoPaths2,
 indLab = c("M","Y"), covLab="X", groupLab="W",
 con = userDef)

19 sim2 <- sim(nRep = 100, model = modMed2, covData = datXW,
 n = as.list(table(datXW$W)), meanstructure = FALSE,
 seed = 1234567, outfun = rejectMCCI)

20 summaryParam(sim2, matchParam = TRUE, digits = 3)[-c(8, 11),]
21 testMCCI <- do.call(rbind, getExtraOutput(sim2))
22 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs

Syntax depends on some objects created by running syntax in Table 4

3907Behavior Research Methods (2023) 55:3892–3909

1 3

(e.g., popParam= diag(c(M = 0.8718434, Y =
0.8061616)); see [504, 505]). Alternatively, one could
use the findFactorResidualVar() function to set total
variances to 1, so that regression slopes are standardized
parameters (Table 6, lines 14–15). To add heterogeneity of
variances (Table 6, line 16), we make the variances in the
treatment group of feedback ambiguity 50% higher than the
control group by multiplying the pooled population vari-
ance values by 1.5. Again, we pass all specifications to the
list() function and assign our matrix defining residual
variances to the object “heteroVar”.

Next, we create user-defined parameters assigned to the
“userDef” object in lavaan syntax (Table 6, line 17) by
specifying the indirect effect in the control group of feedback
ambiguity (ind.w0 := a.w0*b), the treatment group
(ind.w1 := a.w1*b) and the difference between the
two indirect effects in each group (ind.diff := ind.w1
– ind.w0). Now that all model parameters are defined,
we can consolidate them using the model.path() func-
tion, specifying endoPaths as our beta matrices, heteroVar
as our residual variance-covariance matrix (using PS=),
exoPaths as our kappa matrices, vector c(“M”, “Y”) as
our indicator labels, “X” as our character vector of covari-
ate labels, “W” as our labeled grouping variable, and user-
Def as our user-defined parameters, assigned to the object
“modMed2” (Table 6, line 18). Lastly, we can run the MC
power analysis using the sim() function (Table 6, line 19)
with arguments near identical to those in the single-group
approach above (Table 4, line 34). The two differences being
(a) modMed2 is specified as our model= and (b) the vector
of group sample sizes must be passed as a list and reflect the
number of observations in each W group. To input the num-
ber of observations in the exogenous variables, we simply
used the table() function to count the number of rows
per level of W in our covariate data frame, converted to a
list so sim() understands it is the sample size per group
(i.e., a vector of sample sizes would be interpreted as the N
used per replication). These arguments are assigned to the
object “sim2” and passed to the summaryParam() func-
tion (Table 6, line 20) to display the power estimates using
delta-method Ses. The estimated power of the delta method
is 5% for our conditional indirect effect [589], whereas the
MCCI approach (Table 6, line 21–22) produced a power
estimate of 10% [608]. As in the single-group approach to
moderated mediation, MCCI had greater power estimates
than the delta method.

Conclusions

In this paper, we outlined the various challenges associ-
ated with sample-size planning for studies that test mod-
erated-mediation models, with a specific focus on how the

consideration of categorical exogenous predictors and mod-
erators affects this process. We outline a set of tools that
allow researchers to optimally plan for appropriate sample
sizes to test such models. Given the increasing popularity of
moderated mediation models—as represented both in theory
and in primary empirical studies that test such models—con-
sidering ways of optimizing tests of such effects is critical.
This is particularly important, given increasing criticism
of these models in the literature (e.g., Rohrer et al., 2021),
specifically with respect to their statistical power (Montoya
et al., 2021). Although we have mentioned other ways to
model moderated effects, the methods discussed here can
also be extended to model multiple (parallel or serial) medi-
ators, as discussed in the tutorial for Monte Carlo power
analysis by Schoemann et al. (2017). Our hope is that the
“toolkit” presented here will inspire researchers to more
carefully consider the sample-size requirements necessary to
test moderated mediation models and adopt a more critical
perspective on the strengths and limitations of such models.

Author Note This work was partly supported by the Dutch Research
Council (NWO), project 016.Veni.195.457, awarded to Terrence D.
Jorgensen.

Declarations

Conflicts of interest We have no conflicts of interest to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Anvari, F., & Lakens, D. (2021). Using anchor-based methods to
determine the smallest effect size of interest. Journal of Exper-
imental Social Psychology, 96, 104159. https:// doi. org/ 10.
1016/j. jesp. 2021. 104159

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of
behavioral change. Psychological Review, 84(2), 191. https://
doi. org/ 10. 1037/ 0033- 295X. 84.2. 191

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator vari-
able distinction in social psychological research: Conceptual,
strategic, and statistical considerations. Journal of Personality
and Social Psychology, 51(6), 1173.

Beaujean, A. A. (2014). Latent variable modeling using R: A step-
by-step guide. Routledge.

Cohen, J. (1988). Statistical power analysis for the behavioral sci-
ences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.

