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Abstract
Eye tracking measurements taken while watching a wide field screen are challenging to perform. Commercially available 
remote eye trackers typically do not measure more than 35 degrees in eccentricity. Analysis software was developed using 
the Pupil Core Eye Tracking data to analyze viewing behavior under circumstances as natural as possible, on a 1.55-m-wide 
screen allowing free head movements. Additionally, dynamic area of interest (AOI) analyses were performed on data of 
participants viewing traffic scenes. A toolkit was created including software for simple allocation of dynamic AOIs (semi-
automatically and manually), measurement of parameters such as dwell times and time to first entry, and overlaying gaze and 
AOIs on video. Participants (n =11) were asked to look at 13 dynamic AOIs in traffic scenes from appearance to disappear-
ance in order to validate the setup and software. Different AOI margins were explored for the included objects. The median 
ratio between total appearance time and dwell time was about 90% for most objects when appropriate margins were chosen. 
This validated open-source toolkit is readily available for researchers who want to perform dynamic AOI analyses with the 
Pupil Core eye tracker, especially when measurements are desired on a wide screen, in various fields such as psychology, 
transportation, and low vision research.
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Introduction

Eye tracking is growing in popularity amongst researchers 
from many different disciplines, including healthcare, 
psychology, biomedical applications, and neuroscience 

(Carter & Luke, 2020; Holmqvist & Andersson, 2017). 
An eye tracker measures how the gaze is directed during a 
specific task and can give information about the allocation 
of visual attention as eye movements are linked to cognitive 
processing. Currently, many methods are based on area 
of interest (AOI, also known as region of interest; ROI) 
analyses. AOIs are defined as areas in the stimulus important 
to the research aim and can be used to calculate metrics 
such as AOI hits (when gaze coordinates lay inside an AOI) 
and dwell times (duration of one visit in an AOI, from 
entry to exit) (Holmqvist & Andersson, 2017). Dynamic 
AOIs—moving areas of interest that arise during a video or 
animated elements on a screen—challenge the analysis since 
the objects move relative to the coordinate system in which 
the gaze position data are recorded (Hessels et al., 2018).

Some eye trackers provide software for the analysis of 
dynamic AOI data, such as Tobii Pro Lab. Also, open-
source options are available, such as DynAOI (Papenmeier 
& Huff, 2010). However, a limitation of commercially avail-
able remote and tower-mounted-based eye trackers is the 
restriction of head movements and a limited measurement 
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range, typically not more than 35 degrees eccentricity. Head-
mounted eye trackers that allow for free head movements 
and have a large measurement range are available, such as 
Tobii Pro glasses and Pupil Core eye trackers. However, 
head-mounted eye trackers provide a gaze-overlaid video 
and if a data file is provided, the coordinates refer to posi-
tions in the video (eye-in-head coordinates). Therefore, the 
use of dynamic AOI analyses becomes problematic.

Our research group aims to study compensatory view-
ing in traffic for persons with visual field defects in the 
TREYESCAN study (Traffic Eye Scanning and Compensa-
tion Analyzer). The current method of visual field testing 
does not properly discriminate between persons with visual 
field defects that are fit and unfit to drive (Faraji et al., 2022). 
The TREYESCAN should measure eye movements over a 
large field of view because the visual field is important for 
safe participation in traffic (Owsley & McGwin Jr., 1999). 
Defects could lay in the periphery of the visual field, subse-
quently underlining the need of measuring eye movements 
on a screen as large as possible, instead of only centrally on 
a small monitor. Moreover, transportation research showed 
that a restricted field of view of driving scenes (presented 
on a single screen) may lead to poorer hazard detection and 
less eccentric eye movements compared to a setup with the 
addition of side views on adjacent screens (Alberti et al., 
2014; Shahar et al., 2010). Therefore, we sought an acces-
sible method for analyzing eye movements on a screen with 
a wide field of view (100°) while not restricting head move-
ments. In order to measure compensatory viewing, we are 
interested in conducting dynamic AOI analyses.

