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Abstract
The visual world paradigm is one of the most influential paradigms to study real-time language processing. The present study 
tested whether visual world studies can be moved online, using PCIbex software (Zehr & Schwarz, 2018) and the WebGazer.
js algorithm (Papoutsaki et al., 2016) to collect eye-movement data. Experiment 1 was a fixation task in which the partici-
pants looked at a fixation cross in multiple positions on the computer screen. Experiment 2 was a web-based replication of 
a visual world experiment by Dijkgraaf et al. (2017). Firstly, both experiments revealed that the spatial accuracy of the data 
allowed us to distinguish looks across the four quadrants of the computer screen. This suggest that the spatial resolution of 
WebGazer.js is fine-grained enough for most visual world experiments (which typically involve a two-by-two quadrant-based 
set-up of the visual display). Secondly, both experiments revealed a delay of roughly 300 ms in the time course of the eye 
movements, possibly caused by the internal processing speed of the browser or WebGazer.js. This delay can be problematic 
in studying questions that require a fine-grained temporal resolution and requires further investigation.

Keywords  Web-based eye tracking · Visual world paradigm · Online experiments · Language comprehension · 
Psycholinguistics

Introduction

Over the last decades, the visual world paradigm has proven 
to be one of the most fruitful techniques for studying real-
time language processing (see Huettig et  al., 2011, for 
review). The typical setup of a visual world experiment is 
relatively simple: Participants listen to auditory linguistic 
stimuli while they look at a display that contains visual 
stimuli (although the paradigm has also been used to test 
language production, e.g.,  Griffin & Bock, 2000). An eye-
tracking device is used to track the eye movements of the 
participants. Since there is a tight temporal link between 
visual attention and language processing, this setup provides 
informative data.

This link was first observed by Cooper (1974), who let 
participants listen to short narratives while they looked 

at a display that contained nine pictures. Cooper’s results 
showed that the participants tended to look at objects in the 
visual world that are related to the linguistic input that they 
are processing at that moment of time. For instance, the 
participants looked more often at a picture of a zebra upon 
hearing the word zebra in the narrative compared to when 
the word zebra is not mentioned. This effect emerged rap-
idly: People tended to fixate on the related object within 200 
ms after the word onset (see also Matin et al., 1993; Saslow, 
1967). Since Cooper’s seminal findings, the visual world 
paradigm has been used to test real-time language process-
ing at a wide range of linguistic levels, such as phonemic or 
phonological processing (e.g., Allopenna et al., 1998; Huet-
tig & McQueen, 2007; Snedeker & Trueswell, 2004), syn-
tactic processing (e.g., Altmann & Kamide, 1999; Kamide 
et al., 2003; Tanenhaus et al., 1995) or semantic and prag-
matic processing (e.g., Degen & Tanenhaus, 2016; Huang 
& Snedeker, 2009, 2018; Sun & Breheny, 2020).

Even though the visual world paradigm has become one 
of the most fruitful and versatile paradigms for studying 
real-time language processing, it has an important limitation: 
It requires expensive and stationary eye-tracking equipment, 
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as well as a researcher that is present in the lab to administer 
the experiment. This makes eye-tracking-based experiments 
rather cumbersome, especially in comparison to other behav-
ioral experiments that can be carried out remotely over the 
Internet (e.g., Gosling & Mason, 2015; Gibson et al., 2011; 
Pinet et al., 2017). The advantages of web-based testing are 
eminent: Because participants do not have to come to the 
lab, it is easy to recruit many participants (see Hartshorne 
et al., 2018, for a particularly successful attempt of recruiting 
a large sample size) or target a specific group of participants 
(e.g., speakers of a language that is not commonly spoken 
in the country in which the researcher resides). Moreover, 
since online experimentation does not require a researcher to 
supervise the experiment, data collection is also much faster 
and more efficient compared to lab-based experimentation.

Fortunately, there is hope that the visual world paradigm, 
as well as other eye-tracking-based paradigms, could be 
moved to the Internet. Most remote high-end eye-tracking 
devices use a near-infrared illumination to cause a reflection 
on the participants’ cornea and a high-end video recorder 
to capture images of the eye. Image processing techniques 
then locate the pupil based on the visible reflection on the 
cornea, and use this information to estimate the partici-
pants’ eye movements (e.g., SR Research, 2021; Tobii Pro, 
2021). Recent software developments allow us to estimate 
gaze locations on videos with a lower resolution than those 
recorded with a high-end eye-tracking device (e.g., Valenti 
et al., 2009; Valliappan et al., 2020; Xu et al., 2015). In 
particular, Papoutsaki et al. (2016) developed a JavaScript-
based library named WebGazer.js. WebGazer.js’s algorithm 
consists of two main components: A pupil detector that looks 
for the position of the pupils in the webcam stream and a 
gaze estimator. This gaze estimator uses regression analysis 
to approximate the location of the looks on the screen. These 
regression analyses used by the gaze estimator are guided 
by the interactions of the participant, such as mouse clicks 
and cursor movements. WebGazer.js can therefore be used 
to collect eye-movement data in web-based experiments, but 
we know relatively little about the spatio-temporal resolu-
tion of the eye-movement data that WebGazer.js provides, 
or whether the data is accurate enough to use in psycholin-
guistic research.

The first studies that used WebGazer.js to conduct eye-
tracking experiments showed promising results. In a lab-
based experiment, Papoutsaki et al. (2018) used a high-end 
eye-tracking device (a Tobii Pro X2-120) and WebGazer.
js in combination with a consumer-grade webcam to track 
participants’ eye movements while they were typing. Their 
results showed that distinct eye-movement patterns can 
be distinguished for touch and non-touch typists. Moreo-
ver, these eye-movement patterns were found in both the 
data collected with the Tobii eye tracker and in the data 
collected with WebGazer.js. WebGazer.js was thus able 

to replicate data collected with a high-end eye tracker, 
although visualizations of this data do suggest that the 
quality of the WebGazer data is somewhat poorer relative 
to the Tobii data, showing more variance in both the spatial 
and the temporal domains.

In another study, Semmelmann and Weigelt (2018) tested 
the viability of web-based eye-tracking experiments using 
WebGazer.js and consumer-grade webcams by conduct-
ing an experiment that consisted of three tasks: (i) A fixa-
tion task in which the participants fixated on a circle that 
appeared on the screen for 2000 ms, (ii) a pursuit task in 
which the participants followed a circle that moved on the 
screen, and (iii) a free-viewing task in which the partici-
pants looked at a photograph of a face. Their results showed 
that WebGazer was suitable for all three tasks, although 
the spatial and temporal resolution was poorer compared 
to the standards of a high-end eye-tracking device. Look-
ing at the spatial resolution of the data from the fixation 
and the pursuit tasks, the in-lab acquired data revealed an 
offset between the estimated fixation position and the stim-
ulus of roughly 15–19% of the screen size. Nevertheless, 
Semmelmann and Weigelt’s free-viewing task showed that 
WebGazer.js was able to replicate previous findings from 
lab-based experiments: The participants tended to fixate on 
the eyes when they look at an image of a face compared to 
other regions of interest (such as the mouth and the nose), 
which corroborates findings that Westerners tend to focus 
their attention at the eyes when they see a face (e.g., Blais 
et al., 2008). Regarding the temporal resolution of the data, 
the fixation task data showed that the saccade towards the 
stimulus started roughly 250–375 ms after stimulus onset 
and lasted 450–750 ms on average. Finally, it must be noted 
that Semmelmann and Weigelt’s experiment showed con-
siderable variance between participants. This variance is not 
only due to individual differences between participants, but 
also in terms of the hardware they used to do the experiment 
(e.g., quality of the webcam, stability of the Internet connec-
tion, lighting used in the room).

