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Abstract
The simultaneous classification of the three most basic eye-movement patterns is known as the ternary eye-movement clas-
sification problem (3EMCP). Dynamic, interactive real-time applications that must instantly adjust or respond to certain 
eye behaviors would highly benefit from accurate, robust, fast, and low-latency classification methods. Recent develop-
ments based on 1D-CNN-BiLSTM and TCN architectures have demonstrated to be more accurate and robust than previous 
solutions, but solely considering offline applications. In this paper, we propose a TCN classifier for the 3EMCP, adapted to 
online applications, that does not require look-ahead buffers. We introduce a new lightweight preprocessing technique that 
allows the TCN to make real-time predictions at about 500 Hz with low latency using commodity hardware. We evaluate 
the TCN performance against other two deep neural models: a CNN-LSTM and a CNN-BiLSTM, also adapted to online 
classification. Furthermore, we compare the performance of the deep neural models against a lightweight real-time Bayesian 
classifier (I-BDT). Our results, considering two publicly available datasets, show that the proposed TCN model consistently 
outperforms other methods for all classes. The results also show that, though it is possible to achieve reasonable accuracy 
levels with zero-length look ahead, the performance of all methods improve with the use of look-ahead information. The 
codebase, pre-trained models, and datasets are available at https://github.com/elmadjian/OEMC.
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Introduction

The recognition of eye-movement patterns is an important 
step within several application domains, as they provide 
meaningful information about the subject’s behavior and 

attentional state. On a higher level, it can provide insights 
about the user’s cognitive state (Sanches et al., 2017; Burch 
et al., 2019) or degree of attention (Maruyama et al., 2016; 
Wang & Hung, 2019), and on more practical scenarios, 
support applications in various domains, such as biom-
etrics (George & Routray, 2016; Bayat & Pomplun, 2017; 
Abdrabou et al., 2021), text input (MacKenzie & Zhang, 
2008; Tula & Morimoto, 2016; Feng et al., 2021), accessibil-
ity (Koochaki & Najafizadeh, 2018), and adaptive systems 
(Edwards, 1998; de Greef et al., 2009), among many others.

Eye movements are typically captured using video-
based eye-tracking devices (called eye trackers) (Mori-
moto & Mimica, 2005). The point-of-gaze on a computer 
monitor or other surface of interest might be computed 
using a calibration procedure (Morimoto et al., 2020). Eye 
trackers have been successfully used as an input device 
for computer interfaces, for example, to help people with 
motor disabilities to communicate (Majaranta & Bulling, 
2014). More robust real-time methods for the classifica-
tion of eye-movement patterns might improve the perfor-
mance of current gaze interaction systems and help create 
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novel applications, such as in the AR/VR domain (Pfeiffer, 
2008). The most commonly used eye-movement patterns 
for applications are fixations, saccades, and smooth pur-
suits. An eye fixation is typically elicited when the user 
looks at a single scene point, creating a temporary cluster 
of gaze coordinates within a limited area. Saccades are 
said to be rapid ballistic eye movements in a single direc-
tion, required to change fixation points, whereas smooth 
pursuits are performed when following a moving target 
with the head relatively still (Leigh & Zee, 2015; Hessels 
et al., 2018).

Though pointing in a computer interface can be made 
directly with our eyes, target selection using gaze only is 
still a challenge. Besides blinks and winks, other interac-
tion paradigms have been suggested based on these three 
basic eye-movement patterns. The most common paradigm 
uses long target fixations where the user must stare at the 
desired target for a predetermined dwell-time, until it gets 
selected (Jacob, 1990). Target selection using saccades 
is possible using eye transition between gazed regions 
(Huckauf & Urbina, 2008; Diaz et al., 2013; Kurauchi 
et al., 2020), and smooth pursuits have been suggested as 
a calibration-free interaction technique (Vidal et al., 2012; 
Velloso et al., 2018).

The simultaneous classification of these three eye-move-
ment patterns is particularly challenging due to the noise and 
low precision of the eye tracker, and also because it is not 
always easy to isolate one eye behavior from the other, such 
as fixations from smooth pursuits or vestibulo-ocular reflex 
(Komogortsev & Karpov, 2013). This simultaneous clas-
sification is often referred to as the “ternary eye-movement 
classification problem” (3EMCP) (Berndt et al., 2019). Early 
solutions to the 3EMCP resorted to either threshold-based 
algorithms (Nyström & Holmqvist, 2010; Koh et al., 2010; 
Komogortsev & Karpov, 2013; Diaz-Tula & Morimoto, 
2017) or statistical models (Komogortsev & Khan, 2007, 
2009). They are known to be lightweight and able to make 
predictions at high frame rates, but often at the cost of a sub-
par accuracy and lack of generalization compared to more 
modern data-driven methods.

With the popularization of deep learning techniques, 
the 3EMCP has been successfully modeled as a sequence-
to-sequence (seq2seq) problem, in which recurrent net-
works are trained with temporal eye data windows of 
a fixed size. This approach has led to the state-of-the-
art offline eye-movement event recognition algorithms 
(Startsev et al., 2019a, c; Elmadjian et al., 2020), but 
these solutions have some issues when used in online 
real-time applications.

In the case of real-time classification, it is necessary 
to find a reasonable trade-off between model accuracy 
and latency to make a prediction, since complex models 
might be unable to process high sampling rates. This 

trade-off is particularly relevant for the online 3EMCP 
classifier, as it must constantly predict transition pat-
terns without being able to take future information into 
account, as in the case of its offline counterpart. Fig-
ure 1 illustrates this process.

In a previous work (Elmadjian et al., 2020), we have shown 
that temporal convolutional networks (TCNs) can achieve 
higher F1 scores than bi-directional recurrent architectures 
in the offline 3EMCP. We performed a series of experiments 
comparing CNN-BiLSTM models (Startsev et al., 2019a, c) 
against a deep TCN model with a non-causal structure, which 
resulted in a gain of approximately 3% on smooth pursuit clas-
sification in favor of the TCN. However, the high complexity 
of this previous model makes it inappropriate for real-time 
applications, due to latency and the non-causality configura-
tion. As leakage of future information should be avoided in 
such a setting (i.e., using features from a timestamp ti+n to 
make a prediction at ti), in this paper we argue that the original 
causal TCN (Bai et al., 2018) classifier is more appropriate for 
online applications.