The Pupil Core eye tracker (Pupil Labs, Berlin), that we 
used in this research, can detect apriltags (QR-like markers) 
(Wang & Olson, 2016), and map the gaze onto the defined 
surface using Pupil Labs’ Application Programming Inter-
face (API) (Kassner et al., 2014). By placing the apriltags 
on the bezels of the computer screen, fixed coordinates of 
gaze can be calculated and be used in dynamic AOI analy-
ses, while maintaining a wide measurement area and free 
head movements. In essence, the mobile eye tracker is used 
in such a matter, that it facilitates remote eye tracking on 
a much wider screen, as was previously investigated in an 
explorative study (Haase et al., 2019). The Pupil Core can 
measure up to 200 Hz per eye (120 Hz with higher resolu-
tion) and is a relatively affordable and valid option when 
mid-range accuracy is sufficient (Ehinger et al., 2019). Pupil 
Labs offers open-source software, which is relatively quick 
to include new developments. However, current drawbacks 
of this software are the absence of tools for dynamic AOI 
allocation and analysis software.

Therefore, our aim is to develop a toolkit for the Pupil 
Core eye tracker, in order to perform pre-recorded gaze 
analyses of dynamic AOIs on a large screen with free head 
movements. The kit includes tools for simple allocation of 

dynamic AOIs (semi-automated and manually), measure-
ment of parameters such as dwell times and time to first 
entry, and overlaying gaze and AOIs on video. In this paper, 
we present the validation results of these tools on a group 
of normal-sighted participants. With our software, it will be 
possible to quantify viewing behavior for various purposes, 
especially when screen-based measurements are desired 
on a large screen. The source code of the entire toolkit is 
available on GitHub (https:// github. com/ treye scan/ dynam 
ic- aoi- toolk it).

Methods

Participants

Participants were recruited using snowball sampling at 
Amsterdam UMC for a validation study of the toolkit. Eli-
gibility criteria were: age above 18 years, no history of oph-
thalmic comorbidities, no medication use that could affect 
responsiveness and concentration, and no refractive cor-
rection by means of glasses or contact lenses. Participants 
performed an Esterman visual field test (Esterman, 1982) 
and a visual acuity measurement using the Early Treatment 
Diabetic Retinopathy Study (ETDRS) chart (Ferris III et al., 
1982; Yu et al., 2021). In addition, a custom suprathreshold 
visual field test performed on the Humprey Field Analyser 
II (HFA) to screen the central 10° for visual field defects. 
Only participants with a minimal binocular visual acuity of 
0.0 LogMAR without refractive correction and no defects 
on the visual field tests were included. Participants were 
instructed not to wear eye makeup.

All participants provided informed consent and all pro-
cedures were approved by the Medical Ethical Committee 
of Amsterdam University Medical Centers—location VU 
University Medical Center.

Validation task

The validation task included 13 short traffic scenes, which 
contained 13 dynamic AOIs varying in size, velocity, direc-
tion, and location on the screen (one object per scene). The 
participants were instructed to look at a certain object in 
each scene and track it from appearance to disappearance. 
Before the AOI appeared, a verbal instruction was given of 
the area in the scene it would appear, hence the participants 
already looked in that direction when the AOI appeared. 
The total experiment duration was 5 min. For each object, 
we were interested in the total dwell time and time to first 
entry, with the aim of validating our setup.

Videos had been recorded while driving in everyday 
traffic with a Sony A7III camera with a Laowa Zero-D 
ultra-wide field 12 mm f/2.8 lens (angle of view: 121.96°; 

https://github.com/treyescan/dynamic-aoi-toolkit
https://github.com/treyescan/dynamic-aoi-toolkit
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minimal distortion). Footage was shot in 4K (3840x2160) 
with 25 fps. The camera was mounted centrally behind the 
windshield of a Toyota Prius II. A black piece of felt was 
put on the dashboard to prevent reflections from the dash-
board surface.