These few previous studies revealed that, in principle, 
web-based eye tracking can detect eye-movement patterns. 
However, these studies also reveal that the quality of the 
data is considerably weaker compared to data from lab-
based experiments that used high-end eye trackers. Espe-
cially the temporal resolution observed in Semmelmann 
and Weigelt (2018) may be worrisome: Based on lab-based 
experimentations, we know that it takes roughly 200 ms to 
execute a saccade (e.g., Matin et al., 1993), whereas Sem-
melmann and Weigelt’s results showed that it took roughly 
750 ms until participants settled their gazes on a stimulus. 
This raises the question of whether webcam-based tech-
niques are suitable for conducting visual world experiments 
(or behavioral research in general), which often requires a 
precise temporal resolution.
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In the present study, we gain insight into this question 
by conducting two web-based experiments that used Web-
Gazer.js to track participants’ eye movements. Experiment 
1 was a fixation task that was inspired by Semmelmann 
and Weigelt’s (2018) fixation task. In this experiment, the 
participants looked at a fixation cross that appeared on the 
screen for 1500 ms. The aim of this experiment was to gain 
further insight into the spatial and temporal resolution of 
web-based eye-tracking data, and to see how this data quality 
is influenced by properties of the hardware, such as webcam 
sample rate or the calibration threshold of the webcam eye 
tracker (more below).

Experiment 2 was a web-based replication of a visual 
world study that was previously conducted by Dijkgraaf 
et al. (2017) in an in-lab setting using a high-end eye-tracker. 
This experiment investigated predictive processing based on 
verb meaning in sentence comprehension. Predictive pro-
cessing based on verb information is a finding that is often 
observed in visual world studies: If the visual display con-
tains only one picture of an object (e.g., a picture of a letter) 
that would be a fitting argument following the verb in the 
auditory stimulus (e.g., a sentence like Mary read a letter), 
participants already tend to fixate on the fitting picture dur-
ing the processing of the verb, before the onset of the second 
noun (see Altmann & Kamide, 1999; Kamide et al., 2003; 
Borovsky et al., 2012; Hintz et al., 2017, 2020, inter alia). 
By replicating Dijkgraaf et al.’s visual world experiment in 
a web-based setting, and by comparing our web-based data 
with their lab-based data, we will get a rich insight into the 
viability of the use of WebGazer.js in visual world studies.

Experiment 1: Fixation task

Participants

This experiment was approved by the Ethics Committee of 
the Faculty of Psychological and Educational Sciences at 
Ghent University. All participants gave informed consent 
by selecting a check box on one of the first web pages in the 
experiment, before the task started.

We tested 57 native speakers of English via Prolific 
(https://​www.​proli​fic.​co/), who were paid £1.25 for their 
participation. Although the task was non-linguistic, and 
therefore did not necessarily require native speakers of 
English, we set these screening restrictions so that the 
participants were comparable to those of Experiment 2 
(which did require native speakers of English). Prior to the 
experiment, the participants were instructed to not wear 
glasses during the experiment, and none of the partici-
pants reported to have worn glasses in a post-experimental 
questionnaire. Finally, all participants opened the experi-
ment in the Google Chrome Desktop browser. They were 

instructed to open the experiment on Google Chrome, and 
then were not able to continue to the experiment unless 
they indicated that they were on Google Chrome in a pre-
experimental question.

The results of two participants were not saved on the 
server due to connectivity issues, and therefore we could 
not include these participants the data analysis. Thus, the 
data of 55 participants were included in the final analyses.

Stimuli materials

The participants looked at a fixation cross that appeared in 
one of thirteen positions on the screen (Fig. 1). An impor-
tant difference between remote web-based eye tracking 
and in-lab eye tracking is that the computer screens of 
participants in web-based studies vary in sizes and resolu-
tion, whereas the participants of a lab-based eye-tracking 
experiment usually all carry out the experiment on the 
same hardware. To ensure that the experiment appeared 
at least similar for all participants, we set the size and 
position of the fixation cross relative to the screen size of 
the participant: the height (and width) of the cross is 15% 
of the height of the participant’s screen (for example, if a 
participant’s screen had a resolution of 1440 by 640, the 
size of the fixation cross is 96 by 96 pixels, because the 
experiment was shown in full screen). Note that four of 
the 13 positions were in the middle of each quadrant of the 
screen, which are typically the positions where the images 
are shown on the visual display in a visual world experi-
ment. The other nine positions were spread out over the 
screen. The addition of these positions allowed us to do a 
more fine-grained calculation of estimated gaze-location 
accuracy, which may be beneficial for future studies. The 
fixation cross appeared six times at each of the 13 posi-
tions, resulting in 78 trials. Trial order was fully rand-
omized for each participant.

Fig. 1   The 13 positions in which the stimuli could appear on the 
screen in Experiment 1

https://www.prolific.co/
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Procedure

The task was carried out remotely over the Internet and 
implemented using PennController for Ibex (PCIbex; Zehr 
& Schwarz, 2018). PCIbex has an eye-tracker element that 
uses WebGazer.js to estimate the locations of the partici-
pants’ eye gazes. The code that was used to implement this 
experiment is available at GitHub (https://​github.​com/​Mieke​
Slim/​Moving-​visual-​world-​exper​iments-​online)1.

The experiment started with a welcome page, an informed 
consent form, and instructions on how to set up the webcam. 

On the welcome page, the participants were asked to give 
the browser permission to use the webcam. Here, they were 
informed that we are not recording any videos, but only save 
information about where they look on the screen. Moreover, 
we instructed the participants to ensure that they were cor-
rectly seated in front of the webcam and that they were in 
a well-lit environment. Once the participant went through 
the welcome screens, the browser was prompted to switch 
to full screen.

The participants then continued to a calibration proce-
dure, which consisted of four steps (Fig. 2). First, partic-
ipants saw the webcam stream along with a green frame 
indicating the required head position, so they could posi-
tion themselves correctly in front of their webcam (step 1). 
Then, the participants clicked on eight buttons that were 
placed along the edges of their screen (step 2). Once they 
had clicked on all these buttons, a new button appeared in 
the center of the screen (step 3). The participants clicked on 

Fig. 2   The four steps of the calibration procedure. In the first step, the 
participants need to position themselves in front of their webcams by 
positioning the image of their head in the green square. They can then 
start the calibration by pushing the button in the middle of the screen 
(which says ‘Start calibration’). In the second step, they click on eight 
buttons (that all say ‘Click here’) that are placed along the edges of 

the screen, while they follow the cursor closely with their eyes. After 
they have clicked on all eight buttons, a new button appears in the 
center of the screen (step 3). After they have clicked this button, step 
4 will begin. In this final step, the participants fixate on the middle 
of the screen (marked by the words ‘Look here!’) for 3 s. During this 
step, the calibration score is calculated

1  The code and resources on GitHub can be easily imported into the 
PCIbex Farm (https://​farm.​pcibex/​net), which can be used to host 
PCIbex experiments. Instruction on how to import these files on 
the PCIbex farm are provided in the GitHub repository (and in the 
PCIbex documentation: https://​doc.​pcibex.​net/​how-​to-​guides/​github/).

https://github.com/MiekeSlim/Moving-visual-world-experiments-online
https://github.com/MiekeSlim/Moving-visual-world-experiments-online
https://farm.pcibex/net
https://doc.pcibex.net/how-to-guides/github/
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this button and then fixated on the center of the screen (indi-
cated by the phrase ‘Look here!’) for 3 s (step 4). During 
these 3 s, the webcam eye tracker calibrated by calculating 
the proportion of estimated looks on the center of the screen. 
This proportion of estimated looks (ranging from 0 to 100%) 
indicated the success of calibration (the calibration score).

