
Vol.:(0123456789)1 3

Behavior Research Methods (2023) 55:3461–3493 
https://doi.org/10.3758/s13428-022-01969-3

Analysing data from the psycholinguistic visual‑world paradigm: 
Comparison of different analysis methods

Aine Ito1,2  · Pia Knoeferle1,3,4

Accepted: 29 August 2022 / Published online: 17 November 2022 
© The Author(s) 2022

Abstract
In this paper, we discuss key characteristics and typical experimental designs of the visual-world paradigm and compare 
different methods of analysing eye-movement data. We discuss the nature of the eye-movement data from a visual-world 
study and provide data analysis tutorials on ANOVA, t-tests, linear mixed-effects model, growth curve analysis, cluster-based 
permutation analysis, bootstrapped differences of timeseries, generalised additive modelling, and divergence point analysis 
to enable psycholinguists to apply each analytical method to their own data. We discuss advantages and disadvantages of 
each method and offer recommendations about how to select an appropriate method depending on the research question and 
the experimental design.

Keywords Visual-world paradigm · Eye-tracking · ANOVA · Linear mixed-effects model · Growth curve analysis · Cluster-
based permutation analysis · Bootstrapped differences of timeseries · Generalised additive modelling · Divergence point 
analysis

Introduction

The visual-world paradigm (VWP) has been widely 
used to investigate language processing. This paradigm 
involves tracking participants’ eye movements with an 
eye-tracker as they listen to individual sounds, words or 
sentences and inspect either things in the real world or 
visual information on a computer display (Huettig et al., 
2011; Knoeferle & Guerra, 2016; Salverda & Tanenhaus, 
2017). We distinguish a range of eye-movement types 

(see Rayner, 1998, 2009 for comprehensive reviews) 
in the VWP (see Pyykkönen-Klauck & Crocker, 2016), 
among them are fixations (the eye rests), saccades (the 
eye jumps from an old to a new location) and saccade 
latencies (Altmann & Kamide, 2004, Appendix on com-
parative analyses). So-called linking hypotheses (Just & 
Carpenter, 1980; Magnuson, 2019; Pyykkönen-Klauck & 
Crocker, 2016; Tanenhaus et al., 2000) permit research-
ers to interpret these sorts of eye movements as indica-
tive of the cognitive operations implicated in language 
processing. For example, if listeners hear the woman, and 
they next look more at a nearby woman than man, we can 
infer from this difference in fixations that they have under-
stood woman and established reference to her. Due to its 
high temporal resolution, the eye-tracking VWP data can 
provide insight into listeners’ cognitive operations while 
individual spoken words or entire sentences are unfolding 
moment-by-moment.

The analysis of fixation data is not without chal-
lenges. First, fixation data are binary (a listener looks 
at an object or not), and as a result they do not meet the 
assumption of Gaussian-distributed data. Second, they 
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often do not meet assumptions for parametric tests1. One 
of these assumptions is independence of the observa-
tions: If a listener makes a fixation on a woman, they 
necessarily cannot at the same time look at a nearby man, 
a characteristic that violates the assumption of independ-
ence when comparing looks to these two characters. Fur-
ther, consecutive eye movements are not independent, 
and where one looks at the onset of woman may affect 
(above and beyond the effects of any manipulations) the 
location of the next fixation (Barr et al., 2011). Third, 
and related to the second point, the analysis of fixa-
tions across time brings with it issues regarding tempo-
ral dependence of consecutive data points. These data 
characteristics should be taken into consideration when 
choosing inferential analyses2. Several different analysis 
methods have been proposed for analysing eye-movement 
data. Considering these options, researchers must select 
an analysis that is suitable for their research question and 
the type of data.

The goal of our paper is to provide linguists and psy-
cholinguists (who may not have used the VWP) tutorials 
on several analysis methods. We compare different analy-
sis methods using data sets from our previous studies and 
offer recommendations for how to select an analysis method. 
To this end, we describe typical experimental designs3 and 
variables that should be considered when making analytic 
decisions (section Design, visual and speech stimuli, tim-
ing, interest periods and task; our aim here is not to pro-
vide an exhaustive overview of VWP studies; for a more 
comprehensive overview, see Huettig et al., 2011; and for 
a shorter overview, see Supplementary file S1 from https:// 

osf. io/ tzn8u/). We then describe two data sets (Experiment 
1a in Knoeferle and Crocker (2006) and data from Ito et al. 
(2018b) discussed below, section Descriptions of our data 
sets). In section Analysis of fixation averages for individual 
interest periods, we present examples of applying statistical 
tests such as t-tests, analyses of variance (ANOVA), or linear 
mixed-effects models (LME) for analysing eye-movement 
data averages. Although some of these analyses (e.g., ANO-
VAs or t-tests) are no longer frequently used to analyse VWP 
data, we included them as they have been used in published 
articles, can serve as a first step into the analysis of VWP 
data for beginners, and often appear as one step in some of 
the time-course analyses we show in this manuscript (see 
below). In section The temporal emergence of an effect, 
we present examples of time-course analyses. We discuss 
the nature of the time-course data in VWP studies and the 
hurdles of testing finer-grained differences in the emer-
gence of an effect over time using t-tests/ANOVA or LMEs. 
We also present examples of five alternative approaches 
(growth curve analysis, cluster-based permutation analysis, 
bootstrapped differences of timeseries, generalised additive 
modelling and divergence point analysis) and discuss the 
advantages and disadvantages of each method.

Design, visual and speech stimuli, timing, interest 
periods and task

In a standard VWP setup, participants’ eye movements are 
measured while they view some objects or printed words and 
listen to speech simultaneously. Numerous studies have found 
a link between the auditorily presented linguistic input and 
eye movements. One of the major advantages of the VWP is 
that researchers can manipulate both linguistic characteristics 
(e.g., semantic, syntactic and phonological relationships on 
both lexical and sentence levels) and participant character-
istics (e.g., infants vs adults, young vs older adults, healthy 
older adults vs patients, native vs non-native speakers).

Below, we lay out decisions that researchers need to make 
regarding the experimental design and discuss considera-
tions for making the decisions, with the focus on decisions 
that can affect the analyses. The decisions about the design 
include what variables to manipulate (also dubbed ‘inde-
pendent variables’ or ‘predictors’) and what variables to ana-
lyse (also termed ‘dependent variables’ or ‘outcomes’) (cf. 
Glossary). Additional decisions in setting up the experiment 
concern other design-related issues (e.g., the assignment of 
item–condition combinations to lists and counterbalancing), 
the stimuli and their timing (e.g., the type of visual input, i.e., 
scene vs Ersatz-scene, see Henderson & Ferreira, 2004; tim-
ing: static vs dynamic scenes and the scene preview time, see 
de Almeida et al., 2019; speech rate and the spacing of words, 
see Andersson et al., 2011), and choice of interest period (time 
window for the analysis) (see Huettig et al., 2011).

2 Inferential analyses are analyses that examine whether an out-
come measure is likely a chance result or not. They can, for instance, 
assess how likely it is that the observed difference in fixation dura-
tion (across participants) for one vs another condition (a systematic 
manipulation by the experimenter) would have been as large as the 
one observed if the assumption of no difference between the condi-
tions were true (the so-called null hypothesis). If it is very unlikely 
(e.g., < .05 probability) that a duration difference as large as the one 
observed would have been found by chance, we can be relatively cer-
tain, that this difference is not random variability but systematic (per-
haps due to something the researcher did—a manipulation).
3 In an experimental design, researchers specify something called 
an ‘experimental manipulation’, meaning they introduce different 
systematic changes. For instance, we could add an adjective before 
a noun like woman. That adjective could either match (e.g., bru-
nette) or mismatch (blonde) the hair colour of the woman referenced 
by woman. If listeners rapidly rely on such systematic manipulations 
like a matching adjective, they may start to shift their eye gaze to the 
brunette woman earlier when the adjective matches than when it mis-
matches.

1 Parametric tests have been widely used in psycholinguistic 
research, and data entered in a parametric test must fulfil specific 
assumptions; see Jaeger (2008) for a discussion of problems when 
analysing binary data with parametric analyses (see also Donnelly & 
Verkuilen, 2017).

https://osf.io/tzn8u/
https://osf.io/tzn8u/
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Glossary
Eye-tracking/VWP terms
Competitor design: a design that uses a competitor object. The 

competitor shares certain (e.g. phonological, semantic) represen-
tations with the target (the mentioned object). Biased looks to the 
competitor are used as estimates for the degree of activation of the 
shared representations.

Fixation: a period during which the eye gaze is stable on a single 
location and visual information is processed.

Fixation proportion: used synonymously with ‘fixation probabil-
ity’. The proportion of trials in which the fixation falls in an inter-
est area, or the proportion of time spent fixating an interest area 
within a time window (which is then averaged across trials).

Inspection: used synonymously with ‘gaze’. The sum of the dura-
tions of consecutive fixations to an interest area.

Interest area (or AoI; area of interest): a predefined area that is 
used to assess whether a particular object was fixated. It is often 
a rectangle surrounding the object. Fixations in the interest area 
containing the target object will be regarded as fixations on the 
target object.

Interest period: a predefined time window in which the effect of 
experimental condition is expected to occur. Eye-movement data 
in the interest period are used for the analysis.

Saccade: a rapid, simultaneous eye movement of both eyes between 
fixations.

Saccade latency: the time taken to launch a saccade to an interest 
area relative to a time point of interest (e.g., the onset of the target 
word).

Sampling rate: the frequency with which a data point is recorded. 
For example, if the sampling rate is 500 Hz, a data point is 
recorded every 2 (= 1000/500) ms.

Target-absent design: a design in which the target object (the 
mentioned object) and the competitor object are not co-present 
on the same display. The target is absent when the competitor is 
presented.

Time bin: an interest period is further divided into smaller ‘time 
bins’ (e.g., 50 ms bins), for which fixation proportion is computed 
or fixation is coded binomially. The binned fixation data are used 
for a time-course plot (e.g., Figs. 4, 6) and for testing fine-grained 
differences in the emergence of an effect over time (cf. sec-
tion The temporal emergence of an effect).

Statistical terms
Autocorrelation: a tendency that fixation proportions between adjacent time bins are 

correlated with each other (cf. section Considerations in applying ANOVA /LME).
Categorical variable: a variable which consists of categories (e.g., gender).
Coefficients: the size of the coefficient of an independent variable indicates the 

effect that the independent variable has on the dependent variable. The sign of the 
coefficient indicates whether the independent variable has a positive or negative 
effect on the dependent variable.

Collinearity: a situation where two independent variables are strongly correlated. 
When this applies to two or more variables, it is called ‘multicollinearity’ (cf. sec-
tion Growth curve analysis (GCA)).

Degrees of freedom (df): the number of observations that are free to vary when 
estimating a statistical parameter. For example, if three values have a mean of 5, 
and we are to determine each of these three values, then only two of them are free 
to vary (the first two can take on any value, but to obtain a mean of 5, the third 
number is fixed). The degrees of freedom in this case equals the number of values 
that are free to vary (two).

Dependent variable: used synonymously with ‘outcome variable’. The variable that 
is measured and analysed.

Error: a statistical error in a linear model means the difference between the observed 
value and the true value of an entire population parameter (a quantity which represents 
a property of the target population). Population parameters are usually impossible to 
know because an experiment usually does not recruit all members of a population.

False negative: used synonymously with ‘type II error’. This occurs when a 
researcher believes that there is no effect of experimental condition when there is 
an effect.

False positive: used synonymously with ‘type I error’. This occurs when a researcher 
believes that there is an effect of experimental condition when there is no effect.

Fixed effect: an effect that is assumed to be relatively constant across individuals.
Independent variable: used synonymously with ‘predictor variable’. The variable 

that is manipulated in an experiment.
Interaction effect: combined effects of two or more independent variables on a 

dependent variable.
Intercept: a constant corresponding to the value of the dependent variable when all 

independent variables are set to zero.
Interval variable: a variable which requires that equal intervals on the scale repre-

sent equal differences in the property being measured.
Linear mixed-effects model (LME): a linear model that involves estimating both 

fixed effects and random effects. This model considers the hierarchical structure of 
the data (where some variables are nested within other variables).

Main effect: a unique effect of an independent variable on a dependent variable 
(ignoring effects of all other independent variables).

Ordinal variable: a variable which consists of logically ordered categories (e.g., 
highest degree completed).

Parametric test: a statistical test that requires parametric data. For data to be 
parametric, they must meet the following assumptions: (1) data are sampled from 
a normal distribution, (2) variances in each condition/group are approximately the 
same, or variances in the differences between conditions are approximately the 
same (for repeated-measures designs), (3) data should be measured at the interval 
or ratio level, (4) each observation is independent from the other (in between-
group designs), or observations between different participants are independent 
(in repeated-measures designs; observations in experimental conditions within 
each participant can be non-independent), and (5) the dependent variable has an 
unbounded range. ANOVAs and t-tests are parametric tests. See section ANOVA, 
t-test for how to test these assumptions.

Permutation test: a statistical test that involves obtaining the distribution under the 
null hypothesis (null hypothesis distribution) by resampling the data. The resam-
pling is done by permuting (or ‘shuffling’) the data that are exchangeable under the 
null hypothesis.

Random effect: an effect that is assumed to vary across individuals.
Ratio variable: a variable which meets the requirement of an interval variable and 

additionally requires that the ratios of values alongside the scale be meaningful 
(e.g., reaction time).

Residual: the difference between the observed value and the estimate of the true value. 
The true value is typically impossible to know but can be estimated from experimen-
tal data. A residual is closely related to the notion of an error, but they are different in 
that an error is a difference from the true value (not from its estimate).

Slope: a slope indicates how much change in a dependent variable is associated with a 
one-unit increase in an independent variable. For example, a slope of .2 means that the 
dependent variable increases by .2 as one unit increases in the independent variable.

Sphericity: a repeated-measures ANOVA assumes that the variances across condi-
tions are equal and the covariances between pairs of conditions are equal (no two 
conditions are any more similar than any other two). This assumption is called the 
‘assumption of sphericity’.



3464 Behavior Research Methods (2023) 55:3461–3493

1 3

Independent and dependent variables

Some VWP studies have employed a simple one-factor 
design, comparing eye movements to a target object between 
two or more so-called levels/conditions of the spoken stim-
uli. For example, Altmann and Kamide (1999) used one 
within-subject factor (verb selectional restrictions) with 
two levels/conditions (restrictive vs non-restrictive verbs). 
‘Within-subject’ means that each subject (also called ‘par-
ticipant’) is exposed to all the levels/conditions of a manipu-
lated variable4. Tanenhaus et al. (1995) used a 2 × 2 within-
subject design (two factors, each with two levels): structural 
ambiguity of the spoken sentences as a first factor (levels: 
ambiguous vs unambiguous) and the number of possible 
referents in the scene as a second factor (levels: one referent 
vs two referents). Other studies have included a between-
subject variable, testing effects of socio-economic status on 
vocabulary growth (Fernald et al., 2013) or effects of age, or 
language proficiency on anticipatory eye movements (Gambi 
et al., 2018; Hopp, 2013; Ito et al., 2018b).

Typical dependent variables include fixations, inspec-
tions (or gaze), saccades and pupil size (cf. Glossary). Fixa-
tions refer to the period during which the eye gaze is stable 
on a single location and visual information is processed, 
which is presumably why a VWP analysis often focuses 
on fixation. Fixation data are often converted into propor-
tion (called ‘fixation proportion’ or ‘fixation probability’) 
by computing the proportion of trials in which the fixation 
fell in an interest area (if a fixation falls in this area, it is 
treated as a fixation on the object corresponding to that inter-
est area) (Dahan & Tanenhaus, 2004; Huettig & Altmann, 
2005) or by computing the proportion of time spent fixat-
ing an interest area within a time window (which is then 
averaged across trials) (Borovsky et al., 2013; Chambers 
et al., 2004; Ito et al., 2018a). Inspections are computed by 
summing the duration of consecutive fixations to an interest 

area (Knoeferle & Crocker, 2006). Saccades refer to rapid, 
simultaneous movements of both eyes which occur between 
fixations. The proportion of trials in which a saccade was 
launched towards the target, or the saccade latency (the time 
taken to launch a saccade to the target interest area relative 
to a time point of interest; e.g., the onset of the target word) 
is sometimes analysed to explore attention shifts towards 
the target (Altmann & Kamide, 1999, 2004; Borovsky et al., 
2012). Pupil size is often used as a measure of cognitive 
load, because it becomes larger (i.e., more dilated) as the 
spoken sentence becomes harder to process (Just & Carpen-
ter, 1993). This measure has been applied to VWP studies, 
usually with adjustments to account for the gaze position 
(Carminati & Knoeferle, 2016; Demberg & Sayeed, 2016; 
Engelhardt et al., 2010; Scheepers & Crocker, 2004; Tromp 
et al., 2016).

In this paper, we focus on the analysis of fixations and 
inspections, but the analyses we present here can be applied 
to analysing pupil size or proportion of trials with saccades 
to the target (and their time-course). Fixation proportion is 
often used to visualise fixation bias towards one interest area 
over another. However, for parametric tests such as t-tests 
or ANOVA, using proportion data violates the assump-
tion that the dependent variable has an unbounded range 
(because proportions are bounded from 0 to 1). It also vio-
lates the assumption that errors (cf. Glossary) are normally 
distributed and independent from the mean (because error 
variance is proportional to the mean) (Barr, 2008). Thus, 
using proportion data for an analysis can lead to improper 
estimation of effects (Jaeger, 2008). To deal with this issue, 
one can compute the empirical logit (a quasi-logit transfor-
mation) (Barr, 2008). The empirical logit has the advan-
tages that it can filter out dependencies (autocorrelation) 
in eye-movement data (i.e., data at time X and data at time 
X+1 are highly correlated), and it excels in handling cases 
when the proportions are close to zero or 1 (see Donnelly & 
Verkuilen, 2017 for an alternative approach)5.

