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Abstract
Conceptual and statistical models that include conditional indirect effects (i.e., so-called “moderated mediation” models) are increas-
ingly popular in the behavioral sciences. Although there is ample guidance in the literature for how to specify and test such models, 
there is scant advice regarding how to best design studies for such purposes, and this especially includes techniques for sample size 
planning (i.e., “power analysis”). In this paper, we discuss challenges in sample size planning for moderated mediation models 
and offer a tutorial for conducting Monte Carlo simulations in the specific case where one has categorical exogenous variables. 
Such a scenario is commonly faced when one is considering testing conditional indirect effects in experimental research, wherein 
the (assumed) predictor and moderator variables are manipulated factors and the (assumed) mediator and outcome variables are 
observed/measured variables. To support this effort, we offer example data and reproducible R code that constitutes a “toolkit” to 
make up for limitations in other software and aid researchers in the design of research to test moderated mediation models.
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Introduction

This paper demonstrates how to conduct Monte Carlo power 
analyses (Muthen & Muthen, 2002) for tests of (moderated) 
mediation using the R package simsem (Pornprasertmanit 
et al., 2021). While similar tutorials already exist (e.g., Sch-
oemann et al., 2014), our scope extends these methods by 
considering previously ignored aspects of sampling designs: 
first, the inclusion of fixed covariates, as in the case of exper-
imental1 designs; second, the flexibility of multigroup SEM 

to model moderation of indirect effects. We begin with a 
brief comparison of established methods for estimating sta-
tistical power, noting the current gaps that our tutorial is 
designed to fill.

Statistical power defined under the frequentist logic of 
null hypothesis testing is the probability of detecting a sig-
nificant effect in a sample if that effect in fact exists in the 
population. Power is equal to 1 − β (β being the probability 
of a type II error), or the probability of correctly rejecting the 
null hypothesis (Cohen, 1988). Statistical power has a rela-
tionship with sample size, effect size, and alpha (α), where 
α is the probability of making a type I error, or incorrectly 
rejecting the null hypothesis (i.e., one’s “significance level”). 
In this relationship, power increases as sample size, effect 
size, or α increases. In the case of moderated mediation, 
power is estimated specifically for the difference between 
indirect effects across levels of the moderator, also known 
as an equivalence test of indirect effects (MacKinnon, 2008).

Often researchers are interested in estimating the 
required sample size for obtaining the smallest effect size 
of interest (SESOI), which is the smallest effect size one 
would consider meaningful (e.g., Anvari & Lakens, 2021; 
Lakens et  al., 2018). Too small of a sample size may 
result in making a type II error (which is debilitating to 
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1  Fixed covariates need not be randomly assigned treatment groups. 
Fixed covariates can follow from stratified sampling techniques (e.g., 
sampling from chosen age groups) or from characteristics of populations 
that arise in practice (e.g., employees with fixed distributions of qualities 
determined by tests administered as part of a hiring process). The sin-
gle-group methods in this paper apply generally to any case when fixed 
covariates are relevant, but we focus on an example of experimental 
design because it also enables comparing single- and multigroup SEM.
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scientific progression), whereas too large of a sample may 
unnecessarily consume valuable resources (e.g., money to 
compensate unneeded participants, participant’s time in 
completing study procedures). Therefore, being prudent and 
properly conducting an a priori power analysis should very 
much be of interest to researchers.

There are analytic approaches to estimate power using 
general linear models (GLM; e.g., G*Power; Faul et al., 
2007), based on functions of (specified or estimated) power, 
sample size, H0 test criterion, and standard effect size. There 
are also analytic approaches for structural equation models 
(SEMs) such as likelihood ratio test (e.g., LRT; Satorra & 
Saris, 1985) and root mean square error of approximation 
(e.g., RMSEA; MacCullum et al., 1996) that are capable 
of power analysis for more complex multivariate models. 
However, these methods are generally limited to ideal data 
(i.e., normally distributed, complete observations) and have 
yet to be extended to common real-data scenarios (e.g., dis-
crete indicators, incomplete data). A more recently adopted 
method, Monte Carlo (MC) simulation, is more flexible and 
resolves many of the limitations noted above by estimating 
power of various test statistics (e.g., normal-theory-based 
t and F statistics in GLM, asymptotic z and χ2 statistics 
in SEM). MC-based power analyses also enable estimat-
ing power of more flexible (e.g., resampling) methods of 
testing a H0, such as percentile-based bootstrap confidence 
intervals, which can have differential power from analyti-
cally derived test statistics (Fossum & Montoya, 2021). MC 
is a resampling-based method which simulates data from a 
specified population model with parameters selected by the 
researcher (potentially derived from estimated parameters 
using pilot data). Empirical estimates of power to reject the 
null hypothesis (H0: effects = 0 in the population) under the 
specified effect sizes and sample size are calculated from 
the proportion of samples found to be significant at a given 
criterion (e.g., p < .05). For instance, if 10,000 simulated 
samples were taken and the effect of interest (e.g., ab) was 
found to be statistically significant for 8000 simulated sam-
ples, then the empirically estimated power to reject H0 would 
equal 80%.

Despite advances in the use of MC power analysis in the 
literature, specific gaps remain. Below we describe these 
gaps and illustrate our motivation for this tutorial. Generat-
ing data from a population model typically involves mul-
tivariate normal data generated from the model-implied 
mean and covariance matrix. These may be discretized with 
a threshold model, or missing-data mechanisms may be 
imposed. However, popular software facilitating MC simula-
tions for SEM (e.g., Mplus; Muthén and Muthén, 2002) gen-
erally do not provide a way to simulate different distributions 
of exogenous predictors, making it difficult to design a MC 

study for power analysis that accurately reflects the real data-
generating process a researcher expects to encounter. For 
instance, age or income distributions might be determined 
by the study design, or more complex stratified sampling 
might be involved (Kroese et al., 2011, ch. 9). Incorporating 
fixed covariates falls under a larger set of variance-reduction 
techniques for Monte Carlo research (Dagpunar, 2007, ch. 5) 
that, in the context of power analysis can provide more stable 
estimates of power (Mayer & Thoemmes, 2019).

The general lack of user-friendly software capable of 
accepting a set of fixed covariates to be used for data-gen-
eration—in conjunction with the absence of explanatory 
literature on conducting MC simulation power analyses for 
conditional indirect effect models with categorical exog-
enous variables—has left researchers with a discernible 
methodological deficiency. An urgency to address this gap 
is indicated by the advocation of such models for experi-
mental research (e.g., Lench et al., 2014), empirical inves-
tigations (e.g., Rudolph et al., 2015; Welsh et al., 2020) and 
numerous online inquiries2 (e.g., Research Gate, lavaan 
forum, WebPower). As far as we know, only the package 
simsem (Pornprasertmanit et al., 2021) in the open-source 
programming language R (R Core Team, 2021) can facilitate 
user-friendly3 simulations of SEM data that contain fixed 
exogenous predictors with arbitrary distributions. This tuto-
rial seeks to comprehensively demonstrate how MC power 
analysis works in the case of moderated mediation in experi-
mental designs, although in principle the same feature can be 
exploited for other cases mentioned above (e.g., fixed age or 
income distributions in a common-factor model).

In pursuit of this objective, we first briefly introduce mod-
erated, mediated, and moderated mediation with categorical 
exogenous variables, as well as single-group and multigroup 
model approaches, each of which are employed throughout 
the tutorial. For both approaches, we begin the demonstra-
tion with a simple mediation model and then extend it to 

2  Links to online inquiries from
  Research gate: https://​www.​resea​rchga​te.​net/​post/​How_​to_​do_a_​
moder​ated_​media​tion_​with_​categ​orical_​IV_​and_a_​categ​orical_​
moder​ator; 
lavaan forum: https://​groups.​google.​com/g/​lavaan/​c/​otcOc​c7Rclw/​m/​
4xwhC​ODyAw​AJ; 
Web Power: https://​webpo​wer.​psych​stat.​org/​qanda/​55/​sample-​size-​
for-a-​3-​way-​moder​ation-​and-​moder​ated-​media​tion;
Web Power: https://​webpo​wer.​psych​stat.​org/​qanda/​57/​repre​senti​ng-​
inter​action-​terms-​in-​monte​carlo-​sem-​power.
3  Many programming languages are capable of MC simulations with 
fixed covariates, however only simsem provides user-friendly tools 
automating some of the more difficult details of programming such 
MC studies.
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conditional indirect effect models. Lastly, we briefly note 
how to test and estimate power for (conditional) indirect 
effects using two4 methods: (1) Wald tests based on delta-
method SEs (which should suffice in large samples), and 
(2) a parametric bootstrap technique referred to as Monte 
Carlo confidence intervals (MCCI), which are more robust 
in smaller samples (Preacher & Selig, 2012) and provide a 
less computationally intensive alternative to nonparametric 
bootstrap with similar results (Fossum & Montoya, 2021; 
Hayes & Scharkow, 2013).

