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Abstract
Factor mixture modeling (FMM) has been increasingly used in behavioral and social sciences to examine unobserved 
population heterogeneity. Covariates (e.g., gender, race) are often included in FMM to help understand the formation and 
characterization of latent subgroups or classes. This Monte Carlo simulation study evaluated the performance of one-step 
and three-step approaches to covariate inclusion across three scenarios, i.e., correct specification (study 1), model mis-
specification (study 2), and model overfitting (study 3), in terms of direct covariate effects on factors. Results showed that 
the performance of these two approaches was comparable when class separation was large and the specification of covariate 
effect was correct. However, one-step FMM had better class enumeration than the three-step approach when class separation 
was poor, and was more robust to the misspecification or overfitting concerning direct covariate effects. Recommendations 
regarding covariate inclusion approaches are provided herein depending on class separation and sample size. Large sample 
size (1000 or more) and the use of sample size-adjusted BIC (saBIC) in class enumeration are recommended.
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Introduction

Factor mixture modeling (FMM) has been increasingly used 
in behavioral and social sciences to examine unobserved 
population heterogeneity (e.g., Allan et al., 2014; Bernstein 
et al., 2013; Dimitrov et al., 2015; Elhai et al., 2011). FMM 
combines common factor model and latent class analysis 
(LCA) by allowing for the simultaneous presence of a con-
tinuous latent variable (factor) and a categorical latent varia-
ble (latent class) in the model (Lubke & Muthén, 2005). Dis-
tinct latent classes that differ in parameters of the common 
factor model (e.g., factor mean, factor variance, loadings, 

intercepts) would emerge. Given that classes are unobserved, 
covariates (e.g., gender, race) are often linked to the latent 
class variable to help understand the formation and charac-
terization of latent classes. Specifically, a significant covari-
ate effect would indicate that the latent class membership 
can be explained by this covariate. For instance, if gender is 
a significant covariate, one latent class might be character-
ized by having a large proportion of females and the other 
class might be dominated by males.

To evaluate the role of covariates in FMM, there are 
two decisions that have to be made in specifying covariate 
effects. The first is about when to include covariates, and 
two common options are one-step and three-step approaches, 
both of which concern the covariate effect on the latent 
class variable. In one-step FMM, such a covariate effect is 
included in the process of identifying the optimal number of 
latent classes (i.e., class enumeration). This approach might 
improve the class enumeration and class assignment, as the 
incorporation of covariates can increase class separation 
(Lubke & Muthén, 2007; Wang et al., 2020; Wang et al., 
2021). The downside of this approach is that class enumera-
tion and class assignment might change considerably when 
different covariates are included (Lubke & Muthén, 2005; 
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Nylund-Gibson & Masyn, 2016). To prevent this change of 
classification, some researchers have suggested excluding 
covariates in the latent class enumeration, i.e., specifying an 
unconditional mixture model, and including covariate effects 
in the subsequent analyses. Based on a three-step maximum 
likelihood (ML) procedure proposed by Vermunt (2010), 
latent class enumeration is conducted with the unconditional 
model (step 1), and then observations are classified into one 
of the latent classes based on the most likely class mem-
bership (step 2). Step 3 is to regress the class variable on 
covariates while taking into account the classification error. 
Note that this approach was referred to as a three-step ML or 
modal ML procedure in Vermunt (2010) and the three-step 
approach in this paper.

Whereas the first decision focuses on when to estimate 
covariate effects on the latent class variable, the second 
decision is about how to specify direct covariate effects, 
i.e., whether or not the direct covariate effect on the factor 
should be estimated, which is of focal interest in this study. 
Due to the complexity of FMM, covariate specification also 
becomes complex, and one example is the presence of the 
covariate effect on the factor in addition to the latent class 
variable, indicating that within-class variation in the factor 
scores can be explained by the covariate. For instance, Lubke 
and Muthén (2005) demonstrated that gender and urban 
status accounted for some within-class variations in math 
achievement. Because the population model is unknown in 
applied research, model misspecification might occur when 
direct covariate effects are omitted in the analysis; model 
overfitting is possible when direct covariate effects do not 
exist in the population but are estimated.