Adobe Premiere Pro (Adobe Inc, San Jose, CA, USA) was 
used to expand and crop the video clips to 5760x1200 to fit 
the three screen setup (Fig. 1). The full width of the video 
was used. No information about the traffic scene was lost by 
cropping the video’s height to facilitate screen fitting.

Experimental setup and recording device

The validation experiment was conducted at the Amster-
dam UMC, location VUmc. In a recording room, 3 HP 
EliteDisplay E243i 24-inch IPS LED backlit monitors with 

1920x1200 resolution with thin bezels (width bezel: 0.68 
cm) and a refresh rate of 60 Hz were placed in a linear for-
mation. Nvidia Surround (Nvidia, Santa Clara, CA, USA) 
was used to span the video over the three screens with bezel 
correction. To view the video without distortion, a correc-
tion of 50 pixels was applied between two adjacent screens, 
thus occluding two minor portions of the video. An addi-
tional screen (Iiyama ProLite XB2783HSU) was placed on 
the side, the display not visible to the participant, in order to 
control the validation experiment. A car seat was positioned 
in front of the three screens at a distance of 65 cm from eyes 
to the central screen’s middle, in order to obtain a 100° field 
of view, which confines the possibility for a larger distance 
to the screen. The table could be altered in height to ensure 
the eyes were positioned in the middle of the screen (Fig. 1). 
Head movements were permitted in all directions.

Fig. 1  TREYESCAN setup. a Picture of setup. Participants are seated 
in front of the display monitors while wearing the Pupil Core eye 
tracker. b Schematic overview of the set-up (view from above). The 
participant is located 65 cm in front of the central display monitor. 

The examiner is located on the right of the participant and can guide 
the experiment from the host monitor. On the MacBook display, sta-
bility of the signal and performance of the participant can be checked
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The participants’ eye movements were recorded by 
a head-mounted eye-tracker (Pupil Labs Core glasses, 
received October 2021, Pupil Labs, Berlin, Germany). 
The Pupil Labs eye-tracker (Kassner et al., 2014), used 
in this study, has three cameras: one world camera (100° 
fisheye field of view, 30-Hz sampling frequency, resolu-
tion on a subset of 1280x720 pixels) to record the world 
from the participant’s point of view, and one eye-camera 
for each eye (120-Hz sampling frequency, resolution on a 
subset of 400x400 pixels). Pupil Labs capture v3.3.0 was 
used for the recordings. The experiment was conducted 
using two computers: Acer Nitro (N50-610 I9426-JK 
with NVIDIA GeForce RTX 2060 video card and Intel 
Core i5 processor) for stimulus presentation and an 
Apple MacBook Pro with M1 chip (as recommended by 
Pupil Labs) for recording of eye movements. All experi-
ments were performed under the same lighting conditions 
(~ 250 Lux). The luminance differs for the central screen 
(1–210 cd/m2) and the peripheral screens (1.5–150 cd/
m2), measured from the position of a participant.

Before each validation task, a nine-point screen cali-
bration routine was used on the three-screen setup as pro-
vided by Pupil Labs (personal correspondence). Similarly, 
the calibration was validated by a routine with 12 points 
of different positions. The Pupil Labs software then gen-
erates a value for the accuracy and precision. The valida-
tion routine was repeated after the task, to get insight in 
changes in accuracy and precision throughout the task, 
such as slippage of the glasses (Niehorster et al., 2020).

Methods of data analysis

Pupil Labs Player v3.3.0 was used to export the 
measurements. The analysis script was written in Python 
3.8.3 (Van Rossum, 1995) using NumPy (Harris et  al., 
2020), pandas (McKinney, 2010), OpenCV (Bradski, 
2000), and SciPy (Virtanen et al., 2020). For visualization, 
Matplotlib (Hunter, 2007) was used.