Model conceptualizations and approaches

Testing theories and hypotheses proposing moderated and 
mediated relations have become increasingly common 
throughout behavioral research. Moderation (see Fig. 1A) 
is commonly modeled as a statistical interaction effect by 
using the product of a focal predictor and moderator as an 
additional covariate and is broadly said to occur when the 
effect (i.e., strength and/or direction) of a focal predictor X 
on an outcome variable Y depends on the level of another 
variable W (moderator). In the simplest case, mediation 

(i.e., an indirect effect, see Fig. 1B) can be described as 
an independent variable X affecting an outcome variable Y 
through a third variable M (mediator). That is, the independ-
ent variable X affects the mediator M, which in turn affects 
the dependent variable Y, where the effect of X on M repre-
sents the “a path,” and the effect of M on Y controlling for 
X represents the “b path.” Mediation effects may be quanti-
fied as the product of the a and b paths (MacKinnon, 2008). 
Additionally, the total effect of X on Y depicts the “c path” 
in the bottom portion of Fig. 1B, which is equal to the sum 
of direct (c′) and indirect effects (ab).

Theories and hypotheses may also posit relations involv-
ing the combination of moderation and mediation processes, 
often referred to as “moderated mediation5,” which implies 
“conditional indirect effects.” We loosely describe this 

Fig. 1   Illustrative model examples. Note. Panel A depicts a common case of moderation, Panel B depicts a common case of mediation, and 
Panel C depicts a common case of moderated mediation

4  A third more computationally efficient approach derived from ana-
lytical power analysis of the likelihood ratio test statistic (Satorra & 
Saris, 1985) is not discussed in the manuscript but is comprehen-
sively described in the OSF appendix linked below.

5  “Mediated moderation” is another term for models that combine 
both features, but this is not conceptually or statistically distinct from 
moderated mediation (Preacher et  al., 2007). For example, the term 
“moderated mediation” implies the focus is on the indirect effect (ab) 
of X on Y via M, and how ab is moderated by W. In contrast, the 
term “mediated moderation” implies the focus is on the moderat-
ing effect of W (e.g., the statistical interaction effect, or slope of the 
product XW) and how that slope is mediated by M. The same model 
can be used to focus on either aspect of the model. We only refer to 
“moderated mediation” throughout, focusing on conditional indirect 
effects.
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integrated model as one where the magnitude or direction 
of an indirect effect depends on levels (e.g., assumed values 
or contexts) of a moderating variable, although it is impor-
tant to note that there are multiple conceptual and analytical 
definitions of moderated mediation (e.g., Muller et al., 2005; 
Preacher et al., 2007). Figure 1C illustrates a common case 
of moderated mediation in which an indirect effect is made 
conditional as a function of W moderating the a path (e.g., 
Hayes model 7; Hayes, 2017). That is, the differences in the 
a path across levels of W produce differences in the indirect 
effect ab as well. Preacher et al. (2007) discussed this case 
along with four other ways ab could be moderated (e.g., X 
or W moderates the b path, W moderates both a and b paths, 
or a and b paths are moderated by separate moderators), but 
we keep our focus on W moderating the a path throughout 
the paper briefly noting extensions to the other four models 
to simplify our presentation of examples.

A classic approach to mediation used separate regres-
sion models (Baron & Kenny, 1986); however, SEM is a 
multivariate approach that simultaneously models multi-
ple systems of equations, making it more ideally suited to 
model hypotheses involving mediation. Indirect effects in 
SEMs may be investigated to be conditional of a categorical 
variable via single-group (e.g., moderator is represented by 
a variable(s) in the model) and multigroup analysis (e.g., 
observations are segregated into groups using the levels of 
the moderator such that the variable is not included in the 
model; Ryu & Cheong, 2017). The strengths and weaknesses 
of each approach are discussed throughout the tutorial.

Technical tutorial

Given the lack of intuitive resources on facilitating MC sim-
ulation power analyses with fixed covariates in simsem, we 
created a comprehensive repository to house all the coding 
syntax rather than compromise detail to make it fit in the 
text. Each section in this paper has a corresponding section 
in an R-code vignette, which can be accessed via our online 
appendix (https://​osf.​io/​mpd74/). The core syntax related to 

the tutorial is provided in tables, but we occasionally refer 
to some additional material in the more comprehensive 
vignette. Each row of text in the vignette is numbered, which 
will be used to reference specific chunks of code throughout 
the technical discussion. Only text lines (including code out-
puts) are numbered, therefore chunks of code are specified 
in brackets denoting the row number immediately preceding 
the referenced code (e.g., [45] referencing the first block of 
code in the vignette). The exception to this formatting is 
when referencing R Console output, which will correspond 
to the exact row number. Our tutorial assumes a degree of 
familiarity with R basics and structural equation modeling 
(SEM) software; thus, those with less experience may ben-
efit from the following resources covering R (https://​swirl​
stats.​com/​stude​nts.​html) and SEM (Beaujean, 2014; Ros-
seel, 2012) more thoroughly.

To aid in the interpretability of our discussion, we intro-
duce a running example of moderated mediation with 
dichotomous treatment effects in Fig. 2 below. That is, self-
efficacy (control vs. treatment categorical exogenous vari-
able) affects task performance (continuous endogenous vari-
able) through effort (continuous endogenous variable) while 
performance feedback ambiguity, or “feedback ambiguity” 
for short (unambiguous control vs. ambiguous treatment cat-
egorical exogenous variable) moderates the a path and thus 
the indirect effect ab. In this example, self-efficacy (one’s 
belief in their capacity to execute behaviors necessary for 
goal attainment; Bandura, 1977) is manipulated in the treat-
ment group by providing subjects false normative informa-
tion to decrease their perception of task difficulty (increase 
self-efficacy). Whereas feedback ambiguity is manipulated 
in the treatment group by restricting subject’s feedback on 
performance while engaging in the task, feedback is pro-
vided continuously in the control condition.

For simplicity and pedagogical purposes, we first discuss 
the simple mediation version of self-efficacy affecting task 
performance through effort, and then build on this model 
in the second half of the tutorial by incorporating the mod-
erator, feedback ambiguity. For both simple mediation and 

Fig. 2   Running example of moderated mediation. Note. Illustrative case of moderated mediation used as a running example throughout the tuto-
rial
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moderated mediation sections, we walk through single- and 
multigroup approaches. Lastly, a general simsem workflow 
is illustrated in Table 1, which is consistent in each of the 
following sections.

Simple mediation

Given that our exogenous variables represent assigned/
manipulated groups rather than numeric values, we employ 
“dummy coding” to denote self-efficacy group notation. In 
our simple mediation model, assuming a 0 = control, 1 = 
treatment dummy coding pattern, the a path represents the 
difference in means of effort between the self-efficacy con-
trol and treatment groups, while the b path is the effect (i.e., 
the partial coefficient) of effort on task performance control-
ling for self-efficacy, which is constant across self-efficacy 
treatment and control groups. Lastly, the c′ path is expressed 
as the adjusted mean difference in task performance between 
self-efficacy groups, controlling for effort.

Specify a single‑group population model

We begin by installing and loading the simsem pack-
age (http://​simsem.​org/) in R using standard syntax.> 
install.packages("simsem")> library(simsem)

In simsem, the effects of our dichotomous predictor self-
efficacy can be generated according to our study design as 
fixed dummy-coded variables. The self-efficacy conditions 
are coded as 0 for control (no self-efficacy manipulation) and 
1 for treatment (increased self-efficacy). We design a matrix 
of these dummy codes by first specifying the number of sub-
jects to be randomly assigned per group. In our example, 
we arbitrarily assigned 50 participants per group (Table 2, 
line 1), but this is only a starting point because sample size 
can be adjusted later as a function of our power analysis 
results. After assigning the number of participants per group, 
we use the data.frame() function to populate a matrix 

comprised of a column X (self-efficacy) with 100 rows indi-
cating which group (self-efficacy condition = 1 or 0) each 
observation in the data frame corresponds to (Table 2, line 
2). Note that these are balanced groups, so 50 of the rows are 
filled with dummy code = 1 and 50 with dummy code = 0. 
We name this data frame containing the dummy codes of our 
fixed self-efficacy variable “exoData” to be integrated into 
our model later. Lastly, sample size is equal to the number 
of rows within exoData (N = 100), which we specify by 
using the nrow() function and assigning the object to “N” 
(Table 2, line 3). Because sample size is coded as a function 
of the number of rows in exoData, we only have to update 
the number of subjects per group when iteratively increas-
ing/decreasing sample size to obtain desired power later on.

Next, we define our population parameters from which we 
will repeatedly draw simulated samples. These parameters 
include the effect of self-efficacy on effort (a path), the effect 
of effort on task performance (b path), and the direct effect 
of self-efficacy on task performance controlling for effort (c′ 
path). To do so, we simply assign a value for each effect to 
an object in R (see Table 2, lines 4–6). These effects should 
correspond to the smallest effect size of interest (SESOI) 
thought to exist in the population (see Lakens et al., 2018 
and [651] for discussion on determining SESOI and drawing 
estimated power curves). The simsem package can accept 
standardized slopes, so the SESOI input for the population 
parameters may be in their standardized forms; however, 
unstandardized effect sizes can be accommodated as well. 
We elaborate further below on how simsem facilitates 
standardized parameters.