The required calibration threshold was set at 5% (mean-
ing that the calibration is considered successful if the eye 
tracker calculated that at least 5% of the estimated looks fell 
on the center of the screen in the last step of the calibration 
procedure). If this threshold was not met, the participant 
went through the full calibration procedure again. Because 
one of the goals of Experiment 1 was to test the influence of 
calibration score on the accuracy of the eye-tracking data, 
we wanted to obtain a wide range of calibration scores. 
Therefore, we chose to use a low calibration threshold in 
Experiment 1.

The fixation task started after successful calibration. 
Each trial started with a 500-ms black fixation cross in the 
center of the screen. The target fixation cross then appeared 
in one of the 13 positions of the screen for 1500 ms and then 
the next trial started automatically. In case the participant 
exited the full screen modus of the browser (e.g., by hitting 
the escape key), the browser was prompted to switch to full 
screen at the end of each trial. Every 13 trials were inter-
spersed with a calibration trial. The participants clicked on 
a button that appeared in the middle of the screen, and then 
fixated on the middle of the screen for three seconds so that 
the eye tracker can calibrate (steps 3 and 4 of the calibra-
tion procedure). If more than 5% of the estimated looks fell 
outside the target region in the center of the screen, the par-
ticipant went through the full calibration again. If calibration 
was successful, the next trial started automatically.

Analyses and results

Data treatment

The data and analysis scripts are online available at: https://​
osf.​io/​yfxmw/. Experiment 1 collected two types of gaze 
measurements: screen coordinates of the estimated gaze 
location and the quadrant on which each gaze was directed. 
The screen coordinates are given as pixel coordinates. This 
is not a uniform measure because the location of pixels on 
the screen depends on the participant’s screen size and reso-
lution. Therefore, we first standardized these coordinates by 
defining the position of the estimated gaze as a percentage 
of the participants’ screen width and height (e.g., the coor-
dinate of the pixel in the center of the screen is defined as 
(50, 50), regardless of the participants’ screen resolution).

We then aggregated the data into 100-ms bins, so that 
we had the same number of observations per participant 
and per trial. Here, however, we noticed that the duration of 

each eye-tracker recording did not always have the expected 
length of 1500 ms (mean duration 1456 ms; sd 122 ms; 
range 801–2210 ms). Longer recordings are likely due to 
short lags in the experiment. For instance, browser glitches 
(possibly caused by poor browser performance, i.e., the 
speed by which the browser renders and executes the func-
tions prompted by the experiment script) may lengthen the 
trials/recordings by several milliseconds. Shorter recordings, 
on the other hand, seem to be due to the sample frequency 
of the participant’s webcam (see below): In some cases, the 
webcam only recorded one frame per several 100 ms. In 
these cases, the eye tracker did record for the full 1500 ms, 
but the last recorded frame came in well before 1500 ms. It is 
noteworthy that both the particularly long and short record-
ings were observed in the same (few) participants, which 
suggests that both the longer and the shorter duration of the 
eye-tracking recording may be caused by the same underly-
ing problem, most likely browser processing speed and/or 
webcam quality. We did not remove any trials or participants 
prior to our analyses due to this issue since the variation 
between the participants and their hardware are relevant for 
these analyses. However, we did remove the data of each 
bin that was above 1500 ms (484 of 4279 recorded bins, i.e., 
11.31% of the total number of recorded bins) to create more 
homogeneity in our dataset.

Finally, for each time bin, we calculated the Euclidean 
distance between the estimated gaze location and the center 
of the stimulus, using the following formula:

The analyses of the Euclidean distance between the 
stimulus location and the estimated gaze location will give 
information about both the temporal resolution of the data 
(since we expect this distance to become smaller over time) 
and the spatial resolution of the data (since this Euclidean 
distance expresses the offset of the estimated gaze location 
and the actual stimulus location).

Analyses of Euclidean distance

We first tested whether the Euclidean distance between the 
gaze location and the stimulus position changed over the 
time course of the trials. Due to the explorative nature of 
this experiment, we mostly relied on visual inspection of 
the data in this part of the analyses. Looking at the visuali-
zation of the time course of the data (Fig. 3A), the start of 
each trial is characterized by a saccade towards the stimu-
lus location, which can be identified as a decrease in the 
Euclidean distance between the stimulus position and the 
estimated gaze location. On average, this decrease in dis-
tance started at roughly 200 ms after the stimulus onset. 
After 500 ms, the distance between the estimated fixation 

(1)
√

(

Xstimulus location − Xestimated gaze location

)2

+

(

Ystimulus location − Yestimated gaze location

)2

https://osf.io/yfxmw/
https://osf.io/yfxmw/
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location and the stimulus position remains relatively sta-
ble over time, which suggests that the participant’s fixa-
tions were settled on the stimulus. Within this fixation time 
window of 500–1500 ms, the mean distance between the 
estimated gaze location and the center of the stimulus was 
still roughly 30% of the screen size.

The data show considerable variability, as can be seen in 
the large standard deviation visualized in Fig. 3A. Possibly, 
this variability can partly be explained in terms of calibra-
tion success. We plotted the mean gaze location over time 
again, but now split up the data following the mean calibra-
tion scores of the participants in ten-point bins (Fig. 3B; 
resulting in a total of nine bins, since no participant had 
a higher mean calibration score of 90). This plot suggests 
that calibration score affects both the spatial and the tem-
poral accuracy of the data. First, we see that the estimated 
gaze locations are closer to the stimulus for participants 
with a higher mean calibration score compared to those 
with a lower mean calibration score. Second, it also seems 
that the fixation time window (in which the estimated gaze 
locations are settled on the stimulus) starts earlier for the 

participants who scored higher calibration scores in gen-
eral. Note that the number of participants in each bin is 
unbalanced (see the legend of Fig. 3B).

In addition, we investigated whether the position of 
the stimulus on the screen influences the spatial accu-
racy. Here, we analyzed the spatial resolution of the data 
in the time window between 500 and 1500 ms after the 
stimulus onset, because the participants fixations settled 
on the stimulus roughly 500 ms after the stimulus onset 
(Fig. 3). Visual inspection of the data (Fig. 4) suggests 
that the webcam eye tracker can discriminate between the 
quadrants of the screen. However, it seems that the accu-
racy is better if the stimulus is displayed in the center of 
the screen and less accurate if the stimuli are presented 
in the far corners of the screen (as was the case in the 
bottom-left, top-left, bottom-right, and top-right posi-
tions). It is worth noting that previous studies have also 
shown that professional-grade eye-tracking devices also 
estimate the gaze location more precisely if the partici-
pant looks at the center, rather than on the edge, of the 
screen, e.g., Ehinger et al., 2019).