Alternatively, one can also code fixation binomially 
(1 = fixated, 0 = not fixated) for small time bins (cf. Glos-
sary), and binomially-coded fixation can be used as a 
dependent variable in generalised linear-mixed models. The 
data are more likely to be binomially distributed when the 
interest period is short, as it is less likely that eyes move 
to another interest area during a short interest period (an 
interest period shorter than 100 ms may only contain one 
fixation, given what we know about the average duration of 

4 An alternative would be a ‘between-subjects’ design in which one 
group of participants is exposed to one level/condition of a manip-
ulated variable while another group of participants is exposed to 
another level/condition of a manipulated variable. Within-subject 
designs are often preferred in psycholinguistic and other experiments 
since they result in less variability associated with the comparison 
of levels. If you have a one-factor two-level design as in Altmann 
and Kamide (1999), and 24 critical stimuli, then one participant is 
exposed to 12 trials of the restrictive verb level and to 12 trials of the 
non-restrictive verb level in a within-subject design. With a within-
subject allocation, differences in eye-gaze between the two verb lev-
els cannot result from differences between participants. By contrast, 
if one group of participants were exposed to the restrictive verb items 
and another group to the non-restrictive verb items (as would be the 
case in a between-subjects design), then differences in participants’ 
eye movements between the two levels would be confounded with 
other differences between the participants (e.g., in age, intelligence or 
language ability).

5 Dan Mirman shares his analyses with empirical logit as proposed 
by Barr (2008) and with flattened logistic regression as proposed by 
Donnelly and Verkuilen (2017) in his blog: http:// mindi ngthe brain. 
blogs pot. com/ 2016/ 12/ flatt ened- logis tic- regre ssion- vs. html

http://mindingthebrain.blogspot.com/2016/12/flattened-logistic-regression-vs.html
http://mindingthebrain.blogspot.com/2016/12/flattened-logistic-regression-vs.html
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a fixation). In such a situation, it is often more suitable to use 
binomially-coded fixation. On the other hand, if the inter-
est period is long, coding fixation binomially can produce 
very different results from those when proportion of time 
spent fixating on an interest area is computed. For exam-
ple, if object A and object B were fixated for 600 ms and 
200 ms, respectively, during an interest period of 1000 ms, 
the binomially-coded fixation would be 1 for both objects, 
whereas the fixation proportion would be .6 (= 600/1000) 
for object A and .2 (= 200/1000) for object B.

VWP studies often compare participants’ eye movements 
to one interest area over another. When two interest areas are 
co-present, comparing fixations to these interest areas with 
each other violates the assumption that data points for dif-
ferent conditions should be independent, because when one 
interest area is fixated, the other is not. A frequently used 
solution is to use log-ratio as a dependent variable (Arai 
et al., 2007). For example, to test fixation bias towards the 
target over the competitor, the log-ratio can be computed 
by the following formula: log((fixation propor-
tion on target) / (fixation proportion 
on competitor)). Typically, a small value (e.g., .5 or 
.1) is added to both the numerator and the denominator to 
avoid failure of the computation when the denominator is 
zero. When the comparison is not between objects on the 
same scene, the fixations to these objects can be compared 
without computing a ratio. For example, when a target object 
is absent when a competitor is present and vice versa (i.e., 
target-absent design, cf. Glossary, section Visual stimuli), 
fixations to the target can be compared against fixations to 
the competitor.

Assignment of item–condition combinations to lists 
and counterbalancing

In a within-subject design, participants receive all condi-
tions (levels). For example, in Altmann and Kamide (1999), 
there was one factor with two levels (restrictive condition 
vs non-restrictive condition). They created two lists using 
a Latin square, where participants received both restrictive 
and non-restrictive conditions, but not for the same item. 
In such a design, list 1 may contain items 1, 3, 5… in the 
restrictive condition, and items 2, 4, 6… in the non-restric-
tive condition; and list 2 may contain items 1, 3, 5… in the 
non-restrictive condition and items 2, 4, 6… in the restric-
tive condition (see Supplementary file S2 from https:// osf. io/ 
tzn8u/ for a template of a Latin square design). This allows 
researchers to avoid repeating a single item within a partici-
pant. Item repetition can allow participants to systematically 
track a pattern (e.g., when a scene appeared in the restrictive 
condition for the first time, it appeared in the non-restrictive 
condition for the second time), so repetition is often avoided 
(see Britt et al., 2014, for effects of repetition on anticipatory 

eye movements). However, repetition is sometimes inevita-
ble when there are not many items (e.g., Gambi et al., 2018). 
When some items are repeated, it is desirable to ensure that 
the effects obtained are not due to repetition (e.g., by test-
ing whether the effect was consistently found for the first 
and second/later instances of presentation of a stimulus). 
When there is an additional between-subject factor (e.g., 
age group), the stimuli are typically repeated across the par-
ticipant groups.

Non-manipulated factors that could affect eye movements 
but are not of interest in a study are often counterbalanced. 
For example, participants might have a bias to look at the 
object on the left side over the object on the right side (for 
whatever reason). To ensure that the object position cannot 
explain biased looks, the object position is often counter-
balanced (each object appears in each position equally fre-
quently). Chambers and Cooke (2009) counterbalanced the 
gender of the object names so that the target and interlingual 
competitor shared gender in half of the items. Counterbal-
ancing may also be done to the linguistic (auditory) stimuli. 
Knoeferle and Crocker (2006) used cross-spliced sentences 
in half of the items to exclude potential effects of intona-
tional cues.

Visual stimuli

The visual stimuli typically consist of 2–5 objects. Experi-
ments involving small children (about two years old or 
younger) tend to use a small number of objects (Fernald 
et al., 2013; Gambi et al., 2018; Mani & Huettig, 2012). Since 
the maximum number of objects that adults can efficiently 
process and actively remember is four on average (Cowan, 
2001; Sperling, 1960), the inclusion of more objects in the 
visual scene is likely to interfere with language-mediated eye 
movements. For example, Ferreira et al. (2013; Experiment 
1) replicated Tanenhaus et al. (1995) using four objects and 
found that participants hearing a locally ambiguous sentence 
(e.g., Put the book on the chair in the bucket) were more 
likely to look at the incorrect goal (e.g., chair) at the word 
chair when there was only one book than when there were 
two books (though the effect does not seem consistent in the 
time-course graph). However, when the visual scene con-
tained eight additional (12 total) objects (Experiment 4), the 
effect did not replicate and showed (numerically) an opposite 
pattern (see also Hintz & Huettig, 2015, for effects of visual 
complexity on phonological, semantic and shape competitor 
effects).

Many of the VWP studies used scenes containing line 
drawings of objects arranged in an array. These scenes are 
different from natural scenes in several ways including 
scene complexity, the quality of the image and the size 
of the objects. An important consideration is that object 
identification is much quicker in a visual array with 4–5 

https://osf.io/tzn8u/
https://osf.io/tzn8u/
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objects than in natural scenes with many more objects 
(although people can derive the gist, or semantically 
interpret a natural scene within 30–50 ms) (Henderson & 
Ferreira, 2004). As people use linguistic and visual infor-
mation in combination in a VWP setting (e.g., Knoeferle 
et al., 2005), linguistic processing is subject to the influ-
ence of visual information if participants have identified 
some or all of the depicted objects before hearing the 
linguistic information. Thus, the influence of the visual 
information must be considered when drawing conclusions 
from a VWP study.

The visual stimuli can be printed words instead of 
objects. Studies on phonological and orthographic process-
ing used the printed-word VWP and replicated phonologi-
cal, orthographic and semantic competitor effects found in 
the standard VWP (Ito, 2019; McQueen & Viebahn, 2007; 
Salverda & Tanenhaus, 2010; Shen et al., 2016; Veivo et al., 
2016). The use of printed words allows researchers to use 
abstract words that are hard to depict as visual stimuli. When 
researchers are interested in effects that hinge on a high nam-
ing agreement (e.g., phonological competitor effect), the 
printed-word VWP may be considered as a better alternative. 
However, researchers must be aware that the type of visual 
stimuli can affect language-mediated eye movements. For 
example, phonological competitor effects tend to be more 
robust in the printed-word VWP (but see Apfelbaum et al., 
2021), whereas semantic or shape competitor effects tend 
to be more robust in the standard (depicted-objects) VWP 
(Huettig & McQueen, 2007).

In studies testing a competitor effect, the target and the 
competitor may be co-present in the visual scene, or the 
target may be absent when the competitor is present (target-
absent design, cf. Glossary). In studies testing disambigua-
tion (Knoeferle et al., 2005; Tanenhaus et al., 1995) or how 
activation of different types of information competes with 
each other (Allopenna et al., 1998; Huettig & McQueen, 
2007), all critical objects (e.g., the target and competitor 
objects, potential referents) are often presented in the same 
scene. The target-absent design has an advantage in prevent-
ing fixations on the competitor being swamped by fixations 
on the target (Huettig & Altmann, 2005), so it is suitable 
when the effect of interest may be subtle (e.g., Rommers 
et al., 2013). However, a downside of this design is that 
there may be more noise in the data due to between-trial 
comparisons, and statistical power may be reduced relative 
to within-trial comparisons. The decision about this design 
affects the choice of the dependent variable (as discussed in 
section Independent and dependent variables). The fixations 
to the target and the competitor can be directly compared 
against each other in a target-absent design (because fixa-
tions are independent) and indirectly via log-ratios if the 
target and the competitor are co-present (because fixations 
are non-independent).

Preview and speech rate

The preview time (how long the visual scene is shown rela-
tive to the occurrence of a critical spoken input) and speech 
rate can affect eye movements considerably. It is common 
to give participants some time to preview the scene before 
the auditory stimulus is presented because people tend to 
react more slowly to (i.e., need more time to process) vis-
ual than auditory stimuli (Teichner, 1954). In addition, eye 
movements upon the presentation of the scene are largely 
driven by visual features of the objects presented (Hender-
son & Ferreira, 2004). If there is a preview time, these eye 
movements are more likely to occur during the preview and 
are less likely to interfere with eye movements during the 
presentation of the auditory stimulus. Dahan and Tanen-
haus (2005) tested whether the preview time affects a shape 
competitor effect using a 300 ms or 1000 ms preview. They 
found a shape competitor effect in both preview conditions, 
but the effect was larger in the longer preview condition. 
Huettig and McQueen (2007) investigated how the preview 
time interacts with phonological, semantic and shape com-
petitor effects. They found phonological, semantic and shape 
competitor effects when the visual scene was presented at 
the sentence onset (the target word appeared after seven 
words on average), but there were only semantic and shape 
competitor effects when it was presented 200 ms before 
the target word onset (Experiments 1–2). Apfelbaum et al. 
(2021) investigated which processes were affected by varied 
preview and demonstrated the benefit of preview as it can 
prevent early eye movements, driven by processes that may 
not be of interest (e.g., visual search, strategies) from adding 
noise to eye movements driven by processes of interest (e.g., 
linguistic processes like word recognition).

It is also common to use a relatively slow speech rate, 
as language-mediated eye movements tend to be reduced 
when the speech is fast (vs slow). Huettig and Guerra (2019) 
investigated the effects of preview time and speech rate on 
anticipatory eye movements. Native Dutch speakers listened 
to Dutch sentences such as Kijk naar de-common afgebeelde 
fiets-common (‘Look at  the-common displayed  bicycle-common’) 
while viewing a scene containing the target object (a bicy-
cle) and three distractor objects. The speech rate was manip-
ulated within items, and the same set of sentences were 
presented at either a normal speech rate (1.8 seconds/sen-
tence on average) or a slower rate (4.2 seconds/sentence on 
average). The target had a common gender (hence required 
an article de) and the distractors all had a neuter gender 
(hence required an article het) or vice versa, so the target 
object was predictable based on the gender of the article. 
Participants looked at the target object in both speech rate 
conditions before it was mentioned when the scene was pre-
sented four seconds before the sentence onset (Experiment 
1), suggesting that they anticipated the target based on the 
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gender-marked article. However, when participants had a 
shorter, one-second preview, this effect was found only at a 
slow speech rate (Experiment 2).

Thus, it is important to give participants enough time 
to preview the scene before the target word is presented. 
However, in some studies the scene appeared shortly before 
the target word onset (i.e., .5–1-second preview) in order to 
minimise priming from the visual scene. Dahan et al. (2001) 
used a 500 ms preview to make it less likely that partici-
pants would name the depicted objects implicitly (note that 
a recent study suggests participants are unlikely to do so 
during a preview; Apfelbaum et al., 2021). Other studies 
investigating pre-activation of certain information from the 
sentence context (Ito et al., 2018b; Rommers et al., 2013) 
used a short preview time to make it less likely that the pre-
activation arose from the preview. If researchers are to adapt 
this presentation, it is important to ensure that there is no 
baseline bias (meaning that participants fixate one object 
more than another already before a critical time window); 
the existence of a baseline bias must be verified because eye 
movements immediately after the presentation of the visual 
scene can contain fixation bias due to visual features (cf. 
Barr et al., 2011). In studies on prediction based on a linguis-
tic cue, it is also important to ensure enough time between 
the prediction-cueing word (e.g., a gender-marked article in 
Huettig & Guerra, 2019) and the target word. Many stud-
ies inserted additional semantically non-constraining words 
(e.g., Hopp, 2013; Huettig & Guerra, 2019; Kamide et al., 
2003) to extend the time window during which looks to the 
target can be interpreted as indicating anticipatory processes.

Time window

The interest periods (time windows for the analysis, cf. Glos-
sary) should be defined before data collection (and ideally 
preregistered) irrespective of which analysis is used, because 
the choice of an interest period can affect statistical results 
(Peelle & Van Engen, 2021). Studies on word-level process-
ing often take the time window from the acoustic onset to the 
offset of the target word, or to 1–2 seconds after the target 
word onset if the target word duration is relatively short. If 
the word duration is relatively short and if the interest period 
is cut off at the word offset, an effect of interest may not be 
evident or may not reach a peak before the target word offset 
(e.g., Allopenna et al., 1998); to capture delayed effects, a 
longer time window can be used for the analysis. Eye move-
ments as a response to a target word are often observable 
within one second from the target word onset (Allopenna 
et al., 1998; Yee & Sedivy, 2006). However, when the effect 
is expected to be delayed (e.g., when testing less proficient 
language speakers), the interest period may be extended to 
capture a delayed effect (Mirman et al., 2011; Yee et al., 
2008). Since it takes around 200 ms to launch a saccade in 

response to a stimulus (Saslow, 1967), the time window is 
sometimes shifted 200 ms forward (e.g., from 200 ms after 
the word onset to 200 ms after the word offset) (but see 
Altmann, 2011, for a shorter estimate).

Studies on disambiguation may take the window from the 
onset of a temporarily ambiguous region (e.g., on the towel 
in Put the apple on the towel in the box) to the onset of a 
disambiguating region (e.g., in the box) to test an initial inter-
pretation of the ambiguous phrase (Tanenhaus et al., 1995) 
or take a region where disambiguation is possible (e.g., after 
the verb wäscht in Die Prinzessin-Subj/Obj wäscht offensichtlich 
den Pirat-Obj; ‘The  princess-Subj/Obj is apparently washing the 
 pirate-Obj’, for the scene where a princess is washing a pirate) 
to test whether people attempt a disambiguation before the 
thematic role relations are fully disambiguated by case mark-
ing on the post-verbal noun phrase (Knoeferle et al., 2005). 
Studies on anticipatory processing have taken an interest 
period from the onset of a word that makes an upcoming 
object predictable (e.g., eat in The boy will eat the cake for the 
scene where the cake is the only edible object) to the onset of 
the predictable word (e.g., cake). They may also take a short 
window before the onset of the predictable word (Ito et al., 
2018b; Rommers et al., 2013) or the entire sentence context 
window up to the onset of the predictable word (Kukona, 
2020) if the word is predictable from the sentence context.

Descriptions of our data sets

In addition to considering the aspects discussed in sec-
tion Design, visual and speech stimuli, timing, interest periods 
and task, key decisions must also be made in analysing VWP 
data. Below we present two example data sets (sections Ito 
et al. (2018b) and Knoeferle and Crocker (2006; Experiment 
1)), utilising the experimental terminology and characteristics 
introduced in section Design, visual and speech stimuli, timing, 
interest periods and task; for these, we illustrate eye-movement 
data analysis in sections Analysis of fixation averages for indi-
vidual interest periods (for interest period averages) and The 
temporal emergence of an effect (for time course).

Ito et al. (2018b)

The first data set is from Ito et al. (2018b). They investigated 
prediction of a specific word based on a sentence context in 
first-language (L1) and second-language (L2) English speak-
ers (with L1 Japanese). The auditory stimuli were sentences 
containing a highly predictable word (e.g., cloud in The 
tourists expected rain when the sun went behind the cloud, 
…). The visual stimuli contained four objects, one of which 
was the critical (i.e., manipulated, non-distractor) object. 
The independent variable was the critical object condition 
(four levels: target, English competitor, Japanese competi-
tor and unrelated). The critical object represented the target 
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word (target condition, e.g., cloud), an English competitor 
which shared initial phonemes with the target word (Eng-
lish competitor condition, e.g., clown), a Japanese competi-
tor whose name shared initial mora(s) with the target word 
when translated into Japanese (Japanese competitor condi-
tion, e.g., competitor: bear; Japanese: ‘kuma’; target: cloud; 
Japanese: ‘kumo’) or an unrelated word (unrelated condi-
tion, e.g., globe). The English competitor was included to 
test pre-activation of phonology. The participant group (two 
levels, L1 and L2) was a between-subject independent vari-
able. The dependent variable was fixation proportions to the 
critical object (or binomially-coded fixation, see the analysis 
sections Analysis of fixation averages for individual interest 
periods and The temporal emergence of an effect for how the 
dependent variable was computed for each analysis).

This study used a target-absent design. Participants only 
saw one of the critical objects (together with the same three 
distractors) for each item. Thus, fixation proportions to criti-
cal objects can be compared against each other without com-
puting a log-ratio. Four experimental lists were constructed 
following a Latin square design. Participants received only 
one condition per item and received the same number of tri-
als for each condition. The objects appeared on the screen 
1000 ms before the target word onset. No pre-sentence pre-
view was used to minimise a potential effect of phonological 
priming from the object names. The sentences were spoken 
slowly with phrases spaced out in time, at a rate of approxi-
mately 2.6 syllables per second. To investigate prediction 
(processes happening before the occurrence of the predict-
able target word), a time window before that word was used 
for the analysis (see sections Analysis of fixation averages for 
individual interest periods and The temporal emergence of 
an effect for a specific time window used in each analysis).