Once standardized values for the a, b, and c′ paths have 
been assigned to objects, we design matrices correspond-
ing to the exogenous and endogenous paths to be passed to 
simsem. This is done using LISREL-style matrices, sup-
plemented by additional matrixes that capture the effects of 
exogenous predictors (X) on observed (kappa: κ; Muthén, 
2002, Eq. 1) or latent (gamma: Γ; Muthén, 2002, Eq. 2) 
variables. This requires us to create a “kappa” matrix for 
exogenous paths (i.e., effects of the treatment variable on 
the mediator and outcome) and a “beta” matrix for endog-
enous paths (i.e., the effect of the mediator on the outcome). 
The structure of both kappa and beta matrices contains one 
row for each outcome and one column for each predictor. 
Within each kappa and beta matrix, simsem requires us to 
separately specify (a) which parameters are freely estimated 
vs. fixed to a particular value and (b) the values for popula-
tion parameters when generating data. We break this process 
down into the following four steps: (1) design the structure 
of the matrix, (2) specify the matrix of free/fixed parameters, 
(3) specify the matrix of population parameters, and (4) inte-
grate and store both matrices into a SimMatrix object. 
The subsequent two sections walk through these steps for 

Table 1   Simsem workflow

Steps outlining the simsem workflow for Monte Carlo power analysis.

Step Description

1) Specify fixed distribution of predictor(s) – in our 
example, an experimental design matrix, but can be 
any arbitrary distribution(s).

2) For each parameter matrix, specify (1) fixed/free 
estimates and (2) data-generating parameter values 
and bind() each pair together.

3) Collect all parameter matrices into a model().
4) Use sim() to simulate and analyze nReps=  

samples of n= simulees.
5) Summarize Monte Carlo results.
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both our exogenous parameters (kappa matrix) and endog-
enous parameters (beta matrix).

Beginning with creating a kappa matrix to store our 
exogenous parameters, we first build the structure using 
the matrix() function to specify the dimensions, col-
umn names, and row names (Table 2, line 7). Initially, we 
fill the matrix with “NA” (the missing-data code in R) as 
place holders in each element, followed by the number of 
rows and columns, which in this case is 2 and 1 respectively, 
corresponding to our two outcomes and one dummy-coded 
exogenous predictor. Note that “NA” or a character string 
(e.g., “b”) indicates to simsem that the parameter should 

be estimated freely, opposed to being fixed when a numerical 
value is input. Then we label the names of the dimensions 
using the list() function, specifying the rows first (“M”, 
“Y”) followed by the column (“X”). We assign this matrix 
to both “kappa.pop” and “kappa.free” objects, for we use 
this same structure in the second and third steps to populate 
the two matrices independently in order to be compatible 
with simsem. That is, we create two matrices (kappa.free 
and kappa.pop) with the same dimensions and labels. Sec-
ond, we replace the “NA” values in the kappa.free matrix 
with character-string labels for the a path and c′ path with 
“a” and “c” respectively (Table 2, lines 8–9). Using labels 

Table 2   R syntax for Monte Carlo power analysis of simple-mediation model, single-group approach

Line R syntax 
1 N.per.group <- 50 # balanced group sample sizes 
2 exoData <- data.frame(X = rep(1:0, each = N.per.group)) 
3 N <- nrow(exoData) 
4 a <- .5 # effect of X on M 
5 b <- .4 # effect of M on Y, controlling for X 
6 c <- .2 # effect of X on Y, controlling for M 
7 kappa.free <- kappa.pop <- matrix(NA,       # estimate all effects 

                                  nrow = 2, # 2 outcomes (M and Y) 
                                  ncol = 1, # 1 dummy coded X 
                                  dimnames = list(c("M","Y"), "X")) 

8 kappa.free["M","X"]  <- "a"
9 kappa.free["Y","X"]  <- "c"
10 kappa.pop["M","X"]   <-  a 
11 kappa.pop["Y","X"]   <-  c 
12 exoPaths <- bind(free = kappa.free, popParam = kappa.pop) 
13 beta.free <- beta.pop <- matrix(0, nrow = 2, ncol = 2, 

                              dimnames = list(c("M","Y"), c("M","Y")))
14 beta.free["Y", "M"] <- "b" 
15 beta.pop["Y", "M"]  <-  b 
16 endoPaths <- bind(free = beta.free, popParam = beta.pop) 
17 residCor <- binds(free = diag(as.numeric(NA), 2), popParam = diag(2)) 
18 userParams <- ' ind   := a * b 

                total := ind + c ' 
19 simMod1 <- model.path(BE = endoPaths, RPS = residCor, 

                      KA = exoPaths, con = userParams, 
                      indLab = rownames(kappa.free), 
                      covLab = colnames(kappa.free)) 

20 rejectMCCI <- function(object) { 
  CIs <- semTools::monteCarloCI(object) 
  apply(CIs, 1, function(CI) 0 < CI["ci.lower"] | 0 > CI["ci.upper"]) 
}

21 out1 <- sim(nRep = 100, model = simMod1, covData = exoData, 
            n = nrow(exoData), seed = 777, outfun = rejectMCCI) 

22 summaryParam(out1, matchParam = TRUE, digits = 3) 
23 testMCCI <- do.call(rbind, getExtraOutput(out1)) 
24 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs 
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rather than merely “NA” will later allow us to specify user-
defined parameters in lavaan syntax, such as indirect and 
total effects. Third, the “NA” values in the kappa.pop matrix 
are replaced with the actual population parameters (Table 2, 
lines 10–11) consisting of the standardized effects assigned 
above for the a and c′ paths in their respective elements. 
Lastly, we use the bind() function in simsem to cre-
ate a SimMatrix object comprised of both kappa.free and 
kappa.pop matrices. This new SimMatrix we assign to an 
object “exoPaths” (Table 2, line 10).

Next, we repeat these four steps (with minor alterations 
to design) to populate beta matrices for our endogenous 
parameter (Table 2, lines 13–16). Again, we first use the 
matrix() function to set the dimensions, row names, and 
column names; however, now we populate each element 
with the value 0 rather than “NA” and design a 2 (effort, 
task performance) × 2 (effort, task performance) matrix 
because most values will be fixed to zero (Table 2, line 
13). The list() function is then used to label the rows 
(“M”, “Y”) and columns (“M”, “Y”). This matrix structure 
is then assigned to both “beta.free” and “beta.pop,” which 
we populate in the following two steps. Second, in the beta.
free matrix, the 0 in row-Y, column-M is replaced with the 
character-string label “b”, representing our freely estimated 
b path (Table 2, line 14). Third, in the beta.pop matrix, the 
0 in row-Y, column-M is replaced (Table 2, line 15) with 
the parameter previously assigned to object “b” (b=.4). 
The remaining zeros in our beta matrices are fixed values 
for elements M–M and Y–Y specify that our endogenous 
variables cannot cause themselves, and for Y–M in order to 
freely estimate only the effect of M on Y and not the other 
way around. Finally, the bind() function passes both beta.
free and beta.pop matrices into a SimMatrix, which we 
assign to an object “endoPaths” (Table 2, line 16).

The next step in specifying the population parameters 
for our simple mediation model requires us to create a 
covariance matrix of residuals among endogenous vari-
ables (Table 2, line 17). This process is quite similar to that 
of step 4 in the previous section, for we again create two 
2 (effort, task performance) × 2 (effort, task performance) 
matrices and pass them both to the bind() function. The 
first matrix indicates which parameters to freely estimate or 
fix to specific values (only variances on the diagonal), and 
the second specifies what population parameter values to 
use to generate data (optimal vector of variances). Because 
we specify a regression path between M and Y rather than 
a residual variance, we use the diag() function to eas-
ily create diagonal matrices in which off-diagonal elements 
are zero. The only freely estimated parameters are residual 
variances of effort and task performance, specified with 
“NA”, but now we also use the as.numeric() function 

so “NA” is interpreted as a (missing) numeric rather than 
logical value (the default). Rather than specifying popula-
tion parameters for the residual variances, instead we specify 
that the marginal (total) variances of M and Y should be 1, 
using diag(2) to generate a 2 × 2 identity matrix (i.e., all 
zeros except for ones on the diagonal). We assign this object 
specifying our residual matrix to the object “residCor”. 
When we assemble all matrices of model parameters using 
the model.path()function, we will pass the residCor 
object to the argument RPS= (residual correlation matrix) 
rather than PS= (residual covariance matrix). That tells 
simsem to automatically choose residual variances that 
equal 1 minus the explained variance, which standardizes 
our population parameters because now the sum of explained 
and residual variances is equal to 1 (total variance = 1).