Fig. 3   The mean Euclidean offset, measured in percentage of screen 
size, over the duration of the trials. A Mean Euclidean offset averaged 
across all participants. Here, the blue ribbon represents the stand-
ard deviation, to represent the large distribution of the data. B Mean 
Euclidean offset divided into separate mean calibration bins. In B, the 
ribbons represent the standard error, since showing the standard devi-

ations would have made the figure difficult to interpret. Note that the 
standard errors in B increase substantially towards the end of the trial. 
Here, the number of observations decrease because the recordings of 
some trials are shorter than 1500 ms, which results in larger standard 
errors (see Section 1.6.1.)
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Fig. 4   The density of looks over the screen in the fixation time win-
dow (500–1500 ms) broken down in all 13 fixation cross positions. 
Note that each panel represents the full screen. The stimulus positions 

that correspond to the center of each quadrant are shown in the sec-
ond and fourth row. The black crosses show the center of the fixation 
target positions
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Analyses of the quadrant‑based data

We also recorded the screen quadrant in which each esti-
mated gaze location fell. Here, our analyses focused on 
the central locations of each quadrant (0.25, 0.25–0.25, 
0.75–0.75, 0.25–0.75, 0.75). This type of data is relevant 
in the context of a visual world experiment, which typically 
involves the presentation of four images in the quadrants of 
the screen.

We started these analyses by comparing looks on the tar-
get quadrant to looks on the other three quadrants (Fig. 5). 
This way of data coding allowed us to perform explorative 
inferential statistics over the time course of the trial. We 
binarized the data (per trial and participant, a bin was coded 
as 1 if more than 30% of looks fell on the target quadrant, 
otherwise it was coded as 0). These data were analyzed with 
a cluster permutation analysis to identify temporally adja-
cent time bins that showed a significant difference in the 

likelihood of looks on the target quadrant and the likeli-
hood of looks on the other quadrants (p < 0.05). Each bin 
was tested for significance using a logit mixed-effect model 
(which contained random intercepts for Subject and Posi-
tion), and then, the data were randomly permuted and tested 
for significance again. This latter step was repeated 10000 
times to create an empirical null distribution. Finally, the 
empirical distributions were compared to the differences 
in the observed clusters, to test the reliability of the dif-
ferences in the observed clusters (e.g., Huang & Snedeker, 
2020; Maris & Oostenveld, 2007). This cluster permutation 
analysis was conducted using the permutes package in R 
(Voeten, 2021).

This analysis showed two clusters of adjacent time bins 
in which there was a reliable difference in the likelihood of 
target quadrant fixations compared to fixations on the other 
quadrants (Fig. 5A). First, between 0 and 200 ms, partici-
pants were more likely to look at the other three quadrants 

Fig. 5   The proportion of looks on the target quadrant increases after 
200 ms, and becomes significantly higher than looks at any of the 
other three quadrants after 400 ms (A). In addition, WebGazer.js is 
able to discriminate looks on any of the four quadrants, and the high-

est proportion of non-target looks are directed to the quadrant that is 
either above or below the target quadrant (B). Note that this figure 
only shows data of the four-quadrant based positions
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than on the target quadrant. Second, between 400 and 1400 
ms, they were more likely to look at the target quadrant than 
on any other quadrant. This suggests that, on average, par-
ticipants settled their gazes 400 ms after the stimulus onset, 
although participants may launch their fixations as early as 
200 ms after stimulus onset.

In addition, it is worth noting that there were no substan-
tial differences in the spatio-temporal accuracy across the 
four quadrants (Fig. 5B), although the proportion of fixations 
is descriptively slightly lower if the stimulus was presented 
in the top-right quadrant compared to any of the three other 
quadrants. Moreover, most of the estimated looks that were 
recorded as non-target looks after 400 ms fell on the quad-
rant above or below the target quadrant. This suggests that 
WebGazer.js is better in discriminating left-right looks from 
top-down looks (Fig. 5B).

Finally, we tested the variation across participants in 
the temporal domain by calculating, for each participant, 
the first time bin in which there was a higher proportion 
of estimated looks on the target quadrant than on any of 
the other quadrants on average. This time bin was not 
observed for four participants, because their estimated 
looks fell mostly on the non-target quadrants on average 
throughout the time course of the trials. For the other 51 
participants, this time bin fell between 200 and 1300 ms 
of the stimulus onset (Fig. 6).

Figure 6 shows that the distribution of the first time bins 
in which the estimated gaze locations predominantly fell on 

the target quadrant across participants is skewed: This time 
bin was observed before 400 ms for 21 participants, at 400 
ms for 14 participants, and between 500 ms and 1300 ms for 
the other 16 participants (and again, not even observed for 
four other participants).

The influence of calibration

Altogether, our data shows considerable variation across 
participants. In Section 2.4.2, we briefly hinted that this 
variation can partly be explained in terms of calibration 
score: Descriptively, the estimated gaze locations of partici-
pants who obtained a higher calibration score seemed to be 
more temporally and spatially accurate (Fig. 3B). Here, we 
briefly report some additional calculations on the influence 
of eye tracker calibration on the quality of the data. A more 
elaborate description of these calculations can be found in 
Appendix A. First, we observed that calibration score cor-
related with the participants’ webcam quality (expressed in 
the number of frames that are recorded each second, the so-
called fps or frames per second rate; ρ = 0.852, p < 0.001). 
This indicates that the eye tracker can calculate a more pre-
cise calibration score if there are more recorded frames. Sec-
ond, we also observed that calibration score correlated with 
the spatial accuracy of the data. Focusing on all 13 stimulus 
positions, we observed that the Euclidean offset between the 
estimated gaze locations and the stimulus was larger for par-
ticipants who obtained lower calibration scores on average 

Fig. 6   The distribution of the first time bin with a higher mean pro-
portion of target fixations than non-target fixations is skewed: There 
is larger variation across the participants who, on average, settle their 

gazes on the target later than 400 ms after stimulus onset (which is 
the mean) than before 400 ms after stimulus onset
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in the fixation time window (500–1500 ms; ρ = – 0.472, p < 
0.001). Taking the data from the four center-quadrant posi-
tions, we observe a similar correlation between mean cali-
bration score and proportion of target quadrant looks in the 
fixation time window (ρ = 0.395, p = 0.002). This suggests 
that calibration score also influences the spatial accuracy of 
the data if proportion of quadrant looks are measured, rather 
than more fine-grained estimate gaze coordinates.

Finally, we also observed a correlation between calibra-
tion score and the temporal accuracy of the data. Focusing 
on the data of the four quadrant-based positions alone, we 
observed that the first time bin with predominantly target 
fixations was later on average for participants with lower 
calibration scores than for participants with higher calibra-
tion scores (ρ = 0.747, p < 0.001). Recall that there were 
four participants for who this first time bin of target fixation 
was not observed. These participants were not included in 
this correlation test.

Altogether, the analyses of Experiment 1 showed that 
it takes roughly 400–500 ms until WebGazer.js detects 
that the participants’ gaze settled on the stimulus location. 
In addition, we observed that both the temporal and the 
spatial accuracy seemed to be better for participants who 
obtained higher calibration scores. Therefore, we raised 
the calibration threshold to 50 in Experiment 2, which is 
reported below.

Experiment 2: Replication of Dijkgraaf et al. 
(2017)

Participants

This experiment was approved by the Ethics Committee of 
the Faculty of Psychological and Educational Sciences at 
Ghent University. All participants gave informed consent 
by selecting a check box on one of the first web pages in the 
experiment before the task started.