Surface definition

The Surface Tracker plugin by Pupil Labs (Kassner et al., 
2014) was used to define the surface area of the display 
with apriltags (Wang & Olson, 2016). Because of the wide 
screen, the surface was divided in nine Pupil Labs surfaces 
(Fig. 2). We found that with more and narrower surfaces the 
gaze coordinates became more accurate. Twenty-two aprilt-
ags were placed within the video (width of 80 pixels). The 
corner apriltags were enlarged for better detection at greater 
angles (width of 160 pixels), as seen in Fig. 2. A Python 
routine is included for this purpose in the toolkit. The sur-
face detection was not constantly optimal due to the small 
size of the apriltags and the backlight of the screens, hence 
18 additional apriltags printed on paper (width marker of 4 
cm, total width including white border of 6 cm) were placed 
on the top and bottom row of the screen’s bezels in order 
to enhance the detection quality of the surfaces (Fig. 1). A 
dummy surface was defined, merely registering the screen’s 
apriltags, in order to benchmark the start and end of the task. 
In between each scene, an additional unique apriltag was 
placed in order to monitor the time synchronization of the 
task and obtain an indication of possible latencies. The nine 
surface gaze files were pooled to one gaze file (Fig. 3a) and 
the coordinate system was transformed so that the screen’s 
middle was (0,0).

Pre‑processing the gaze data

A median noise reduction function was used as a low-
pass filter on the eye movement data to smooth out noise 
(Fig. 3a), while preserving the features of the sampled data 
(Juhola, 1991). We chose a median noise reduction algo-
rithm, because compared to a moving average algorithm, the 
data is less smoothed even though the most prominent noise 
is removed, less ‘false’ gaze coordinates are created and the 
amplitude of the velocity peaks is not reduced as severely 
(Olsen, 2012). A window size of three samples was chosen 
for one-sample spike reduction (Larsson et al., 2016).

Fig. 2  Indication of the surface distribution



3824 Behavior Research Methods (2023) 55:3820–3830

1 3

Pupil Labs provides a quality assessment of the pupil 
detection for every sample, as a “confidence” value 
between 0.0 (pupil could not be detected), and 1.0 (pupil 
was detected with very high certainty). A Boolean vari-
able (on_screen) is also provided by Pupil Player which 
indicates if the gaze was plotted within the surface areas. 
In our software, samples with a confidence level below 
0.8 (e.g., because of blinks) and samples outside the mon-
itor’s surface were treated as gaps in the data (Fig. 3a). 
This threshold is also used by Pupil Labs when determin-
ing valid gap samples for the calibration procedure. If the 
gap duration was below 75 ms, the gaze coordinates were 
filled in using linear interpolation (Komogortsev et al., 
2010; Olsen, 2012). Longer gaps were kept in the data 
frame and labeled as Not a Number (NaN) values. We 
regarded the samples ± 100 ms around a gap as additional 
gap samples, where the pupil of the eye may be partially 
occluded (Costela et al., 2014).

The Pupil Core eye tracker has two eye camera’s that 
each measure with a sampling rate of 120 Hz in anti-
phase. The Pupil Labs Fusion algorithm combines these 
signals to a sampling rate of 240 Hz. However, as it does 
not provide a constant sampling rate, we used piecewise 

cubic Hermite interpolating polynomials to obtain sam-
ples at a sampling rate of 240 Hz (Ehinger et al., 2019).

AOI allocation

In order to determine if a participant viewed an AOI, the coor-
dinates of the bounds of these AOIs must be obtained. We 
decided to determine all AOIs by the use of rectangles, as this 
was the most accessible shape for the AOIs in traffic scenes.

Two programs, written in Python, were used to draw rec-
tangles around the 13 dynamic AOIs in the traffic scenes. 
AOI_tracking.py tracks the object semi-automatically by 
using an OpenCV algorithm, which compares to consecu-
tive frames and redraws the AOI on the next frame. It also 
corrects the size of the rectangle according to the size of 
the AOI, as objects that move away or towards the camera 
vary in size considerably from beginning until the end. We 
noticed this program works well, except in some instances, 
e.g., when an object covers a large part of the scene. Hence, 
we also created another script that interpolates the bound-
ing boxes between two boxes drawn, AOI_selection.py. 
This program also contains an option to draw AOIs entirely 
manually frame by frame. Both scripts generate a bounding 

Fig. 3  Flowcharts of steps in data processing. a Pre-processing of the gaze data. b Gaze and AOI matching process
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box with x and y values for each object on the relevant frame 
number, an object type label and allow for additional cus-
tom labels. The coordinates of the AOI bounding boxes are 
also transformed to the coordinate system with (0,0) as the 
screen’s center.