Next, we specify user-defined parameters using lavaan 
syntax (Table 2, line 18), as shown in the online mediation 
tutorial (https://​lavaan.​ugent.​be/​tutor​ial/​media​tion.​html). 
User-defined parameters should be included in the model.
path()function whenever users want their simulation 
results to include calculations of power, bias, etc., for func-
tions of parameters, such as the indirect effect represented 
as the product of the a and b paths, and the total effect as the 
sum of the indirect (ab) and direct effects (c path). Defining 
a model in lavaan syntax requires all functions of param-
eters to be specified in a character string (i.e., within quota-
tion marks). Note in Table 2, line 18, how we specify each 
function of parameters using the lavaan operator “:=”, 
which is assigned to the object “userParams”.

Finally, we combine all the specified elements above 
into a single SimSem model object using the model.
path()function (Table 2, line 19). In addition to includ-
ing the “endoPaths”, “residCor”, “exoPaths”, and “userPar-
ams” objects, we can also specify custom variable names 
using the indLab= argument for endogenous variables 
and covLab= for exogenous variables. Because we speci-
fied these names in our matrices of regression slopes, we 
can use the rownames()and colnames()functions to 
assign the same labels as our endogenous (effort, task per-
formance) and exogenous (self-efficacy) variables, but we 
could also simply pass the variable names as a vector, such 
as c(“M”,”Y”). We assign the SimSem object to “sim-
Mod1,” which stores all specifications for the population 
model of our simple mediation example. Although it is not 
discussed here, in the vignette we use this simMod1 object 
to generate a single data set [85], which we use to illustrate 
how to analyze data using both single-group [83–126] and 
multigroup data analyses [127–191], which happens itera-
tively in the MC power analysis. This also serves as a dem-
onstration comparing the single-and multigroup approaches, 
as described by Ryu and Cheong (2017).
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Monte Carlo power analysis for single‑group model

The sim() function in simsem automates the process of 
generating a sample and then fitting the model to the simu-
lated data. This process is iterated many times in the sim() 
function, repeatedly fitting models to thousands of simulated 
samples. Power is then calculated as the proportion of sam-
ples in which the null hypothesis is rejected for each param-
eter estimated in the model. By default, lavaan uses an 
asymptotic approximation—the delta method (e.g., Oehlert, 
1992; Sobel, 1982, 1986)—to calculate standard errors for 
functions of parameters, which may result in inflated type 
1 error rates when indirect effect estimates have nonnormal 
sampling distributions (which is often the case; MacKin-
non et al. 2002, 2004), particularly when sample sizes are 
relatively small (also common in behavioral sciences). MC 
estimates of confidence intervals (MCCI) are more robust 
than the delta method because only parameter estimates 
themselves (i.e., a and b paths) are assumed to have nor-
mal sampling distributions (Preacher & Selig, 2012). Using 
the semTools package (Jorgensen et al., 2021), we can 
easily obtain MCCIs for indirect effects by passing a fitted 
lavaan model to the monteCarloCI() function (e.g., 
[117, 191]), and test the H0 by checking whether the MCCI 
contains that value. To estimate the power using this more 
robust test, a custom function can be written that accepts 
a fitted lavaan model and returns the result of a H0 test 
(Table 2, line 20), and that custom function will be applied 
for each simulated sample by passing the function to the 
outfun= argument in the sim() function (Table 2, line 
21).

The remaining information must also be passed to the 
sim() function (Table 2, line 21): First is the number of 
repeated samples to be simulated (in the vignette we specify 
100 for faster computations, but 1000 to 5000 samples are 
recommended to ensure convergence and more robust esti-
mates; Muthén & Muthén, 2002) via the nRep= argument, 
as well as the size of each sample n=, which must match 
the number of rows in exoData. The covariate data in exo-
Data must also be passed to the covData= argument, along 
with the population parameters in the simMod1 object via 
model=. To ensure replicability of results, a default seed= 
for the random-number generator is set to 12345, but can be 
any integer (e.g., seed=777 in Table 2, line 21).

We assign the sim output to an object “out1” and pass 
it to the summaryParam() function to inspect power for 
each parameter (Table 2, line 22). Note that it may take sev-
eral minutes for the MC simulation to complete, especially 
with larger sample sizes and number of samples. The output 
of the summaryParam() function displays 10 columns; 
for detailed information of each, enter “?summaryParam” 
into the R console to open the help page. Of immediate 
interest to us is the “estimate average” column, which is the 

average of the parameter estimates across all samples; the 
“power (Not equal 0)” column, which is the estimated power 
to reject a H0 of zero for each parameter (note power for the 
indirect effect is 57%); the “average bias” column, which is 
the difference between average estimates and corresponding 
population parameters (as a rule of thumb, “good” average 
bias has an absolute value less than .10); and the “cover-
age” column, which is the percentage of (1 – α) × 100% 
confidence interval covering the parameters underlying the 
data (by default, alpha=.05). Coverage rates that deviate 
substantially from nominal values (e.g., 95%) indicate the 
practical impact of biased point or SE estimates.

It is important to note that power in this output is derived 
from the default delta-based method, and to extract the 
power results from our custom MCCI function, we must 
pass our out1 object to the getExtraOutput() function 
to extract the list of sampled MCCI results stored in out1, 
then use rbind() to convert the list into a matrix with 
parameters in columns and replications in rows, which we 
assign to the object “testMCCI” (Table 2, line 23). We then 
pass the testMCCI object to the colMeans() function 
(Table 2, line 24) to get the average of the dummy codes 
indicating whether the H0 was rejected for the indirect and 
total effects. These results indicate power of 72% and 64% 
for the indirect and total effects respectively, which is sub-
stantially higher than the power produced using the default 
delta method (power for indirect effect = 57%). Since power 
is still less than 80% for the indirect effect, we must go back 
to the first few lines of code where we specify the number of 
subjects in each group—this value is assigned to the “N.per.
group” object (Table 2, line 1). We would then iteratively 
increase the number of subjects per group and re-run all the 
code until power for the indirect effect is at an acceptable yet 
practical level. Keep in mind that the relationship between 
sample size and power is not linear; thus, it may take a large 
increase in sample size to obtain a small increase in power, 
especially in more complex models with more parameters.

Specify a multigroup population model

Alternatively, the multigroup approach does not include our 
dichotomous self-efficacy predictor in the model (Ryu & 
Cheong, 2017). Instead, a model with endogenous variables 
(M and Y) is specified separately within each self-efficacy 
(treatment and control) group, and the effects (b paths) are 
held constant across the two models. Here, the effect of self-
efficacy on effort (a path) is quantified as the difference in 
intercepts for effort between self-efficacy groups, and the 
direct effect of self-efficacy on task performance (the c′ path) 
is the difference in intercepts for task performance control-
ling for effort. With the effect of effort on task performance 
(b path) and residual variances held equal across groups, the 
multigroup model is equivalent to the single-group model, 
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as our online vignette illustrates using a single simulated 
data set.

An advantage of the multigroup approach over the sin-
gle is that both of the above-mentioned constraints may be 
lifted. For instance, releasing the constraint on the effect of 
effort on task performance allows self-efficacy to moderate 
the b path (moderated mediation model 1 in Preacher et al.’s, 
2007, Fig. 2; also called model 14 by Hayes, 2017) and thus 
to test the assumption of homogeneous slopes. Releasing the 
constraint on residual variances enables one to test assump-
tions of homoskedasticity across treatment groups. It is 
important to note that these benefits come with a tradeoff, 
for power is lost when constraints are lifted. Releasing con-
straints costs degrees of freedom and in turn power when 
using the same sample size and data because of the addi-
tional parameters required to be estimated. Conversely, if the 
model is too constrictive then its type 1 error rates will be 
inflated, which will outweigh the benefits from added power. 
Ideally, when employing the more flexible multigroup 
approach with parameters unconstrained, one could simply 
increase sample size to buy back power. Unfortunately, what 
is ideal and what is practical are often in opposition, so we 
provide instructions on both constrained and unconstrained 
multigroup approaches below.

The multigroup approach requires us to update our sim-
sem model object to include a mean structure because the 
effects of self-efficacy are differences in group intercepts. 
To facilitate a mean structure, we can specify the population 
values to correspond to the distance between intercepts by 
creating an “alpha” vector of observed-variable intercepts. 
In Table 3 (Lines 1–2), we use the bind() function to 
generate an alpha vector for each self-efficacy (treatment and 
control) group. The intercepts for M and Y are allowed to be 

estimated freely in both groups, labeled with zeroes to indi-
cate the control group (“a0”, “c0”) and ones the treatment 
group (“a1”, “c1”). For the population parameter values, 
another vector is specified such that the a and c′ paths are cut 
in half (divided by 2) and subtracted from zero in the control 
group but added to zero in the treatment group. Thus, our 
population mean is zero and the differences between self-
efficacy control and treatment groups’ intercepts are equal to 
the a and c′ parameters specified in the single-group popula-
tion model. Lastly, we assign our control-group alpha vec-
tor to the object “AL0” (Table 3, line 1) and the treatment 
group’s to the object “AL1” (Table 3, line 2). We will pass 
both of these vectors as a list to model.path() when 
creating our new two-group SimSem model object below 
(Table 3, line 7).