Given that the impact of these two decisions is not well 
understood in FMM, the overarching goal of the paper is 
to comprehensively evaluate the performance of one-step 
and three-step approaches in FMM via Monte Carlo simu-
lations, while taking into account the potential presence of 
direct covariate effects. Previous methodological studies that 
compared one-step and three-step approaches have largely 
focused on LCA and growth mixture modeling (GMM) 
(e.g., Asparouhov & Muthén, 2014; Cetin-Berber & Leite, 
2018; No & Hong, 2018; Park & Yu, 2018; Vermunt, 2010). 
Among these previous studies on LCA and GMM, inconsist-
ent findings have been observed regarding the performance 
of one-step and three-step approaches and, more impor-
tantly, a comprehensive evaluation of covariate inclusion 
approaches is still lacking given that misspecification and/or 
overfitting of covariate effects has not been investigated con-
sidering both class enumeration and parameter recovery. In 
addition, it remains unknown to what extent previous find-
ings on LCA and GMM would be applicable to FMM, given 
that FMM can be considered as a more complex model with 
a freely estimated measurement model, whereas a measure-
ment model is absent in LCA and is constrained (loadings 

and intercepts fixed to constant values for parameterization) 
in GMM. In particular, due to the increasing model com-
plexity of FMM, we hypothesize that the one-step approach 
might outperform the three-step approach in terms of class 
enumeration due to the contribution of proper covariates to 
class separation, when FMM is correctly specified (Lubke 
& Muthén, 2007; Wang et al., 2021). However, it is unclear 
how class enumeration of these two approaches will be 
impacted by misspecification and overfitting of FMM—
the benefits of covariate inclusion might be offset by the 
misspecification or overfitting for the one-step approach, 
whereas the three-step approach does not have the aid of 
covariates but might be robust to misspecification or over-
fitting. Moreover, parameter recovery (especially covariate 
effects) has not been systematically investigated regard-
less of FMM specification. Such insufficient understanding 
of covariate inclusion in FMM is in stark contrast to the 
increasing popularity of FMM and the prevalence of covari-
ate inclusion to help understand and characterize heteroge-
neity, highlighting the need for a comprehensive evaluation 
of one-step and three-step approaches under FMM.

In response to this need, this study evaluated the perfor-
mance of one-step and three-step approaches across different 
scenarios, i.e., correct specification, model misspecification, 
and model overfitting, in terms of direct covariate effects 
on factors. The first study compared the performance of 
the two approaches when only the covariate effect on the 
latent class variable is considered (i.e., correct specifica-
tion). The second study evaluated the performance of these 
two approaches under model misspecification. That is, direct 
covariate effects on factors are ignored in one-step and three-
step procedures. The third study focused on the scenario of 
model overfitting when the covariate effects on the factors 
can be zero in the population but was included in the ana-
lytical model. Both class enumeration (i.e., proportion of 
replications that selected the correct number of classes) and 
parameter recovery (e.g., bias in covariate effects and factor 
mean difference) were evaluated across studies to provide a 
more comprehensive investigation and well-grounded rec-
ommendations to practitioners.

Factor mixture modeling

FMM integrates LCA and a common factor model (Lubke & 
Muthén, 2005). With i denoting an individual and k referring 
to the class the individual is assigned to (k = 1, 2, … , K), 
the common factor model can be expressed as:

Yik, a J × 1 vector of responses with J denoting the num-
ber of items, is a function of a J × 1 vector of item intercepts 

(1)Y
ik
= �

k
+ �

k
�
ik
+ �

ik
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τk, a J × R matrix of factor loadings Λk with R denoting the 
number of factors, a R × 1 vector of factor scores ηik, and a 
J × 1 vector of item residuals εik. Residuals are assumed to 
be multivariate normally distributed with mean 0 and vari-
ance-covariance matrix Θk (dimension J × J). The subscript 
k associated with the model parameters indicates that they 
can vary across latent classes. Factor scores are assumed 
to be normally distributed, with αk representing the vector 
of factor means and Ψk the covariance matrix of factors. 
Thus, the class-specific mean vectors and class-specific vari-
ance–covariance matrices can be expressed as:

Covariates are often included in FMM to explain the 
latent class membership and help researchers understand 
the composition or characteristics of latent classes (e.g., 
Bernstein et al., 2013; Elhai et al., 2011). The probability 
of belonging to latent class k over a reference class r is esti-
mated through a multinomial regression model with covari-
ates X:

where vk and Γk represent vectors of intercepts and regres-
sion coefficients, respectively.