If participants activated the phonological information of the 
target word before they heard it, the English competitor was 
expected to attract more looks than the unrelated object (due to 
a phonological competitor effect; cf. Allopenna et al., 1998). The 
Japanese competitor was included to test interlingual competi-
tion (cf. Spivey & Marian, 1999). If L1 Japanese-L2 English 
participants pre-activated the phonological information of the 
target word in Japanese, the Japanese competitor was expected 
to attract more looks than the unrelated object (e.g., a globe).

The results showed that L1 English speakers were more 
likely to look at the target object and the English competitor 
object over the unrelated object before the target word was 
mentioned, suggesting that they predicted the phonological 
information of the target. L1 Japanese speakers also showed 
biased looks to the target and the English competitor, but 
their looks were delayed compared with L1 English speak-
ers, and the English competitor effect occurred well after the 
target word had been mentioned. The Japanese competitor 
was equally likely to be fixated as the unrelated object in both 
participant groups. These findings suggest that L1 Japanese 

speakers predicted some information (e.g., meaning) about 
the target word (albeit slightly later than L1 English speak-
ers), but there was no evidence that they predicted phonologi-
cal information of the target word in English or Japanese.

Knoeferle and Crocker (2006; Experiment 1)

The second data set we use is from Knoeferle and Crocker 
(2006; Experiment 1), whose study was based on Knoeferle et al. 
(2005). Knoeferle and Crocker (2006; Experiment 1) tested the 
effects of depicted actions and events on incremental thematic 
role assignment and replicated the findings in Knoeferle et al. 
(2005) using English main clause vs reduced relative ambiguity. 
They used sentences such as The ballerina splashed apparently 
the cellist… (main clause condition) and The ballerina splashed 
apparently by the cellist… (reduced relative condition) in com-
bination with a scene depicting a ballerina either splashing or 
being splashed, respectively. The independent variable was the 
sentence condition (two levels: main clause and reduced rela-
tive), and the dependent variable we used for the present analy-
sis was a log-ratio of inspections to the agent vs patient in this 
study (looks to the agent and patient were not independent). A 
semantically non-constraining adverb extended the time window 
during which looks to the agent/patient could be interpreted as 
indicating anticipatory thematic role assignment.

The visual scenes were analogous to those in Knoeferle 
et al. (2005) and depicted atypical action events (e.g., a prin-
cess splashing a cellist and being sketched by a fencer, or a 
princess being splashed by a cellist and sketching a fencer). 
The above two versions of the visual scene (and their mir-
rored versions, as well as a counterbalancing scene in which 
agent/patient role-depiction of characters was reversed) and 
corresponding sentences were created for each item to coun-
terbalance the position of the characters and their role.

To further counterbalance the intonational cues, half of 
the critical sentences were cross-spliced up to and including 
the adverb. The scene appeared on the screen 1000 ms before 
the sentence onset (= 1000 ms preview time). Knoeferle and 
Crocker (2006; Experiment 1) analysed three time windows: 
the verb window (from the verb onset to the adverb onset), 
the adverb window (from the adverb onset to the onset of 
the second argument) and the second argument window (the 
second noun phrase in the main clause condition and the 
prepositional phrase in the reduced relative condition) (see 
sections Analysis of fixation averages for individual inter-
est periods and The temporal emergence of an effect for a 
specific time window used in each analysis).

As in Knoeferle et al. (2005), an early disambiguation of 
the thematic role (after the verb) was only possible if lis-
teners integrated both the linguistic and visual information. 
Upon hearing the verb, participants were more likely to look 
at the patient of the verb, suggesting a general preference for 
the main clause interpretation. At the adverb, participants 
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were more likely to look at the patient in the main clause 
(vs reduced relative) condition and the agent in the reduced 
relative (vs main clause) condition. The following noun 
region showed the same interaction. The effect at the adverb 
demonstrates that participants disambiguated the structure 
quickly before the information that allowed structural disam-
biguation (the grammatical object or the by-phrase) became 
available.

Analysis of fixation averages for individual 
interest periods

In this section, we present two examples of analysing fixa-
tion data in a predefined time window. Detailed steps and R 
codes are available at the Open Science Framework (https:// 
osf. io/ tzn8u/). The README file there also contains some 
basic R tips.

Data preparation

When preparing recorded eye-movement data for analy-
sis, the researcher must choose how to treat (very short 
and very long) fixations and blinks. Current software (e.g., 
SR Research Data Viewer) contains filtering options that 
facilitate such preprocessing. Interested readers can refer to 
YouTube videos from SR Research (https:// youtu. be/ pM_ 
dxz-G_ ic). There are also several R packages that are help-
ful for data preparation, such as gazeR (Geller et al., 2020), 
eyetrackingR (Dink & Ferguson, 2015) and VWPre (Porretta 
et al., 2020).

In Ito et al. (2018b), blinks and fixations out of the inter-
est areas were coded as 0 (i.e., no fixation on any interest 
area) and included in the data. In Knoeferle and Crocker 
(2006), consecutive fixations within one interest area were 
merged and counted as one inspection. Consecutive fixations 
of less than 80 ms were also merged, and blinks and fixa-
tions out of the interest area were added to the immediately 
preceding fixations. These are common preprocessing steps, 
as short fixations may follow an erroneous saccade (Findlay 
& Brown, 2006), and blinks can interrupt a fixation (one 
fixation that contains a blink will appear as two separate 
fixations in the recorded data). In other studies, blinks and 
fixations out of the interest areas were excluded from the 
analysis (e.g., Bosker et al., 2014; Silva et al., 2013). This 
variability in the previous studies suggests a potential need 
for more explicit homogenisation of the preprocessing steps.

ANOVA, t‑test

In this tutorial (IPC_ANOVA.html, IPC_ANOVA.Rmd), 
we use the eye sample data from Ito et al. (2018b) (see sec-
tion Ito et al. (2018b) for details), exported using the SR 

Research Data Viewer. The data file (IPC_fix_-800_0.
txt) contains the sample counts on each interest area, the 
total number of blink samples and off-screen samples, and 
the proportion of samples on critical interest areas as well 
as the experimental variables including subject ID, item ID, 
trial number, condition and language group. It contains data 
in the interest period from 200 ms after the onset of the 
visual scene (800 ms before the target word) to the onset of 
the target word. Figure 1 plots the mean fixation proportions 
(proportion of time spent fixating on the critical object) for 
each condition and group in this time window.

Verifying assumptions

ANOVA or t-tests are parametric tests which require the data 
to meet certain assumptions. One of the assumptions is that 
the dependent variable be measured at least at the interval 
level (cf. Glossary). The fixation data are categorical (an 
object is either fixated or not at a particular time point), 
and many articles have reported transforming categorical 
fixation data to continuous proportion data. The proportion 
data, however, violate the assumption that the dependent 
variable has an unbounded range (because proportions are 
bounded from 0 to 1). To resolve this issue, we transformed 
the fixation data to a continuous variable by computing 
the empirical logit (Barr, 2008) (see section Independent 
and dependent variables for discussion on dependent vari-
ables). The formula for computing the empirical logit is 
log((Y+.5)/(N-Y+.5)), where Y is the total number 
of samples that fell in the critical interest area, and N is the 
total number of samples for the interest period.

Another assumption of parametric tests is that the vari-
ances in each condition/group are the same (homogeneity of 

Fig. 1  Mean fixation proportions for each condition (Targ = target, 
Eng = English competitor, Jap = Japanese competitor, Unr = unrelated) 
and group (L1 vs L2) in the interest period from −800 ms to 0 ms 
relative to the target word onset. The data are from Ito et al. (2018b). 
The error bars represent standard errors.

https://osf.io/tzn8u/
https://osf.io/tzn8u/
https://youtu.be/pM_dxz-G_ic
https://youtu.be/pM_dxz-G_ic
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variance). This can be tested using Levene’s test for equality 
of variances (Field et al., 2012). For the 4 (condition) × 2 
(group) design in this study, we tested whether the variances 
did not differ between groups at each level of condition. 
This test showed a significant result for the target condition, 
p = .005, so the homogeneity of variance assumption is not 
tenable.

We then tested the normal distribution assumption—
whether the sampling distribution of the means for each con-
dition within each group was normal (for significance tests 
to be accurate) (Tabachnick & Fidell, 2007) and whether 
the distribution of the residuals was normal (for the esti-
mates of the parameters in the model to be optimal) (Field 
et al., 2012) using the Shapiro–Wilk test. The tests showed 
that the distribution of the means was significantly different 
from the normal distribution in all conditions in both groups, 
ps < .05, and the distribution of the residuals was marginally 
significantly different from the normal distribution, p = .059. 
This is not surprising because transforming the data using 
empirical logit does not make the data normally distributed. 
We included this test only for didactic purposes.

Since the data do not meet the homogeneity of variance 
assumption and the normal distribution assumption, an alter-
native test should be used. Transforming the data can be 
helpful when the data are skewed, but when the data are 
categorical, using ANOVA could lead to spurious results 
(Jaeger, 2008). We present ANOVA and t-test below only 
for demonstration purposes. In Ito et al. (2018b), growth 
curve analysis was used (cf. section Growth curve analysis 
(GCA)). When the assumption of sphericity (cf. Glossary) 
was violated, we used the Greenhouse–Geisser correction.

Code for the ANOVA analysis and t‑tests

The data need to be aggregated over subjects (for a by-sub-
ject analysis) or over items (for a by-item analysis) before 
they are entered into ANOVA or t-tests. We ran a mixed 
ANOVA testing main effects of condition and group as 
well as their interaction using the aov_ez function from the 
afex package (Singmann et al., 2021) using the code below 
(elogFix = empirical-logit transformed fixation proportion, 
Lang = Language group).

aov.mixed = aov_ez(id = "Subject", dv = "elogFix", data = fix.data, between
= c("Lang"), within = c("Condition"), type = "III")

The effect of condition was significant, F(2.5, 
114.83) = 18.8, MSE = 2.7, p < .001. There was no signifi-
cant effect of group, F(1, 46) = 3.3, MSE = 5.8, p = .08, or 
interaction of condition by group, p = .2.

Next, we ran paired t-tests as follow-up analyses. Strictly 
speaking, these tests should be conducted to resolve which of the 

comparisons between individual levels/conditions in a significant 
interaction are reliable. There was no significant interaction in 
the current analysis, and in that situation no further tests need to 
be conducted, but we present follow-up tests for demonstration 
purposes. An example code (for a by-subject analysis compar-
ing the target vs unrelated conditions in the L1 group) is below:

t.test(elogFix~Condition, data=fix.subj.L1, subset=Condition%in%c('Targ','U
nr'), paired=T)

In the L1 group, the target object was more likely to be 
fixated than the unrelated object, t(23) = 4.6, p < .001 (by-
subject analysis), t(13) = 6.4, p < .001 (by-item analysis). 
The differences between the English competitor and the 
unrelated conditions and between the Japanese competitor 
and the unrelated conditions were not significant, ps > .09. 
The null effect for the English competitor vs unrelated con-
dition was different from the results of the growth curve 
analysis (cf. section Growth curve analysis (GCA)), which 
showed that the English competitor object was more likely 
to be fixated than the unrelated object. In the L2 group, the 
target object was more likely to be fixated than the unrelated 
object, t(23) = 2.8, p = .01 (by-subject analysis), t(15) = 2.3, 
p = .03 (by-item analysis). Similar to the L1 group, the 

differences between the English competitor and the unre-
lated conditions and between the Japanese competitor and 
the unrelated conditions were not significant, ps > .3. These 
results suggest that L1 and L2 speakers pre-activated some 
representations of the target word before it was mentioned, 
but there was no evidence that they pre-activated phonologi-
cal information.

LME

In the LME tutorial (KC_LME.html, KC_LME.Rmd), we 
use the data from Knoeferle and Crocker (2006; Experiment 
1a). Their study used temporarily ambiguous sentences (e.g., 
The ballerina splashed apparently the cellist/by the cellist…, 
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the verb can be a main verb [MV condition] or a reduced rel-
ative [RR condition]) and tested whether people use visual 
information together with linguistic information to resolve 
the local syntactic ambiguity before hearing the second noun 
(see section Knoeferle and Crocker (2006; Experiment 1) for 
details). The scene contained a role-ambiguous character (a 
ballerina) and possible agent and patient (a cellist, a fencer). 
The data file (KC_window_binomial.txt) contains 
the binomially-coded inspection data (1 = inspected, 0 = not 
inspected) for each role character in each interest period. The 
interest periods we analyse here are the VP1 (the ambiguous 
verb, splashed), the ADV (the adverb, apparently) and the 
NP2 (the disambiguation phrase, the cellist/by the cellist). 
The details about the interest periods and counterbalancing 
can be found in the tutorial file (KC_LME.html). Figure 2 
plots the mean proportions of inspections (proportion of tri-
als in which there was an inspection on the interest area).

The LME can model by-subject and by-item variability 
simultaneously by including random intercepts (to model 
variability across subjects or items) and random slopes (to 
model variability in the size of an effect across subjects or 
items), so the variances can be allowed to vary across con-
ditions or groups. In this tutorial, our models only included 
by-subject and by-item random intercepts for the sake of 
simplicity (i.e., only the variances across subjects and items 
were allowed to vary). An alternative would be to start with 
a fully specified model (random intercepts and random 
slopes for all main effects of the independent variables and 
their interaction to capture the associated variability by sub-
jects and by items), assuming a hypothesis-testing approach 
(Barr et al., 2013). The best model structure (which ran-
dom effects are included) should be determined based on 
the study design (cf. section Assignment of item-condition 
combinations to lists and counterbalancing) and model fit 
(for guidance on how to choose a random-effects structure 
and how to deal with singular fits, see Barr, 2013; Barr et al., 
2013; Bates et al., 2015; DeBruine & Barr, 2021; Matuschek 
et al., 2017). For example, a random slope for condition by 
subject would capture the variability in the effect of condi-
tion by subject. Thus, researchers may want to include it if 
the study design allows such variability (i.e., some subjects 
might be expected to show a larger effect of condition than 
others). On the other hand, including a random slope for 
condition by subject would not be appropriate if condition 
were a between-subject factor (i.e., each subject contributes 
to only one out of the two (or more) conditions). In the latter 
case, it would be impossible to measure an effect of condi-
tion within each subject.

For the dependent variable, we computed a log-ratio of 
inspection proportions to the agent vs patient using the for-
mula log((Agent inspection+.5)/(Patient 
inspection+.5)) to quantify a fixation bias towards 

the agent vs patient. A positive value indicates that there 
were more inspections to the agent than the patient, and a 
negative value indicates that there were more inspections 
to the patient than the agent. The value zero indicates that 
there was no fixation bias. We tested whether the log-ratio 
was significantly different from zero (to test whether there 
was fixation bias) and whether it was significantly different 
between the MV and RR conditions. The categorical vari-
able condition was sum-coded to compare the two conditions 
against each other (see Schad et al., 2020, for a tutorial on 
contrast coding in R). The example codes for both the former 
test (for the MV condition) and the test for the effect of con-
dition in the verb window are given below (log_AP = agent 
vs patient log-ratio):

Fig. 2  Mean inspection proportions to each entity for each condition 
(MV, RR) and interest period (VP1, ADV, NP2). The data are from 
Knoeferle and Crocker (2006)
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If we wanted to start from the model with a maximal 
random-effects structure (for the model testing the effect of 
condition), the R syntax would be the following:

VP1.MV.m = lmer(log_AP~(1|SUBJ)+(1|ITEM), data=VERB1EX.dat, subset=Conditio
n=='MV')

VP1.cond.m = lmer(log_AP~Condition+(1|SUBJ)+(1|ITEM), data=VERB1EX.dat)

lmer(log_AP~Condition+(1+Condition|SUBJ)+(1+Condition|ITEM), data=VERB1EX.d
at)

In the VP1, the model for each condition showed that the 
intercept was significantly different from zero in the MV 
condition, β = −.15, SE = .049, t = −3.1, and the RR condi-
tion, β = −.11, SE = .050, t = −2.3. The mean log-ratio was 
negative in both conditions, suggesting that there were sig-
nificantly more inspections to the patient than the agent. The 
model testing the effect of condition did not show a signifi-
cant effect of condition, β = −.02, SE = .032, t = −.6, sug-
gesting that the fixation bias towards the patient was similar 
in the MV and RR conditions. In the ADV, the model for 
each condition also showed that the intercept was signifi-
cantly different from zero, β = −.36, SE = .062, t = −5.8 (MV 
condition), β = .15, SE = .060, t = 2.5 (RR condition). The 
log-ratio was negative in the MV condition and positive in 
the RR condition, suggesting that there were more inspec-
tions to the patient in the MV condition but to the agent in 
the RR condition. This pattern was statistically supported 
by a significant effect of condition, β = −.25, SE = .036, 
t = −7.1. The NP2 showed results consistent with the ADV. 
The model for each condition showed that the intercept 
was significantly different from zero, β = −.35, SE = .052, 
t = −6.7 (MV condition), β = .28, SE = .055, t = 5.0 (RR con-
dition), and the log-ratio was negative in the MV condition 
and positive in the RR condition. The effect of condition was 
significant, β = −.31, SE = .037, t = −8.5. Thus, the fixation 
bias to the patient in the MV condition and to the agent in 
the RR condition in the ADV continued in the NP2. These 
results replicate the results from hierarchical log-linear mod-
els reported in Knoeferle and Crocker (2006). The similar 
bias towards the patient in both MV and RR conditions dur-
ing the VP1 arguably suggests listeners’ preference for the 
subject–verb–object (SVO) (vs object–verb–subject [OVS]) 
interpretation. The interaction in the ADV suggests that lis-
teners used both linguistic and visual information to resolve 
the local syntactic ambiguity before the disambiguation was 
possible based purely on the linguistic information (NP2).