Next, we generate a new matrix to specify the residual 
variances to be estimated freely, along with population val-
ues of residual variances for effort and task performance. 
Population residual variances must be specified slightly dif-
ferent in the multigroup model because simsem is only 
able to automatically calculate residual variances implied 
by standardized slopes within a single group (as we did in 
the single-group approach). To get equivalent standardiza-
tions of population parameters (i.e., in units of pooled SD 
across both groups), we can use the findFactorResidu-
alVar() function to extract an estimate of the residual 
variances from a single-group model. However, we first 
must use the cov.wt() function to extract the population 
variance of self-efficacy in exoData (Table 3, line 3) to be 
specified as a covariance matrix among the covariates in 
the findFactorResidualVar() function. The cov.
wt() function produces a list, which we assign to the object 
“exoCov” so we can extract the covariance matrix. Next, we 

Table 3   R syntax for Monte Carlo power analysis of simple-mediation model, multiple-group approach
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Syntax depends on some objects created by running syntax in Table 2
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pass arguments and objects created above to findFactor-
ResidualVar() (Table 3, line 4) to estimate the resid-
ual variances. Note that we use the argument corPsi= to 
specify residual correlations and covcov= to denote our 
covariance matrix among covariates (self-efficacy popu-
lation variance). The output is then assigned to an object 
“resVars”, passed to the popParam= argument when cre-
ating our matrix of residual variances (Table 3, line 5). The 
approach is similar to the process used for the single-group 
model (Table 2), except we had to specify the population 
variances manually rather than having simsem automate 
the process.

Additionally, if one wishes to constrain the residual vari-
ances across self-efficacy groups, the “NA” character string 
may be replaced with a new character string via the vector 
(“eM”, “eY”), by assigning this new character string vec-
tor to “diag(resEq@free)” (Table 3, line 6). That is, 
when “NA” is passed, residual variances are freely estimated 
for effort and task performance in each self-efficacy group, 
whereas specifying the same character string for effort 
(“eM”) and task performance (“eY”) constrains residual 
variances estimates to be equal across self-efficacy groups 
(which also adds two degrees of freedom).

With all our multigroup model specifications constructed, 
they can now all be passed to the model.path() func-
tion to create a new SimSem model object (Table 3, line 
7). We can pass the same beta object to the BE= argument 
used in the single-group model (endoPaths, see Table 2); 
however, if we wanted to allow moderation of the b path as 
a function of self-efficacy (see Preacher et al.’s, 2007, model 
1 in Fig. 2), then we would need to specify a second beta 
object for the second group. We pass the same resEq object 
to PS= (rather than RPS=). Our mean structure contain-
ing the two alpha vectors of observed-variable intercepts 
“AL0” and “AL1” are then passed to AL= as a list using 
the list() function so that each vector corresponds to 
their respective self-efficacy groups. Note that these vec-
tors would not need to be passed as a list if parameters were 
constant across groups (e.g., no effect of X). Next, we pass 
a character vector indicating our endogenous variables effort 
and task performance (“M”, “Y”) to indLab= and a sepa-
rate character vector indicating our grouping variable self-
efficacy (“X”) to groupLab=. Lastly, user-defined param-
eters specifying our functions can be written in lavaan 
syntax (which now additionally includes defining the a and 
c paths as differences between estimated group intercepts) 
and passed directly to con=. This new SimSem model we 
assign to the object “simMod2” (Table 3, line 7).

Monte Carlo power analysis for multigroup model

It is important to note that the simMod1 and simMod2 
models are statistically equivalent, but even with the same 

set.seed value, they will generate different data because 
the population models differ (see example data frame 
[275]). Thus, Monte Carlo results will differ in these two 
approaches, even when using the same seed for random-
number generation.

Using the sim() function to conduct a power analysis 
using the multigroup model (Table 3, line 8) is almost iden-
tical to the process conducted for the single-group model 
(Table 2, line 21), with the only differences being simMod2 
is passed to model=, sample size per group is specified as 
a list (not a vector) containing equal observations in each 
group (N.per.group, specified twice because groups are 
balanced), and we can omit the specification of the exog-
enous covariate data (exoData was simply used to produce 
population residual variances; Table 3, lines 3–4). We assign 
this new collection of specifications to the object “out2”, 
which is then passed to the summaryParam() function 
to produce our results (Table 3, lines 8–9). Lastly, to view 
the power from the MCCI test, we repeat the same procedure 
used for the single-group model (Table 3, lines 10–11). Note 
that power estimated using the default delta-based method 
and the MCCI method in the multigroup model produce very 
similar results for the indirect effect as the corresponding 
estimates in the single-group power analysis (power for ab 
single-group: delta-method = 57%, MCCI = 72% vs. power 
for ab multigroup: delta-method = 57%, MCCI = 71%).

Moderated mediation

Building on our simple mediation example, we add 
another dichotomous variable “feedback ambiguity”, 
which is coded as 0 (unambiguous feedback) or 1 (ambig-
uous feedback), assuming that unambiguous feedback 
serves as the control condition, and that the primary inter-
est is in comparing the treatment effect between unambig-
uous and ambiguous feedback conditions. In our example 
of moderated mediation, feedback ambiguity moderates 
the indirect effect of self-efficacy on task performance 
through effort (i.e., moderating the a path). However, 
there are many ways in which an indirect effect may be 
conditional as a function of a categorical exogenous vari-
able, some of which do not include a fourth variable. For 
instance, a treatment effect in a three-variable mediation 
system (e.g., self-efficacy) could in fact moderate the 
indirect effect through the b path (e.g., self-efficacy mod-
erates the effect of effort on task performance, and in turn 
the indirect effect on task performance through effort), 
which we briefly described above in the multigroup sec-
tion as an example of Preacher et al.’s (2007) model 1 or 
Hayes’ (2017) model 14. It is infeasible to thoroughly 
discuss all possible moderated mediation configura-
tions in one tutorial, such as the five common moderated 
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mediation models [337–341] covered by Preacher et al. 
(2007) with dichotomous exogenous variables. In this sec-
tion, we discuss Preacher et al.’s model 2 (moderation of 
a by W; also Hayes’, 2017, model 7), and briefly mention 
extensions to Preacher et al.’s models 3, 4 and 5 (see also 
Hayes’, 2017, models 14 and 21).

Specify a single‑group population model

Specifying population parameters for the single-group mod-
erated mediation model is quite similar to the procedure 
implemented for the simple mediation model, but now we 
must include our fourth variable, feedback ambiguity, as well 
as an interaction term (self-efficacy × feedback ambiguity), 
such that feedback ambiguity moderates the a path (Preacher 
et al.’s, model 2). We begin by specifying the number of 
observations per group (Table 4, line 1), which in this model 
contains four groups producing a total sample size equal to 
the number of observations per group multiplied by four 
(e.g., N = 25 × 4 = 100). Next, we design a covariate matrix 
containing our dummy codes for self-efficacy and feedback 
ambiguity (Table 4, line 2) and add a third column contain-
ing the interaction of self-efficacy and feedback ambiguity 
(Table 4, line 3). When coding both self-efficacy and feed-
back ambiguity as dichotomous dummy codes, there are four 
possible dummy code combinations corresponding to each 
condition. After inspecting the design matrix, note how the 
interaction term is simply the product of the self-efficacy and 
feedback ambiguity dummy codes. To populate the covari-
ate matrix with equal group sizes (Table 4, line 4), create as 
many copies of it as the desired number of observations per 
group (e.g., 25), then stack them within the same data frame 
and assign it to the object “exoData.”

Setting population parameters for our moderated media-
tion model requires us to specify population values for the a, 
b and c′ paths, similar to the simple mediation example, but 
now we must also specify the simple and moderating effects 
of feedback ambiguity. We must specify the effect of X on 
M (i.e., a) when feedback is unambiguous (W = 0) and how 
much the effect changes when feedback is ambiguous (W = 
1). In this example (Table 4), we keep the simple effects (a, 
b, and c′ paths) the same as in the simple mediation example 
(a.w0 = 0.5, b.w0 = 0.4, c.w0 = 0.2; see 
Table 4, lines 5, 7, and 9) and add values corresponding to 
effect change in ambiguous feedback (a.mod = 0.3, 
b.mod = 0, c.mod = 0; see Table 4, lines 6, 8, & 10). 
Because only the a path has an interaction with feedback 
ambiguity, we specified no change in feedback ambiguity 
conditions for the b and c′ paths in this example. Lastly, one 
could specify the simple effects of feedback ambiguity on 
effort or task performance. Despite this effect not being of 
primary interest to us, arbitrary nonzero values may be set 
for these two parameters (Table 4, lines 11–12). Recall that 

these population parameters may be standardized values and 
correspond to the SESOI (e.g., Lakens et al., 2018).