Additionally, covariates can be included in FMM to 
explain within-class variations in factor scores (Bauer, 2007; 
Lubke & Muthén, 2005). When such an effect is present, 
factor scores can be expressed as:

In this equation, factor scores are a function of intercepts 
Ak, effect of covariate effect on factor ��

k
 , covariates Xik, and 

residuals ζik. Note that although direct covariate effects on 
items or observed indicators are also possible, they are not 
considered in this study given that they substantively rep-
resent within-class measurement noninvariance in terms of 
the covariate (De Ayala et al., 2002; Lee & Beretvas, 2014; 
Lubke & Muthén, 2005; Tay et al., 2011), which is beyond 
the scope of this study.

Approaches to covariate inclusion

In this section, we review previous simulation studies 
that evaluated the performance of one-step and three-step 
approaches in mixture modeling (see Table 1 for a summary 
table and https:// osf. io/ amupe/? view_ only= f72fb 1198c 
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4947d bab73 1cebb 5c416 a3 for a more detailed summary). 
We first review studies that were conducted in the context 
of correct specification of covariate effects, that is, only the 
covariate effect on the latent class variable was in the popu-
lation, and both one-step and three-step approaches correctly 
specified the covariate effect. Next, we review simulation 
studies that evaluated one-step and/or three-step approaches 
when covariate effects were misspecified or overfitted.

Correct specification of covariate effects

Overall, mixed findings have been reported by simulation 
studies that evaluated the performance of one-step and three-
step approaches using different mixture models. For exam-
ple, using LCA with predictor or outcome variables, No and 
Hong (2018) found that the three-step approach produced 
more stable results in estimating the relationships between 
the latent class variable and external variables than the one-
step approach. With nested data, multilevel FMM using the 
three-step approach performed well in detecting between-
level latent classes among which measurement noninvari-
ance was present (Kim & Wang, 2018). By contrast, other 
studies found that the inclusion of proper covariates in FMM 
improved class enumeration and assignment, the coverage of 
factor mean differences, and measurement invariance test-
ing (e.g., Lubke & Muthén, 2007; Wang et al., 2020; Wang 
et al., 2021). In the context of GMM with covariate effects 
on either class membership or growth factors or both, Diallo 
and Lu (2017) found that the correctly specified one-step 
approach outperformed the three-step approach in terms of 
the accuracy of covariate effect and standard error estimates. 
Note that despite these benefits of covariate inclusion, the 
one-step approach has been criticized because the inclusion 
of covariates in the measurement model impacts the for-
mation and interpretation of latent classes (Asparouhov & 
Muthén, 2014; Bakk et al., 2013; Vermunt, 2010).

Alternatively, some simulation studies found that the 
relative performance of one-step and three-step procedures 
depended upon manipulated factors. For instance, the per-
formance of the three-step approach has been shown to be 
comparable to the one-step approach in sufficiently good class 
separation in LCA and GMM (Asparouhov & Muthén, 2014; 
Cetin-Berber & Leite, 2018; Li & Harring, 2017; Park & Yu, 
2018). However, Park and Yu (2018) noted superior perfor-
mance of the one-step procedure in the recovery of the effects 
of continuous covariates when class separation was poor and/
or sample size was small with multilevel LCA. Li and Harring 
(2017) found that with GMM, when class separation was poor 
and the covariate effect was weak, the estimation of dichoto-
mous covariate effects was problematic for both approaches 
but more severely for the three-step procedure. Stegmann and 
Grimm (2018) also highlighted the importance of covari-
ate effect strength in GMM: covariate inclusion (as in the 

https://osf.io/amupe/?view_only=f72fb1198c4947dbab731cebb5c416a3
https://osf.io/amupe/?view_only=f72fb1198c4947dbab731cebb5c416a3
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one-step approach) was only beneficial when the association 
between classes underlying the covariates and growth classes 
was strong and classes underlying the covariates were at least 
moderately separated; in all other cases class recovery was 
negatively affected by covariate inclusion.