The temporal emergence of an effect

In section Analysis of fixation averages for individual inter-
est periods, we described methods for analysing differences 
in averaged fixation proportion or log-ratio of inspections 
in a predefined interest period. These analyses do not reveal 
whether the differences changed over time within an interest 
period, or precisely when the differences started to emerge. 
The temporal emergence of an effect is often critical for 
psycholinguistic research, as psycholinguistic models aim at 
accommodating processes that occur within a few hundred 
milliseconds as a word (or / in a sentence) unfolds, which 
can be difficult to detect using other behavioural meas-
ures such as linguistic judgement/rating or reaction times. 
Researchers may want to test whether the effect occurs ear-
lier in one group compared with another, or whether the 
effect occurs prior to the onset of a critical word or within an 
interest period. The VWP is well suited to test such hypoth-
eses, since currently available eye-trackers can track people’s 
eye movements at every millisecond, allowing researchers to 
obtain very fine-grained time-course data. However, as we 
see below, testing fine-grained, emergent time-course differ-
ences using the ANOVA or LME is not straightforward. In 
this section, we first discuss the nature of the VWP data we 
consider for analysing the temporal emergence of an effect, 
and why conducting an ANOVA or LME is often not the 
best choice for that analysis.

Considerations in applying ANOVA/LME

One important characteristic of the VWP data is autocor-
relation (cf. Glossary). While an eye-tracker can record eye 
-movements at every millisecond, people do not move their 
eyes every millisecond (fixations typically last 200–300 ms). 
Thus, data in adjacent time points tend to be correlated. For 
example, Stone et al. (2020) demonstrated autocorrelation 
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using their data and showed that the correlation coefficient 
for two adjacent bins was over .9, over .8 and over .75 when 
the data were binned for every 50 ms, 100 ms and 150 ms, 
respectively. Thus, even if the observations were grouped 
into relatively large time bins (e.g., 150 ms), the autocor-
relation was not completely eliminated.

In the analyses we conducted in section Analysis of fixa-
tion averages for individual interest periods, we aggregated 
the data for the selected interest periods, but by doing so 
we lost its finer-grained temporal resolution. An intuitive 
approach might be to apply an ANOVA or LME in multiple 
predefined interest periods or include interest period as a 
predictor. However, this approach ignores the autocorrela-
tion, violates the assumption of independence of the obser-
vations (assumed in parametric tests) and can inflate the type 
I error (false positive) rate (Huang & Snedeker, 2020). A 
type I error refers to thinking there is an effect when there is 
none (cf. Glossary). Moreover, if the analysis is conducted 
in many small interest periods (e.g., every 50 ms), it can 
increase the type I error rate due to multiple analyses being 
conducted (every time an analysis is conducted, the like-
lihood of a false positive is < 1 − .95 = .05, but with every 
analysis added, this likelihood changes, e.g., for three anal-
yses, 1 − (.95*.95*.95) = 1−.857 = .143; after three analy-
ses, the likelihood of a false positive is no longer < .05, but 
only < .14). The multiple comparisons problem can be cor-
rected (e.g., Bonferroni correction), but the correction can 
be too conservative and may increase the type II error rate 
(cf. Glossary).

An alternative approach may be to use each word in sen-
tences as individual interest periods and run an ANOVA or 
LME over these time interest periods, but this approach still 
involves multiple comparisons. A similar approach that is 
less problematic would be to run the analysis in only a few 
interest periods in which an effect of interest is expected to 
occur, as the type I error (if no correction is applied) or type 
II error (if a correction is applied) would increase to a lesser 
extent. While this approach can test whether the effect is 
different between/across these interest periods, testing finer-
grained differences in the emergence of an effect over time is 
not straightforward. If researchers select the interest period 
for an analysis after data collection, they could arbitrarily 
take one where the effect is likely to be significant (i.e., the 
researcher degrees of freedom problem) (cf. section Time 
window). This can increase the possibility of a type I error 
and the results may not replicate (Simmons et al., 2011). In 
sum, we would want to control for autocorrelation of the 
time-course data and avoid inflated type I (and type II) error 
rates associated with multiple tests across time (and correc-
tions for these).

In the following sections, we compare five alternative 
approaches to analysing the temporal emergence of an effect: 
the growth curve analysis (GCA) (Mirman et al., 2008), the 

cluster-based permutation analysis (CPA) (Maris & Oos-
tenveld, 2007), the bootstrapped differences of timeseries 
(BDOTS), the generalised additive modelling (GAMM) and 
the divergence point analysis (DPA) (Stone et al., 2020). 
We will describe the advantages and disadvantages of each 
method and demonstrate the analysis steps for the example 
data sets we used in section Analysis of fixation averages for 
individual interest periods. Figure 3 shows a summary of the 
characteristics of these analyses.

The GCA is the only method among the three that can 
model how an effect changes over time, so it is recom-
mended for studies that have hypotheses about the dynam-
ics of an effect emerging over time (e.g., from word onset 
to word offset). However, this method does not control for 
autocorrelation of eye-movement data (Huang & Snedeker, 
2020). Eye-movement responses obtained across small time 
bins (used in the GCA) are arguably highly correlated such 
that autocorrelation of the data points is particularly chal-
lenging when examining the emergence of effects within 
words. To test for the emergence of an effect within a word, 
methods that control for autocorrelation would be particu-
larly suitable. The CPA and the DPA control for autocor-
relation, as the temporal structure of the data is respected 
during the permutation or resampling. The BDOTS con-
trols for autocorrelation by estimating the autocorrelation 
between test statistics and using it to adjust the α value. The 
GAMM also estimates the autocorrelation and controls for 
it by including it in the model.

The CPA, the BDOTS and the GAMM can detect the 
statistical significance of an effect (whether there is a statis-
tically significant difference in the proportion of fixations/
inspections between conditions/groups), while the DPA can-
not. The BDOTS, the GAMM, and the DPA can estimate the 
onset of an effect, while the CPA cannot. The BDOTS and 
the GAMM can estimate in which time bins an effect was 
significant, so they are suitable if researchers are interested in 
how long an effect lasted. The DPA can test whether the onset 
of an effect is significantly different between two conditions 
or groups, while the BDOTS and the GAMM cannot. These 
methods can be used complementarily to test different ques-
tions. For example, researchers interested in whether there is 
an effect of condition and when the effect started to emerge 
could run a CPA to determine whether there is a significant 
effect and then run a DPA to determine or compare its onset. 
However, using one analysis to select a time window and then 
running a second analysis testing the same question on the 
selected time window would be double-dipping and should 
be avoided (Kriegeskorte et al., 2009).

Growth curve analysis (GCA)

The GCA can analyse changes in fixation proportion over 
time (Mirman et al., 2008). 
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Advantages of GCA  It is particularly suitable for analys-
ing dynamic changes in the emergence of an effect in eye 
movements. Assume that ‘an effect’ here refers to changes 
in looks to one compared with another object. For example, 
researchers may want to test whether the fixation proportion 
to one object increases more quickly than that to another 
object, or whether the fixation proportion to one object 
reaches a peak (i.e., increases and then decreases) earlier 
than that to another object.

Purely linear models (like ANOVA or LME) cannot cap-
ture  changes from increase to decrease (or vice versa) in 
fixation proportion —they model eye movements as data 

points along a single line with a fixed slope. To go beyond 
such a linear model, the GCA captures eye-movement 
changes (e.g., an increase followed by a decrease in looks 
to an object). It achieves this by using so-called power 
polynomials; these can represent not just a linear but also 
a curvilinear relationship (fixation proportion with one or 
more peaks) between fixation proportion and time. Power 
polynomials can be computed by raising the variable ‘time’ 
to a particular power. For example, a quadratic curve (a 
curve with a single inflection) can be represented by includ-
ing  time2, and a cubic curve (a curve with two inflections) 
can be represented by including  time3. The GCA tests the 

Fig. 3  Overview of the VWP analysis methods. LME: linear mixed-effects model, GCA: growth curve analysis, CPA: cluster-based permutation 
analysis, BDOTS: bootstrapped difference of timeseries, GAMM: generalised additive modelling, DPA: divergence point analysis
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interaction of a condition in the design with linear and quad-
ratic terms on eye movements in the model; in doing that, 
this analysis can reveal whether the fixation proportion in 
two conditions differs in the slope or peak. Further time 
terms (e.g., cubic, quartic) can be included in the model 
if an effect is expected to show corresponding time-course 
differences (e.g., fixation proportion is expected to increase, 
then decrease and increase again in one condition but not 
in the other). The GCA can also model group or individual 
differences by including between-subject factors (e.g., age, 
native language) in the model.

However, if we create power polynomials as we described 
above, these terms (time,  time2,  time3) are highly collinear 
(i.e., they correlate, with the result that their unique contri-
bution to the results cannot be easily estimated, cf. Glos-
sary). When these independent variables are highly corre-
lated (e.g., if we change the value of time, the value of  time2 
changes accordingly), the model becomes very sensitive to 
inclusion or exclusion of a highly correlated independent 
variable. To avoid this problem, the GCA uses so-called 
orthogonal power polynomials; these are linear transforma-
tions of the original polynomials described above and have 
the advantage that they are less correlated with one another 
(i.e., their unique effect in the model can be more easily 
computed).

Disadvantages of the GCA  The GCA is not suitable for ana-
lysing an interest period in which the fixation proportion 
stays almost the same throughout the interest period, because 
there are too few changes in fixations that the time terms 
(linear, quadratic…) can account for (these terms will then 
be redundant). For such data, the analyses we introduced in 
section Analysis of fixation averages for individual inter-
est periods are likely sufficient. The analysis should ideally 
focus on a relatively short interest period in which an effect 
is expected to occur, so that the selected interest period does 

not contain a long time period with only small changes in the 
fixation proportion. But at the same time, the interest period 
should not be too short, as it may fail to capture a late effect 
(cf. section Time window). As such, it has often been used 
for single-word processing studies, where selecting an inter-
est period is relatively straightforward and the interest period 
is short. If the time window selection is difficult because it 
is difficult to predict when an effect of interest is likely to 
occur based on the study design, the GCA may not be the 
first choice, and analyses that are less sensitive to the time 
window selection may be preferred.

We also encourage researchers to define the interest 
period before data collection, because the choice of the inter-
est period can affect the results (Peelle & Van Engen, 2021). 
For example, the L1 group’s data from Ito et al. (2018b) 
in Fig. 4 suggests that the fixation proportion to the Eng-
lish competitor increased and then decreased (i.e., show-
ing a quadratic curve), whereas that to the unrelated object 
changed very little over time. This difference was captured 
as a significant effect of English competitor (vs unrelated) 
condition on the quadratic term (see below for more details). 
If we had chosen the interest period from −800 ms to −400 
ms instead, the fixation proportion to the English competi-
tor only increases, so the effect on the quadratic time term 
would have disappeared.

The GCA does not account for the autocorrelation of eye-
movement data we discussed in section Considerations in 
applying ANOVA /LME, and including higher-order poly-
nomials (e.g., cubic, quartic terms) may increase the chance 
of a false positive (cf. Glossary) (Huang & Snedeker, 2020). 
Thus, researchers should carefully select which polynomials 
to include in the model. One way to select the necessary pol-
ynomials is by assessing the expected time-course change. 
For example, studies using a phonological competitor (e.g., 
Allopenna et al., 1998) found that fixation proportion to the 
mentioned target increased sharply after it was mentioned, 

Fig. 4  Mean fixation proportion over time for each condition (Targ = target, Eng = English competitor, Jap = Japanese competitor, Unr = unre-
lated) and group (L1 vs L2). The data are from Ito et al. (2018b). The error bars represent standard errors
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whereas fixation proportion to a phonological competitor (an 
object for which the name phonologically overlaps with the 
target name, e.g., cloud and clown) increased less sharply 
and started to decrease earlier than that to the target. In such 
a design, including the linear and quadratic terms is likely 
sufficient to capture the linear increase and the quadratic 
curve (with one peak), and the cubic term is likely unnec-
essary. The need for higher-order polynomials can also be 
evaluated by comparing models with and without a higher-
order polynomial (e.g., using the anova() function in R). If 
the model with the higher-order polynomial does not signifi-
cantly improve the model fit relative to the model without it, 
the higher-order polynomial is likely unnecessary.

Analysis We demonstrate the GCA using an example data 
set (IPC_binomfix.txt) from Ito et al. (2018b), which 
investigated pre-activation of phonological information 
in L1 and L2 speakers using a phonological competitor 
design (see section Independent and dependent variables 
for details). The study had a 4 (condition; target, English 
competitor, Japanese competitor, unrelated) ×2 (group; L1 
vs L2) design. The step-by-step tutorial is in IPC_GCA.
html and IPC_GCA.Rmd. This file contains binomially 
coded fixation (1 = fixated, 0 = not fixated), time bin ID, time 
relative to the target word onset and other experimental vari-
ables (subject ID, item ID, trial number, condition, and lan-
guage group). Figure 4 plots the mean fixation proportion 
over time from −800 ms to 0 ms relative to the target word 

onset. This interest period was selected because the objects 
appeared on the screen 1000 ms before the target word onset, 
and the study was designed to test prediction (processes that 
occur before the target word is mentioned). The onset was 
then shifted 200 ms forward to account for the 200 ms lag to 
programme eye movements (Saslow, 1967). A visual inspec-
tion of the figure suggests that both L1 and L2 speakers 
looked at the target object (e.g., a cloud, for the context The 
tourists expected rain when the sun went behind the …), 
but only the L1 speakers looked at the English competitor 
(e.g., a clown) before the target word onset. The looks to 
the Japanese competitor object (e.g., a bear—‘kuma’; tar-
get: a cloud—‘kumo’) did not differ from the looks to the 
unrelated object.

Fixation proportion to the competitor was expected to 
increase initially and then decrease later. To capture this 
inflection in the slope, the GCA included a second-order 
(quadratic) orthogonal polynomial, computed using the 
code_poly function in the gazeR package (Geller et al., 
2020) using the code below (fix.data is the original 
data set and dat.stat is a new data set that additionally 
contains orthogonal polynomials). This code creates new 
variables called ‘poly1’ and ‘poly2’, each corresponding 
to first-order (linear) and second-order (quadratic) polyno-
mials. Orthogonal polynomials will be created if you set 
orthogonal=T (true), and setting draw.poly=T will 
create a plot showing transformed polynomial predictor 
values.

dat.stat = code_poly(df=fix.data, predictor="Time", poly.order=2, orthogona
l=T, draw.poly=T) 

We tested an interaction of condition by language group, 
effects of condition and language group, and their interactions 
with time (linear and quadratic terms). The model included 
by-subject and by-item random intercepts. (In practice, the 
best model structure should be determined depending on the 

study design and model fit; cf. Barr, 2013; Barr et al., 2013; 
Bates et al., 2015; DeBruine & Barr, 2021; Matuschek et al., 
2017). The code for running the model is shown below (Count 
= binomially coded fixation). The results will be stored in gca.
cond.lang, which can be called using the summary function.

gca.cond.lang = glmer(Count ~ (poly1+poly2) * Condition * Lang + (1|Subjec
t) + (1|Item), family=binomial, data=dat.stat)

summary(gca.cond.lang)

The model fit is shown in Fig. 5. We first report overall 
differences between the conditions indicated by effects on 
the intercept. The model showed a significant effect of the 
target vs unrelated condition on the intercept term, β = 1.1, 
SE = .065, z = 16.9, p < .001, suggesting that the target was 
more likely to be fixated than the unrelated object overall. It 

also showed a significant effect of the English competitor vs 
unrelated condition on the intercept term, β = .27, SE = .068, 
z = 3.9, p < .001, suggesting that the English competitor was 
more likely to be fixated than the unrelated object overall. 
These effects interacted with the language group, suggesting 
that these differences were larger in the L1 group than in 
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the L2 group (target vs unrelated, β = .35, SE = .065, z = 5.3, 
p < .001; English competitor vs unrelated, β = .22, SE = .068, 
z = 3.2, p = .001).

Now, we turn to the effects on linear and quadratic terms 
for interpreting the time-course differences. There was a 
significant effect of the target vs unrelated condition on the 
linear term, β = 1.8, SE = .27, z = 6.6, p < .001. The effect 
on the linear term indicates a difference in the slope, so it 
suggests that the fixation proportion to the target increased 
more sharply than that to the unrelated object. There was 
also a significant effect of the Japanese competitor vs unre-
lated condition on the linear term, β = .91, SE = .30, z = 3.0, 
p = .002, suggesting that the fixation proportion to the Jap-
anese competitor increased more sharply than that to the 
unrelated object. The model additionally showed an inter-
action of the target vs unrelated condition by the language 
group, β = −.81, SE = .27, z = −3.0, p = .003, and an interac-
tion of the English competitor vs unrelated condition by the 
language group, β = −.98, SE = .29, z = −3.4, p < .001, on 
the quadratic term.

To resolve these interactions, we ran the model separately 
for each language group. The model in the L1 group showed 
a significant interaction of the English competitor vs unre-
lated condition on the quadratic term, β = −1.1, SE = .41, 
z = −2.8, p = .005. The effect on the quadratic term captures 
the difference in the quadratic curve. Specifically, the Eng-
lish competitor condition showed a clear peak around 400 
ms before the target word onset, whereas the fixation pro-
portion to the unrelated object stayed relatively flat. The 
model in the L2 group showed an effect of the target vs 
unrelated condition, β = .97, SE = .38, z = 2.5, p = .01, and 
an effect of the English competitor vs unrelated condition, 
β = .81, SE = .40, z = 2.0, p = .04, on the quadratic term. 
These interactions seem to be driven by the unrelated con-
dition, which showed a gentle peak around the centre of the 
interest period, whereas the fixation proportion to the target 

increased linearly, and that to the English competitor stayed 
relatively flat.

These results suggest that both L1 and L2 speakers pre-
activated representations of the target word, consistent with 
the ANOVA/t-test results (section ANOVA, t-test). The 
GCA additionally revealed a significant effect of the target 
(vs unrelated) condition on the linear term in both L1 and 
L2 groups, and a significant effect of the English competi-
tor (vs unrelated) condition on the quadratic term in the L1 
group. The target effect on the linear term suggests that both 
L1 and L2 speakers were gradually more likely to look at 
the target as time increased (compared with the unrelated 
object). The competitor effect on the quadratic term suggests 
that L1 speakers started to look at the English competitor 
and then looked away from it. This further suggests that 
L1 speakers pre-activated phonological information before 
the target word onset, but the activation of the phonological 
competitor word decayed quickly.