Matching gaze and AOI data

A frame-by-frame method was used to match the gaze data 
with the AOI data (Fig. 3b). We computed the correspond-
ing frame number for each eye tracker sample, since the eye 
tracker samples were retrieved with 240 Hz (120 Hz for each 
eye camera) and the AOI data was based on footage with 25 
fps. For each gaze sample, we checked if the corresponding 
frame number lay within the boundaries of the AOI box.

A variable margin (in degrees of visual angle) can be 
added around every AOI box in order to compensate for eye-
tracking inaccuracy (Holmqvist & Andersson, 2017; Orquin 
et al., 2016). Because of the large angle of view (100°) these 
margins, in screen coordinates, become larger at the periph-
eral parts of the screen. This is calculated frame-by-frame, 
by determining the distance in pixels for the left and right 
side of the AOI separately for a given degree, as these can 
be significantly different due to the location and size of the 
AOI on the screen. For the top and bottom, both margins 
are calculated using the center y-coordinate of the AOI. It 
is recommended to add a margin around AOIs of 1° to 1.5° 
of visual angle, and when accuracy is low, increase margin 
size to ensure inclusion of all fixations on an AOI. However, 
larger AOI margins increase the risk of attributing fixations 
that do not belong to an object (Holmqvist & Andersson, 
2017; Orquin et al., 2016). Therefore, for the results of the 
validation task we experimented with different values for the 
margins to give insight in the effects on parameters such as 
dwell time percentages.

The entries and exits within an AOI were extracted and 
the dwell times between each entry and exit were calculated. 
We assumed the time between an exit and a new entry should 
not be shorter than 100 ms, because this would likely be due 
to precision errors than of the participant’s gaze deliber-
ately exiting and entering the object. If this time was indeed 
shorter than 100 ms, the time between the exit and new entry 
was pooled with the previous dwell time, thus combining the 
two visits. If a dwell time remained shorter than 100 ms, the 
dwell was not included in the total dwell time measure. The 
sum of dwell times provides the total dwell time within an 
AOI. We decided on 100 ms as a threshold for these vari-
ables, since Engmann et al. (2009) found that 96.1% of the 
fixations in their study lasted longer than 100 ms. Also, Sal-
vucci and Goldberg (2000) report that fixations typically 
have a duration of at least 100 ms. For a dwell time to be 
relevant it needs to consist of at least one fixation otherwise 

no cognitive processes could have taken place. Thus, 100 
ms was considered a safe cut-off. However, the values of 
these variables can be altered in the toolkit according to the 
experiment’s requirements.

Time to first entry is computed by extracting the time 
between the objects first appearance and the first entry. The 
dwell time percentage is calculated between the total appear-
ance time of an object and the total dwell time to explore 
what percentage of time the object was looked at when it 
was in view.

Overlay gaze and AOIs in video footage

We developed three tools for overlaying the gaze over the 
video for visualization of included AOIs and gaze data. The 
tool overlay_aois.py overlays the drawn AOI bounding boxes 
with margins, overlay_single_participant.py overlays all 
AOI boxes with the gaze data of one participant and over-
lay_multiple_participants.py overlays all AOI boxes with 
the gaze data of all participants. For the overlay tools dis-
criminative colors were used from the color alphabet (Green-
Armytage, 2010).

Statistical analysis

The statistical analyses were performed with IBM SPSS 
Statistics for Windows, Version 28.0 (SPSS, Armonk, NY, 
USA) and our analysis software programmed in Python. 
Graphs were made in GraphPad for Windows, Version 9.0 
(GraphPad Software, San Diego, CA, USA).