To extend our previous study, we now evaluate a causal 
sequential-to-one (seq2one) TCN model against other 
adapted state-of-the-art deep neural architectures using an 
additional novel dataset with non-calibrated eye data. In 
order to do that, we propose a novel preprocessing tech-
nique for feature extraction that allows these models to be 
more lightweight and compatible with the online 3EMCP. 
As previous deep neural models have been evaluated only 
in offline settings, we have selected the I-BDT classifier 
(Santini et al., 2016) as our baseline to evaluate the online 
performance of all models.

The main contributions of this work can be summarized 
as follows:

–	 The assessment of end-to-end architectures for real-time 
3EMCP applications. We conduct a series of experiments 
and simulations with a continuous stream of data from two 
different large datasets, analyzing the accuracy and predic-
tion latency from each model.

–	 A novel data extraction technique tailored for online eye-
movement pattern recognition that, in contrast with the one 
proposed in Startsev et al. (2019a), does not make use of 
future information and is less memory intensive, without 
sacrificing accuracy.

–	 A novel dataset with almost 1.5 million samples of eye-
tracking data (approximately 2 h of recordings) labeled 
with stimuli-induced events and collected using a head-
mounted eye tracker.

The next section presents works related to eye-movement 
classification, with a focus on recent data-driven models. Our 
proposed model and methodology are described in Section 
“Proposed and evaluated models”.
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Related work

Early solutions to eye-movement classification mostly relied 
on threshold-based algorithms. Due to its simplicity and 
low computational requirements, these techniques are still 
applied in modern real-time applications.

One such example is the velocity threshold criterion (Sal-
vucci and Goldberg, 2000) that separates saccades from 
other eye movements based on their characteristic high 
velocity that can be computed from the eye data stream. 
However, static velocity thresholds are not robust to noisy 
gaze data, which instigated the development of adaptive 
velocity thresholds (Nyström & Holmqvist, 2010).

Dispersion threshold models fixations as consecutive 
samples within maximum spatial separation under a fixed 
period (Berg et al., 2009). Berg et al. (2009) demonstrated 
that this technique tends to produce more reliable results 
than velocity-based algorithms, and it is also possible to 
use principal component analysis (PCA) to establish more 
generic dispersion thresholds for the discrimination of fixa-
tions, saccades, and smooth pursuits.

Although fast and simple to implement, threshold-
based methods present low accuracy and require constant 
human intervention for parameter tuning. To overcome this, 

researchers started to devise more elaborated techniques 
that could also be fit for online classification. Komogortsev 
and Khan (2007) created, for example, the attention focus 
Kalman filter (AFKF), a framework that aimed to solve the 
3EMCP in real-time. The AFKF framework was in fact 
an extension of a previous method (Sauter et al., 1991), in 
which a Kalman filter with a χ2 test is used to detect sac-
cades. In this updated version, Komogortsev and Khan pro-
posed that smooth pursuits could be treated as a negative 
event (i.e., neither saccades or fixations), provided they did 
not surpass the velocity of 140 deg/s. A user study (Koh 
et  al., 2009) confirmed afterwards that an AFKF-based 
technique (Komogortsev & Khan, 2007) resulted in supe-
rior accuracy than a velocity-based approach (Salvucci & 
Goldberg, 2000).

Santini et al. (2016) presented a more reliable 3EMCP 
solution called the Bayesian Decision Theory Identification 
(I-BDT) algorithm. This method consisted of defining priors 
and likelihoods for all events, and then calculating the pos-
terior for each event, given eye velocity and movement ratio 
over windows according to the Bayes’ rule.

Although more sophisticated models continued to be 
proposed in the literature, many of these works focused 
primarily on accuracy, at the expense of being able to run 

Fig. 1   In the online problem, a classifier does not have access before-
hand to future samples and cannot take too long to make a predic-
tion. Therefore, transitioning patterns and high-frequency data will 
usually be more challenging to handle. Here, we see an example of 

an online classifier that predicts one sample at a time from sequences 
of a fixed size. The symbols F, S, and P stand for fixations, saccades, 
and smooth pursuits, respectively. Colored samples indicate already 
classified samples that are not considered for predictions anymore
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in an online fashion (Larsson et al., 2015; Hoppe and Bull-
ing, 2016; Fu et al., 2018; Berndt et al., 2019). Thus, in 
this work, we will consider the I-BDT (Santini et al., 2016) 
as a baseline for 3EMCP real-time applications.

Data‑driven models

With the growth and popularity of novel machine learn-
ing techniques, data-driven methods also started to be 
exploited in the domain of eye-movement classification. 
These techniques are typically fully automated, leveraging 
approaches that can learn, from a significant amount of 
data, the parameters for a classifier.

Classical machine learning techniques, such as the one 
proposed by Vidal et al. (2012), considered a set of shape 
features that characterize smooth pursuits as a statistical 
phenomenon. Another example is the work of Zemblys 
et al. (2018), in which they introduced a random forests-
based model to classify fixations, saccades, and post-sac-
cadic oscillations.

With the widespread use of artificial neural models, 
Hoppe and Bulling (2016) proposed a CNN-based end-
to-end architecture to classify fixations, saccades, and 
smooth pursuits in a continuous gaze stream, from which 
frequency features are extracted to train their model. Later, 
Startsev et al. (2019a) introduced a 1D-CNN-BiLSTM 
seq2seq network that also addresses the 3EMCP. Besides 
the three eye-movement classes, they also added a ‘noise’ 
class, so that the model was not forced to choose between 
one of the three. They showed that their 1D-CNN-BiL-
STM classifier outperforms 12 previous baseline models 
in the GazeCom dataset (Dorr et al., 2010; Agtzidis et al., 
2016; Larsson et al., 2015; Berg et al., 2009; Komogortsev 
and Khan, 2009; Komogortsev & Karpov, 2013) in offline 
classification.