Misspecification or overfitting of covariates effects

When modeling covariates in FMM, researchers are likely 
to misspecify or overfit the covariate effects. As mentioned 
previously, misspecification and overfitting in this study refer 
to the direct covariate effects on the factors. Therefore, the 
literature reviewed in this section is limited to methodological 
studies that examined the performance of the one-step and/
or the three-step that misspecified or overfitted direct covari-
ate effects on factors. Overall, the robustness of the three-
step approach to the misspecification of covariate effects has 
been evidenced in most studies. For instance, Hu et al. (2017) 
observed reliable performance of the unconditional GMM 
when direct covariate effects on the growth factors (intercept 
and slope) were simulated in the population. GMMs with 
direct covariate effects on growth factors outperformed the 
unconditional model only when class separation and sample 
size were small, but correct enumeration rates of the condi-
tional GMMs were still very low. Diallo et al. (2017) examined 
the impact of partial or total inclusion or exclusion of active or 
inactive covariates on class enumeration in GMM. Their find-
ings also suggested that class enumeration in GMM should be 
conducted without covariates.

On the other hand, Asparouhov and Muthén (2014) showed 
that the three-step approach ignoring direct covariate effects did 
not perform as well as the one-step procedure or an adjusted 
three-step approach that included the covariate effects in the first 
step. Specifically, when direct effects on growth factors in GMM 
were ignored, severe bias and low coverage in the estimation of 
covariate effects on the latent class variable occurred, especially 
when class separation was poor and/or the omitted effects were 
strong. Relatedly, the impact of ignoring direct covariate effects 
on model fit in FMM was examined in Wang et al. (2020), who 
compared the fit of correctly specified and misspecified FMMs 
along with varying numbers of classes and levels of invariance. 
They found that misspecified FMMs that ignored the direct 
covariate effect were rarely selected as the best-fitting model 
by the Bayesian information criterion (BIC) and sample size-
adjusted BIC (saBIC), indicating that such misspecification led 
to worse fit than the correctly specified FMMs.

The present study

Through the extensive literature review above, it is appar-
ent that previous studies on the performance of one-step 
and three-step approaches have largely focused on LCA and 

GMM. A few methodological studies on FMM have focused 
on the performance of only one approach (i.e., three-step; 
Kim & Wang, 2018), or compared the two approaches but 
examined only class enumeration (Wang et al., 2020) or 
parameter recovery of factor mean difference under correctly 
specified FMM (Wang et al., 2021). Building upon these 
prior studies, the current study aims to comprehensively 
evaluate the efficacy of one-step and three-step approaches 
in FMM with regard to class enumeration and the recovery 
of covariate effects and factor mean difference in three sce-
narios, i.e., correct specification (study 1), misspecification 
(study 2), and overfitting (study 3), in terms of direct covari-
ate effects on factors. This comprehensive evaluation of the 
approaches to covariate inclusion is warranted, given that all 
three scenarios could possibly occur in applied research as 
the population model is unknown.

Study 1

Method

Population model

The population model (see Fig. 1a) was a two-class FMM 
with three factors, with each factor measured by five mul-
tivariate normal items. The three factors had a correlation 
of .25 between them in each class. Measurement invariance 
held across classes, implying that item intercepts, factor 
loadings, and residual variances were identical for the two 
latent classes. The factor loadings of each factor were set at 
.70, .80, .70, .60, and .80 for the five items, respectively, and 
the residual variances of the five items were .51, .36, .51, 
.64, and .36 to obtain unit variance for each item. The factor 
mean for one class was set at zero, whereas the factor mean 
of the other class varied as the design factor of effect size 
(i.e., factor mean difference between classes), which will 
be explained in the next section. The variances of the fac-
tors were set at 1. The covariate was a normally distributed 
continuous variable with a mean of zero and a variance of 1.