Results

Eleven participants (median age 27, range 25–59, 5 
female) were included to perform the validation task. The 
participant and measurement characteristics are shown in 
Table 1. Accuracy and precision, as provided by Pupil 
Labs and obtained during the validation procedures before 

Table 1  Participant and measurement characteristics

n = 11

Age (year) median [range] 27 [25–59]
Number of female participants (N) 5
Binocular visual acuity (logMAR) mean ± SD 0.13 ± 0.091
Esterman visual field abnormalities 0
Prescription eyeglasses/contact lenses 0
Accuracy before task (°) mean ± SD 2.05 ± 0.43
Precision before task (°) mean ± SD 0.10 ± 0.017
Accuracy after task (°) mean ± SD 2.12 ± 0.69
Precision after task (°) mean ± SD 0.098 ± 0.020
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and after the task, did not change significantly during the 
task of 5 min.

When pre-processing the gaze data, samples with a con-
fidence value below 0.8 were set to NaN values. Before 
interpolation, this was 3.59% (median, IQR [1.87–11.08]) 
of total samples. 2.14% (median, IQR [1.44–3.88]) of total 
samples were marked as samples outside the monitor’s sur-
face and were also set to NAN. Some samples had both a 
poor confidence and were not on screen, hence after this 
step, a total of 5.20% (median, IQR [2.75–13.56]) of sam-
ples were set to NaN values. Subsequently, the length of the 
gaps was determined and gaps that were shorter than 75 ms 
were interpolated. After this interpolation, 3.89% (median, 
IQR [2.56–7.98]) of samples remained a NaN value. When 
extending the gaps with ± 100 ms, 7.05% (median, IQR 
[5.01–14.16]) of samples were set to NaN values. These 
samples were consequently considered as gap samples in the 
analyses.

As can be seen in Table 2, objects of various sizes, loca-
tion, direction, and velocity were included in the validation 
task. An object can have a large range of sizes, as the objects 
become larger when nearing the camera, e.g., Road Sign 1, 
which starts as a small object and becomes a large object at 
the side of the screen when the car passes it. We included 
objects that move from one side of the screen to the other, 
and objects that appear in the center of the screen and disap-
pear from the sides, which is the case for oncoming traffic, 
traffic lights, road signs etc. Only Car 2 starts in the middle 

and ends in the middle. Van 1 stands out as an object with a 
short and rapid appearance.

Our toolkit was applied on the gaze data for different 
sizes of AOI margins. Figure 4 presents the percentage 
between total appearance time and calculated dwell time 
for each object. It shows that adding a margin, consider-
ably increases the calculated dwell time percentage. After 
1.5° the measures only improve slightly and most dwell 
percentages lay around 90%. This margin seems the most 
acceptable margin, as it is large enough to reduce inaccurate 
hits, but is at the same time the smallest margin possible to 
decrease possible overlap with other AOIs in the scene. In 
the supplementary material S1 (Video Van1) and S2 (Video 
Scooter1) two objects of the task can be seen with the gaze 
data and AOIs with margins of 1.5°. Also, the raw data table 
that supports Fig. 4 is included in S3.

Figure 5 gives insight in the distribution of calculated 
dwell time percentages for each participant. It can be 
seen that when a margin of 1.5° is chosen, most calcu-
lated dwell time percentages of the participants are above 
80% and median dwell time percentages are around 90%. 
Especially Van 1 and Cyclist 1 show a wide distribution 
of dwell time percentages.

The median time to first entry measure was close to zero 
and below 50 ms for most objects, when a margin of 1.5° is 
chosen. However, the last exit time was often significantly ear-
lier than the disappearance time for the objects that disappear 
at the sides of the screen, which is the case for most objects.