Cluster‑based permutation analysis (CPA)

The CPA is a non-parametric test that can reveal whether an 
effect of condition is significant somewhere in a predefined 
interest period (Maris & Oostenveld, 2007).

Advantages of CPA The CPA can detect an effect of condi-
tion while controlling for autocorrelation of eye-movement 
data. This technique was originally developed for electroen-
cephalography (EEG) or magnetoencephalography (MEG) 
analysis, and it was later applied to a VWP data analysis 
(Barr et al., 2014; Hahn et al., 2015; Hirose & Mazuka, 
2017). An advantage of the CPA is that it maintains statisti-
cal power while controlling for multiple comparisons across 
many time bins. Thus, it reduces the chance of both type I 
and type II errors. Moreover, since it is a non-parametric 

Fig. 5  The model fit of the growth curve analysis on the data from Ito et al. (2018b). The points represent the mean, and the error bars around 
them represent standard errors
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test, the data do not need to meet the assumptions of para-
metric tests (see section ANOVA, t-test).

Disadvantages of CPA One thing that researchers must be 
aware of in interpreting the results of a CPA is that these 
data do not reveal the onset, offset or duration of an effect 
(Maris & Oostenveld, 2007; Sassenhagen & Draschkow, 
2019). This is because the p-value is derived from cluster-
level statistics, so there is no statistical certainty or con-
fidence about a specific time bin in the cluster. Thus, for 
example, when a cluster in the observed data included time 
bins from 200 ms to 500 ms relative to a critical word onset, 
researchers should not interpret this result as the effect 
starting at 200 ms, ending at 500 ms, or lasting for 300 ms. 
Instead, the effect should be interpreted as a significant dif-
ference between the two conditions. If the time window for 
the analysis is preselected, a significant result would indicate 
a significant effect of condition somewhere in the selected 
time window. For example, a researcher may preselect a time 
window of 500–800 ms relative to a critical word onset and 
find a cluster that extended from the beginning to the end of 
the entire selected time window. This result would suggest 
that the effect of condition was significant, but it cannot be 
concluded that there was a significant effect in the entire 
time window (i.e., that the effect lasted for 300 ms). Another 
consideration is that the CPA may have reduced power for 
detecting the smaller (the second largest, the third largest…) 
clusters, because p-values are calculated under the permuta-
tion distribution of the maximum (in absolute value) cluster-
level statistic (Maris & Oostenveld, 2007).

Analysis The analysis flow of the CPA is as follows.

(1) The CPA uses fixation data calculated for small time 
bins (cf. Glossary). We detect clusters—consecutive 
time bins in which an effect (in the same direction) 
is significant—and compute a cluster mass statistic—
typically a sum of all the individual test statistics (e.g., 
t-statistics for t-tests) in the cluster. We used the detect_
clusters_by_effect function in the clusterperm package.

(2) We create a null hypothesis distribution, which each 
cluster in the original data set in (1) will be compared 
against. We used the cluster_nhds function in the 
clusterperm package. To do this, we permute the data 
while respecting the assumption of permutation tests 
(cf. Glossary) that observation labels are exchangeable 
under the null hypothesis. For example, if the condition 
is manipulated within subjects, we shuffle the condition 
labels within subjects. Between-subject factors should 
be shuffled between subjects. The exchangr package 
offers several shuffling functions for different manipu-
lations (e.g., shuffle_each for within-subject factors, 
shuffle_sync for between-subject factors).

(3) We then repeat step (2) and create a large number (1000 
or more) of shuffled data sets.

(4) On each data set, we repeat step (1) to compute a cluster 
mass statistic and store the largest cluster mass statistic 
(in absolute value) for each data set. The distribution of 
these cluster mass statistics over the shuffled data sets 
provides a null hypothesis distribution. When steps (3) 
and (4) are repeated an infinite number of times, the 
distribution obtained is called a permutation distribu-
tion, and the corresponding p-value obtained at step 
(5) is called the permutation p-value. However, it is 
practically impossible to repeat this process an infinite 
number of times, so we obtain a so-called Monte Carlo 
estimate, which can be obtained by repeating this pro-
cess many times and by comparing the test statistics 
from the permuted data with the observed test statistic. 
We need to repeat the process many times because the 
accuracy of the Monte Carlo estimate increases as the 
number of permutation processes increases.

(5) Finally, we compare each cluster in the original data 
set with the null hypothesis distribution. The p-value 
is calculated as the proportion of the cluster mass sta-
tistics from the null hypothesis distribution from step 
(4) that resulted in a larger test statistic than that from 
the original data set. We used the pvalues function in 
the clusterperm package. Because this analysis involves 
permutation, the exact size of cluster(s) and p-value 
may change slightly every time we run the analysis.

To illustrate the process of creating a null hypothesis 
distribution using an analogy, one can imagine shuffling 
phonemes between conditions but within the same position 
(as we do not shuffle across time bins). Taking Altmann 
and Kamide’s (1999) study, for example, the sentence in the 
restrictive condition The boy will eat the cake is exchange-
able with the sentence in the non-restrictive condition The 
boy will move the cake under the null hypothesis. If we 
exchange phonemes of the verb between the conditions, we 
obtain sentences such as The boy will eov/mate the cake 
(e.g., /v/ from move is exchanged with /t/ from eat), The boy 
will mat/eove the cake, The boy will eav/mote the cake and 
so on. As we do not expect differences between the shuffled 
pairs of sentences (unless all or no phonemes are swapped), 
we can create a null hypothesis distribution with sufficient 
shuffling.

Below, we demonstrate the CPA using an example data 
set (KC_timecourse.txt) from Knoeferle and Crocker 
(2006). The step-by-step tutorial is in KC_CPA.html and 
KC_CPA.Rmd. The data file contains binomially coded 
inspection (1 = inspected, 0 = not inspected), time (sentence 
onset = 1000 ms), interest area (where the inspection fell) and 
other experimental variables (subject ID, item ID and condi-
tion). For the CPA, we computed the log-ratio indicating an 
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inspection bias towards the agent over the patient using the 
formula log((Agent inspection+.5)/(Patient 
inspection+.5)). We ran a by-subject analysis testing 
whether the log-ratio was significantly different between the 
MV and RR conditions. The R codes are shown below (the 
numbers correspond to the steps described above):

(1) Detect clusters:
We used an ANOVA testing an effect of condition 

on the log-ratio  (multiple comparisons were uncor-
rected because this test is only used for detecting clus-
ters descriptively and not for assessing their statistical 
significance).

aov.uncorrected = aov_by_bin(subj.summary, Time, log_AP ~ Condition + Error
(SUBJ))

orig.subj = detect_clusters_by_effect(aov.uncorrected, effect, Time, stat, 
p)

(2–4) Permute the data and create a null hypothesis 
distribution:

We permuted the data 1000 times. The ANOVA formula 
passed to the cluster_nhds function must be identical to the 
formula used above (for the bin-by-bin analysis).

nest.subj = nest(subj.summary[,c('SUBJ','Condition','Time','log_AP')], -SUB
J, -Condition) # prepare data

nhds.subj = cluster_nhds(n=1000L, nest.subj, Time, 

log_AP ~ Condition + Error(SUBJ),  # model formul
a passed to 'aov_by_bin'

shuffle_each, Condition, SUBJ)

(5) Compare each cluster in the original data set with the 
null hypothesis distribution and obtain p-values (in step (5) 
cluster significance is assessed):

results.subj = pvalues(orig.subj, nhds.subj)

We conducted a CPA based on an ANOVA above, but it 
is also possible to use an LME as a base test. We included an 
example using the clusterperm.lmer function in the permutes 

package (Voeten, 2022) in the script, and below is an exam-
ple code to run an LME-based CPA. The base LME test 
included by-subject and by-item random intercepts.

cpa.lme = permutes::clusterperm.lmer(log_AP ~ Condition + (1|SUBJ) + (1|ITE
M), data=cpa.lme.dat, series.var=~Time, nperm = 1000)

Figure 6 plots the time-course graph with the results of 
the CPA based on ANOVAs at the bottom. A visual inspec-
tion of the graph suggests that the patient was inspected 
more often than the agent in the MV condition whereas the 
agent was inspected more often than the patient in the RR 

condition around 2500–5500 ms. This was confirmed by 
the negative cluster (2550–5400 ms; cluster mass statis-
tic = 3479, p < .001), indicating that the log-ratio was sig-
nificantly more negative in the MV condition than in the RR 
condition. The opposite pattern is visible towards the end of 
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the time window in Fig. 6, and this was confirmed by the 
positive cluster (6500–7350 ms; cluster mass statistic = 174, 
p = .03), indicating that the log-ratio was more positive in 
the MV condition than in the RR condition.

The negative cluster (blue line on x-axis) spanning the 
ADV and NP2 interest periods replicates the results reported 
in Knoeferle and Crocker (2006), and indicates that partici-
pants were more likely to inspect the patient over the agent 
in the MV condition than in the RR condition. A late time 
window which covers the positive cluster (red line on x-axis) 
found in the CPA was not analysed in Knoeferle and Crocker 
(2006). The positive cluster indicates that late in the NP2, 
participants were more likely to inspect the patient more in 
the RR condition than in the MV condition.

Bootstrapped differences of timeseries (BDOTS)

The BDOTS fits a four-parameter logistic or double-Gauss-
ian curve, which is often suitable for VWP time-course data, 
and estimates when an effect was significant (Oleson et al., 
2017; Seedorff et al., 2018).

Advantages of BDOTS The BDOTS can detect time bins 
where an effect was significant, so it is useful if the research 
question concerns when an effect starts or how long it 
lasts. It controls family-wise error that can arise from 

autocorrelation using a modified Bonferroni correction. 
A standard Bonferroni correction can make test statistics 
overly conservative, as it does not take autocorrelation into 
account. (When a test is repeated in 100 adjacent time bins, 
the 100 comparisons are not independent but related because 
of autocorrelation.) The modified Bonferroni correction esti-
mates the autocorrelation between test statistics, and this 
autocorrelation is used to estimate an adjusted α value. This 
is less conservative than a standard Bonferroni correction 
but maintains an overall family-wise error level at a specified 
α. Additionally, it minimises an influence from researchers’ 
choices (i.e., the researcher degrees of freedom) because 
statistical inferences are not made on the direct basis of those 
choices.

Disadvantages of BDOTS There are some cautions required 
when fitting a curve. There is the possibility that a specified 
function does not capture some participants’ curves while 
capturing others’ very well. Since poorly fit data can affect 
the statistical results, some measure needs to be taken to deal 
with this issue. Seedorff et al. (2018) offer some options, 
such as specifying better starting parameters or relaxing the 
assumption of autocorrelated errors. The currently avail-
able fitting functions (four-parameter logistic or double-
Gaussian) in the bdots package (Nolte et al., 2021) seem 
suitable for fitting a curve to a single-word time window, 
and they may not be able to fit a good curve to a relatively 

Fig. 6  Mean inspection proportion over time for each condition 
(MV = main verb, RR = reduced relative) and AoI (agent vs patient). 
The data are from Knoeferle and Crocker (2006). The error bars rep-

resent standard errors. The red line at the bottom (y = 0) indicates the 
significant positive cluster, and the blue line indicates the significant 
negative cluster
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long interest period in which multiple fixation proportion 
peaks are observed. The BDOTS cannot capture crossed 
random effects or model correlation (though they may be 
implemented in the future). The former may be resolved by 
conducting and combining by-subject and by-item analyses. 
Another downside is that the time-course estimates obtained 
from the BDOTS cannot be compared between conditions 
or groups because we cannot estimate variability across 
time, though this may be possible if combined with another 
approach.

Analysis The analysis steps for the BDOTS are as follows. 
Further descriptions can also be found in the vignettes of the 
bdots package (Nolte et al., 2021).

(1) We estimate fitted curves (parameter values and 
standard errors) for each subject. The bdots package 
currently offers two non-linear functions to do so (a 
four-parameter logistic and a double-Gaussian). The 
four-parameter logistic is suitable for a fixation curve 
for a mentioned object or word, where the fixation 
proportion typically stays low at the beginning, then 
increases sharply, and finally reaches the peak and stays 
high for a while. The double-Gaussian is suitable for a 
fixation curve for a competitor, where the fixation pro-
portion typically stays low at the beginning, increases, 
and then decreases after reaching a peak.

(2) It is important to inspect and compare the fitted curves 
and the data at this point to ensure the goodness of fit 
of the curves.

(3) If the curves are fit poorly, we can try refitting the 
curves.

(4) We then draw random samples for each subject’s curve 
(i.e., bootstrap) and use the definition of the curve to 
estimate the standard errors of the mean in each time 
bin for the resampled subject. At each resampling, all 
the sampled curves are averaged to create a population 

mean, which provides an estimate of the bootstrapped 
mean difference and standard error between the groups 
in each time bin. The function used for curve-fitting is 
discarded after this step (so statistical inferences are not 
made based on individual fits).

(5) Using the estimated mean difference and standard 
error, we calculate t-statistics and estimate an adjusted 
α value based on the autocorrelation between test sta-
tistics for each time bin.

We attempted to apply the BDOTS to the data set (IPC_
fix_50ms_bin.txt) from Ito et al. (2018b), but we could 
not obtain reasonably well-fitted curves. Thus, our BDOTS 
tutorial (IPC_BDOTS.html, IPC_BDOTS.Rmd) should 
not be regarded as a successful application of the BDOTS, 
but the codes can be applied to a different data set. Below we 
discuss why we think the curve-fitting did not work for our 
data. The data file for the tutorial contains fixation propor-
tion (proportion of time spent fixating on the interest area), 
the number of right-eye samples on the critical interest area, 
in a blink event or outside the interest areas, and the sum of 
all samples for each time bin, as well as other experimental 
variables (subject ID, trial number, item ID, condition and 
language group). We used the empirical-logit transformed 
fixation proportion as the dependent variable and tested 
when the target object attracted more looks in the L1 group 
than in the L2 group in the interest period from −1000 ms 
to 1000 ms relative to the target word onset.

(1) Fit curves:

Here, we used a four-parameter logistics logis-
tic() for the curve-fitting, as we wanted to analyse 
fixation to a mentioned target. For a double-Gaussian 
fit, doubleGauss(concave=T)  should be used 
instead. The argument concave=T indicates concave up 
(concave=F would indicate concave down).

subj.fit = bdots::bdotsFit(data=subj.dat, subject="Subject", time="Time", y
="elogFix", group="Lang", curveType=logistic())

(2) Inspect fitted curves:

We can plot fitted curves using the plot function.

plot(subj.fit)
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Figure 7 shows fitted curves and observed data in the 
target condition for three participants (j24, p14 and p1) as 
an example. R2 can be used as an estimate for goodness of 
fits. It should ideally be larger than .95 (indicating a good 
fit), but a value between .8 and .95 is seen as acceptable. 
The figure also provides “fitCode”, which is 0 for R2 ≥ .95, 

1 for .95 > R2 ≥ .8, and 2 for R2 < .8 (indicating a poor fit). 
As we can see in Fig. 7, the fitted curves were often away 
from the observed data even when the fits were reasonably 
good (j24 and p14). When the fit was poor (p1), we can 
see that the distance between the two lines was much larger 
(fitted data for all participants are available in the tutorial, 

Fig. 7  Comparison of fitted curves (solid lines) in BDOTS with the observed data (dashed lines)



3483Behavior Research Methods (2023) 55:3461–3493 

1 3

IPC_BDOTS.html). An example of well-fitted curves can 
be found in the vignettes of the bdots package (https:// cran. 
rstud io. com/ web/ packa ges/ bdots/ vigne ttes/ bdots. html). It is 
not recommended to proceed with the analysis when most of 

Fig. 8  The results of the BDOTS on Ito et al. (2018b)

the curves show a poor fit, as in our data set, but we present 
the analysis simply for didactic purposes.
(3) Re-fitting:

We can use the bdotsRefit function to re-fit the curves.

refit = bdots::bdotsRefit(subj.fit, fitCode=1L, quickRefit=T)

(4–5) Bootstrapping:
The code below will test a difference between the L1 and 

L2 groups.

boot1 = bdotsBoot(formula = elogFix ~ Lang(L1, L2), bdObj=subj.fit, Niter=1
000, alpha=.05, padj="oleson")

We can get the model summary and plot using the codes 
below.

summary(boot1)

plot(boot1)

As Fig. 8 suggests, the BDOTS did not detect any signifi-
cant time bins for this data set, inconsistent with the visual 
inspection of the data (cf. Fig. 4 or Fig. 10) and the results 
from the ANOVA (section ANOVA, t-test) and the GCA 
(section Growth curve analysis (GCA)). This is expected, 

because if curves for individual participants are fit poorly, 
the standard deviation estimates for the parameters can be 
extremely large, as we can see in Fig. 8. Thus, it is crucial 
for this analysis to visualise the fitted curves and ensure the 
goodness of the fits.

https://cran.rstudio.com/web/packages/bdots/vignettes/bdots.html
https://cran.rstudio.com/web/packages/bdots/vignettes/bdots.html


3484 Behavior Research Methods (2023) 55:3461–3493

1 3

Why couldn’t the BDOTS fit good curves for our data? 
We think one possibility is that the number of observations 
per condition per participant was too small for the curves 
from the empirical data to be smooth. Ito et al. (2018b) used 
16 critical trials (with four observations per condition per 
participant), whereas the number of critical trials in stud-
ies that successfully used the BDOTS is much larger (336 
trials in McMurray et al., 2019; 480 trials in Sarrett et al., 
2022; 384 trials in Hendrickson et al., 2021; 216 trials in 
Kapnoula & Samuel, 2019). In principle, we do not need to 
use a four-parameter logistic or double-Gaussian function, 
and any curve-fitting function can be used for the BDOTS 
(e.g., polynomials we used for the GCA). It is also possible 
to fit different functions for different participants. However, 
the problem here does not seem to be that each participant 
showed a different curve, but that the data averaged for each 
subject tended to show non-smooth curves. Thus, by-partic-
ipant averaged fixation curves need to be suitable for curve-
fitting, so that they can be fitted using available curve-fitting 
functions.

Generalised additive mixed modelling (GAMM)

The GAMM is a regression model that can model non-lin-
ear time-course data and estimate when an effect of interest 
occurred (Porretta et al., 2018; Wieling, 2018; Wood, 2011).