Note that as the performance of neural networks is highly 
impacted by the amount of data available and its variability 
on training (Goodfellow et al., 2016), some authors sug-
gested gaze data augmentation techniques for this problem. 
Zemblys et al. (2019) proposed gazeNet, a generative net-
work that can create different kinds of eye-movement events. 
More recently, Fuhl (2020) introduced CNNs for raw eye-
tracking data segmentation, generation, and reconstruction.

Bai et al. suggested that TCNs present desirable prop-
erties for 1D sequential patterns of arbitrary length, such 
as a highly parallel structure and a large reception field 
(Bai et al., 2018). In our previous work on the 3EMCP 
(Elmadjian et al., 2020), we have shown that TCNs were 
able to surpass other state-of-the-art models on F1 score, 
particularly with respect to smooth pursuits, achieving an 
improvement of 3–6% on sample level, depending on the 
context window size.

Data‑driven online models

To obtain high-accuracy results in offline applications, 
authors frequently neglected the model suitability for real-
time scenarios. A downside of most of these data-driven 
techniques is that they often require preprocessing steps that 
cannot be reproduced on online data streams.

On the other hand, classifiers such as I-BDT that were 
designed for online applications present lower accuracy. 
Furthermore, because their model is user-dependent, they 
required frequent parameter adjustments, whereas deep 
learning models can be trained with environmental vari-
ability and data from multiple users.

In this work, we aim to achieve the best of both worlds: 
the convenience and lightness of online models with the 
accuracy and generalization of offline data-driven methods. 
Next, we present a few adapted deep neural models that can 
be applied to the online 3EMCP, that are evaluated con-
sidering the trade-off between classification accuracy and 
prediction latency.

Proposed and evaluated models

In the domain of sequential problems, recurrent networks 
have been extensively and successfully applied to natural 
language processing (Fu et al., 2018; Ma and Hovy, 2016; 
Li et al., 2016) and speech recognition (Zhang et al., 2018; 
Wang et al., 2019) problems. More recently, alternative 
feed-forward architectures, such as attention-based (Vaswani 
et al., 2017) and temporal convolutional models (Bai et al., 
2018), have been proposed due to their parallel structure and 
the ability to extract meaningful information from arbitrarily 
large contexts.

In the scope of online eye-movement classification, how-
ever, little is known about the feasibility and performance of 
deep neural architectures. Based on previous related work, 
we have selected for assessment three base architectures for 
this problem, altering them to work as seq2one models. We 
have also chosen the I-BDT algorithm (Santini et al., 2016) 
as our baseline.

We start with the 1D-CNN-BiLSTM model based on 
Startsev et al. (2019c). This is a hybrid model that presents 
initially three 1D convolutional layers, with filters of size 
32, 16, and 8, using the ReLU activation function. The out-
put of the convolutional sequence is forwarded to a stacked 
BiLSTM, with 16 units at each layer and hyperbolic tangent 
activation function. The network output presents a fully con-
nected layer with a softmax activation function for the mul-
ticlass problem (see Fig. 2a).

The second method to be investigated is the 1D-CNN-
LSTM. This architecture is almost identical to the 1D-CNN-
BiLSTM model, except for its recurrent structure, that is 
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strictly unidirectional, although, as a compensation for its 
single direction, we have doubled the number of units of the 
CNN-BiLSTM. We chose to build and evaluate this model 
because it can be regarded as Startsev et al.’s modified ver-
sion for the online problem (see Fig. 2b).

The third deep neural method to be investigated is the 
TCN (Bai et al., 2018), based on a simplified version of our 
previous work (Elmadjian et al., 2020) that should perform 
better for online classification.

The architecture is composed of four hidden temporal 
blocks, with 30 units each. Each block comprises two one-
dimensional convolutional layers and a residual connection. 
Activation between layers is done via ReLU function, and 
four different dilation sizes (1,2,4,8) are used. Unlike our 
previous model, all convolutions are causal, i.e., any output 
at time t is only convolved with elements up to time t, which 
ensures no leakage of future information. Zero-padding is 
employed to make the outputs of the temporal blocks have 
the same length of the inputs (Fig. 2c).

Our final investigated model is the I-BDT introduced by 
Santini et al. (2016). It is a Bayesian algorithm that makes 
prediction in real time for the 3EMCP. Though it is not a 
neural model, the I-BDT can also be regarded as data-driven 
approach, as its parameters can only be determined by train-
ing with a dataset. More specifically, it needs to learn the 
prior probabilities for each individual class, and then calcu-
late the posterior probabilities based on these priors using 
the Bayes theorem (Santini et al., 2016). Some necessary 

modifications were made in the algorithm and are fully 
described in Section “Evaluating the I-BDT”.

Applicability and scope of the models

In terms of applicability, deep neural models aim to answer 
a challenge that is beyond the scope of the I-BDT algorithm, 
which is generalization. The idea is that these architectures 
can learn from the examples and the combined variance from 
users observed during training to make predictions about 
completely unknown users, though at the cost of a hefty 
training time and large datasets. The I-BDT was designed 
to learn the parameters only for a single user, at the benefit 
of a short training time.

Furthermore, despite being data-driven, the I-BDT model 
is based on explicit heuristics, and it is easily explainable. 
For example, saccades and fixations are determined based 
on velocity likelihoods that are learned from calculated dis-
tributions of each pattern, while smooth pursuit likelihoods 
are determined by the average number of times that there 
was a movement between one sample and another (i.e., the 
“movement ratio”, according to the authors). That is entirely 
different for most deep neural models: there are thousands 
(sometimes millions) of parameters to be learned, and the 
way each class is represented internally is not intuitively 
obvious or explainable. We say that these are completely 
implicit models, meaning that inference about model behav-
ior in this case is much harder to achieve.