Based on the finding from Experiment 1 that data quality 
improves with a higher calibration score, we set the calibra-
tion threshold at 50. However, some participants were not 
able to (consistently) reach this threshold in the calibration 
procedure (more below). These participants were redirected 
to another experiment that did not involve webcam eye-
tracking (not reported here).

We pre-set our desired sample size at ninety participants, 
following a rule-of-thumb to recruit three times the size of 
the original sample size of Dijkgraaf et al.’s (2017) experi-
ment (n = 30). We recruited 330 native speakers of English 
via Prolific. We redirected 240 participants to another exper-
iment, because they did not reach the calibration threshold 
in five attempts. The remaining 90 participants all took part 
in the visual world experiment. We did not exclude any of 

these participants in the analyses. All participants were paid 
£4.50 for their participation.

Stimulus materials

The materials and design were identical to the English 
monolingual version of the experiment reported by Dijk-
graaf et al. (2017). The experiment involved 18 experimental 
trials and 18 filler trials. In all these trials, the participants 
listened to a recording of a sentence while looking at a dis-
play of four pictures (arranged over the four quadrants of 
the screen). The experimental trials were presented in two 
conditions: the constraining and the neutral condition. In the 
constraining condition, only one of the four pictures depicted 
an appropriate post-verbal object (e.g., a letter following the 
verb read). In the neutral condition, on the other hand, all 
four pictures displayed appropriate post-verbal objects (e.g., 
a letter, a backpack, a car, and a wheelchair following the 
verb steal; Fig. 7).

In the filler trials, the display contained either no, two, 
or three pictures that depicted appropriate post-verbal 
arguments. All pictures are black-and-white line drawings 
that were taken from a normed database constructed by 
Severens, Van Lommel, Ratinckx, and Hartsuiker (2005). 
Dijkgraaf et al. (2017) matched the object names of the 
pictures for frequency, phoneme count, and syllable count 
across the conditions.

The sentences were simple four-word active transitive 
sentence (e.g., Mary reads a letter). The subject phrase was 
the same in all trials (Mary). The object noun always started 
with an indefinite article. The object noun always started 
with a consonant, so the article could not serve as a pre-
diction cue. The sentences were pronounced by a female 
native speaker of Dutch, who speaks English as a second 
language (and majored in English linguistics and literature 
at university). Dijkgraaf et al.’s (2017) original study did 
not only involve monolingual English participants, but also 
Dutch–English bilingual participants. They selected this 
speaker for the sentence recordings because of her clear 
pronunciation of both English and Dutch sentences. Her 
accent was rated by native speakers of English as 5.3 on a 
seven-point scale (where 1 = “very foreign accented” and 
7 = “native speaker”). We decided to re-use these record-
ings, to keep our replication as close as possible to Dijkgraaf 
et al.’s original experiment.

The 18 experimental stimuli and 18 filler trials were 
divided into two stimulus lists (named A and B). We took 
the lists from Dijkgraaf et al. (2017), who in turn assigned 
the experimental and filler trials pseudorandomly to the two 
lists, with the constraint that two sentences that belonged to 
the same stimulus set were not put in the same list. Each list 
contained nine constraining trials, nine neutral trials, and 
nine filler trials. Each trial contained a unique verb, but the 
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displays were repeated across blocks. Within each list, the 
trials were fully randomized for each participant. The order 
of the lists was counterbalanced across participants.

Procedure

Like Experiment 1, the experiment was implemented using 
the PennController for Ibex library (Zehr & Schwarz, 2018). 
The code of this experiment is freely available on GitHub 
(https://​github.​com/​Mieke​Slim/​Moving-​visual-​world-​exper​
iments-​online)2. Also like Experiment 1, Experiment 2 
started with general information and an informed consent 
pages. Following these pages, the browser switched to full 
screen and the webcam calibration procedure started. The 
calibration procedure was similar to the one in Experiment 
1, with the difference that the calibration threshold was now 
set to 50. If this threshold was not met, the last step of the 
calibration procedure was repeated (in which the participant 
clicked on a button in the middle of the screen and then fix-
ated at the center of the screen for 3 s). If the threshold of 50 

was not met in five attempts, the participant was redirected 
to another online experiment that did not involve webcam 
eye tracking (not reported here).

After successful calibration, the participants listened to a 
sentence recording, so they could adjust the volume of their 
computer. The participants could replay this recording as 
often as needed. Once they indicated that they had set their 
volume, another sentence recording was played once. The 
participants typed in this sentence, so that we could check 
whether the participant had indeed set up their audio prop-
erly (which was the case, because all participants correctly 
typed in the sentence). These two sentence recordings were 
used as practice trials in Dijkgraaf et al.’s (2017) original 
experiment, but not in the present experiment.

Following the audio setup, a brief practice block of two 
trials was presented. Afterwards, the participants started the 
first block of the experiment by clicking on a ‘start’ button. 
After 18 trials (i.e., the first list of stimuli), the participants 
could take a short break. The second block of the experiment 
started with the presentation of an audio recording again, so 
the participants could check whether their volume was still 
set correctly. Then, all trials in the second list were presented 
in the second half of the experiment.

Each trial started with a calibration check, which con-
sisted of step four of the calibration procedure (Fig. 2). 
If the threshold of 50 was not met, the full calibration 

Fig. 7   Example of a visual scene used in Dijkgraaf et al. (2017). In the constrained condition, the sentence that accompanied this display was 
Mary read a letter. In the neutral condition, the sentence Mary steals a letter was played

2  The code and resources on GitHub can be easily imported into the 
PCIbex Farm (https://​farm.​pcibex/​net), which can be used to host the 
experiment. Instructions on how to import these files on the PCIbex 
farm are provided in the GitHub repository.

https://github.com/MiekeSlim/Moving-visual-world-experiments-online
https://github.com/MiekeSlim/Moving-visual-world-experiments-online
https://farm.pcibex/net
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procedure was repeated. If the threshold was met, the trial 
started automatically. As in Dijkgraaf et al. (2017), the 
four-picture display was shown for 2200 ms before the 
sentence recording started playing. Unlike Dijkgraaf et al., 
however, the display remained on the screen for an addi-
tional 500 ms after the auditory stimulus stopped playing. 
We added this short overspill time window because Experi-
ment 1 suggested that WebGazer.js tends to be slower in 
recording the participants’ eye movements than a remote 
high-end eye tracking device (see also Semmelmann & 
Weigelt, 2018). After this 500-ms overspill time, the next 
trial started automatically. Similar to Experiment 1, if a 
participant exited the full screen modus, the browser was 
prompted to full screen after each trial.

Data treatment and analyses

The data and analysis scripts are online available at https://​
osf.​io/​yfxmw/. In Experiment 2, we did not record the screen 
coordinates of the estimated gaze locations. Instead, we only 
recorded on which quadrant of the screen each estimated 
gaze location fell (like Dijkgraaf et al., 2017). Dijkgraaf 
et al. aggregated their data in 50-ms time bins. However, 
if we were to aggregate the online-acquired data in 50-ms 
time bins, we would create some empty bins due to the low 
sampling frequency of some participants’ webcams. Instead, 
we aggregated the data in 100-ms bins, and applied this to 
Dijkgraaf et al.’s original data as well.