Advantages of GAMM Linear models such as LMEs dis-
cussed above assume a linear relationship between inde-
pendent variables and the dependent variable. The GAMM 
does not have that assumption, so it can model both linear 
and non-linear relationships. In that sense, it is similar to the 
GCA but unlike the GCA, the GAMM does not use polyno-
mials (but thin plate regression splines, see below). This is 
advantageous, as time-course data from a VWP experiment 
often have a non-linear form. The GAMM guards against 
false-positive errors in two ways. First, it can account for 
autocorrelation by including an AR1 autocorrelation param-
eter in the model and adjusting the confidence of the esti-
mates accordingly (Porretta et al., 2018). In GAMM using 
the bam function (mgcv package), this autocorrelation 
parameter is obtained by computing the cross-correlation 
between data at a first time point and data at the next time 
point (1 in AR1 indicates that the correlation is computed 
using a time lag of 1, i.e., correlation between adjacent time 
points). AR1 is a simple model (in that it depends only on the 
closest previous time point) but it can alleviate the autocor-
relation problem sufficiently in most cases (Wieling, 2018). 
Different autocorrelation parameters (e.g., partial autocor-
relation) can be used in different functions (e.g., the gamm 
function in the mgcv package). Second, the GAMM models 
the non-linear curve by using thin plate regression splines, 

which combine increasingly complex non-linear basis func-
tions (Wood, 2003), as they are flexible in fitting complex 
non-linear curves. In this way, the data guide the functional 
form, preventing the risk of overfitting or underfitting.

Disadvantages of GAMM While the GAMM can estimate 
when an effect started to occur and how long it lasted, it 
cannot statistically compare the onset or duration of an effect 
between conditions or groups (i.e., it cannot test whether 
an effect started significantly earlier in one condition than 
in another) because it does not provide a measure of vari-
ability (e.g., confidence interval) for the timing of the effect. 
Another downside is that if binomially coded data (cf. sec-
tion Independent and dependent variables) are used as a 
dependent variable, the GAMM cannot account for auto-
correlated errors because binomial distribution cannot be 
used for that (unlike Gaussian distribution) (Porretta et al., 
2018). To account for autocorrelation, researchers can use 
empirical-logit  transformed fixation proportion (cf. sec-
tion ANOVA, t-test). While the GAMM can model complex 
time-course data, the model parameters (i.e., coefficients) are 
not easily interpretable. For example, a significant effect of 
time or its interaction with an experimental condition does 
not tell us the onset or duration of an effect. The GAMM 
estimates the onset or offset of an effect by computing a dif-
ference plot, as we demonstrate below (Fig. 9).

Analysis We used the example data set (KC_time-
course.txt) from Knoeferle and Crocker (2006) for the 
GAMM tutorial (KC_GAMM.html, KC_GAMM.Rmd). The 
data file contains binomially coded inspection (1 = inspected, 
0 = not inspected), time (sentence onset = 1000 ms), inter-
est area (where the inspection fell) and other experimental 
variables (subject ID, item ID, and condition). We used the 
log-ratio indicating an inspection bias towards the agent over 

Fig. 9  Log-ratio difference plot for MV vs RR conditions. The 
shaded area indicates 95% confidence intervals. The red lines at the 
bottom indicate time bins in which the difference between the condi-
tions was significant
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the patient using the formula log((Agent inspec-
tion+.5)/(Patient inspection+.5)) as our 
dependent variable.

We first ran a ‘base’ model to determine an appropriate value 
for the AR1 correlation parameter (the parameter to account for 
autocorrelated residuals). In GAMM, the model formula resem-
bles the formula for a generalised linear model or LME (lme4 
package), but the difference is that smooth terms can be added to 
the GAMM formula. In addition, random effects are not defined 
in the same way as in LME. s(Time, by=Condition) 
specifies a random intercept for time, and by=Condition 
is used to model potentially different trends over time for 

different conditions. s(Time, SUBJ, by=Condition, 
bs="fs", m=1) specifies a random smooth (a non-linear 
random effect; “fs” = factor smooth), and by=Condition 
here is used to account for individual variation (a random 
slope for condition). Note that if factor smooths are added, 
these already incorporate random intercept and random slope 
effects, so the model does not have additional specifications for 
them (cf. Wieling, 2018). If random intercepts or linear ran-
dom slopes are desired instead of a random smooth, they can 
be included as s(SUBJ, bs=”re”) (a by-subject random 
intercept; “re” = random effect) or s(SUBJ, Condition, 
bs=”re”) (a by-subject random slope for condition).

gamm.base = bam(log_AP ~ Condition + s(Time, by=Condition) + s(Time, SUBJ, 
by=Condition, bs="fs", m=1) + s(Time, ITEM, by=Condition, bs="fs", m=1), da
ta = timecourse.dat)

The start_value_rho function provides a value we 
can use as the AR1 correlation parameter. We assigned this 
value to AR1.val to include this in the main model.

AR1.val = start_value_rho(gamm.base)

The syntax for the model including the AR1 correlation 
parameter is shown below. We additionally need to include 
a logical vector indicating the starting time point for each 

trial. In our data, the Is_start column contains TRUE if 
the current time bin is the starting time point (= 1000 ms), 
and FALSE otherwise.

gamm.main = bam(log_AP ~ Condition + s(Time, by=Condition) + s(Time, SUBJ, 
by=Condition, bs="fs", m=1) + s(Time, ITEM, by=Condition, bs="fs", m=1), da
ta=timecourse.dat, rho=AR1.val, AR.start=Is_start)

We can check whether accounting for autocorrelation 
improved the model fit by plotting autocorrelation and by 

acf_resid(gamm.base, split_pred=c('SUBJ', 'ITEM')) # autocorrelation is not
taken into account

acf_resid(gamm.main, split_pred=c('SUBJ', 'ITEM')) # autocorrelation is tak
en into account

compareML(gamm.base, gamm.main)

comparing the ‘base’ model with the model with the AR1 
correlation parameter using the compareML function.
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We can plot a difference curve to estimate the time when 
the effect of condition (MV vs RR) occurred.

plot_diff(gamm.main, view="Time", comp=list(Condition=c("MV", "RR")))

Figure 9 plots the difference curves (MV minus RR) (see 
Fig. 6 for the means for each condition). The results show 
that the log-ratio was more negative in the MV condition 
than in the RR condition from 2707 ms to 5465 ms, and it 
was more positive in the MV condition than in the RR con-
dition from 5990 ms to 7106 ms. To enable a meaningful 
interpretation of these differences in relation to events in the 
utterance, the relation of these time points (e.g., 2707 ms) to 
average word onsets and offsets of the target sentences must 
be determined (see Fig. 6 for values).

Divergence point analysis (DPA)

The DPA is a non-parametric test that can estimate when two 
fixation proportion curves start to diverge from one another 
(Stone et al., 2020).

Advantages of DPA The DPA can estimate the onset of 
an effect and a confidence interval. Thus, it is possible to 
statistically test differences in the onset (divergence point) 
between conditions or groups, overcoming the shortcomings 
of the BDOTS or the GAMM. It can also yield a p-value 
by comparing the distribution of the divergence points and 
the null distribution. This analysis overcomes the multiple 
comparisons problem and controls for autocorrelation of 
the eye-movement data. Like the CPA, the DPA is a non-
parametric test, so the data need not meet the assumptions 
of a parametric test (see section ANOVA, t-test). The DPA 
has further been adapted to incorporate a Bayesian analysis, 
which allows researchers to quantify evidence for an alter-
native or null hypothesis using Bayes factors (Stone et al., 
2021).

Disadvantages of DPA While this analysis can test when an 
effect started to occur, it does not test how long the effect 
lasted. It also cannot test multiple divergence points (it only 
detects the first divergence point). Another important point 
is that this analysis assumes that the effect is present. Thus, 
if researchers want to test whether there is an effect and 

when the effect started to occur, a separate analysis is needed 
to establish whether the effect is significant6.

Analysis The analysis flow of the DPA is as follows.

(1) The DPA uses fixation data calculated for small time 
bins (cf. Glossary). We run a statistical test for each 
time bin (e.g., t-test, linear mixed-effects model). In 
non-parametric tests, t-tests are often preferred over 
mixed-effects models, as they are computationally 
lighter and have no convergence issues.

(2) We establish a divergence point by taking the first of 
multiple consecutive time bins for which the effect of 
interest was significant in the same direction. The mini-
mum number of bins in which the effect must occur 
should be determined depending on the research ques-
tion and the study design. If it is hypothesised that a 
fixation bias should sustain for at least 200 ms, and the 
size of each time bin is 20 ms, then 10 consecutive time 
bins will be a suitable threshold.

(3) Step (2) will yield a single divergence point. To esti-
mate what the distribution of the divergence points 
would be if the experiment is repeated many times, we 
create an alternative data set by bootstrapping (resam-
pling) the original data set by participant, time bin and 
condition/object.

(4) We then repeat steps (1) and (2) on the alternative data 
set to establish the divergence point for the resampled 
data set.

(5) We repeat (3) and (4) many (1000–2000) times to gen-
erate the bootstrap distribution of the divergence points. 
We can then calculate the mean of the divergence point 
and the confidence interval.

6 Stone et al. (2020) provide data and an analysis tutorial for the DPA 
at https:// osf. io/ exbmk/. Their tutorial includes a comparison with 
other methods of correcting multiple comparisons (Bonferroni cor-
rection and false-discovery rate control) as well as results from uncor-
rected multiple comparisons. They additionally demonstrate autocor-
relation in their data.

https://osf.io/exbmk/
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(6) If we want to test whether the divergence point is 
different between two conditions or groups, we will 
compute a p-value by comparing (5) to a distribu-
tion of divergence point that could be expected under 
the null hypothesis. The p-value is the proportion of 
samples from the null distribution that are larger than 
the observed difference in the divergence point in the 
empirical data. Because this analysis involves boot-
strapping, the exact onset time and p-value may change 
slightly every time we run the analysis.

In this paper, we apply the DPA to the data set (IPC_
fix_50ms_bin.txt) from Ito et al. (2018b). The step-by-
step tutorial based on the script by Stone et al. (2020) is in 
IPC_DPA.html, IPC_DPA.Rmd. The data file contains 
fixation proportion (proportion of time spent fixating on the 
interest area), the number of right-eye samples on the critical 

interest area, in a blink event, or outside the interest areas, and 
the sum of all samples for each time bin. It additionally con-
tains other experimental variables (subject ID, trial number, 
item ID, condition, and language group). We used the empiri-
cal logit (cf. section ANOVA, t-test) as the dependent variable 
and tested when the target object started to attract more looks 
than the unrelated object in L1 and L2 groups. We ran the 
DPA in the interest period from −800 ms to 1000 ms relative 
to the target word onset. The initial 200 ms was not included 
because the data did not contain many observations (as visible 
from Fig. 7, and as expected because the objects appeared on-
screen 1000 ms before the target word onset). The R codes 
corresponding to each step above are shown below:

(1) A statistical test for each bin:
We used a t-test testing an effect of condition on the 

empirical logit (elogFixM). The example code below is 
for the L1 group, and this stores t-values in test_g1.

test_g1 = dat %>% # t-test for L1 group

subset(Lang == "L1") %>% group_by(Time) %>%

dplyr::summarise(t = t.test(elogFixM ~ Condition)$statistic[[1]])  

(2) Establish a (single) divergence point:
The code below is only for the L1 group. In this analysis, 

we took the first of four consecutive bins for which the effect 
of condition was significant in the same direction (when 
the target attracted significantly more fixations than the 

unrelated object). As our bin size was 50 ms, the analysis 
assumed that a fixation should sustain for at least 200 ms (4 
bins × 50 ms). The codes (1–2) are embedded in a function 
boot_L1L2 to repeat these steps for the bootstrapped data 
set.

# return a TRUE/FALSE vector of significant positive t-scores  

# (positive means more looks to the target than unrelated)

t_g1 = test_g1$t > 1.96

# find the index of the earliest run of 4 sequential TRUEs 

for (i in 1:(length(t_g1)-4)) { 

onset_g1[i] = sum(t_g1[i:(i+3)]) == 4

}
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(3–5) Bootstrap the data and obtain divergence points for 
many bootstrapped data sets:

In this example, we set the number of iterations for the 
bootstrap to 1000.

Niter = 1000L

The code below bootstraps the original data div.dat 
1000 times (to obtain 1000 divergence points).

bootres_L1L2 = boot::boot(

data = div.dat,  # data set to bootstrap       

statistic = boot_L1L2,  # bootstrap function      

strata = div.dat$StrataVars, # stratification variable 

R = Niter)  # number of iterations   

(6) Calculate a p-value:
To create a null distribution expected under the null 

hypothesis, we randomly assign group labels (if we want 

to test a difference between the groups). The code below 
can be embedded in the boot function to shuffle the group 
labels.

dat = dat_resample %>% 

group_by(Subject, Condition, Time) %>% 

transform(Lang=sample(Lang,replace=F)) %>% # randomly assign group labe
ls 

ungroup() %>% 

group_by(Subject, Condition, Time, Lang) %>%

dplyr::summarise(elogFixM = mean(elogFix,na.rm=T)) %>%  # average fixat
ion proportion by subject, condition and time, keeping group  

ungroup()

We then ran a bootstrap function similar to the one above 
but using the function that contained the group-shuffling 
code above (boot_L1L2_pval).

bootres_L1L2_pval = boot::boot(

data = div.dat,  # data set to bootstrap       

statistic = boot_L1L2_pval,  # bootstrap function      

strata = div.dat$StrataVars, # stratification variable 

R = Niter)  # number of iterations   
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We can then compute the proportion of samples from the 
null distribution that are larger than the observed difference 
in the divergence point in the empirical data (= p-value).

Fig. 10  Mean fixation proportion over time for the target (Targ) and 
unrelated (Unr) conditions for each group (L1 vs L2). The data are 
from Ito et al. (2018b). The error bars represent standard errors. The 

divergence point and its confidence interval are plotted as the black 
dot and black horizontal error bar for each group

round(mean(bootres_L1L2_pval$t[,1]>=bootres_L1L2$t0[1], na.rm=T), 3)   

The DPA showed that the mean divergence point rela-
tive to the target word onset was −574 ms, 95% CI = [−650, 
−450] in the L1 group, and −155 ms, 95% CI = [−350, 100] 
in the L2 group (cf. Fig. 10). Because the confidence inter-
vals from these two groups do not overlap, the results sug-
gest that L1 speakers started to look at the target object over 
the unrelated object significantly earlier than L2 speakers. 
The DPA shows that the divergence point was 419 ms earlier 
in the L1 group than in the L2 group, p = .02, suggesting 
that L1 speakers predicted representations of the target word 
more quickly than L2 speakers. Ito et al. (2018b) used the 
GCA, so it was not possible to determine when the target 
started to attract more fixations than the unrelated object, 
and whether it did so earlier in the L1 group than in the L2 
group.

Summary

In this paper, we have described aspects of the design, stim-
uli, their timing, and characteristics (section Design, visual 
and speech stimuli, timing, interest periods and task) of the 
VWP. We applied these characteristics to an informative 
description of two example experiments (section Descrip-
tions of our data sets). In section Analysis of fixation aver-
ages for individual interest periods, we presented methods 
for analysing differences in averaged fixation proportion or 
log-ratio of inspections in individual interest periods (often 

predefined) in a VWP study. Researchers want to select an 
appropriate analysis based on the study design and research 
question, considering the advantages and disadvantages of 
each method (Fig. 3). If the research question does not con-
cern the precise temporal emergence of an effect of interest 
and if there is little fixation proportion change (e.g., first 
increase then decrease) over time, a t-test/ANOVA or an 
LME is probably sufficient for testing an overall difference 
between conditions or participant groups in a specific inter-
est period. If the data do not include many extreme values 
(proportions close to 0 or 1), a t-test or ANOVA seems to 
show reasonably similar results to an LME (Stone et al., 
2020). An LME would generally be more sensitive and 
hence more suitable when there is large variability across 
participants or items (e.g., some participants show a large 
effect, while others show a much smaller or opposite effect), 
as it can take that sort of variability into account. It is also 
suitable when there are many missing values or when the 
design is not balanced because it can be used straightfor-
wardly for unbalanced data with fewer observations in one 
condition than another. Note, however, that there are ways of 
analysing dependent variables with missing values using an 
ANOVA (e.g., van Ginkel & Kroonenberg, 2014).

Section The temporal emergence of an effect deals with 
eye-movement analysis when the research question concerns 
the temporal emergence of an effect. In this case, the GCA, 
the CPA, the BDOTS, the GAMM or the DPA would be par-
ticularly suitable. The GCA is suitable for testing differences 
in fixation proportion changes over time across conditions 
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or participant groups. The CPA is suitable for testing differ-
ences between two conditions or groups over multiple time 
bins while controlling for multiple comparisons and autocor-
relation. The BDOTS is suitable for testing when an effect 
occurred and when fixation proportion curves averaged for 
each participant can be explained well with available curve-
fitting functions. Typical fixation patterns for a mentioned 
target or for a competitor object can be modelled using avail-
able functions, so it is well suited for a single-word process-
ing study. The GAMM is also suitable for testing a temporal 
emergence of an effect, and it is good at modelling relatively 
complex non-linear curves. The DPA is suitable for esti-
mating the onset of an effect and statistically comparing it 
between two conditions or groups.

Acknowledgements This research has been funded by the Berlin Uni-
versity Alliance (BUA) in the context of the federal and state excellence 
strategy (511_Labor Know-How). We thank Veronica Mangiaterra for 
comments on a previous version of this manuscript and the tutori-
als and for help with creating the supplementary materials, Matthew 
Crocker for his comment about R outputs, and participants of the psy-
cholinguistics colloquium at the Humboldt-Universität zu Berlin for 
comments on the tutorials.