Fig. 2   Overall schematics of the evaluated deep neural architectures: 
the 1D-CNN-BiLSTM (a), the 1D-CNN-LSTM (b), and the causal 
TCN, comprised of temporal blocks (c). All architectures are of 

the form seq2one. The letters T and F refer to time step and feature 
dimensions, respectively. The symbol @ is used to indicate the kernel 
size applied to convolutions



3607Behavior Research Methods (2023) 55:3602–3620	

1 3

Online eye-movement classification presents two main 
issues over offline classification. The first issue is the intrin-
sic prediction latency from the sensor’s and the models’ 
response time, and the second issue is the inability to employ 
future information to disambiguate the classification without 
increasing response time. The lack of look-ahead informa-
tion might lead to a relatively poor performance of online 
classifiers, particularly during state transitions. To assess 
the performance of the online models we will consider two 
public datasets, that are described in the following section. 
The experiment protocol is described in Section “Accuracy 
and latency assessment of online classification models”.

Datasets

We considered two different datasets in this study: the 
GazeCom dataset (Startsev et al., 2019b) and another one 
we created specifically for this problem, which we call the 
Head-Mounted Raw eye-movement dataset, or simply HMR.

The GazeCom contains 18 clips from approximately 47 
viewers (the number slightly varies according to the video), 
with labels for fixations, saccades, smooth pursuits, and 
noise. The labels are given based on the agreement and judg-
ment of two experts, after observing the patterns that each 
user performed when watching short videos. Each clip is 
limited to 21 s for training.

The GazeCom data were collected using a 250-Hz 
remote+ eye tracker. It is constituted by 4.3 million sam-
ples, being 72.5% fixations, 10.5% saccades, 11% smooth 
pursuits, and 5.9% noise or blinks. The average confidence 

level is 99.5%. The average duration of each pattern is shown 
in Fig. 3. For more information about the GazeCom collec-
tion procedure, please refer to Dorr et al. (2010).

HMR dataset

The HMR dataset is composed of data from 13 participants 
(six female) using a head-mounted 200-Hz Pupil Core eye 
tracker (Kassner et al., 2014), with a reported accuracy of 
0.6∘, and resolution of 192 × 192 pixels. Their ages var-
ied from 21 to 46 years old, and all of them had normal or 
corrected-to-normal vision. Two had a previous experience 
with eye trackers. For each participant, we collected the nor-
malized pupil center data independently from left and right 
eyes in the eye camera space, totaling 26 video files. Each 
file has roughly 5 min, giving us almost 2 h of recording.

The reason for creating the HMR dataset was threefold: 
first, there is a lack of datasets with raw (i.e., non-calibrated) 
labeled eye-movement patterns captured from a head-
mounted eye tracker. Second, the GazeCom dataset contains 
few smooth pursuit events (5%) and samples (11%). Third, 
we conjecture that a dataset could have more reliable labels 
through a stimuli-driven data collection process similar to 
Santini et al. (2016) (see Section “HMR data collection” for 
the gaze collection procedure).

In terms of statistics, the HMR dataset is constituted by 
1.49 million samples, of which 56.3% are fixations, 6.4% 
saccades, 25.4% smooth pursuits, and 11.7% blinks. The 
average confidence level is 88.9%, automatically provided by 
the Pupil Capture software, and almost all confidence level 
drops are correlated to blink events. The average duration 

Fig. 3   Average eye-movement pattern durations from GazeCom and HMR datasets with error bars displaying 1 s.d.
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of each pattern is shown in Fig. 3, along with the GazeCom 
data. Table 1 shows the proportion of events within and 
between the two datasets.

HMR data collection

To collect the data, participants sat at 50 cm from a 144-Hz 
24” monitor and were asked to visually follow a target on 
screen. No calibration and no chin rest were employed in 
the process, but volunteers were advised to stay still if pos-
sible. A custom Python program was written to control the 
behavior of the visual targets.

A target could be placed at one of nine positions uni-
formly distributed on a 3 × 3 grid. The target could either 
stay static (in order to drive a fixation response), jump to 
another grid point (for a saccade response), or translate 
gradually to another grid point (for a pursuit response). The 

target could also change its color to drive a blink response. 
Although the color stimulus does not induce a natural blink 
response, we instructed participants to avoid blinking unless 
there was a temporary color change in the target as shown 
in Fig. 4d.

Target positions were randomly assigned, but followed 
a weighted uniform distribution, so that a less used posi-
tion became more likely to be drawn at each transition. The 
smooth pursuit trajectories were randomly created using 
three distinct points of the display grid and interpolated 
according to a cubic polynomial regression.

The duration of each stimulus was drawn from a range of 
predefined values, except for blinks, which were set at 2000 
ms. Fixation stimuli ranged between 400 and 700 ms, pur-
suits from 1500 to 2000 ms, and saccades were induced by 
fading out a target at one point and showing it at a different 
location within 270–300 ms.

The target drawing function was interpolated to match the 
Pupil eye-tracker sampling rate (despite the lower 144-Hz 
refresh rate from the monitor vs. the 200-Hz eye data rate), 
to obtain a one-to-one correspondence between stimuli and 
samples. Therefore, the eye data were automatically anno-
tated according to the expected eye-movement response. 
However, because there is a natural human response delay, 
we had to manually shift the automatic labels by a particular 
constant for each individual. The whole dataset was later 
reviewed twice by two experts, who made fine adjustments 

Table 1   Sample and event proportions found in each dataset

Eye Movement GazeCom HMR

Samples Events Samples Events

Fixations 72.55% 44.93% 56.30% 45.25%
Saccades 10.53% 45.61% 6.46% 28.57%
Smooth Pursuits 11.02% 5.39% 25.47% 9.53%
Noise / Blinks 5.90% 4.07% 11.77% 16.65%

Fig. 4   Stimuli-induced experiment for the HMR data collection. 
Fixations were induced by stationary targets on screen (a); saccades, 
by making a previous fixation point disappearing and appearing else-

where (b); smooth pursuits, by moving the target at a constant speed 
to another position (c); blinks were encouraged when the target 
changed its color to red (d)
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to the length of each pattern, using a graphical tool devel-
oped by our research group.

The HMR dataset is available at our public repository, 
along with the visualization and editing tools used in the 
process. Though this is a potentially useful dataset for the 
eye-tracking community, it does present a more limited 
diversity and realism of expected eye patterns in contrast 
with the GazeCom dataset.

Accuracy and latency assessment of online 
classification models

In this section, we present a series of experiments and pro-
cedures to evaluate the trade-off between model complexity 
and latency of deep architectures using commodity hard-
ware, as well as the impact of delaying prediction using short 

look-ahead buffers to improve the classification accuracy 
during transitions.