Dijkgraaf et al. (2017) tested the time course of the effect of 
Condition (neutral vs. constrained) on the proportion of target 
fixations by first determining a critical time window for analyses 
through visual inspection of the data. Then, each time bin was 
separately analyzed by modeling the likelihood of fixation on 
the target quadrant using generalized mixed-effect models (e.g., 
Jaeger, 2008). In these models, the dependent variable was the 
proportion of target fixation (transformed using the empirical 
logit formula, Barr et al., 2013). Condition (neutral vs. con-
strained) was included as a fixed effect, and Subject and Item 
were included as random effects (both slopes and intercepts).

We, however, used cluster permutation analysis (e.g., Hahn 
et al., 2015; Huang & Snedeker, 2020; Maris & Oostenveld, 
2007). This analysis procedure, which we described in Experi-
ment 1, has some important advantages over the procedure used 
by Dijkgraaf et al. (2017): It is less sensitive to the multiple-
comparisons problem, and it is not needed to set an a priori time 
window, since cluster permutation analysis investigates adjacent 
clusters of statically reliable effects and then tests whether these 
clusters are statistically sound or whether they have occurred 
by chance. We conducted these cluster permutation analyses 
on both Dijkgraaf et al.’s data and on our online-acquired data. 
The analyses were done in R (R Core Team, 2021), using the 
permutes package (Voeten, 2021).

Results and discussion

The effect of constraining verbs: In‑lab vs web‑based data 
collection

Dijkgraaf et al. (2017) analyzed the time window between 
350 ms after verb onset and 200 ms after noun onset. Their 
time course analyses revealed that the effect of Condition 
first showed significance in the 450–500-ms after verb onset 
time bin.

Our cluster permutation test revealed that the differ-
ence between the neutral and the constrained condition 
was significant in the time window between 500 and 1300 
ms after verb onset (p < 0.001; Fig. 8, top panel). In this 
time window, the proportion of fixations on the target 
image was higher in the constrained condition than in 
the neutral condition. Crucially, this time window starts 
before the mean onset of the second noun, which indi-
cates that these looks are predictive looks based on the 
action denoted in the verb, as also observed by Dijkgraaf 
et al. (2017). Note that our re-analysis revealed that the 
significant time window started 50 ms later than in Dijk-
graaf et al.’s original analyses. This is most likely a con-
sequence of our choice to aggregate the data in 100-ms 
bins rather than in 50-ms bins.

The cluster analysis on our online-acquired data also 
showed an effect of Condition, although this effect emerged 
later than in the in-lab acquired data from Dijkgraaf et a. 
(2017): The cluster analysis revealed a significant effect of 
Condition in the time window between 700 and 1600 ms 
after the verb onset (Fig. 8, bottom panel; p < 0.05). This 
indicates that the overall effect observed in Dijkgraaf et al. 
(2017) is replicated, but the significant time window starts 
200 ms later in the online-acquired data than in the lab-
acquired data.

The online-acquired data in Experiment 2 thus seem to 
show a time lag compared to the lab-acquired data from 
Dijkgraaf et al. (2017). Therefore, we descriptively ana-
lyzed variation across participants in the time course of 
the recorded eye movements by calculating the first bin 
where, on average, there was a higher proportion of looks 
at the target quadrant than on any of the other three quad-
rants (aggregated across both conditions; similar to the 
analysis reported in Experiment 1; Fig. 9). This analysis 
showed considerable variation across participants: On aver-
age, the 1500–1600-ms time bin was the first time bin in 
which most estimated looks fell on the target picture than 
on any of the other pictures. However, this time bin ranged 
between 300 and 2000 across participants. This analysis 
thus suggests that the time lag observed in the online-
acquired data of Experiment 2 is (at least partly) caused 
by individual variation across participants. We will return 
to this point in the General Discussion.

https://osf.io/yfxmw/
https://osf.io/yfxmw/
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Fig. 8   Results from Dijkgraaf et al.'s (2017) lab-based study (A) and 
our web-based replication (B). Our web-based study replicated the 
global pattern observed by Dijkgraaf et  al.: Participants looked at 
the target image earlier in the constrained condition than in the neu-
tral condition. However, there is a delay in the time course of the 

online-acquired data compared to Dijkgraaf et al.’s data: In Dijkgraaf 
et al.’s original study, this effect emerged 500 ms after the verb onset, 
whereas this effect emerged 700 ms after the verb onset in the online-
acquired data

Fig. 9   The distribution of onset of the first time bin per participants in which there is, on average, a higher proportion of target fixations than 
non-target fixations seems to be somewhat skewed
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The role of calibration

Here, we briefly report calculations that tested whether vari-
ation in the (spatio-temporal) accuracy of the data can be 
explained by calibration scores. More detailed descriptions 
of these calculations are reported in Appendix A.

First, we tested whether calibration correlated with the 
spatial accuracy of the data, by taking the subset of data 
recorded 1600 ms after verb onset until the end of the trial 
(i.e., the time window in which the webcam eye-tracker 
detected that the participants settled their gaze on the target 
picture, because there was no effect of Condition anymore). 
A Spearman’s rank correlation test showed a weak and non-
significant negative correlation between the proportion of 
target fixations and mean calibration scores (ρ = – 0.197, 
p = 0.063). Second, we tested variation across participants 
in the time course of the estimated gaze locations by cal-
culating the first bin where, on average, there was a higher 
proportion of estimated looks at the target quadrant than 
on any of the other three quadrants (aggregated across both 
conditions). A Spearman’s rank correlation test revealed no 
correlation between the mean obtained calibration score and 
the onset of the average first time bin of target fixation (ρ = 
0.116, p = 0.282).

These analyses suggest that variation in calibration score 
in Experiment 2 did not seem to correlate with the spatial 
or temporal resolution of the eye-tracking data. This con-
trasts with Experiment 1, where the calibration threshold 
was much lower (5 instead of 50; a point we will return to in 
the General discussion).

Effect size and power considerations

Descriptively, the difference between the proportion of 
looks on the target in the Constrained and Neutral condi-
tion seems to be smaller in the online-acquired data than in 
the in-lab-acquired data from Dijkgraaf et al. (2017), sug-
gesting that the effect size is smaller in the online-acquired 
data. This observation has important implications for the 
required sample size for web-based eye tracking compared 
to lab-based data, since the required sample size to obtain 
adequate statistical power relies on the size of the effect 
(e.g., Brysbaert & Stevens, 2018; Green & MacLeod, 2016). 
We tested the difference in effect size in both the online-
acquired and lab-acquired data by taking the data from the 
time window that showed a significant effect of Stimulus 
Condition (as revealed by our cluster permutation analysis: 
700–1700 ms in the online-acquired data and 500–1300 ms 
in the lab-acquired data). We then modeled the likelihood 
of target fixations with a logit mixed-effect model (which 
contained Stimulus Condition as a (sum-coded) fixed effect, 
and random intercepts for Participant and Sentence), which 
was constructed using the lme4 package in R (Bates et al., 

2015). As expected, this model showed that participants 
were more likely to fixate on the target quadrant during this 
time window in the constrained than in the neutral condition 
in both the online-acquired data (beta = 0.164, z = 3.983, 
p < 0.001) and in the lab-acquired data (beta = 0. 274, z 
= 3.50, p < 0.001). The beta coefficients of these models 
provide an estimate of the effect size, and this coefficient is 
considerable smaller in the online-acquired data than in the 
lab-acquired data (i.e., 0.164 vs. 0.274, which is roughly 
60% of the effect observed in-lab).