Table 2  Traffic scenes and AOI characteristics

Width of screen: 5760 pixels. Height of screen: 1200 pixels. Duration of Scene: the duration of the entire scene in which the AOI is included. 
Duration of AOI visibility: the time during which the AOI is visible. The average velocity is calculated by dividing the trajectory (middle of start 
point till middle of end point) in degrees by duration of AOI visibility (negative numbers represent objects that move from the right to the left 
side of the screen)

Duration  
of scene (s)

Duration  
of AOI visibility (s)

Width AOI (pixels;  
median (min – max))

Height AOI (pixels;  
median (min – max))

Average 
velocity of 
AOI (°/s)

Car 1 17.6 10.5 865 (150–2350) 275 (75–725) 7.2
Car 2 69.4 69.2 168 (48–544) 144 (52–284) 0.02
Cyclist 1 23.2 9.8 160 (70–525) 200 (125–455) 9.7
Cyclist 2 17.3 9.8 215 (85–660) 390 (140–660) 8.6
Cyclist 3 11.6 4.6 160 (60–590) 165 (90–540) 11.6
Cyclist 4 13.2 10.3 52 (40–1020) 120 (76–1168) 4.6
Pedestrian 1 31.6 25.5 195 (70–455) 210 (75–330) 2.0
Road Sign 1 10.8 6.4 60 (40–892) 68 (36–424) 6.9
Road Sign 2 11.2 6.8 44 (24–185) 42 (28–245) 7.1
Scooter 1 23.2 9.8 104 (24–185) 160 (24–185) 9.0
Scooter 2 9.3 5.4 36 (28–1116) 72 (44–920) 8.1
Traffic light 1 12.6 11.8 32 (20–340) 60 (40–410) 3.7
Van 1 11.6 1.7 1790 (160–2110) 730 (395–760) 56.5
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Feasibility

The question is why we did not obtain dwell time percent-
ages of (close to) 100% for all participants when viewing 
the AOIs, since participants were instructed to track them 

from appearance to disappearance. Multiple factors could 
contribute to our results.

Gap samples (during blinks) were excluded from the 
dataset. When an AOI is viewed for an extended period of 
time such as Car 2, it is inevitable that the participant will 
blink multiple times, which has an effect on the measured 
dwell time.

Furthermore, when analyzing the results of our toolkit 
we assumed that participants had followed the objects 
accordingly and that discrepancies were due to eye tracker 
or toolkit inaccuracies. However, we noticed that especially 
fast moving objects, such as Van1 (see S1 – Video Van1) are 
not properly followed by all participants. In some instances, 
a participant did not immediately look at an object after it 
appeared (although instructed otherwise).

When looking at the gaze data of the validation task it is 
clear that the accuracy gets poorer towards the sides of the 
screen at larger angles, between 40 and 50° (see S2 – Video 
Scooter1). It is well known in eye-tracking research that 
accuracy is best in the middle and poorest in the corners of 
the screen (Holmqvist & Andersson, 2017). We aimed to 
correct for this by adding a larger margin towards the sides 
of the screen as determined by the position of the object on 
the screen, but this was not enough for some cases.

Furthermore, when the participant looks at the side of the 
screen, due to the inaccuracy at larger angles, data samples 

Fig. 4  Median dwell time percentage for different AOI margins. Each symbol denotes the median dwell time percentage for 1 AOI

Fig. 5  Dot plot of the dwell time percentage (%) for each object for 
AOI margin 1.5°. Each dot represents one participant. The median 
and interquartile range are also illustrated
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are labeled as “not looking on the screen” and hence con-
sidered as missing samples in the dataset. This is visible in 
the Video Van1 (see S1) where the gaze points of multiple 
participants are not visible because the gaze points fall out-
side of the screens edge due to the inaccuracy. We assume 
that this aspect was the biggest issue for the lower dwell time 
percentage, since most objects disappear from the sides of 
the screen. We expect this not to be a disturbing issue when 
using this method on a natural viewing task, because then 
participants will not be instructed to follow an object from 
appearance to disappearance, and generally will not be look-
ing at the edges of the screen.

Discussion

In this paper, we present a toolkit for analyzing dynamic 
AOI analyses on a large screen without the restriction of 
head movements. The results of our validation task show 
promising results for the functionality of the toolkit using 
the Pupil Core eye tracker. For most followed objects 
(11/13) the calculated median dwell time percentages are 
around 90%.