Training of the models

We have opted for a fivefold cross-validation training regi-
men for the architectures. Each one of them was trained 
using 70% of the data. We have reserved 10% of the data for 
validation and 20% for testing. No randomization or strati-
fication was used for cross-validation, i.e., the models were 
trained with contiguous temporal chunks of data extracted 
from the k − 1 folds of each dataset in lexicographic order, 
and then evaluated on the remaining fold not seen during 
training, moving the context window one sample at a time 
(see Fig. 5 for further details).

All deep neural architectures used a dropout rate of 25% 
and a kernel size of 5 for the convolutional layers. The 

Fig. 5   Fivefold cross-validation procedure used for GazeCom and 
HMR datasets when training the deep neural models. The folds were 
split based on the lexicographic order of the recordings, so that at 

least two recordings from GazeCom were never seen during training, 
while with HMR at least one user was never seen
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source code of all models is available at the following public 
repository: https://​github.​com/​elmad​jian/​OEMC.

A multi-scale sliding window of about 1 s was used to 
feed the architectures, that corresponds to 250 samples on 
GazeCom and 200 samples on HMR. Overall, 2,957,080 
context windows were considered on GazeCom and 
1,069,027 on HMR. The direction and speed were calculated 
along different scales within a window. For the I-BDT, the 
hyperparameters were selected to maximize the performance 
of the algorithm in each eye-tracking recording. For the neu-
ral nets, the hyperparameters were determined empirically 
through a grid search with a subset of the GazeCom and 
HMR datasets. This search also confirmed previous findings 
on optimal configuration of number of units or layers for the 
CNN-BiLSTM (Startsev et al., 2019c) (i.e., when increasing 
model complexity does not result in improved performance). 
The number of learnable parameters for each neural network 
is shown in Table 2.

Therefore, though all models are evaluated by a common 
metric, the networks were trained with data from multiple 
recordings, while the I-BDT learned its parameters only 
from a single recording at a time, with the results being 
averaged at the end.

All models were trained and evaluated on a desktop com-
puter with an Intel i7-7700 CPU with 16 GB of RAM, and 
with a NVidia GeForce GTX 1070 GPU (8Gb VRAM), 
running Ubuntu 18.04. The neural net models were imple-
mented in Python 3, using the PyTorch library (1.8.1). As for 
the I-BDT, the public MATLAB implementation provided 
by the authors were used with the appropriate adjustments 
for each dataset (see Section “Evaluating the I-BDT” for 
further details).

Data preprocessing for online classification

It is often assumed that bidirectional networks are not fit for 
online classification because they need to traverse a whole 
context window in both directions in order to produce its 
output (Brueckner and Schuller, 2014; Startsev et  al., 
2019a). This also implies that such architectures tend to 
have higher accuracy in the central area of the context win-
dow rather than on the most recent (last) sample. Addition-
ally, bidirectional and 1D convolutional nets usually present 

better results to predict a sample s(i) (the one at time i) when 
future temporal features (from samples at time j > i) are used 
for the classification of s(i). The use of a look-ahead buffer, 
containing samples from time j > i, can be used for online 
classification to improve accuracy, though it increases the 
response time delay as the online classifier must wait for all 
required j samples to classify s(i).

To make training and evaluation suitable for online classi-
fication, we propose a multi-scale one-way feature extraction 
procedure that gives more importance to more recent samples. 
This method avoids leakage from future events to the past by 
calculating speed and direction in different time frames, tak-
ing the most recent sample of a context window as our anchor 
point and then performing a series of strides from there to 
extract the features. This method is depicted visually in Fig. 6.

A grid search determined the best number of strides 
used within a context window of 1 s for each dataset. For 
the HMR, we calculated eight sets of different scales for 
speed and direction, whereas for the GazeCom we used 
ten strides. The scale size (or stride) is always computed 
from the latest sample in the context window (i.e., our 
anchor point) with respect to the less recent samples, with 
the scale increasing exponentially according to the fol-
lowing equation:

where s is the maximum number of strides in a given win-
dow (i.e., eight on HMR and ten on GazeCom), and n is the 
number of individual samples contained in the same window 
(200 for HMR and 250 for GazeCom).

Investigation on the ideal number of time steps

One of the reasons why deep recurrent networks have been 
so successful in recent years is their ability to infer tem-
poral dependency between sequential data. This is mostly 
credited to memory cells in the network topology, which 
store partial relevant information from a series (Hochreiter 
& Schmidhuber, 1997). TCNs, on the other hand, do not pro-
cess a stream of data in an ordered fashion, but can achieve 
similar results through dilations and residual connections, 
which ultimately leads to a large receptive field that allows 
for long-term dependencies.

Acquiring “memory” in a 1-D sequence is usually done 
through tensors of the form B × T × F, in which we have a 
dimension representing B batches containing the samples of 
a context window, one for the T time steps we want to look 
into the past for each sample point, and another representing 
the F features extracted anchored on this point.

In theory, providing a comprehensive number of time 
steps to a model should increase its capacity and thus 
its ability to find long-term relationships. This has been 

(1)stride(x) = ⌈2x−s × n⌉, {x ∈ ℕ�x ≤ s}

Table 2   Number of learnable parameters for each neural model and 
dataset

Architecture Parameters

GazeCom HMR

TCN 36,634 35,734
CNN-LSTM 22,860 21,548
CNN-BiLSTM 18,764 17,452

https://github.com/elmadjian/OEMC
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empirically verified in the literature and was corroborated 
by our previous work, in which we expanded the number 
of time steps of an offline TCN to increase its accuracy 
(Elmadjian et al., 2020). However, an indefinite growth 
in time steps does not necessarily translate into improved 
performance, and it adds further latency and memory 
requirements to the model that might outweigh eventual 
marginal gains.