3908 Behavior Research Methods (2023) 55:3892–3909

1 3

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jesp.2021.104159
https://doi.org/10.1016/j.jesp.2021.104159
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1037/0033-295X.84.2.191

Dagpunar, J. S. (2007). Simulation and Monte Carlo: With appli-
cations in finance and MCMC. Wiley. https:// doi. org/ 10. 1002/
97804 70061 336

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power
3: A flexible statistical power analysis program for the social,
behavioral, and biomedical sciences. Behavior Research Meth-
ods, 39, 175–191. https:// doi. org/ 10. 3758/ BF031 93146

Fossum, J. L., & Montoya, A. K. (2021). When to use different tests
for power analysis and data analysis for mediation. Preprint
available at https:// doi. org/ 10. 31234/ osf. io/ 5tm2x

Hayes, A. F. (2015). An index and test of linear moderated media-
tion. Multivariate Behavioral Research, 50(1), 1–22. https:// doi.
org/ 10. 1080/ 00273 171. 2014. 962683

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional
process analysis: A regression-based approach. Guilford.

Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness
of inferential tests of the indirect effect in statistical mediation
analysis: does method really matter? Psychological Science,
24(10), 1918–1927. https:// doi. org/ 10. 1177/ 09567 97613 480187

Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Ros-
seel, Y. (2021). semTools: Useful tools for structural equation
modeling. R package version 0.5-5. Retrieved 21 September
2021, from https:// CRAN.R- proje ct. org/ packa ge= semTo ols

Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte
Carlo methods. Wiley. https:// doi. org/ 10. 1002/ 97811 18014 967

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence test-
ing for psychological research: A tutorial. Advances in Methods
and Practices in Psychological Science, 1(2), 259–269. https://
doi. org/ 10. 1177/ 25152 45918 770963

Lench, H. C., Taylor, A. B., & Bench, S. W. (2014). An alternative
approach to analysis of mental states in experimental social cog-
nition research. Behavior Research Methods, 46(1), 215–228.
https:// doi. org/ 10. 3758/ s13428- 013- 0351-0

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996).
Power analysis and determination of sample size for covariance
structure modeling. Psychological Methods, 1(2), 130. https://
doi. org/ 10. 1037/ 1082- 989X.1. 2. 130

MacKinnon, D. P. (2008). Introduction to statistical mediation anal-
ysis. Routledge.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., &
Sheets, V. (2002). A comparison of methods to test mediation and
other intervening variable effects. Psychological Methods, 7(1),
83–104. https:// doi. org/ 10. 1037/ 1082- 989X.7. 1. 83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confi-
dence limits for the indirect effect: Distribution of the product
and resampling methods. Multivariate Behavioral Research,
39(1), 99–128.

Mayer, A., & Thoemmes, F. (2019). Analysis of variance mod-
els with stochastic group weights. Multivariate Behavioral
Research, 54(4), 542–554. https:// doi. org/ 10. 1080/ 00273 171.
2018. 15489 60

Montoya, A. K., Aberson, C., Fossum, J. L., Chen, D., & Gonzalez,
O. (2021). New Insights in Power and Power Analysis in Media-
tion Models. https:// doi. org/ 10. 31234/ osf. io/ c2kw7

Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation
is mediated and mediation is moderated. Journal of Personality
and Social Psychology, 89(6), 852–863. https:// doi. org/ 10. 1037/
0022- 3514. 89.6. 852

Muthén, B. O. (2002). Beyond SEM: General latent variable mod-
eling. Behaviormetrika, 29(1), 81–117. https:// doi. org/ 10. 2333/
bhmk. 29. 81

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo
study to decide on sample size and determine power. Structural
Equation Modeling, 9(4), 599–620. https:// doi. org/ 10. 1207/
S1532 8007S EM0904_8

Oehlert, G. W. (1992). A note on the delta method. The American
Statistician, 46(1), 27–29. https:// doi. org/ 10. 2307/ 26844 06

Pornprasertmanit, S., Miller, P., Schoemann, A. M., & Jorgensen, T.
D. (2021). simsem: SIMulated structural equation modeling.
R package version 0.5-16. Retrieved 21 September 2021, from
https:// cran.r- proje ct. org/ packa ge= simsem

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing
moderated mediation hypotheses: Theory, methods, and pre-
scriptions. Multivariate Behavioral Research, 42(1), 185–227.
https:// doi. org/ 10. 1080/ 00273 17070 13413 16

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence
intervals for indirect effects. Communication Methods and Measures,
6(2), 77–98. https:// doi. org/ 10. 1080/ 19312 458. 2012. 679848

R Core Team. (2021). R: A language and environment for statistical
computing (version 4.0.5) [Computer software]. Vienna, Austria:
R Foundation for Statistical Computing. Retrieved from the com-
prehensive R archive network (CRAN): https:// www.R- proje ct. org/