To test whether Experiment 2 was indeed sufficiently 
powered given this finding, we conducted an explorative 
simulation-based power calculation on Dijkgraaf et al.’s 
(2017) data using the mixedpower package in R (Kumle 
et al., 2021), in which we tested the number of participants 
required to obtain an effect that is half the size of the effect 
observed in Dijkstra et al.’s original data. This analysis was 
a simulation-based power calculation in which we simulated 
the data in the significant time window 1000 times for dif-
ferent numbers of participants (the full details of this power 
analyses are given in Appendix B). Each dataset was tested 
for significance using the same logit mixed-effect model 
procedure given above. This power analysis showed that we 
reach sufficient power (i.e., 80% or higher) to detect an effect 
half the size observed in Dijkgraaf et al.’s data with 70 to 
75 participants. This suggests that our experiment may be 
slightly overpowered (as also indicated by the small stand-
ard errors in Fig. 8; it is also worth noting that the observed 
effect size in our replication was slightly bigger than half the 
size of in Dijkgraaf et al.’s observed effect).

Altogether, it seems that (i) the effect size in a web-based 
visual world study is roughly half as observed in an in-lab 
experiment (which should be considered in determining the 
required sample size for a web-based eye-tracking study), and 
(ii) collecting two to two-and-a-half times as many partici-
pants as an in-lab study eye-tracking study may be sufficient 
to obtain sufficient power. However, since the power analy-
sis conducted here is explorative and the size of the effect 
may depend on calibration threshold, design of the display, 
or population, these observations require further validation.

General discussion

This study aimed to gain insight in the viability of web-
based visual-world eye-tracking experimentation using the 
WebGazer.js algorithm in combination with consumer-grade 
webcams to track participants’ eye movements. In Experi-
ment 1, we tested the spatial and temporal resolution of the 
webcam eye tracker in a simple fixation task. The experi-
ment revealed that it took roughly 400 to 500 ms until the 
participants settled their gaze on the stimulus. Once they 
fixated on the stimulus, the mean offset between the stimulus 
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and the estimated gaze location was still roughly 30% of the 
screen size. The spatial and temporal accuracy, however, 
improved with calibration score. In Experiment 2, we repli-
cated a visual world study from Dijkgraaf et al. (2017) that 
tested predictive processing based on verb information in 
language comprehension. Experiment 2 replicated the over-
all pattern observed in Dijkgraaf et al.’s original data (which 
was acquired in a lab-based setting): Participants tended to 
fixate earlier on a picture displaying the object argument 
if the verb was semantically constraining. However, we 
observed a delay in the latencies of the eye movements: The 
anticipatory looks to the object image surfaced on average 
roughly 200 ms later in our online-acquired data compared 
to Dijkgraaf et al.’s lab-acquired data. Below, we will discuss 
the implications of these findings for the efficacy of web-
based visual world experiments.

Spatio‑temporal accuracy of online‑acquired eye 
movement data

In Experiment 2, we conducted a web-based replication of 
a visual world experiment from Dijkgraaf et al. (2017). This 
experiment looked at effects of predictive processing based 
on verb information, which is an often-observed effect in 
visual world studies (e.g., Altmann & Kamide, 1999) and 
also observed in Dijkgraaf et al.’s data. The results of our 
web-based replication in Experiment 2 mirrored the overall 
pattern observed in Dijkgraaf et al.: Participants looked at 
the image depicting the post-verbal argument earlier in case 
the verb was semantically constraining compared to if the 
verb was not constraining towards one of the four pictures 
on the display. However, the onset of this effect emerged 
roughly 200 ms later in our online-acquired data compared 
to Dijkgraaf et al.’s in-lab acquired data.

Firstly, this finding reveals that the spatial resolution of 
the webcam eye-tracker is accurate enough to discriminate 
fixations across the four quadrants of the screen, which is 
needed for most visual world experiments. In Experiment 1, 
we observed that the spatial accuracy improved with increas-
ing calibration score, but Experiment 2 (with a calibration 
threshold of 50) found no such relation. However, the data 
of Experiment 2 still showed variation across participants, 
which resulted in a smaller effect size in our web-based rep-
lication (Experiment 2) compared to Dijkgraaf et al.’s (2017) 
original lab-based study. This suggests that web-based eye-
tracking is suitable for visual displays with four images that 
are arranged in quadrants (or less), but a larger sample size 
is required for web-based than for in-lab experimentation. 
Moreover, our results indicate that web-based eye tracking is 
less suitable for visual displays and paradigms that require a 
fine-grained spatial resolution, like visual search paradigms, 
eye-tracking-while-reading, or visual world paradigms that 
test small effects on more crowded displays.

Secondly, the data of both Experiment 1 and Experiment 
2 revealed a latency in the expected time to execute a sac-
cade. In Experiment 1, this latency could partly be explained 
in terms of calibration success: Participants who obtained 
lower calibration scores showed a delay in fixation onset. In 
Experiment 2, however, we did not observe a clear relation 
between calibration and temporal resolution of the eye-track-
ing data. It is worth noting that the delay observed in Web-
Gazer.js data seems to be systematic. It was also observed 
by Semmelmann and Weigelt (2018), who used WebGazer.
js to track eye movements in a fixation task similar to the 
one in Experiment 1. They observed that it took roughly 
600 ms to execute a saccade, which is 400 ms longer than 
typically observed (e.g., Matin et al., 1993). Moreover, a 
direct comparison between the performance of a high-end 
eye-tracking device and WebGazer.js conducted by Papout-
saki et al. (2018) also descriptively suggested a delay in the 
WebGazer.js data compared to the data from the high-end 
eye-tracker.

The time lag in the temporal resolution seems to be an 
artefact of the web-based nature of our experiment, espe-
cially because there is no plausible reason to assume that 
the cognitive mechanisms involved in language process-
ing and visual attention systematically differ depending on 
whether participants are tested in the lab or from home. In 
fact, numerous studies have shown that web-based testing 
is a viable alternative to lab-based testing to study language 
processing (e.g., Gibson et al., 2011; Hartshorne et al., 2018; 
Hilbig, 2016; inter alia). Therefore, we think that the delay 
may be caused by two separate factors. First, the internal 
processing speed of the WebGazer.js algorithm and/or the 
rendering speed of the browser may be slower compared 
to the software that high-end eye-trackers use to estimate 
the gaze locations. Second, individual variation across par-
ticipants and the contexts in which they participate (e.g., 
hardware, attendance, environment, etc.) may produce out-
liers, which causes a skewed distribution. This skewed dis-
tribution can cause a delay of the effect in the overall data 
patterns. In Experiment 1, we observed that this variation 
correlated with calibration scores; Experiment 2 used a cali-
bration threshold which reduced the impact of variation in 
calibration. However, other factors such as attendance or 
certain environmental factors could still have influenced 
the accuracy of Experiment 2. Future work is required to 
characterize these factors and test how they can be filtered 
out, which could reduce the delay in the online-acquired 
eye-tracking data.

This delay and noise in the temporal resolution seems 
to be the biggest challenge for web-based visual world 
experiments because this paradigm is often used to study 
questions about the fine-grained time course of real-time 
language processing. The problematic impact of this sys-
tematic delay becomes clear in the results of Experiment 2. 