Manipulated factors

The results of previous simulation studies about FMM 
indicated that the following four design factors had an 
impact on the performance of FMM in terms of class enu-
meration and parameter estimates: sample size, effect size, 
strength of covariate effect, and mixing proportions.

Sample size Previous research showed that sample size 
was an important factor in class enumeration in mixture 



3286 Behavior Research Methods (2023) 55:3281–3296

1 3

modeling (Li & Hser, 2011; Nylund et al., 2007; Wang 
et al., 2021). In this study, sample size was manipulated at 
four levels: 250, 500, 1000, and 2000. These sample sizes 
represent small, moderate, large, and very large samples in 
applied research studies of FMM.

Effect size The degree of class separation in FMM repre-
sented by the effect size of factor mean differences between 
the two latent classes also had an impact on the performance 
of FMM (Lubke & Muthén, 2007). Cohen’s d measure was 
used to gauge the effect size of factor mean difference. The 
factor mean of the reference class was set at zero, and the 
factor mean of the other class was set at 1, 1.50, and 2 for all 
three factors, to represent small to large effect size of factor 
mean difference. These values of effect size accorded with 
empirical applications of FMM (e.g., Jensen, 2017; Piper 
et al., 2008; Rice et al., 2014).

Covariate effect In study 1, the covariate had an effect only 
on the class membership. The covariate effect on the logit 
of belonging to a specific class over the reference class was 
manipulated at three levels: 0, 0.50, and 2, corresponding to 
an odds ratio of 1, 1.65, and 7.39, respectively. These values 
were consistent with previous research into FMM with a 
covariate effect (e.g., Wang et al., 2020).

Mixing proportions Previous research in mixture modeling 
showed that it was easier to recover the true number of latent 
classes when the proportions of the latent classes were more bal-
anced than dramatically different (e.g., Nylund et al., 2007). The 
mixing proportions of the two latent classes were set at either bal-
anced (.50/.50) or unbalanced (.75/.25) (e.g., Nylund et al., 2007).

In addition to these conditions in the original design, we 
included some conditions that had higher factor correlations 
(.50) and lower factor loadings (.70, .55, .45, .60, and .55 

a

b

Fig. 1  a Population model for studies 1 and 3 , b Population model for study 2. F1, F2, and F3 are three latent factors each measured by five 
items, Y1–Y5, Y6–Y10, and Y11–Y15, respectively. C is the latent class variable and X is a covariate
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for each of five items per factor) based on reviewers’ sug-
gestions, to increase the generalizability of findings. Higher 
factor correlations and lower loadings were fully crossed 
with sample sizes (250, 500, 1000, and 2000), effect sizes 
(1 and 2) and covariate effects (0, 0.50, and 2) for equal 
proportions. There was a total of 96 conditions (4 × 3 × 3 
× 2 original conditions and 4 ×2 × 3 additional conditions). 
Two hundred replications of each condition were generated 
and analyzed using Mplus 8.4 (Muthén & Muthén, 1998-
2017). The full simulation codes (across all three studies) 
can be found here https:// osf. io/ amupe/? view_ only= f72fb 
1198c 4947d bab73 1cebb 5c416 a3.

Analytical models

Each data set was analyzed using two approaches, i.e., one-
step and three-step FMM (FMM-1S and FMM-3S hereinafter, 
respectively), correctly specifying the covariate effect on the 
latent class membership. These two models including one to three 
latent classes were run and systematically evaluated for all of the 
designed conditions in these studies. For the one-class model, the 
identification of FMM was similar to a common factor model 
where factor loading of the first item was fixed at 1 for each factor 
and factor means were fixed at zero, which is the default setting of 
Mplus. For two- and three-class models, factor loading of the first 
item was constrained to 1 for each factor across classes, and factor 
means of the last class were fixed at zero as the default identifica-
tion of Mplus. In this study, we only allowed for class-specific 
factor means (except the last class) and imposed the equality con-
straint on all other parameters (i.e., factor loadings, intercepts, 
residual variances, factor variances/covariances, covariate mean/
variance, and covariate effects) across classes. Thus, the specifica-
tion of the analytical models was consistent with the population 
model, and there was no misspecification or overfitting that might 
contaminate findings of study 1.