Rohrer, J. M., Hünermund, P., Arslan, R. C., & Elson, M. (2021).
That’s a lot to PROCESS! Pitfalls of Popular Path Models.
https:// doi. org/ 10. 31234/ osf. io/ paeb7

Rosseel, Y. (2012). Lavaan: An R package for structural equation
modeling and more. Journal of Statistical Software, 48(2),
1–36. https:// doi. org/ 10. 18637/ jss. v048. i02

Rudolph, C. W., Harari, M. B., & Nieminen, L. R. (2015). The effect
of performance trend on performance ratings occurs through
observer attributions, but depends on performance variability.
Journal of Applied Social Psychology, 45(10), 541–560. https://
doi. org/ 10. 1111/ jasp. 12318

Ryu, E., & Cheong, J. (2017). Comparing indirect effects in differ-
ent groups in single-group and multi-group structural equation
models. Frontiers in Psychology, 8, 747. https:// doi. org/ 10.
3389/ fpsyg. 2017. 00747

Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test
in covariance structure analysis. Psychometrika, 50(1), 83–90.
https:// doi. org/ 10. 1007/ BF022 94150

Schoemann, A. M., Boulton, A. J., & Short, S. D. (2017). Determin-
ing power and sample size for simple and complex mediation
models. Social Psychological and Personality Science, 8(4),
379–386. https:// doi. org/ 10. 1177/ 19485 50617 715068

Schoemann, A. M., Miller, P., Pornprasertmanit, S., & Wu, W.
(2014). Using Monte Carlo simulations to determine power and
sample size for planned missing designs. International Journal
of Behavioral Development, 38(5), 471–479. https:// doi. org/ 10.
1177/ 01650 25413 515169

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect
effects in structural equation models. Sociological Methodology,
13, 290–312. https:// doi. org/ 10. 2307/ 270723

Sobel, M. E. (1986). Some new results on indirect effects and their
standard errors in covariance structure models. Sociological Meth-
odology, 16, 159–186. https:// doi. org/ 10. 2307/ 270922

Welsh, D. T., Baer, M. D., Sessions, H., & Garud, N. (2020). Motivated
to disengage: The ethical consequences of goal commitment and
moral disengagement in goal setting. Journal of Organizational
Behavior, 41(7), 663–677. https:// doi. org/ 10. 1002/ job. 2467

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3909Behavior Research Methods (2023) 55:3892–3909

1 3

https://doi.org/10.1002/9780470061336
https://doi.org/10.1002/9780470061336
https://doi.org/10.3758/BF03193146
https://doi.org/10.31234/osf.io/5tm2x
https://doi.org/10.1080/00273171.2014.962683
https://doi.org/10.1080/00273171.2014.962683
https://doi.org/10.1177/0956797613480187
https://cran.r-project.org/package=semTools
https://doi.org/10.1002/9781118014967
https://doi.org/10.1177/2515245918770963
https://doi.org/10.1177/2515245918770963
https://doi.org/10.3758/s13428-013-0351-0
https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.1037/1082-989X.7.1.83
https://doi.org/10.1080/00273171.2018.1548960
https://doi.org/10.1080/00273171.2018.1548960
https://doi.org/10.31234/osf.io/c2kw7
https://doi.org/10.1037/0022-3514.89.6.852
https://doi.org/10.1037/0022-3514.89.6.852
https://doi.org/10.2333/bhmk.29.81
https://doi.org/10.2333/bhmk.29.81
https://doi.org/10.1207/S15328007SEM0904_8
https://doi.org/10.1207/S15328007SEM0904_8
https://doi.org/10.2307/2684406
https://cran.r-project.org/package=simsem
https://doi.org/10.1080/00273170701341316
https://doi.org/10.1080/19312458.2012.679848
https://www.r-project.org/
https://doi.org/10.31234/osf.io/paeb7
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1111/jasp.12318
https://doi.org/10.1111/jasp.12318
https://doi.org/10.3389/fpsyg.2017.00747
https://doi.org/10.3389/fpsyg.2017.00747
https://doi.org/10.1007/BF02294150
https://doi.org/10.1177/1948550617715068
https://doi.org/10.1177/0165025413515169
https://doi.org/10.1177/0165025413515169
https://doi.org/10.2307/270723
https://doi.org/10.2307/270922
https://doi.org/10.1002/job.2467

	Power analysis for conditional indirect effects: A tutorial for conducting Monte Carlo simulations with categorical exogenous variables
	Abstract
	Introduction
	Model conceptualizations and approaches
	Technical tutorial

	Simple mediation
	Specify a single-group population model
	Monte Carlo power analysis for single-group model

	Specify a multigroup population model
	Monte Carlo power analysis for multigroup model

	Moderated mediation
	Specify a single-group population model
	Analyze data using a single-group SEM
	Analyze data using a multigroup SEM

	Power analyses
	Single-group simulation
	Multigroup simulation

	Conclusions
	Author Note
	References