3801Behavior Research Methods (2023) 55:3786–3804	

1 3

This experiment studied anticipatory effects in eye move-
ments, which are characterized as the tendency to look at a 
target image prior to the onset of the targeted linguistic frag-
ment (in our case, the noun in the object phrase of the audi-
tory stimulus). However, due to the delay in the observed 
time course, the assumed predictive looks were not detect-
able until after the onset of the object noun. (However, we 
assume that they are, given the global similarity in pattern 
in Dijkgraaf et al.’s (2017) original data and our online-
acquired data). Therefore, the results of Experiment 2 thus 
show that care is required in interpreting the time course 
of online-acquired eye-tracking data. Therefore, web-based 
eye-tracking in its current form may not be suitable to study 
questions that require a fine-grained temporal resolution, 
such as effects in a small time window.

Variation across participants

The previous subsection already discussed that part of the 
inaccuracy in online-acquired eye-tracking data seemed to 
be caused by the variation across participants, which can 
partly be attributed to differences in the hardware used by 
the participants. In both Experiments 1 and 2, we found that 
the accuracy of the eye-tracker (measured in terms of cali-
bration scores) was influenced by the sampling frequency 
of the webcam.

As hinted in the previous subsection, there are many 
more aspects that can influence eye-tracker calibration and 
data accuracy, such as ambient lighting, facial characteris-
tics, environmental distractions, or other individual differ-
ences between participants. This variation can be somewhat 
reduced through clear and explicit instructions: Participants 
should not only be instructed to move their head as little as 
possible and that they are centrally seated in front of their 
screen and webcam, but they also need to make sure that 
they are in a well-lit room with few distractions, and that 
they should look at the screen throughout the experiment. 
However, there is reason to think that the performance of 
the webcam eye-tracker is also dependent on unalterable 
facial characteristics. Papoutsaki et al. (2018), for instance, 
observed that the face detector used by WebGazer.js recog-
nizes faces with a lighter skin tone more often than faces 
with a darker skin tone, which is a bias that is more often 
observed in facial recognition systems (e.g., Coe & Atay, 
2021). Encouragingly, there seems to be a trend in software 
development to reduce biases in automated facial recogni-
tion software (e.g., Atay et al., 2021; Lunter, 2020), so these 
biases will hopefully be reduced in the future.

Moreover, note that the influence of calibration on the 
spatio-temporal accuracy was only detectable in Experiment 
1, whereas it was less clear in Experiment 2. We already 
attributed this difference in findings to two factors: (i) In 
Experiment 1, we measured spatial accuracy in terms of 

screen coordinates of the estimated fixation instead of 
larger region of interests, and (ii) the calibration threshold 
in Experiment 2 was set at 50% whereas that in Experiment 
1 was set at 5%. This suggests that our calibration threshold 
of 50% successfully served as a filter to reduce (part of) 
the variation across participants. However, we still observe 
considerable variation across the participants in Experi-
ment 2, both in terms of spatial and temporal accuracy. 
As also mentioned in the previous subsection, this is not 
a surprise because many differences between participants 
are not filtered out by calibration score. A participant who 
looks away from the screen during the trial, for instance, 
may still go through calibration successfully. Do note that 
it is inherent to web-based testing that there is less control 
over the participants’ attendance and environment compared 
to lab-based studies, but these issues may be minimized by 
clear instructions, attention checks, and frequent calibration 
checks (which requires the participant to look at the screen).

Recommendations and further studies

Experiments 1 and 2 revealed that web-based visual world 
eye-tracking using the participants’ webcams may be a suit-
able alternative to lab-based testing, at least if the study 
does not require a very fine-grained spatio-temporal resolu-
tion. Here, we will give several recommendations for future 
inquiries on web-based eye-tracking.

As already mentioned, we do not recommend web-based 
eye-tracking in its current state for paradigms that require 
fine-grained spatial data, like visual search, reading-based 
paradigms, visual world paradigms with more than four 
items on the display, or visual world studies that test small 
effects. This is because the spatial accuracy of WebGazer.
js is considerably poorer than that of high-end remote 
eye-trackers.

However, the biggest threat to the viability of web-
based visual world studies using WebGazer.js may be the 
temporal resolution of the data. We observed a lag in the 
time course of online-acquired data, and we would there-
fore not recommend web-based eye tracking for temporally 
sensitive data (like visual world paradigms with a short 
time window of interest). However, we also believe that 
there are reasons to be optimistic for the future of web-
based eye tracking. Once the nature of this time lag is 
more precisely defined, we could take it into account in the 
processing of online-acquired eye-tracking data. Moreo-
ver, this information could also be used to improve web-
based eye-tracking techniques (see Yang and Krajbich, 
2021). Despite our optimism about the future of web-
based eye tracking, we emphasize that care is required in 
using current web-based eye-tracking methods to study 
questions that require a precise temporal resolution.
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Additionally, we can give recommendations regarding 
calibration threshold based on the experiments reported 
here. As mentioned above, there was no correlation between 
calibration score and spatio-temporal accuracy in Experi-
ment 2 in contrast to Experiment 1. This suggests that the 
calibration threshold in Experiment 2 (50) successfully 
reduced variation that influenced calibration across par-
ticipants. A disadvantage of using a threshold is that many 
participants needed to be excluded: In Experiment 2, we 
needed to recruit 330 participants to obtain a sample size 
of 90 participants. This may be a discouraging finding at 
first glance. However, we should note that we did not do any 
efforts (besides giving the instructions again) to improve 
the calibration scores for participants who consistently 
failed calibration. Now, however, we know that webcam 
sampling rate was a major influence on calibration thresh-
old. Therefore, the number of participants that do not meet 
the calibration threshold could be reduced by testing the 
webcam sampling rate before calibration. If webcam fps 
rate is poor, the participant could be instructed on how to 
improve the sampling rate (e.g., change devices if possi-
ble). Otherwise, if the participant is unable to improve the 
sampling rate, they can be excluded without having to go 
through the full calibration procedure. However, we should 
note that many other factors besides fps rates may affect the 
calibration scores and many participants may not be able 
to change devices. Therefore, we do recommend to clearly 
communicate to the participants that they may not be able 
to do the experiment, and/or have them redirected to another 
non-eye-tracking experiment.

In addition, the results of Experiment 2 suggested that we 
may not have needed to recruit as many participants as we 
did: We collected data of 90 participants, whereas explora-
tive post hoc power analyses suggested that 75 participants 
would have been sufficient (Appendix B). We encourage 
authors of future web-based replications to test the differ-
ence in effect size in web-based visual world studies com-
pared to that in in-lab studies because these data could help 
further improve recommendations for sample size in web-
based visual world experiments.

Conclusions

Across two experiments, we tested the efficacy of web-based 
visual world studies using WebGazer.js in combination with 
the participants’ own webcams. We firstly observed that the 
spatial accuracy of the web-based eye tracker is accurate 
enough to discriminate looks across the four quadrants of 
a computer screen. Secondly, we observed a delay in the 
latency of the eye-movement data compared to what we 
would expect (based on previous studies). We hypothesized 
that this delay is due to variation across participants and 

the browser performance and/or internal processing speed 
of WebGazer.js. The spatial resolution of the webcam eye 
tracker therefore seems to be accurate enough for many vis-
ual world studies, since the typical display of a visual world 
study contains four items arranged in quadrants over the 
screen. However, at its current state, web-based eye track-
ing is not ideal for studying questions that require a close 
temporal resolution, given the time lag in the eye-movement 
data, although future inquiries may reduce the observed time 
lag. Nevertheless, the ease and efficiency in collecting data 
online makes web-based eye tracking an ideal technique for 
studying questions that may not require a very fine-grained 
spatio-temporal resolution).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​022-​01989-z.
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