There is currently no overarching prescription for specify-
ing the SESOI, particularly with respect to conditional indi-
rect effects, which veers into a complex and dynamic domain 
well beyond the scope of this paper. To help build a general 
sense of intuition and direction for researchers estimating 
population effect sizes in moderated mediation models with 
categorical exogenous variables, we briefly define the effects 
often needing to be estimated. The a and c′ paths represent 
differences in means between control and treatment groups, 
which is often calculated via Cohen’s d (difference in means 
divided by the groups’ pooled residual standard deviation), 
although Cohen’s d is only truly defined for the two-group 
case (i.e., not controlling for a covariate, as in the c’ path). 
Given W moderates the a path, the difference in the a path 
between treatment and control groups of W may be inter-
preted as the difference in Cohen’s ds representing how 
much W moderates the a path. Given a continuous mediator 
and outcome, the b path may be interpreted as a standardized 
partial regression coefficient, similar (but not equivalent) 
to a partial correlation between M and Y controlling for X. 
There are also many tools available for calculating ds vs. 
betas (e.g., https://​www.​campb​ellco​llabo​ration.​org/​escalc/​
html/​Effec​tSize​Calcu​lator-​SMD22.​php). Lastly, at the end of 
our vignette, we provide a section “Types of Power Analy-
sis” [651] discussing conceptualizations, approaches, and R 
tools for estimating various SESOI in detail.

Building on the LISREL matrices from the simple media-
tion examples, we employ the same four steps generating 
kappa and beta matrices with the addition of the exogenous 
variables feedback ambiguity and its interaction term with 
self-efficacy. Again, these steps are: (1) design the struc-
ture of the matrix, (2) specify free/fixed parameters matrix, 
(3) specify population values matrix, and (4) integrate and 
store both matrices into a SimMatrix. Beginning with 
the kappa matrices (Table 4, lines 13–25), we design a 2 
× 3 matrix that is populated with “NA” in each cell via the 
matrix() function, along with the list() of dimension 
names for (a) the rows corresponding to our two endogenous 
variables via passing a character vector and (b) the columns 
corresponding to our three exogenous variables via pulling 
the column names from exoData. This data frame is then 
assigned to both kappa.free and kappa.pop objects (Table 4, 
line 13). In step 2, parameters estimated freely are specified 
with character strings in kappa.free, corresponding to their 
respective population value labels (Table 4, lines 13–19). In 
our example, we allow all exogenous paths to be estimated 
freely except for the effect of the interaction term on task 
performance, which we choose to fix to zero for it has no 
direct effect on task performance in our model. In step 3, 
parameter values are specified to kappa.pop (Table 4, lines 
20–25). Finally, in step 4 we use the bind() function to 
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Table 4   R syntax for Monte Carlo power analysis of moderated-mediation model, single-group approach

Line R syntax 

1 N.per.group <- 25 # balanced group sample sizes 
2 designMatrix <- expand.grid(X = 1:0, W = 1:0)
3 designMatrix$XW <- designMatrix$X * designMatrix$W # interaction 
4 exoData <- do.call(rbind, lapply(1:N.per.group, function(i) 

designMatrix))
5 a.w0  <- .5 # effect of X on M when moderator (W) == 0 
6 a.mod <- .3 # how much "a" path is moderated by W (i.e., interaction)
7 b.w0  <- .4 # effect of M on Y when moderator (W) == 0 
8 b.mod <- 0  # no moderating effect on "b" path
9 c.w0  <- .2 # effect of X on Y when moderator (W) == 0 
10 c.mod <- 0  # no moderating effect on "c" path
11 w.M <-  .1  # simple effect of moderator (W) on M when X == 0 
12 w.Y <- -.1  # simple effect of moderator (W) on Y when X == 0 
13 kappa.free <- kappa.pop <- matrix(NA,       # estimate all effects

                                  nrow = 2, # 2 outcomes (M and Y)
                                  ncol = 3, # dummy coded X, W, XW
                                  dimnames = list(c("M","Y"),
                                                  names(exoData)))

14 kappa.free["M","X"]  <- "a.w0"  # label free parameters
15 kappa.free["M","W"]  <- "w.M"   # (to define indirect effects)
16 kappa.free["M","XW"] <- "a.mod"
17 kappa.free["Y","X"]  <- "c.w0"
18 kappa.free["Y","W" "w.Y"
19 kappa.free["Y","XW"] <- 0 # fixed to 0; label “c.mod” to free
20 kappa.pop["M","X"]  <- a.w0     # set population parameters
21 kappa.pop["M","W"]  <- w.M      # (defined above)
22 kappa.pop["M","XW"] <- a.mod
23 kappa.pop["Y","X"]  <- c.w0
24 kappa.pop["Y","W"]  <- w.Y
25 kappa.pop["Y","XW"] <- c.mod
26 exoPaths <- bind(free = kappa.free, popParam = kappa.pop) 
27 beta.free <- beta.pop <- matrix(0, nrow = 2, ncol = 2,

                              dimnames = list(c("M","Y"), c("M","Y"))) 
28 beta.free["Y", "M"] <- "b"
29 beta.pop["Y", "M"]  <-  b.w0
30 endoPaths <- bind(free = beta.free, popParam = beta.pop)
31 residCor  <- binds(free = diag(as.numeric(NA), 2), popParam = diag(2)) 
32 userParams <- ' ## conditional indirect effects 

    ind.w0   := a.w0 * b 
    ind.w1 := (a.w0 + a.mod) * b 
  ## Test H0: equivalent indirect effects across W
    ind.diff := a.mod * b 
    ## or equivalently:
  # ind.diff := ind.w1 – ind.w0 '

33 modMed1 <- model.path(BE = endoPaths, RPS = residCor,
                      KA = exoPaths, con = userParams, 
                      indLab = rownames(kappa.free), 
                      covLab = colnames(kappa.free)) 

34 sim1 <- sim(nRep = 100, model = modMed1, covData = exoData, 
            n = nrow(exoData), seed = 777, outfun = rejectMCCI,
            meanstructure = FALSE) # pass this argument to lavaan 

35 summaryParam(sim1, matchParam = TRUE, digits = 3)
36 testMCCI <- do.call(rbind, getExtraOutput(sim1))
37 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs 
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combine both kapa matrices into one SimMatrix assigned 
to the object, “exoPaths” (Table 4, line 26), containing what 
parameters to estimate freely and the population values of 
each parameter.

Specifications for the endogenous paths via beta matrices 
(Table 4, lines 27–30) are almost unchanged from the simple 
mediation example (Table 2, lines 13–16), with the only dif-
ferences being the population value set in beta.pop (step 3) 
is labeled b.w0 rather than just “b” because it is the simple 
effect of effort on task performance when feedback is unam-
biguous (control group). Of course, the b path is equal to 0.4 
in the simple mediation example as well as in both feedback 
ambiguity condition groups in this moderated mediation 
example, so the effect of effort on task performance when 
feedback is ambiguous (b.w1) is not moderated; thus, the 
moderating effect (b.mod) is specified to be zero. Step 4, 
both beta matrices are combined into a SimMatrix and 
assigned to the object “endoPaths” (Table 4, line 30). The 
process of generating a covariance matrix of residuals for 
both endogenous variables (Table 4, line 31) is also identical 
to that in the simple mediation example (Table 2, line 17).

Again, we specify user-defined parameters in lavaan 
syntax (Table 4, line 32), which requires the addition of con-
ditional indirect effects by first defining the indirect effect in 
each feedback ambiguity condition. In the vignette we assign 
these functions to (ind.w0) and (ind.w1) corresponding 
to the indirect effect when feedback is unambiguous and 
ambiguous, respectively. Recall that the a path in the treat-
ment condition (ambiguous feedback) is equal to the sum of 
the a-path in the control group plus the change in effect in 
the treatment; therefore, the a path in ind.w1 is equal to 
(a.w0 + a.mod). Lastly, we specify an equivalence test 
of indirect effects (Mackinnon, 2008)—also known as an 
index of moderated mediation (Hayes, 2015)—in lavaan 
syntax by either (a) multiplying the interaction term (a.
mod) by the b path or (b) taking the difference between 
ind.w1 and ind.w0, both approaches are statistically 
equivalent. We assign the set of user-defined parameters to 
the object “userParams” (Table 4, line 32) and pass all the 
newly specified elements to the model.path() function 
(Table 4, line 33), same as we did for the simple mediation 
example (Table 2, line 19), and assign this SimSem model 
to the object “modMed1”.

Analyze data using a single‑group SEM

Given the paucity of guidance about using multigroup SEM 
to model moderated mediation (Ryu & Cheong, 2017), we 
precede the power analysis with single- and multigroup 
analyses of a single data set, generated from the population 
specified above. For readers unfamiliar with how to analyze 
moderated mediation models using single- or multigroup 

SEM, these examples can help clarify the MC power analy-
ses that follow.