Author contributions AI came up with the first draft of the manuscript, 
selected the analyses to include, acquired the details of how to conduct 
them, and created the scripts; PK tested the scripts, and provided com-
ments and revisions on the manuscript.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Declarations 

Conflict of interest There is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Track-
ing the time course of spoken word recognition using eye move-
ments: Evidence for continuous mapping models. Journal of 
Memory and Language, 38(38), 419–439. https:// doi. org/ 10. 
1006/ jmla. 1997. 2558

Altmann, G. T. M. (2011). Language can mediate eye movement con-
trol within 100 milliseconds, regardless of whether there is any-
thing to move the eyes to. Acta Psychologica, 137(2), 190–200. 
https:// doi. org/ 10. 1016/j. actpsy. 2010. 09. 009

Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at 
verbs: Restricting the domain of subsequent reference. Cognition, 
73(3), 247–264. https:// doi. org/ 10. 1016/ S0010- 0277(99) 00059-1

Altmann, G. T. M., & Kamide, Y. (2004). Now you see it, now you 
don’t: Mediating the mapping between language and the visual 
world. The Interface of Language, Vision, and Action: Eye Move-
ments and the Visual World, 347–386. https:// doi. org/ 10. 4324/ 
97802 03488 430

Andersson, R., Ferreira, F., & Henderson, J. M. (2011). I see what 
you’re saying: The integration of complex speech and scenes 
during language comprehension. Acta Psychologica, 137(2), 
208–216. https:// doi. org/ 10. 1016/j. actpsy. 2011. 01. 007

Apfelbaum, K. S., Klein-Packard, J., & McMurray, B. (2021). The 
pictures who shall not be named: Empirical support for benefits 
of preview in the Visual World Paradigm. Journal of Memory 
and Language, 121(September 2020), 104279. https:// doi. org/ 
10. 1016/j. jml. 2021. 104279

Arai, M., Van Gompel, R. P. G., & Scheepers, C. (2007). Priming 
ditransitive structures in comprehension. Cognitive Psychology, 
54(3), 218–250. https:// doi. org/ 10. 1016/j. cogps ych. 2006. 07. 001

Barr, D. J. (2008). Analyzing “visual world” eyetracking data using 
multilevel logistic regression. Journal of Memory and Language, 
59(4), 457–474. https:// doi. org/ 10. 1016/j. jml. 2007. 09. 002

Barr, D. J. (2013). Random effects structure for testing interactions in 
linear mixed-effects models. Frontiers in Psychology, 4, 328. 
https:// doi. org/ 10. 3389/ fpsyg. 2013. 00328

Barr, D. J., Gann, T. M., & Pierce, R. S. (2011). Anticipatory baseline 
effects and information integration in visual world studies. Acta 
Psychologica, 137(2), 201–207. https:// doi. org/ 10. 1016/j. actpsy. 
2010. 09. 011

Barr, D. J., Jackson, L., & Phillips, I. (2014). Using a voice to put a 
name to a face: The psycholinguistics of proper name compre-
hension. Journal of Experimental Psychology: General, 143(1), 
404–413. https:// doi. org/ 10. 1037/ a0031 813

Barr, D. J., Levy, R. P., Scheepers, C., & Tily, H. J. (2013). Random 
effects structure for confirmatory hypothesis testing: Keep it 
maximal. Journal of Memory and Language, 68(3), 255–278. 
https:// doi. org/ 10. 1016/j. jml. 2012. 11. 001

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. R. (2015). Parsimoni-
ous Mixed Models. arXiv:1506.04967

Borovsky, A., Burns, E., Elman, J. L., & Evans, J. L. (2013). Lexical 
activation during sentence comprehension in adolescents with 
history of specific language impairment. Journal of Communi-
cation Disorders, 46(5–6), 413–427. https:// doi. org/ 10. 1016/j. 
jcomd is. 2013. 09. 001

Borovsky, A., Elman, J. L., & Fernald, A. (2012). Knowing a lot for 
one’s age: Vocabulary skill and not age is associated with antici-
patory incremental sentence interpretation in children and adults. 
Journal of Experimental Child Psychology, 112(4), 417–436. 
https:// doi. org/ 10. 1016/j. jecp. 2012. 01. 005

Bosker, H. R., Quené, H., Sanders, T., & De Jong, N. H. (2014). Native 
’um’s elicit prediction of low-frequency referents, but non-native 
’um’s do not. Journal of Memory and Language, 75, 104–116. 
https:// doi. org/ 10. 1016/j. jml. 2014. 05. 004

Britt, A. E., Mirman, D., Kornilov, S. A., & Magnuson, J. S. (2014). 
Effect of repetition proportion on language-driven anticipatory 
eye movements. Acta Psychologica, 145(1), 128–138. https:// doi. 
org/ 10. 1016/j. actpsy. 2013. 10. 004

Carminati, M. N., & Knoeferle, P. (2016). Priming younger and older 
adults’ sentence comprehension: insights from dynamic emo-
tional facial expressions and pupil size measures. The Open Psy-
chology Journal, 9(1), 129–148. https:// doi. org/ 10. 2174/ 18743 
50101 60901 0129

Chambers, C. G., & Cooke, H. (2009). Lexical competition during 
second-language listening: Sentence context, but not profi-
ciency, constrains interference from the native lexicon. Journal 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1006/jmla.1997.2558
https://doi.org/10.1006/jmla.1997.2558
https://doi.org/10.1016/j.actpsy.2010.09.009
https://doi.org/10.1016/S0010-0277(99)00059-1
https://doi.org/10.4324/9780203488430
https://doi.org/10.4324/9780203488430
https://doi.org/10.1016/j.actpsy.2011.01.007
https://doi.org/10.1016/j.jml.2021.104279
https://doi.org/10.1016/j.jml.2021.104279
https://doi.org/10.1016/j.cogpsych.2006.07.001
https://doi.org/10.1016/j.jml.2007.09.002
https://doi.org/10.3389/fpsyg.2013.00328
https://doi.org/10.1016/j.actpsy.2010.09.011
https://doi.org/10.1016/j.actpsy.2010.09.011
https://doi.org/10.1037/a0031813
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1016/j.jcomdis.2013.09.001
https://doi.org/10.1016/j.jcomdis.2013.09.001
https://doi.org/10.1016/j.jecp.2012.01.005
https://doi.org/10.1016/j.jml.2014.05.004
https://doi.org/10.1016/j.actpsy.2013.10.004
https://doi.org/10.1016/j.actpsy.2013.10.004
https://doi.org/10.2174/1874350101609010129
https://doi.org/10.2174/1874350101609010129


3491Behavior Research Methods (2023) 55:3461–3493 

1 3

of Experimental Psychology. Learning, Memory, and Cognition, 
35(4), 1029–1040. https:// doi. org/ 10. 1037/ a0015 901

Chambers, C. G., Tanenhaus, M. K., & Magnuson, J. S. (2004). Actions 
and affordances in syntactic ambiguity resolution. Journal of 
Experimental Psychology. Learning, Memory, and Cognition, 
30(3), 687–696. https:// doi. org/ 10. 1037/ 0278- 7393. 30.3. 687

Cowan, N. (2001). The magical number 4 in short-term memory: A 
reconsideration of mental storage capacity. Behavioral and Brain 
Sciences, 24(1), 87–114. https:// doi. org/ 10. 1017/ S0140 525X0 
10039 22

Dahan, D., Magnuson, J. S., & Tanenhaus, M. K. (2001). Time course 
of frequency effects in spoken-word recognition: Evidence from 
eye movements. Cognitive Psychology, 42, 317–367. https:// doi. 
org/ 10. 1006/ cogp. 2001. 0750

Dahan, D., & Tanenhaus, M. K. (2004). Continuous mapping from 
sound to meaning in spoken-language comprehension: Immedi-
ate effects of verb-based thematic constraints. Journal of Experi-
mental Psychology. Learning, Memory, and Cognition, 30(2), 
498–513. https:// doi. org/ 10. 1037/ 0278- 7393. 30.2. 498

Dahan, D., & Tanenhaus, M. K. (2005). Looking at the rope when look-
ing for the snake: Conceptually mediated eye movements during 
spoken-word recognition. Psychonomic Bulletin & Review, 12(3), 
453–459. https:// doi. org/ 10. 3758/ BF031 93787

de Almeida, R. G., Di Nardo, J., Antal, C., & von Grünau, M. W. 
(2019). Understanding events by eye and ear: Agent and verb 
drive non-anticipatory eye movements in dynamic scenes. Fron-
tiers in Psychology, 10, 2162. https:// doi. org/ 10. 3389/ fpsyg. 
2019. 02162

DeBruine, L. M., & Barr, D. J. (2021). Understanding mixed-effects 
models through data simulation. Advances in Methods and Prac-
tices in Psychological Science, 4(1), 251524592096511. https:// 
doi. org/ 10. 1177/ 25152 45920 965119

Demberg, V., & Sayeed, A. (2016). The frequency of rapid pupil dila-
tions as a measure of linguistic processing difficulty. PLoS ONE, 
11(1), 1–29. https:// doi. org/ 10. 1371/ journ al. pone. 01461 94

Dink, J. W., & Ferguson, B. (2015). eyetrackingR: An R Library for 
Eye-tracking Data Analysis. http:// www. eyetr ackin gr. com

Donnelly, S., & Verkuilen, J. (2017). Empirical logit analysis is not 
logistic regression. Journal of Memory and Language, 94, 
28–42. https:// doi. org/ 10. 1016/j. jml. 2016. 10. 005

Engelhardt, P. E., Ferreira, F., & Patsenko, E. G. (2010). Pupillometry 
reveals processing load during spoken language comprehension. 
Quarterly Journal of Experimental Psychology, 63(4), 639–645. 
https:// doi. org/ 10. 1080/ 17470 21090 34698 64

Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differ-
ences in language processing skill and vocabulary are evident at 
18 months. Developmental Science, 16(2), 234–248. https:// doi. 
org/ 10. 1111/ desc. 12019

Ferreira, F., Foucart, A., & Engelhardt, P. E. (2013). Language process-
ing in the visual world: Effects of preview, visual complexity, and 
prediction. Journal of Memory and Language, 69(3), 165–182. 
https:// doi. org/ 10. 1016/j. jml. 2013. 06. 001

Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using 
R. SAGE Publications.

Findlay, J. M., & Brown, V. (2006). Eye scanning of multi-element dis-
plays: II. Saccade planning. Vision Research, 46(1–2), 216–227. 
https:// doi. org/ 10. 1016/J. VISRES. 2005. 07. 035

Gambi, C., Gorrie, F., Pickering, M. J., & Rabagliati, H. (2018). The 
development of linguistic prediction: Predictions of sound and 
meaning in 2-to-5 year olds. Journal of Experimental Child Psy-
chology, 173, 351–370. https:// doi. org/ 10. 1016/j. jecp. 2018. 04. 
012

Geller, J., Winn, M. B., Mahr, T., & Mirman, D. (2020). GazeR: A 
Package for Processing Gaze Position and Pupil Size Data. 
Behavior Research Methods, 52(5), 2232–2255. https:// doi. org/ 
10. 3758/ S13428- 020- 01374-8

Hahn, N., Snedeker, J., & Rabagliati, H. (2015). Rapid linguistic 
ambiguity resolution in young children with autism spectrum 
disorder: Eye tracking evidence for the limits of weak central 
coherence. Autism Research, 8(6), 717–726. https:// doi. org/ 10. 
1002/ aur. 1487

Henderson, J. M., & Ferreira, F. (2004). Scene perception 
for psycholinguists. In J. M. Henderson & F. Ferreira 
(Eds.), The Interface of Language, Vision, and Action: 
Eye Movements and the Visual World. Psychology Press. 
papers://81d652f4-a340-49dc-a15a-bca505f8366e/Paper/p585

Hendrickson, K., Apfelbaum, K., Goodwin, C., Blomquist, C., Klein, 
K., & McMurray, B. (2021). The profile of real-time competition 
in spoken and written word recognition: More similar than dif-
ferent. Quarterly Journal of Experimental Psychology, 75, 1653 
- 1673. https:// doi. org/ 10. 1177/ 17470 21821 10568 42

Hintz, F., & Huettig, F. (2015). The complexity of the visual environ-
ment modulates language-mediated eye gaze. In R. K. Mishra, 
N. Srinivasan, & F. Huettig (Eds.), Attention and Vision in Lan-
guage Processing (pp. 39–55). Springer. https:// doi. org/ 10. 1007/ 
978- 81- 322- 2443-3_3

Hirose, Y., & Mazuka, R. (2017). Exploiting Pitch Accent Information 
in Compound Processing: A Comparison between Adults and 6- 
to 7-Year-Old Children. Language Learning and Development, 
13(04), 375–394. https:// doi. org/ 10. 1080/ 15475 441. 2017. 12921 
41

Hopp, H. (2013). Grammatical gender in adult L2 acquisition: Rela-
tions between lexical and syntactic variability. Second Language 
Research, 29(1), 33–56. https:// doi. org/ 10. 1177/ 02676 58312 
461803

Huang, Y., & Snedeker, J. (2020). Evidence from the visual world 
paradigm raises questions about unaccusativity and growth curve 
analyses. Cognition, 200, 104251. https:// doi. org/ 10. 1016/j. cogni 
tion. 2020. 104251

Huettig, F., & Altmann, G. T. M. (2005). Word meaning and the control 
of eye fixation: Semantic competitor effects and the visual world 
paradigm. Cognition, 96(1), 23–32. https:// doi. org/ 10. 1016/j. 
cogni tion. 2004. 10. 003

Huettig, F., & Guerra, E. (2019). Effects of speech rate, preview time 
of visual context, and participant instructions reveal strong lim-
its on prediction in language processing. Brain Research, 1706, 
196–208. https:// doi. org/ 10. 1016/j. brain res. 2018. 11. 013

Huettig, F., & McQueen, J. M. (2007). The tug of war between phono-
logical, semantic and shape information in language-mediated 
visual search. Journal of Memory and Language, 57(4), 460–
482. https:// doi. org/ 10. 1016/j. jml. 2007. 02. 001

Huettig, F., Rommers, J., & Meyer, A. S. (2011). Using the visual world 
paradigm to study language processing: A review and critical 
evaluation. Acta Psychologica, 137(2), 151–171. https:// doi. org/ 
10. 1016/j. actpsy. 2010. 11. 003

Ito, A. (2019). Prediction of orthographic information during listening 
comprehension: A printed-word visual world study. Quarterly 
Journal of Experimental Psychology, 72(11), 2584–2596. https:// 
doi. org/ 10. 1177/ 17470 21819 851394

Ito, A., Corley, M., & Pickering, M. J. (2018a). A cognitive load delays 
predictive eye movements similarly during L1 and L2 compre-
hension. Bilingualism: Language and Cognition, 21(2), 251–264. 
https:// doi. org/ 10. 1017/ S1366 72891 70000 50

Ito, A., Pickering, M. J., & Corley, M. (2018b). Investigating the time-
course of phonological prediction in native and non-native speak-
ers of English: A visual world eye-tracking study. Journal of 
Memory and Language, 98, 1–11. https:// doi. org/ 10. 1016/j. jml. 
2017. 09. 002

Jaeger, F. (2008). Categorical data analysis: Away from ANOVAs 
(transformation or not) and towards logit mixed models. Jour-
nal of Memory and Language, 59(4), 434–446. https:// doi. org/ 
10. 1016/j. jml. 2007. 11. 007

https://doi.org/10.1037/a0015901
https://doi.org/10.1037/0278-7393.30.3.687
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1006/cogp.2001.0750
https://doi.org/10.1006/cogp.2001.0750
https://doi.org/10.1037/0278-7393.30.2.498
https://doi.org/10.3758/BF03193787
https://doi.org/10.3389/fpsyg.2019.02162
https://doi.org/10.3389/fpsyg.2019.02162
https://doi.org/10.1177/2515245920965119
https://doi.org/10.1177/2515245920965119
https://doi.org/10.1371/journal.pone.0146194
http://www.eyetrackingr.com
https://doi.org/10.1016/j.jml.2016.10.005
https://doi.org/10.1080/17470210903469864
https://doi.org/10.1111/desc.12019
https://doi.org/10.1111/desc.12019
https://doi.org/10.1016/j.jml.2013.06.001
https://doi.org/10.1016/J.VISRES.2005.07.035
https://doi.org/10.1016/j.jecp.2018.04.012
https://doi.org/10.1016/j.jecp.2018.04.012
https://doi.org/10.3758/S13428-020-01374-8
https://doi.org/10.3758/S13428-020-01374-8
https://doi.org/10.1002/aur.1487
https://doi.org/10.1002/aur.1487
https://doi.org/10.1177/17470218211056842
https://doi.org/10.1007/978-81-322-2443-3_3
https://doi.org/10.1007/978-81-322-2443-3_3
https://doi.org/10.1080/15475441.2017.1292141
https://doi.org/10.1080/15475441.2017.1292141
https://doi.org/10.1177/0267658312461803
https://doi.org/10.1177/0267658312461803
https://doi.org/10.1016/j.cognition.2020.104251
https://doi.org/10.1016/j.cognition.2020.104251
https://doi.org/10.1016/j.cognition.2004.10.003
https://doi.org/10.1016/j.cognition.2004.10.003
https://doi.org/10.1016/j.brainres.2018.11.013
https://doi.org/10.1016/j.jml.2007.02.001
https://doi.org/10.1016/j.actpsy.2010.11.003
https://doi.org/10.1016/j.actpsy.2010.11.003
https://doi.org/10.1177/1747021819851394
https://doi.org/10.1177/1747021819851394
https://doi.org/10.1017/S1366728917000050
https://doi.org/10.1016/j.jml.2017.09.002
https://doi.org/10.1016/j.jml.2017.09.002
https://doi.org/10.1016/j.jml.2007.11.007
https://doi.org/10.1016/j.jml.2007.11.007


3492 Behavior Research Methods (2023) 55:3461–3493

1 3

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From 
eye fixations to comprehension. Psychological Review, 87(4), 
329–354. https:// doi. org/ 10. 1037/ 0033- 295X. 87.4. 329

Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of 
thought: Pupillometric indices of sentence processing. Cana-
dian Journal of Experimental Psychology/Revue Canadienne 
de Psychologie Expérimentale, 47(2), 310–339. https:// doi. org/ 
10. 1037/ h0078 820

Kamide, Y., Scheepers, C., & Altmann, G. T. M. (2003). Integration 
of syntactic and semantic information in predictive processing: 
Cross-linguistic evidence from German and English. Journal of 
Psycholinguistic Research, 32(1), 37–55.