When using video stimuli in eye tracker research, syn-
chronization between stimulus presentation and recording 
software is critical (Holmqvist & Andersson, 2017). As 
we presented the stimuli and the recording software on dif-
ferent computers, the probability of latencies decreases, 
because the processor and hard disk do not have to perform 
the demanding operations simultaneously. However, the 
probability of latency remains, because video players typi-
cally run slightly faster or slower than the recording of data 
samples, and as a result the data sample resulting from a 
participant looking at a particular frame in the video can be 
stored earlier or later in the data file. Moreover, the begin-
ning of the recordings is determined by the presentation of 
the apriltags. Since the scene camera records in 30 fps, a 
delay of 33 ms could occur after the onset of the video. In 
order to get an indication of the synchronization status in 
our setup, we placed an apriltag between every scene of 
the validation task. We found a discrepancy of 0 to 62.5 
ms between the expected appearance of the apriltag and the 
actual eye-tracking data. When also considering the inherent 
delay of 10 ms of the Pupil Labs’ cameras (Ehinger et al., 
2019), we find this value acceptable for our research aim.

In some eye-tracking studies, researchers use fixation 
measures instead of dwell times measures for AOIs analy-
ses. In this toolkit, we decided to use dwell time measures 
for the dynamic areas of interest analysis. Susac et al. (2019) 
concluded that it is adequate to report only one of these 
measures. In addition, Vansteenkiste et al. (2015) found a 
high correlation when comparing a fixation-by-fixation anal-
ysis to a frame-by-frame method when analyzing dwell time 

percentages. This indicates that both methods work well. A 
frame-by-frame method was chosen for our toolkit to check 
for robustness without adding another subjective variable. 
However, the fixation algorithm provided by Pupil Labs can 
also be used with our detection software.

In this toolkit we offer two tools for the allocation of 
AOIs. Recently, Bonikowski et al. (2021) also presented 
open-source software for determining dynamic AOI using 
object tracking. They offer a neat application with integrated 
control panels. A benefit of our toolkit is the possibility of 
margin addition and the incorporation of the software that 
matches gaze with AOIs.

A limitation of our validation study is the inclusion of 
individuals without glasses or contact lenses. We wanted to 
test our toolkit in the most ideal situation. Hence, no con-
clusions can be drawn about the functionality of the Pupil 
Core eye tracker in combination with our toolkit when using 
refractive correction. The AOIs were in all cases defined 
as rectangles, while AOIs such as round traffic signs and 
cyclists, do not fill the rectangle shape entirely. However, 
this was the most accessible shape for most objects in traffic 
situations. Moreover, the results are based on a small sample 
of 11 participants, who watched scenes for 5 min, which may 
not represent the accuracy and precision during a longer 
task. The analysis of dynamic AOIs remains complex. Since 
objects move relative to the coordinate system in which the 
gaze position data is recorded, it is difficult to make any 
definite statements relating to the size of the AOIs.

When considering all the challenges that arise with this 
type of measurement methods and analyses, it can be con-
cluded that our toolkit performs acceptably for the research 
aim. To the best of our knowledge, this is the first toolkit that 
uses the Pupil Core eye tracker and apriltags for dwell time 
measures in dynamic areas of interest on a large screen. As 
well as providing various tools that are necessary for analy-
sis and visualization purposes.

Conclusions

This validated open-source toolkit is ready to use for 
researchers who want to perform dynamic AOI analyses 
with the Pupil Core eye tracker, especially when measure-
ments are desired on a wide screen. We provide tools for 
simple allocation of dynamic AOIs (semi-automatically and 
manually), measurement of parameters such as dwell times 
and time to first entry, and overlaying gaze and AOIs on 
video. With our software, it is possible to quantify viewing 
behavior for various purposes. In further research, our aim 
is to investigate compensatory viewing strategies in traffic, 
but our setup is also readily available for eye tracking studies 
in other fields, such as psychology, transportation, and low 
vision research.
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tary material available at https:// doi. org/ 10. 3758/ s13428- 022- 01991-5.
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