With our population model specified, we can demonstrate 
the process for generating a sample of data based on the 
specifications defined in modMed1 (Table 5, lines 1–2), then 
fit the single-group moderated mediation model defined in 
lavaan syntax (Table 5, line 4) to our generated data. 
After setting a random-number seed to ensure replicability 
(Table 5, line 1), we pass the sample size (i.e., number of 
rows in exoData object), data frame of dummy-coded exog-
enous variables (exoData), and our population model param-
eters (modMed1) to the generate() function, which we 
assign to the object “datmod” which contains a single simu-
lated sample (Table 5, line 2). These data may then be fit to 
our model using simsem’s analyze() function using 
the model specifications in modMed1 (Table 5, line 3), or 
by specifying the model in lavaan syntax to pass to the 
sem() function (Table 5, lines 4–5). We pass results to 
the summary() function (Table 5, line 6) to inspect the 
estimated parameters, including the delta-method test of 
indirect effects, which we also test with the MCCI method 
in semTools (Table 5, line 7).

Analyze data using a multigroup SEM

Building on the multigroup approach for simple mediation, 
linear equations are still specified separately in each group 
(e.g., self-efficacy conditions), but now the moderator (feed-
back ambiguity) is treated as a grouping variable such that 
each simple mediation model is defined separately for each 
feedback ambiguity condition. It is important to note that the 
example described in this section illustrates using only the 
moderator as a grouping variable, although the focal predic-
tor is also a grouping variable (and treated as such in the 
simple-mediation multigroup example). The two-way inter-
action between self-efficacy and feedback ambiguity could 
be implemented by creating a four-group variable crossing 
the control and treatment conditions of self-efficacy and 
feedback ambiguity, but the pattern of equality constraints 
on intercepts to represent the two-way interaction of inter-
est would be unnecessarily tedious, losing the advantage 
of intuitively interpreting moderating effects as differences 
between groups’ coefficients. However, if it is useful in some 
circumstances (e.g., to allow for heteroskedasticity across all 
four conditions), then we encourage future research into how 
this can be accomplished.

Residual variances in the multigroup moderated media-
tion model can also vary across groups as in the multigroup 
simple mediation model above, but in the multigroup mod-
erated mediation model this accounts for heteroskedasticity 
across the feedback ambiguity conditions rather than across 
the self-efficacy conditions. Furthermore, the regression 
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slopes for the effect of self-efficacy on effort (a path), effect 
of effort on task performance (b path), and effect of self-
efficacy on task performance (c′ path), can differ as a func-
tion of the feedback ambiguity condition. Constraining equal 
residual variances and regression slopes (e.g., b and c′ paths) 
produces the same effect and standard error estimates as 
the single-group model memo.fit1 above. In contrast to the 
single-group model, the multigroup model has df > 0, which 
offers the advantage of testing homogeneity by releasing 
various combinations of constraints.

To generate data and analyze the model fit of a single 
sample, we specify user-defined parameters in lavaan 
syntax (Table 5, line 8). Parameter labels are specified in a 
vector (i.e., one label each for control and treatment groups). 

First, task performance (Y) is regressed onto self-efficacy 
(X) and effort (M) with equality constraints imposed by 
including the same labels within each vector (i.e., slopes for 
self-efficacy on task performance (c path) are equivalent in 
both control and treatment groups, and slopes for effort on 
task performance (b path) are equivalent in both control and 
treatment groups). Next effort is regressed onto self-efficacy; 
however, because this path is moderated by feedback ambi-
guity, the vector contains different labels denoting the slope 
of self-efficacy on effort in the control group (a.w0) and 
the treatment group (a.w1). Homoskedasticity constraints 
are then defined by specifying the residual variance of task 
performance in a vector with the same error labels, as well 
as the residual variance of effort in a vector with the same 

Table 5   R syntax for single- and multigroup approaches to moderated-mediation analysis

Line R syntax 

1 set.seed(1234567) # set seed to generate one random sample 
2 datmod <- generate(modMed1, covData = exoData, n = nrow(exoData)) 
3 memo.fit1 <- analyze(modMed1, data = datmod) # fit using simsem 
4 ## Specify SINGLE-group model using lavaan syntax 

memo.mod1 <- ' Y ~ c*X + b*M + W          # outcome 
               M ~ a.w0*X + W + a.mod*XW  # mediator 
  ## conditional indirect effects 
    ind.w0   := a.w0 * b 
    ind.w1 := (a.w0 + a.mod) * b 
  ## Test H0: equivalent indirect effects across W
    ind.diff := a.mod * b 
    ## or equivalently: 
    # ind.diff := ind.w1 – ind.w0
'

5 memo.fit1 <- sem(memo.mod1, data = datmod) # fit using lavaan 
6 summary(memo.fit1) # single-group approach results 
7 monteCarloCI(memo.fit1) # Monte Carlo CI more robust with small N 
8 ## Specify MULTIGROUP model 

memo.mod2 <- ' Y ~ c(c, c)*X + c(b, b)*M   # same label: equal 
               M ~ c(a.w0, a.w1)*X   # different labels: moderated
  ## homoskedasticity constraints 
    Y ~~ c(eY, eY)*Y 
    M ~~ c(eM, eM)*M 
  ## conditional indirect effects 
    ind.w0 := a.w0 * b 
    ind.w1 := a.w1 * b 
  ## Test H0: equivalent indirect effects across W 
    ind.diff := ind.w1 – ind.w0 
'

9 memo.fit2 <- sem(memo.mod2, data = datmod, group = "W", 
                 meanstructure = FALSE, # override default 
                 # set Group 0 first to match labels above 
                 group.label = 0:1) 

10 summary(memo.fit2) # multigroup approach results
11 monteCarloCI(memo.fit2)

Syntax depends on some objects created by running syntax in Table 4
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error labels. Conditional indirect effects are then defined 
for each level of the moderator: one for the indirect effect in 
the control group (a.w0 * b) and another for the indirect 
effect in the treatment group (a.w1 * b). Additionally, an 
equivalence test of indirect effects is defined as the differ-
ence between the indirect effects in each feedback ambiguity 
group. These user-parameters defined in lavaan syntax 
are assigned to the object “memo.mod2” (Table 5, line 8).

To fit our multigroup moderated mediation model 
(Table  5, line 9), the model syntax is passed to the 
sem() function, along with the same generated data “dat-
mod” (Table 5, line 2) created for the single-group exam-
ple. Additional arguments include specifying the grouping 
variable (group = “W”) and meanstructure=FALSE 
to omit the irrelevant mean structure; we also set group.
label=0:1 to guarantee that the control group (0) is the 
first group, so the direction of user-defined parameters is 
as expected. We then assign this fitted model to the object 
“memo.fit2” and pass it to the summary() function to 
inspect results (Table 5, line 10). Note that regression and 
variance estimates are equivalent across both feedback ambi-
guity groups (group 1 = control, group 2 = treatment), and 
to the estimates produced in the single-group moderated 
mediation model. Releasing any combination of the four 
constraints on variance or slope estimates in lavaan syntax 
(memo.mod2) may be done to test assumptions of homo-
skedasticity or homogeneous slopes, respectively. Again, 
we pass memo.fit2 to the monteCarloCI() function to 
obtain robust MCCIs for user-defined parameters (indirect 
effects in each moderator group and difference between 
groups), as an alternative to lavaan’s default delta-based 
method (Table 5, line 11).

Power analyses

Single‑group simulation

MC power analysis can be carried out for the single-group 
moderated mediation model using the sim() function 
(Table 4, line 34) and passing nearly the identical arguments 
as in the simple mediation example (Table 2, line 21). The 
only differences in syntax passed to the sim() function 
is we now specify our single-group moderated mediation 
model modmed1 and pass FALSE to the argument mean-
structure= (again, the number of repetitions should also 
be increased to 1000–5000 to ensure convergence; Muthén 
& Muthén, 2002). This object is then assigned to “sim1” 
and passed to the summaryParam() function to yield 
the results of the MC power analysis (Table 5, line 35). 
Lastly, to estimate power using the MCCI method (Table 5, 
lines 36–37), we “do a call” of rbind() to the list of test 
results returned by getExtraOutput() from our sim1 

object, assigning the data frame to the object “testMCCI” 
and estimating power by passing testMCCI to the col-
Means() function. Note in our example that power esti-
mates derived from delta-method Ses (e.g., power estimate 
of conditional indirect effect = 9%) are lower than estimates 
produced via MCCI (power estimate of conditional indi-
rect effect = 13%). The sample size may be increased or 
decreased iteratively in Table 5, line 1 to determine the nec-
essary sample size (per group) for the desired power level.