In the case of the offline 3EMCP, Startsev et al. fed 
their 1D-CNN-BiLSTM with mirrored time steps with the 
size of the whole context window (Startsev et al., 2019a) 
(see Fig. 6). Due to the computing cost associated with 
increasing time steps, and because in the online 3EMCP 
we are interested only in predicting the next event and 
not all the samples contained in the context window, we 
wondered whether a large number of time steps would be 
detrimental to the performance of the model. Therefore, 
we investigate the impact in model classification of dif-
ferent extents of time steps per context window, namely, 
1%, 10%, 25%, 50%, and 100% of the context window, 

always considering the last sample in the window as the 
anchor point.

Effects of delaying model prediction

In online classification, we frequently have to deal with 
another major problem: pattern transition. It can be particu-
larly challenging, even for human experts, to identify the 
beginning of saccades or smooth pursuits when only a few 
samples are available. Moreover, when we are classifying a 
continuous stream of data, this situation happens every time 
the eyes move to a different pattern.

Considering that online classifiers are most beneficial for 
real-time interactive applications, we investigate whether 
imposing a short delay on model prediction would result in 
a substantial accuracy improvement.

The question that arises is what would be a reason-
able delay? For interactive applications, we will rely on 
human response time and what is perceived as instanta-
neous (Miller, 1968). We propose to study a set of dif-
ferent delays in prediction within 20, 40, 60, and 80 ms. 

Fig. 6   With previous deep neural models (Startsev et al., 2019a), the 
multi-scale feature extraction step resorted to capturing information 
that is beyond the context window, with leakage of future informa-
tion, and considering all possible time steps (marked in green). Our 

process, on the other hand, gives considerably more importance to the 
most recent samples, processing features only within the delimited 
context window and using only a fraction of time steps to minimize 
the response delay
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By delaying our prediction, in theory the classifier could 
have access to more samples from a given pattern to 
make a more qualified forecasting, which could lead to 
an improved general performance. This way, the model 
could still be perceived as instantaneous, albeit making 
predictions with increased latency.

Model latency on commodity hardware

Although deep learning architectures have achieved great 
success addressing a myriad of problems, many of them 
struggle in practice when running in real time due to the 
high computational cost. This makes an investigation on the 
latency of deep neural models not only legitimate, but nec-
essary, if we are tackling an online classification problem.

Therefore, we measure the time of the three deep neural 
architectures using either CPU and GPU, on average, to make 
a prediction. This is done by aggregating all the computed 
prediction times in each dataset though an online simulation 
procedure. Our concern here is whether these models can be 
considered lightweight and with a fast enough throughput to 
be useful with off-the-shelf hardware and commercial eye 
trackers, which typically operate between 90 and 500 Hz.

Evaluating the I‑BDT

In the dataset proposed by Santini et al., in which the I-BDT 
was originally evaluated (Santini et al., 2016), all recordings 
had a common beginning, with a set of fixations, saccades, 
and smooth pursuits induced by the researchers. This is not 
the case for the GazeCom and HMR datasets, so we could 
not simply select the first 15 s to train the algorithm, as it was 
specified in its original implementation. Therefore, for each 
video, we identified the 15-s interval containing the high-
est number of distinct classes and use it to train the I-BDT 
model. The remaining intervals were used for evaluation.

Additionally, we discarded all recordings in which there 
were no examples of either fixations, saccades, or smooth 
pursuits, something that was particularly recurrent in the 
GazeCom dataset. This gives I-BDT the opportunity to 
learn parameters from all patterns. A total of 601 out of 
844 recordings from GazeCom were selected, whereas no 
recording had to be discarded from the HMR dataset.

We also applied a linear transformation to the input fea-
tures. Exploratory tests showed that converting the eye-
position coordinates to the same resolution of the I-BDT 
dataset (768 × 576 pixels) improved classification perfor-
mance. Therefore, the eye features from the GazeCom and 
HMR datasets were re-scaled, respectively, from 1280 × 720 
and 192 × 192 pixels to 768 × 576 pixels. All values were 
converted to integer coordinates.

In the I-BDT, all samples with no detected pupil are 
considered noise and thus are not fed to the classifier. 
Again, this information was not available in either data-
set, so we marked noise and blink samples in GazeCom 
and HMR as no pupil detection. Furthermore, timestamps 
were divided by 1000 to make them compatible with the 
I-BDT implementation.

Evaluation metrics

We have selected the F1-score on sample and event level as 
our main evaluation metric. The F1-score is calculated from 
the precision (Prec) and recall (Rec) of the models, where the 
precision is the number of true-positive results divided by the 
number of all positive results, including those not identified 
correctly, and the recall is the number of true-positive results 
divided by the number of all samples that should have been 
identified as positive.

The F1-score is a measure of accuracy of the model com-
puted from the harmonic mean of the precision and recall as

where TP is the number of true positives, and FP and 
FN are the number of false positives and false negatives, 
respectively.

Precision and recall values on sample level were calculated 
based on the aggregated confusion matrix built after running 
each partial model against its corresponding test fold with con-
tiguous eye-movement data. To compute the event scores, we 
considered contiguous labels in both datasets as single events, 
and we defined a predicted event as the highest frequency class 
from a model output within the ground truth span (see Fig. 7). 
This scoring criterion tends to be more forgiving than the 
intersection over union (IoU) (Hooge et al., 2018), as it does 
not excessively penalize failures in contiguity for predicted 
events, and it is similar to the criterion established by Hoppe 
and Bulling (2016).

An additional evaluation metric employed—in this 
case, only for the deep neural models—is the receiver 
operating characteristic (ROC) curve, as it provides a vis-
ual and more general understanding of how the classifiers 
are behaving at different true-positive and false-positive 
rates with distinct datasets. As this is a multiclass prob-
lem, we calculated the true- and false-positive rates by 
performing one-vs.-all scoring, and then macro-averag-
ing the combined results for all classes. As both datasets 
are imbalanced, using macro averaging instead of micro 
averaging should be more informative, as it gives equal 
weights for all classes and penalizes more misclassifica-
tions of underrepresented patterns.

(2)F1 =
2 × Prec × Rec

Prec + Rec
=

TP

TP + (FP + FN)∕2
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Results

In this section, we present the general performance results 
for the methods investigated in this work, namely, the 
I-BDT model and the deep neural architectures TCN, 
CNN-LSTM, and CNN-BiLSTM. We also show some 
comparative and exploratory analysis of the deep neu-
ral networks, highlighting the advantages of our train-
ing regimen for this time series problem in contrast with 

more traditional approaches used in offline eye-movement 
classification.