Kapnoula, E. C., & Samuel, A. G. (2019). Voices in the mental lexi-
con: Words carry indexical information that can affect access to 
their meaning. Journal of Memory and Language, 107, 111–127. 
https:// doi. org/ 10. 1016/j. jml. 2019. 05. 001

Knoeferle, P., & Crocker, M. W. (2006). The coordinated interplay of 
scene, utterance, and world knowledge: evidence from eye track-
ing. Cognitive Science, 30(3), 481–529. https:// doi. org/ 10. 1207/ 
s1551 6709c og0000_ 65

Knoeferle, P., Crocker, M. W., Scheepers, C., & Pickering, M. J. 
(2005). The influence of the immediate visual context on incre-
mental thematic role-assignment: Evidence from eye-movements 
in depicted events. Cognition, 95(1), 95–127. https:// doi. org/ 10. 
1016/j. cogni tion. 2004. 03. 002

Knoeferle, P., & Guerra, E. (2016). Visually situated language com-
prehension. Language and Linguistics Compass, 10(2), 66–82. 
https:// doi. org/ 10. 1111/ lnc3. 12177

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. 
(2009). Circular analysis in systems neuroscience: the dangers 
of double dipping. Nature Neuroscience, 12(5), 535–540. https:// 
doi. org/ 10. 1038/ nn. 2303

Kukona, A. (2020). Lexical constraints on the prediction of form: 
Insights from the visual world paradigm. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 46(11), 
2153–2162. https:// doi. org/ 10. 1037/ xlm00 00935

Magnuson, J. S. (2019). Fixations in the visual world paradigm: where, 
when, why? Journal of Cultural Cognitive Science, 3(2), 113–
139. https:// doi. org/ 10. 1007/ s41809- 019- 00035-3

Mani, N., & Huettig, F. (2012). Prediction during language processing 
is a piece of cake—But only for skilled producers. Journal of 
Experimental Psychology: Human Perception and Performance, 
38(4), 843–847. https:// doi. org/ 10. 1037/ a0029 284

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of 
EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 
177–190. https:// doi. org/ 10. 1016/j. jneum eth. 2007. 03. 024

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. 
(2017). Balancing Type I error and power in linear mixed mod-
els. Journal of Memory and Language, 94, 305–315. https:// doi. 
org/ 10. 1016/J. JML. 2017. 01. 001

McMurray, B., Klein-Packard, J., & Tomblin, J. B. (2019). A real-time 
mechanism underlying lexical deficits in developmental language 
disorder: Between-word inhibition. Cognition, 191, 104000. 
https:// doi. org/ 10. 1016/j. cogni tion. 2019. 06. 012

McQueen, J. M., & Viebahn, M. C. (2007). Tracking recognition of 
spoken words by tracking looks to printed words. Quarterly Jour-
nal of Experimental Psychology, 60(5), 661–671. https:// doi. org/ 
10. 1080/ 17470 21060 11838 90

Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and 
computational models of the visual world paradigm: Growth 
curves and individual differences. Journal of Memory and Lan-
guage, 59(4), 475–494. https:// doi. org/ 10. 1016/j. jml. 2007. 11. 006

Mirman, D., Yee, E., Blumstein, S. E., & Magnuson, J. S. (2011). 
Theories of spoken word recognition deficits in Aphasia: Evi-
dence from eye-tracking and computational modeling. Brain and 

Language, 117(2), 53–68. https:// doi. org/ 10. 1016/J. BANDL. 
2011. 01. 004

Nolte, C., Seedorff, M., Oleson, J., Brown, G., Cavanaugh, J., & 
McMurray, B. (2021). bdots: Bootstrapped Differences of Time 
Series. https:// cran.r- proje ct. org/ packa ge= bdots

Oleson, J. J., Cavanaugh, J. E., McMurray, B., & Brown, G. (2017). 
Detecting time-specific differences between temporal nonlinear 
curves: Analyzing data from the visual world paradigm. Statisti-
cal Methods in Medical Research, 26(6), 2708–2725. https:// doi. 
org/ 10. 1177/ 09622 80215 607411

Peelle, J. E., & Van Engen, K. J. (2021). Time stand still: Effects of 
temporal window selection on eye tracking analysis. Collabra: 
Psychology, 7(1), 2021. https:// doi. org/ 10. 1525/ colla bra. 25961

Porretta, V., Kyröläinen, A.-J., van Rij, J., & Järvikivi, J. (2018). Visual 
world paradigm data: From preprocessing to nonlinear time-
course analysis. In Smart Innovation, Systems and Technologies, 
73, 268–277. https:// doi. org/ 10. 1007/ 978-3- 319- 59424-8_ 25

Porretta, V., Kyröläinen, A.-J., van Rij, J., & Järvikivi, J. (2020). 
VWPre: Tools for Preprocessing Visual World Data. https:// 
cran.r- proje ct. org/ packa ge= VWPre

Pyykkönen-Klauck, P., & Crocker, M. W. (2016). Attention and eye 
movement metrics in visual world eye tracking. In P. Knoeferle, 
P. Pyykkönen-Klauck, & M. W. Crocker (Eds.), Visually Situated 
Language Comprehension. Advances in Consciousness Research 
(pp. 67–82). John Benjamins Publishing. https:// doi. org/ 10. 1075/ 
aicr. 93. 03pyk

Rayner, K. (1998). Eye movements in reading and information pro-
cessing: 20 years of research. Psychological Bulletin, 124(3), 
372–422.

Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture Eye move-
ments and attention in reading, scene perception, and visual 
search. The Quarterly Journal of Experimental Psychology, 
62(8), 1457–1506. https:// doi. org/ 10. 1080/ 17470 21090 28164 61

Rommers, J., Meyer, A. S., Praamstra, P., & Huettig, F. (2013). The 
contents of predictions in sentence comprehension: Activation 
of the shape of objects before they are referred to. Neuropsy-
chologia, 51(3), 437–447. https:// doi. org/ 10. 1016/j. neuro psych 
ologia. 2012. 12. 002

Salverda, A. P., & Tanenhaus, M. K. (2010). Tracking the time course 
of orthographic information in spoken-word recognition. Journal 
of Experimental Psychology. Learning, Memory, and Cognition, 
36(5), 1108–1117. https:// doi. org/ 10. 1037/ a0019 901

Salverda, A. P., & Tanenhaus, M. K. (2017). The Visual World Para-
digm. In Annette M. B. de Groot and Peter Hagoort (Eds). 
Research methods in psycholinguistics and the neurobiology of 
language: A practical guide (pp. 89–110). Wiley-Blackwell.

Sarrett, M. E., Shea, C., & McMurray, B. (2022). Within- and between-
language competition in adult second language learners: implica-
tions for language proficiency. Language, Cognition and Neu-
roscience, 37(2), 165–181. https:// doi. org/ 10. 1080/ 23273 798. 
2021. 19522 83

Saslow, M. G. (1967). Latency of saccadic eye movement. Journal of 
the Optical Society of America, 57(8), 1030–1033. https:// doi. 
org/ 10. 1364/ JOSA. 57. 001030

Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation 
tests of MEG/EEG data do not establish significance of effect 
latency or location. Psychophysiology, August, 2018, e13335. 
https:// doi. org/ 10. 1111/ psyp. 13335

Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to 
capitalize on a priori contrasts in linear (mixed) models: A tuto-
rial. Journal of Memory and Language, 110, 104038. https:// doi. 
org/ 10. 1016/J. JML. 2019. 104038

Scheepers, C., & Crocker, M. W. (2004). Constituent order prim-
ing from reading to listening: A visual-world study. In C. 
Manuel & C. Clifton Jr. (Eds.), The On-Line Study of Sentence 

https://doi.org/10.1037/0033-295X.87.4.329
https://doi.org/10.1037/h0078820
https://doi.org/10.1037/h0078820
https://doi.org/10.1016/j.jml.2019.05.001
https://doi.org/10.1207/s15516709cog0000_65
https://doi.org/10.1207/s15516709cog0000_65
https://doi.org/10.1016/j.cognition.2004.03.002
https://doi.org/10.1016/j.cognition.2004.03.002
https://doi.org/10.1111/lnc3.12177
https://doi.org/10.1038/nn.2303
https://doi.org/10.1038/nn.2303
https://doi.org/10.1037/xlm0000935
https://doi.org/10.1007/s41809-019-00035-3
https://doi.org/10.1037/a0029284
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/J.JML.2017.01.001
https://doi.org/10.1016/J.JML.2017.01.001
https://doi.org/10.1016/j.cognition.2019.06.012
https://doi.org/10.1080/17470210601183890
https://doi.org/10.1080/17470210601183890
https://doi.org/10.1016/j.jml.2007.11.006
https://doi.org/10.1016/J.BANDL.2011.01.004
https://doi.org/10.1016/J.BANDL.2011.01.004
https://cran.r-project.org/package=bdots
https://doi.org/10.1177/0962280215607411
https://doi.org/10.1177/0962280215607411
https://doi.org/10.1525/collabra.25961
https://doi.org/10.1007/978-3-319-59424-8_25
https://cran.r-project.org/package=VWPre
https://cran.r-project.org/package=VWPre
https://doi.org/10.1075/aicr.93.03pyk
https://doi.org/10.1075/aicr.93.03pyk
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1016/j.neuropsychologia.2012.12.002
https://doi.org/10.1016/j.neuropsychologia.2012.12.002
https://doi.org/10.1037/a0019901
https://doi.org/10.1080/23273798.2021.1952283
https://doi.org/10.1080/23273798.2021.1952283
https://doi.org/10.1364/JOSA.57.001030
https://doi.org/10.1364/JOSA.57.001030
https://doi.org/10.1111/psyp.13335
https://doi.org/10.1016/J.JML.2019.104038
https://doi.org/10.1016/J.JML.2019.104038


3493Behavior Research Methods (2023) 55:3461–3493 

1 3

Comprehension: Eyetracking, ERPs and Beyond (Vol. 44, pp. 
167–186). Psychology Press. https:// doi. org/ 10. 4324/ 97802 
03509 050

Seedorff, M., Oleson, J., & McMurray, B. (2018). Detecting when time-
series differ: Using the Bootstrapped Differences of Timeseries 
(BDOTS) to analyze Visual World Paradigm data (and more). 
Journal of Memory and Language, 102, 55–67. https:// doi. org/ 
10. 1016/j. jml. 2018. 05. 004

Shen, W., Qu, Q., & Li, X. (2016). Semantic information mediates 
visual attention during spoken word recognition in Chinese: 
Evidence from the printed-word version of the visual-world 
paradigm. Attention, Perception, & Psychophysics, 78(5), 1267–
1284. https:// doi. org/ 10. 3758/ s13414- 016- 1081-z

Silva, R., Gerth, S., & Clahsen, H. (2013). Morphological constraints 
in children’s spoken language comprehension: A visual world 
study of plurals inside compounds in English. Cognition, 129(2), 
457–469. https:// doi. org/ 10. 1016/j. cogni tion. 2013. 08. 003

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive 
psychology: Undisclosed flexibility in data collection and analy-
sis allows presenting anything as significant. Psychological Sci-
ence, 22(11), 1359–1366. https:// doi. org/ 10. 1177/ 09567 97611 
417632

Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar S.M. 
(2021). afex: Analysis of Factorial Experiments (R package ver-
sion 1.0-1). https:// cran.r- proje ct. org/ packa ge= afex

Sperling, G. (1960). The information available in brief visual presenta-
tions. Psychological Monographs: General and Applied, 74(11), 
1–29. https:// doi. org/ 10. 1037/ h0093 759

Spivey, M. J., & Marian, V. (1999). Cross talk between native and 
second languages: Partial activation of an irrelevant lexicon. 
Psychological Science, 10(3), 281–284. https:// doi. org/ 10. 1111/ 
1467- 9280. 00151

Stone, K., Lago, S., & Schad, D. J. (2021). Divergence point analyses 
of visual world data: applications to bilingual research. Bilin-
gualism: Language and Cognition, 24(5), 833–841. https:// doi. 
org/ 10. 1017/ s1366 72892 00006 07

Stone, K., Veríssimo, J., Schad, D. J., Oltrogge, E., Vasishth, S., & 
Lago, S. (2021). The interaction of grammatically distinct agree-
ment dependencies in predictive processing. Language, Cogni-
tion and Neuroscience, 36(9), 1159–1179. https:// doi. org/ 10. 
1080/ 23273 798. 2021. 19218 16

Tabachnick, B. G., & Fidell, L. S. (2007). Experimental Designs Using 
ANOVA. https:// www. resea rchga te. net/ publi cation/ 25946 5542

Tanenhaus, M. K., Magnuson, J. S., Dahan, D., & Chambers, C. G. 
(2000). Eye movements and lexical access in spoken-language 
comprehension: Evaluating a linking hypothesis between fixa-
tions and linguistic processing. Journal of Psycholinguistic 
Research, 29(6), 557–580. https:// doi. org/ 10. 1023/A: 10264 
64108 329

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, 
J. C. (1995). Integration of visual and linguistic information in 
spoken language comprehension. Science, 268(5217), 1632–
1634. https:// doi. org/ 10. 1126/ scien ce. 77778 63

Teichner, W. H. (1954). Recent studies of simple reaction time. Psy-
chological Bulletin, 51(2), 128–149. https:// doi. org/ 10. 1037/ 
h0060 900

Tromp, J., Hagoort, P., & Meyer, A. S. (2016). Pupillometry reveals 
increased pupil size during indirect request comprehension. The 
Quarterly Journal of Experimental Psychology, 69(6), 1093–
1108. https:// doi. org/ 10. 1080/ 17470 218. 2015. 10652 82

van Ginkel, J. R., & Kroonenberg, P. M. (2014). Analysis of Variance 
of Multiply Imputed Data. Multivariate Behavioral Research, 
49(1), 78–91. https:// doi. org/ 10. 1080/ 00273 171. 2013. 855890

Veivo, O., Järvikivi, J., Porretta, V., & Hyönä, J. (2016). Orthographic 
activation in L2 spoken word recognition depends on proficiency: 
Evidence from eye-tracking. Frontiers in Psychology, 7, 1120. 
https:// doi. org/ 10. 3389/ fpsyg. 2016. 01120

Voeten, C. C. (2022). permutes: Permutation Tests for Time Series 
Data.

Wieling, M. (2018). Analyzing dynamic phonetic data using general-
ized additive mixed modeling: A tutorial focusing on articulatory 
differences between L1 and L2 speakers of English. Journal of 
Phonetics, 70, 86–116. https:// doi. org/ 10. 1016/j. wocn. 2018. 03. 
002

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology), 65(1), 
95–114. https:// doi. org/ 10. 1111/ 1467- 9868. 00374

Wood, S. N. (2011). Fast stable restricted maximum likelihood and 
marginal likelihood estimation of semiparametric generalized 
linear models. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), 73(1), 3–36. https:// doi. org/ 10. 1111/J. 
1467- 9868. 2010. 00749.X

Yee, E., Blumstein, S. E., & Sedivy, J. C. (2008). Lexical-semantic 
activation in Broca’s and Wernicke’s aphasia: Evidence from eye 
movements. Journal of Cognitive Neuroscience, 20(4), 592–612. 
https:// doi. org/ 10. 1016/j. bandl. 2004. 06. 034

Yee, E., & Sedivy, J. C. (2006). Eye movements to pictures reveal tran-
sient semantic activation during spoken word recognition. Jour-
nal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 32(1), 1–14. https:// doi. org/ 10. 1037/ 0278- 7393. 32.1.1

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Practices Statement The example data, analysis scripts and 
supplementary materials are publicly available at the Open Science 
Framework (https:// osf. io/ tzn8u/).

https://doi.org/10.4324/9780203509050
https://doi.org/10.4324/9780203509050
https://doi.org/10.1016/j.jml.2018.05.004
https://doi.org/10.1016/j.jml.2018.05.004
https://doi.org/10.3758/s13414-016-1081-z
https://doi.org/10.1016/j.cognition.2013.08.003
https://doi.org/10.1177/0956797611417632
https://doi.org/10.1177/0956797611417632
https://cran.r-project.org/package=afex
https://doi.org/10.1037/h0093759
https://doi.org/10.1111/1467-9280.00151
https://doi.org/10.1111/1467-9280.00151
https://doi.org/10.1017/s1366728920000607
https://doi.org/10.1017/s1366728920000607
https://doi.org/10.1080/23273798.2021.1921816
https://doi.org/10.1080/23273798.2021.1921816
https://www.researchgate.net/publication/259465542
https://doi.org/10.1023/A:1026464108329
https://doi.org/10.1023/A:1026464108329
https://doi.org/10.1126/science.7777863
https://doi.org/10.1037/h0060900
https://doi.org/10.1037/h0060900
https://doi.org/10.1080/17470218.2015.1065282
https://doi.org/10.1080/00273171.2013.855890
https://doi.org/10.3389/fpsyg.2016.01120
https://doi.org/10.1016/j.wocn.2018.03.002
https://doi.org/10.1016/j.wocn.2018.03.002
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1111/J.1467-9868.2010.00749.X
https://doi.org/10.1111/J.1467-9868.2010.00749.X
https://doi.org/10.1016/j.bandl.2004.06.034
https://doi.org/10.1037/0278-7393.32.1.1
https://osf.io/tzn8u/

	Analysing data from the psycholinguistic visual-world paradigm: Comparison of different analysis methods
	Abstract
	Introduction
	Design, visual and speech stimuli, timing, interest periods and task
	Independent and dependent variables
	Assignment of item–condition combinations to lists and counterbalancing
	Visual stimuli
	Preview and speech rate
	Time window

	Descriptions of our data sets
	Ito et al. (2018b)
	Knoeferle and Crocker (2006; Experiment 1)


	Analysis of fixation averages for individual interest periods
	Data preparation
	ANOVA, t-test
	Verifying assumptions
	Code for the ANOVA analysis and t-tests

	LME

	The temporal emergence of an effect
	Considerations in applying ANOVALME
	Growth curve analysis (GCA)
	Cluster-based permutation analysis (CPA)
	Bootstrapped differences of timeseries (BDOTS)
	Generalised additive mixed modelling (GAMM)
	Divergence point analysis (DPA)

	Summary
	Acknowledgements 
	References