Multigroup simulation

As mentioned in the simple-mediation multigroup section 
above, the multigroup approach can facilitate testing hetero-
geneity of variance or slopes, which would be required for 
simulating data from any model in Preacher et al.’s (2007) or 
Hayes’ (2017) taxonomy. The multigroup simple-mediation 
model facilitates Preacher et al.’s model 1 (X moderates b), 
and although this section focuses only on Preacher et al.’s 
model 2 (W moderates a), multigroup multiple-mediation 
models also facilitate Preacher et al.’s model 3 (W moder-
ates b path), model 5 (W moderates both a and b paths), and 
model 4 (a and b paths are moderated by different exogenous 
variables; facilitated by adding an additional covariate to 
moderate b). Although it is not the focus of this article, our 
following example shows how the multigroup approach can 
be used to model heterogenous variances.

In the multigroup model, the matrix containing dummy-
coded exogenous variables must include the grouping vari-
able (feedback ambiguity; W), despite the grouping variable 
not being an explicit predictor in the model. For simsem 
to recognize it as a grouping variable, we must first copy 
the grouping variable “W” to exoData using the fac-
tor() function (Table 6, lines 1–2), so numeric codes 
denote categories rather than numeric values. We indicate 
the levels=0:1 should be assigned labels=1:2 cor-
responding to the two levels of feedback ambiguity (control 
and treatment group). A grouping variable’s values must 
be sequential integers starting with 1 and ending with the 
number of groups, which is why they receive the labels= 
1:2 rather than 0:1. We do not include the interaction col-
umn (“XW”) from the exoData data frame (Table 6, line 1), 
ensuring that the grouping variable is the last (furthest right) 
column in the data frame, which is pertinent for compat-
ibility with simsem.

Next, we must update our matrices to accommodate 
multigroup moderated mediation with heterogeneity. The 
kappa matrices in the single-group simple mediation section 
(Table 2, line 7)—which had the same three modeled vari-
ables (X, M, and Y)—can function as the foundation of our 
new matrices, with the addition of specifying kappa.free and 
kappa.pop for each level of feedback ambiguity and updating 
their labels (Table 6, lines 3–13). The beta matrices from 
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single-group simple mediation endoPaths (Table 2, lines 
13–16) can be used without any modifications because the 
b path has equivalent population values (unless the b path 
was also moderated, as in Preacher et al.’s models 3 and 5). 
Once kappa.free and kappa.pop matrices have been updated, 
a new exoPaths object may be created containing both con-
trol treatment group specifications (Table 6, line 13).

When defining residual variances, we now must specify 
which parameters are freely estimated and their population 
values in each feedback ambiguity group. The syntax for 
freely estimated parameters remains the same (e.g., free 
= diag(as.numeric(NA, 2)) as in the previous sec-
tions (Table 2, line 17; Table 3, line 5; Table 4, line 31), but 
now we can input the pooled population values from sim1 

Table 6   R syntax for Monte Carlo power analysis of moderated-mediation model, multigroup approach

Line R syntax 

1 datXW <- exoData[ , c("X","W")] 
2 datXW$W <- factor(datXW$W, levels = 0:1, labels = 1:2)
3 kappa.free0 <- kappa.free1 <- matrix(NA, nrow = 2, ncol = 1,

                                     dimnames = list(c("M","Y"), "X"))
4 kappa.free0["M","X"]  <- "a.w0" # W == 0 
5 kappa.free0["Y","X"]  <- "c.w0"
6 kappa.free1["M","X"]  <- "a.w1" # W == 1 
7 kappa.free1["Y","X"]  <- "c.w1"
8 kappa.pop0 <- kappa.pop1 <- matrix(NA, nrow = 2, ncol = 1, 

                                   dimnames = list(c("M","Y"), "X"))
9 kappa.pop0["M","X"] <- a.w0         # W == 0 

10 kappa.pop0["Y","X"] <- c.w0
11 kappa.pop1["M","X"] <- a.w0 + a.mod # W == 1 
12 kappa.pop1["Y","X"] <- c.w0 + c.mod 
13 (exoPaths2 <- list(bind(free = kappa.free0, popParam = kappa.pop0), 

                   bind(free = kappa.free1, popParam = kappa.pop1)))
14 (exoCov <- cov.wt(exoData, method = "ML"))$cov # divide by N, not N-1 
15 resVars <- findFactorResidualVar(beta = beta.pop, corPsi = diag(2), 

                            #totalVarPsi = rep(1, 2), # default == 1 
                               gamma = kappa.pop, covcov = exoCov$cov)

16 (heteroVar <- list(binds(free = diag(as.numeric(NA), 2),
                         # set parameters to same values from sim1 
                         popParam = diag(resVars)), 
                   binds(free = diag(as.numeric(NA), 2),
             # make variances 50% higher in Group 1 than Group 0 
                         popParam = diag(resVars*1.5))))

17 userDef <- ' ## conditional indirect effects
    ind.w0 := a.w0 * b 
    ind.w1 := a.w1 * b 
  ## Test H0: equivalent indirect effects across W
    ind.diff := ind.w1 – ind.w0 
'

18 modMed2 <- model.path(BE = endoPaths, PS = heteroVar, KA = exoPaths2, 
                      indLab = c("M","Y"), covLab="X", groupLab="W", 
                      con = userDef) 

19 sim2 <- sim(nRep = 100, model = modMed2, covData = datXW,
            n = as.list(table(datXW$W)), meanstructure = FALSE, 
            seed = 1234567, outfun = rejectMCCI) 

20 summaryParam(sim2, matchParam = TRUE, digits = 3)[-c(8, 11), ] 
21 testMCCI <- do.call(rbind, getExtraOutput(sim2)) 
22 colMeans(testMCCI) # empirical estimate of power for Monte Carlo CIs

Syntax depends on some objects created by running syntax in Table 4
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(e.g., popParam= diag(c(M = 0.8718434, Y = 
0.8061616)); see [504, 505]). Alternatively, one could 
use the findFactorResidualVar() function to set total 
variances to 1, so that regression slopes are standardized 
parameters (Table 6, lines 14–15). To add heterogeneity of 
variances (Table 6, line 16), we make the variances in the 
treatment group of feedback ambiguity 50% higher than the 
control group by multiplying the pooled population vari-
ance values by 1.5. Again, we pass all specifications to the 
list() function and assign our matrix defining residual 
variances to the object “heteroVar”.

Next, we create user-defined parameters assigned to the 
“userDef” object in lavaan syntax (Table 6, line 17) by 
specifying the indirect effect in the control group of feedback 
ambiguity (ind.w0 := a.w0*b), the treatment group 
(ind.w1 := a.w1*b) and the difference between the 
two indirect effects in each group (ind.diff := ind.w1 
– ind.w0). Now that all model parameters are defined, 
we can consolidate them using the model.path() func-
tion, specifying endoPaths as our beta matrices, heteroVar 
as our residual variance-covariance matrix (using PS=), 
exoPaths as our kappa matrices, vector c(“M”, “Y”) as 
our indicator labels, “X” as our character vector of covari-
ate labels, “W” as our labeled grouping variable, and user-
Def as our user-defined parameters, assigned to the object 
“modMed2” (Table 6, line 18). Lastly, we can run the MC 
power analysis using the sim() function (Table 6, line 19) 
with arguments near identical to those in the single-group 
approach above (Table 4, line 34). The two differences being 
(a) modMed2 is specified as our model= and (b) the vector 
of group sample sizes must be passed as a list and reflect the 
number of observations in each W group. To input the num-
ber of observations in the exogenous variables, we simply 
used the table() function to count the number of rows 
per level of W in our covariate data frame, converted to a 
list so sim() understands it is the sample size per group 
(i.e., a vector of sample sizes would be interpreted as the N 
used per replication). These arguments are assigned to the 
object “sim2” and passed to the summaryParam() func-
tion (Table 6, line 20) to display the power estimates using 
delta-method Ses. The estimated power of the delta method 
is 5% for our conditional indirect effect [589], whereas the 
MCCI approach (Table 6, line 21–22) produced a power 
estimate of 10% [608]. As in the single-group approach to 
moderated mediation, MCCI had greater power estimates 
than the delta method.

Conclusions

In this paper, we outlined the various challenges associ-
ated with sample-size planning for studies that test mod-
erated-mediation models, with a specific focus on how the 

consideration of categorical exogenous predictors and mod-
erators affects this process. We outline a set of tools that 
allow researchers to optimally plan for appropriate sample 
sizes to test such models. Given the increasing popularity of 
moderated mediation models—as represented both in theory 
and in primary empirical studies that test such models—con-
sidering ways of optimizing tests of such effects is critical. 
This is particularly important, given increasing criticism 
of these models in the literature (e.g., Rohrer et al., 2021), 
specifically with respect to their statistical power (Montoya 
et al., 2021). Although we have mentioned other ways to 
model moderated effects, the methods discussed here can 
also be extended to model multiple (parallel or serial) medi-
ators, as discussed in the tutorial for Monte Carlo power 
analysis by Schoemann et al. (2017). Our hope is that the 
“toolkit” presented here will inspire researchers to more 
carefully consider the sample-size requirements necessary to 
test moderated mediation models and adopt a more critical 
perspective on the strengths and limitations of such models.
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