The aggregated F1-scores for all models with respect to 
both datasets are shown in Table 3. The F1-scores associ-
ated to each individual pattern can be seen in Table 4. It is 
important to note that, although the results are displayed 
within the same metric, the deep neural models were trained 
according to a more challenging and rigorous procedure than 
the I-BDT algorithm. We discuss the validity and implica-
tions of this decision in the following section.

Fig. 7   Criteria for sample- and event-level evaluation. On sample 
level, we compute the confusion matrix by comparing each individual 
sample predicted by the model on a continuous data stream against 
the ground truth. We define an event as the set of contiguous labels 

on ground truth and we say that the assigned event is defined by the 
highest frequency class among the predicted samples within a ground 
truth event

Table 3   Models tagged with * indicate results for the GazeCom dataset whereas models tagged with + are associated to the HMR dataset

 Highest values for each dataset are highlighted in bold

Model F1 Sample F1 Event

Precision Recall F1 Precision Recall F1

I-BDT* 77.96 78.23 75.69 75.06 58.87 55.51
CNN-BiLSTM* 81.03 81.05 80.50 90.44 90.32 90.11
CNN-LSTM* 80.64 80.65 80.15 89.99 89.82 89.65
TCN* 85.79 86.40 85.31 93.25 93.18 92.74
I-BDT+ 74.28 73.97 71.22 77.43 70.22 68.49
CNN-BiLSTM+ 84.46 84.45 83.73 87.82 86.79 86.47
CNN-LSTM+ 84.85 84.94 84.26 87.99 87.00 86.70
TCN+ 85.89 86.14 85.51 88.45 87.66 87.39
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Based on the probability outputs for each class, we also 
built the ROC curves for all deep neural models for both 
datasets on sample level, with the respective area under the 
curve (AUC) for each model, shown in Fig. 8.

The TCN model presents the highest scores in both 
aggregated and individual eye-movement patterns, though 
the difference was more salient against other deep neural 
models on the Gazecom dataset, particularly when consid-
ering event-level scores. The gap between models was also 
more accentuated on underrepresented individual patterns 
in both datasets, that is, saccades on HMR and smooth 
pursuits on Gazecom.

To better understand the misclassification behavior of 
each model, we show the confusion matrix generated by 
the classifiers on sample level in Fig. 9. As seen in past 
studies using GazeCom, a major source of confusion in all 
models was the classification between fixations and smooth 

pursuits. On the HMR dataset, this kind of misclassification 
was less evident.

For latency measurements, we simulated trained mod-
els from all three neural architectures against a continuous 
stream of out-of-sample data, considering only the required 
time for a model to make a prediction, that is, discarding the 
elicited time for preprocessing the features. Figure 10 shows 
the average prediction latency and the standard deviation for 
each model on GPU and CPU.

For real-time applications with more relaxed latency con-
straints, we assessed whether increasing sizes of look-ahead 
windows could improve the classification accuracy. For this 
reason, we also evaluated the models considering look-ahead 
windows of 0 (no delay), 20, 40, 60, and 80 ms. Figure 11 
shows the results for both HMR and Gazecom datasets.

Finally, we investigated how advantageous it would be 
to train models with few or larger number of time steps, 

Fig. 8   ROC curves and AUC aggregated values using macro-averaging of all classes on sample level

Table 4   Models tagged * are associated to the GazeCom dataset and the ones tagged with + to the HMR dataset. The Blink columns also 
includes noise data

 Highest values for each dataset are highlighted in bold

Model F1 Sample F1 Event

Fixation Saccade Pursuit Blink Fixation Saccade Pursuit Blink

I-BDT* 86.80 51.02 42.16 – 68.25 47.24 37.71 –
CNN-BiLSTM* 88.38 82.09 40.65 57.17 90.82 95.77 48.48 75.98
CNN-LSTM* 88.09 82.16 38.94 57.86 90.30 95.57 45.92 64.14
TCN* 91.97 83.90 57.30 59.64 93.60 97.16 61.15 77.38
I-BDT+ 82.55 56.26 49.96 – 76.51 64.25 45.70 –
CNN-BiLSTM+ 88.86 69.53 85.64 62.85 89.12 91.50 81.11 74.31
CNN-LSTM+ 89.19 70.41 86.49 63.48 89.36 91.28 81.85 74.96
TCN+ 90.07 72.07 88.89 63.73 90.00 91.87 84.17 75.02
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Fig. 9   Confusion matrices for all models on GazeCom and HMR datasets. The data was normalized according to the predicted value (i.e., col-
umn-wise) and measurements were made on sample level

Fig. 10   Mean prediction latency using 100 ms of time steps for a single instance of the designed sliding window
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as both TCNs and LSTM-based networks can learn long 
time-dependent relationships in the feature space. Our 
results indicate that all architectures peak their performance 
when training with approximately 100 ms of sequential past 
information (20 and 25 time steps, respectively, on HMR 
and GazeCom datasets). These results can be observed in 
Fig. 12.

Discussion

Our results indicate that the proposed TCN model consist-
ently achieves the highest scores, not only in terms of gen-
eral classification performance, but for individual patterns 

as well. This outcome is in accordance with our previous 
findings (Elmadjian et al., 2020), in which we showed that a 
non-causal TCN architecture was able to surpass other deep 
neural models for the offline eye-movement classification 
problem.

In general, all deep neural architectures scored higher 
than the I-BDT algorithm, our baseline model for 
3EMCP online applications. This comparison with the 
baseline, though, has several caveats. To be fair to the 
limitations of the I-BDT, we trained and tested it only 
with individual users, and we excluded user videos where 
fixations, saccades, and smooth pursuits could not be 
found simultaneously, aside from blinks or noise, which 
were not fed to I-BDT.