The primary simulation outcome was correct class enu-
meration rate (i.e., the proportion of replications that cor-
rectly supported the two-class model). Model selection was 
based on the following information criteria (ICs)1: Akaike 
information criterion (AIC; Akaike, 1974), BIC (Schwarz, 
1978), and saBIC (Sclove, 1987). The model with the lowest 
value of the ICs among the three competing models (one- to 
three-class) was selected as the best-fitting model. The sec-
ondary outcome was parameter recovery including relative 
bias, type I error rates, and power of (1) covariate effect on 
latent class membership and (2) effect size, which were inves-
tigated for replications that had correct class enumeration.

Results

Figure 2 presents the correct class enumeration rates for 
FMM-1S and FMM-3S under equal proportions for the 
original set of conditions. Unequal proportions and the 
additional set of conditions with higher factor correlations 
and lower loadings resulted in lower correct enumeration 
rates for both FMM-1S and FMM-3S, but the relative perfor-
mance of the two approaches remained the same. Therefore, 
results for unequal proportions and the post hoc conditions 
are not presented or discussed here, but can be found in the 
supplemental tables (see Tables S1–S4).

Overall, the relative performance of FMM-1S and FMM-
3S depended upon effect size. When effect size was 1.00, 
FMM-1S clearly outperformed FMM-3S, with higher correct 
enumeration rates across ICs. As effect size increased, the 
discrepancy in correct enumeration rates between the two 
approaches decreased such that with an effect size of 2.00, the 
performance of FMM-3S was comparable to that of FMM-1S 
across ICs. The impact of the covariate effect strength was 
observed for FMM-1S, i.e., larger correct enumeration rates 
were observed with larger covariate effects, controlling for 
effect size. However, the strength of the covariate effect had 
a negligible impact on the performance of FMM-3S. Larger 
sample size was associated with higher correct enumeration 
rates across conditions and models. BIC did not perform as 
well as saBIC across most conditions, but larger effect size, 
stronger covariate effect, and larger sample size all helped 
improve its correct enumeration rates. When correct enu-
meration rates were low for BIC and saBIC, the one-class 
model was supported. Overall, AIC outperformed BIC and 
saBIC when the effect size was small and/or covariate effect 
was weak. However, the correct enumeration rates of AIC 
under these conditions were not yet satisfactory (below .70), 
as AIC tended to over-extract the number of classes.

Because of the comparable performance of FMM-1S 
and FMM-3S in class enumeration, parameter recovery (see 
Table 2) was only examined under a large effect size. Over-
all, the covariate effect was accurately estimated with large 
sample sizes (i.e., 1000 and 2000), but positive and negative 
bias occurred with small sample sizes (i.e., 250 and 500) for 
FMM-1S and FMM-3S, respectively. For both approaches, 

1 Additional approaches to class enumeration are available such as 
the Lo-Mendell-Rubin (LMR) test and adjusted LMR test (Lo et al., 
2001), and bootstrap likelihood ratio test (BLRT; McLachlan & Peel, 
2000). However, the former two were not examined given that previ-

ous simulation studies have shown that they do not perform as well 
as ICs (Henson et al., 2007; Nylund et al., 2007; Tein et al., 2013). 
BLRT was not considered due to the long execution time. Entropy 
was also not included due to the unreliable performance that has been 
documented in the literature (e.g., E. Kim et  al., 2016; Tein et  al., 
2013), which was confirmed by an examination of class enumeration 
based on entropy for a subset of conditions (interested readers are 
referred to Tables S3 and S4). In addition, a major limitation with the 
use of entropy for class enumeration is that the one-class model can-
not be compared with models with two or more classes in terms of fit.

Footnote 1 (continued)

https://osf.io/amupe/?view_only=f72fb1198c4947dbab731cebb5c416a3
https://osf.io/amupe/?view_only=f72fb1198c4947dbab731cebb5c416a3
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type I error control was adequate and power in detecting 
covariate effects remained high across most conditions. 
Bias and power in detecting factor mean difference were 
also comparable between the two approaches. To summarize, 
when only the covariate effect on the latent class variable 
was simulated and estimated (i.e., correct specification), the 
superiority of FMM-1S was evidenced in class enumeration 
with small effect size. 