Fig. 11   Performance of deep neural models along different look-ahead steps, ranging from a lag of 0 to 80 ms

Fig. 12   Performance considering different time steps when looking into the past. Time steps are equivalent between HMR and GazeCom in 
terms of temporal span
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Despite training the I-BDT using the window placement 
and size that maximized its performance, the deep networks 
were able to achieve not only a higher accuracy but also 
greater generalization. The cross-validated test folds were 
intentionally filled with data from users that were not seen 
during training and validation in the case of the HMR, and 
aside from feature preprocessing, no other treatment, such as 
noise reduction, data alignment, or exclusion, was employed 
to improve model performance.

This level of generalization and accuracy comes with the 
cost of a more complex training procedure in comparison 
to the I-BDT. This makes these models potentially unfit for 
scenarios where settings such as eye-tracker model or data 
stream frequency are constantly changing. On the other 
hand, if no significant changes are expected, this training 
happens only once, while the I-BDT always requires a per 
user calibration.

The results using the HMR dataset show that the TCN 
F1-score is about 14.3% higher on sample level and 18.9% 
higher on event level than the scores from I-BDT, while 
on GazeCom these differences were 9.6 and 37.2%, respec-
tively, resulting on an overall improvement of ˜12% on sam-
ple level and 28% on event level. Considering the differences 
by class, the most noticeable one was with respect to smooth 
pursuits (sample 27%; event 31%).

When examining only the neural networks, the differ-
ences between the TCN the other two CNN models were 
more evident with the GazeCom dataset, perhaps because 
it has a larger data variance compared to the HMR dataset. 
The margins in favor of the TCN might be an indication 
of its larger capacity, which is corroborated by the larger 
gap observed between the TCN and the second best scores 
with respect to smooth pursuits, with a margin of 16.7% 
on sample level and 15.2% on event level on GazeCom. 
Overall, the average improvement of the TCN over the 
other neural models was about 3.0 and 1.7% on sample 
and event level, respectively.

The results are generally consistent among all deep neural 
nets when comparing F1-sample and F1-event scores, but 
the same cannot be said about the I-BDT. While there was 
an increase from F1-sample to F1-event scores for the deep 
architectures (TCN: 4.7%, CNN-LSTM: 6.0%, CNN-BiL-
STM: 6.2%), the I-BDT showed a performance drop when 
compared to its own F1-sample scores of 2.7% on HMR and 
of 20.2% on GazeCom.

Figure 9 indicates that the most noticeable mistake on 
GazeCom occurred with the misclassification of pursuits 
into fixations, but not vice versa. The TCN presented the 
lowest error, though the remaining scores were fairly 
similar between the neural models. With respect to the 
HMR, the fixation/pursuit confusion was symmetric for 
the I-BDT in comparison with GazeCom, but it was not 
relevant for the other models. The neural models showed 

virtually identical results, with a small tendency to mis-
classify blinks as fixations.

One surprising finding was that the TCN was the slowest 
model in terms of prediction latency. Though all three neural 
architectures performed in the same order of magnitude, we 
expected the TCN to be more responsive due to its complete 
parallel structure when compared to the CNN-BiLSTM and 
CNN-LSTM, both of them with recurrent structures that 
have to be evaluated serially. There are a couple of expla-
nations for that. First, our TCN implementation was not 
built completely on top of native optimized libraries from 
PyTorch, but the most likely reason is the fact that this TCN 
model is more complex, i.e., it has roughly 36,000 training 
parameters, while the others have about 20,000.

Overall, all deep architectures showed a prediction 
latency of at most 2 ms, within the expected throughput of 
typical commodity eye trackers, in particular to the ones 
used to create both datasets (200 and 250 Hz), indicating that 
the trained models are indeed light enough to be deployed 
in real-time interactive applications. Other evidence that the 
adapted neural models are very lightweight is that there was 
no reduction in latency when using GPUs instead of CPUs 
for prediction, suggesting that the data transfer time domi-
nated the process in the case of GPUs.

As for considering “look-ahead” buffers, that is, delaying 
the model prediction to improve classification accuracy, we 
noticed a perceptible gain. The results indicate that all archi-
tectures behave consistently, though distinctively, within 
each dataset. On GazeCom, larger thresholds seem more 
beneficial. Nonetheless, there is a clear trade-off in which 
the contribution of increasing the look-ahead window starts 
to fade away. Based on our results, a reasonable look-ahead 
window, for all models, seems to be at 40 ms and at 60 ms 
for the HMR and GazeCom datasets, respectively.

Finally, in terms of time steps needed to build our feature 
tensor, our results indicate that roughly 100 ms is the ideal 
amount of sequential time steps from the past that need to 
be encoded for all models to achieve the highest scores in 
both HMR and GazeCom datasets. This goes contrary to the 
belief that more time steps leads to performance improve-
ment, as it is the case with offline classification. One expla-
nation could be the increasing entropy between older time 
steps and the most recent sample in a context window, 
whereas in the offline problem we can leak information from 
future and traverse data in both ways to increase accuracy.

Conclusions

In this work, we proposed a novel preprocessing technique 
and adapted state-of-the-art deep neural models for the 
online classification of eye-movement patterns. We showed, 
in particular, that the TCN architecture presents a larger 
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capacity, achieving higher F1-scores than the I-BDT and 
the 1D-CNN-LSTM networks in the online 3EMCP. Our 
evaluation using two different datasets shows that the TCN 
scores about 12% higher on sample level and 28% higher on 
event level over the I-BDT. Our results also show that the 
TCN outperforms the CNN-LSTM and CNN-BiLSTM by 
approximately 3% on sample and 2% on event level.

By modifying the deep neural models from seq2seq to 
seq2one architectures, training them with just a few time 
steps and increasing the importance of more recent samples, 
we managed to achieve a high throughput on sample predic-
tion (approximately 500 Hz) using off-the-shelf hardware 
while maintaining a high accuracy.

Our investigation also shows that, though it is possible to 
achieve reasonable accuracy levels with zero-length look-
ahead buffers, the performance of all methods improves as 
we increase the amount of look-ahead information, which is 
particularly relevant during eye-pattern transition. All meth-
ods have presented a 2–3% improvement in F1-score using 
a look-ahead window of 40 to 60 ms. For typical human-
computer interaction applications that require response times 
under 100 ms, this increase in response delay might not have 
any impact on the task performance.
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