Study 2

Method

Built on study 1, the simulation design was modified to 
address the research question of study 2: how one-step 
and three-step FMM perform when the covariate effect 
is misspecified (i.e., ignoring the covariate effect on 

factor). To this end, the only modification to the popu-
lation model is that the covariate had effects on both 
latent class membership and each of the three factors, as 
shown in Fig. 1b, whereas the population model in study 
1 included covariate effect on the latent class member-
ship only (Fig. 1a). Manipulated factors included effect 
size (1 and 2), sample size (250, 500, 1000, and 2000), 
covariate effect on latent class membership (0.50 and 2), 
and covariate effect on factor (0.20 and 0.60, which were 
selected to represent a small and large effect). Because 
the results of study 1 showed trivial differences in the 
relative performance for the one-step and three-step 
between equal and unequal proportions or higher and 
lower factor correlations/loadings, only the equal pro-
portions conditions in the original set of conditions were 
included here (and in study 3). Study 2 had a total of 32 
(2 × 4 × 2 × 2) conditions, and 200 replications were 
generated for each condition.

Fig. 2  Correct class enumeration rates of one-step and three-step FMMs (study 1). FMM-1S and FMM-3S refer to one-step and three-step FMM 
with covariate effect on class, respectively
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Each replication was analyzed using four models: one-
step and three-step FMM with covariate effect on the latent 
class membership only (FMM-1S and FMM-3S, respec-
tively), both of which were misspecified models; one-step 
FMM with covariate effects on both latent class member-
ship and factor (FMM-CF-1S); and adjusted three-step FMM 
with covariate effect on factor in the first step (FMM-F-3S). 
The latter two models were correctly specified and thus 
could serve as a baseline with which the impact of omitting 
the covariate effect on factor could be evaluated. The identi-
fication and specification of FMM-1S and FMM-3S was the 
same as in study 1. For FMM-CF-1S and FMM-F-3S, class-
invariant covariate effects on factors were specified and the 
rest of model specification remained the same as FMM-1S 
and FMM-F-3S, respectively. Note that instead of fixing fac-
tor means of the last class at zero for identification purposes, 
factor intercepts were constrained to zero for FMM-CF-1S 
and FMM-F-3S due to the paths from the covariate to fac-
tors. For class enumeration, AIC was not reported given its 
unsatisfactory performance in study 1 but can be found in 
supplemental Table S5. For parameter recovery, the relative 
bias and statistical power of the covariate effect on factor 
were also reported when the effect was estimated. The rest 
of the simulation outcomes remained the same as in study 1.

Results

As shown in Fig. 3, FMM-1S ignored the covariate effect on 
factors, and the impact of such model misspecification on 
class enumeration was mixed. Specifically, correct enumera-
tion rates of saBIC were lower than those under FMM-CF-
1S across most conditions. BIC was more robust to covariate 

effect misspecification than saBIC, and in fact, substantially 
higher correct enumeration rates were observed for FMM-1S 
than FMM-CF-1S when the ignored effect on factors was 
0.20 (small), except for a few conditions in which effect size 
was large and covariate effect on class was large. Larger 
sample size was associated with worse class enumeration, 
as FMM-1S tended to over-extract the number of classes. 
Correct enumeration rates were high (above .70) for FMM-
CF-1S when class separation was large (i.e., large effect 
size and/or large covariate effect on class). Larger sample 
size also contributed to better class enumeration. FMM-3S 
failed to detect two classes across conditions and the one-
class model was supported instead. FMM-F-3S took into 
account the covariate effect on factor in class enumeration 
but still failed to detect two classes when effect size was 1. 
As effect size increased to 2, it outperformed all other mod-
els including FMM-CF-1S when covariate effect on class 
was 0.50 (small). However, when covariate effect on class 
was 2 (large), it did not perform as well as FMM-CF-1S but 
performed better than FMM-3S.

Parameter recovery (see Table 3) was investigated for all 
replications that converged and had admissible solutions. 
FMM-3S and FMM-F-3S were excluded from this inves-
tigation given the unsatisfactory enumeration results. For 
FMM-CF-1S, covariate effects on the latent class variable 
and factors were severely overestimated and power remained 
high, especially for the latter. Effect size was underestimated 
and, not surprisingly, power was relatively low across con-
ditions. However, for conditions that had high enumeration 
rates, all examined parameters had minimal bias (around or 
below 0.05) and power was sufficient (over .85). For FMM-
1S, severe overestimation was observed for covariate effect 

Table 2  Parameter recovery of one-step and three-step FMMs under large effect size (study 1)

ES = effect size; COVC = covariate effect on class; Rebias = relative bias; Relative bias with absolute value ≤ .05 are in bold

ES COVC N Covariate effect Effect size

FMM-1S FMM-3S FMM-1S FMM-3S

Rebias Type I /Power Rebias Type I /Power Rebias Power Rebias Power

2 0 250 .15 .06 .15 .05 .08 .98 .06 .97
500 .10 .06 .10 .06 .04 .99 .03 1.00
1000 .06 .03 .06 .04 .01 1.00 .01 1.00
2000 .04 .04 .04 .02 .00 1.00 .00 1.00

.5 250 .19 .88 −.01 .83 .06 .99 .07 .98
500 .02 .98 −.04 .98 .02 1.00 .03 .99
1000 .03 1.00 .01 1.00 .01 1.00 .01 1.00
2000 −.01 1.00 −.02 1.00 .00 1.00 .00 1.00

2 250 .09 .99 −.12 1.00 .03 1.00 .06 .98
500 .01 1.00 −.06 1.00 .01 1.00 .03 .99
1000 .01 1.00 −.02 1.00 .00 1.00 .00 1.00
2000 .01 1.00 −.02 1.00 .00 1.00 .00 1.00
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on class and effect size across most conditions regardless of 
class enumeration.

Taken together, FMM-3S performed poorly when omitting 
the covariate effect on factors; FMM-F-3S had improved yet 
unsatisfactory performance; FMM-1S was more robust to 
the misspecification than FMM-3S in class enumeration but 
parameter recovery was poor; and FMM-CF-1S, the correct 
model, can be recommended with the caveats that it requires 
large class separation and/or large sample size.

Study 3

Method

Whereas study 2 considered a scenario in which the covari-
ate effect on factors was omitted, study 3 aimed at evalu-
ating the performance of one-step and three-step FMMs 
when model overfitting occurred. Specifically, this overfit-
ting refers to the estimation of covariate effects on factors 
when such effects do not exist in the population model. To 
this end, we reanalyzed a subset of conditions in study 1, 
including effect size (1 and 2), covariate effect on the latent 
class variable (0.50 and 2), and sample size (250, 500, 1000, 
and 2000), with these three factors fully crossed. Each of 
the 200 replications was analyzed using FMM-CF-1S and 
FMM-F-3S as in study 2. Both models overfitted the covari-
ate effect because they estimated covariate effects on factors 
when only the covariate effect on the latent class variable 
was present in the population model. Study 3 included the 

same outcomes as in studies 1 and 2, i.e., class enumeration 
(AIC reported in the supplemental Table S6) as well as rela-
tive bias and type I error rates/power of covariate effects and 
effect size estimates.

Results

Table 4 presents correct enumeration rates of FMM-CF-
1S and FMM-F-3S when both models were overspeci-
fied. Note that correct enumeration rates for FMM-1S and 
FMM-3S in Fig. 1 can serve as a benchmark against which 
the impact of model overfitting can be evaluated. FMM-F-
3S had high correct enumeration rates when the effect size 
was large and the covariate effect on the latent class vari-
able was small. However, the overall performance of this 
model was worse than FMM-3S, which correctly specified 
the covariate effect. In contrast, FMM-CF-1S was more 
robust to the overfitting of covariate effects. It performed 
well and comparably to FMM-1S when class separation 
was large, i.e., large effect size and/or large covariate 
effect on the latent class variable. Larger sample size was 
associated with higher correct enumeration rates. Under 
conditions with smaller separation, FMM-CF-1S tended 
to under-extract classes.

Parameter recovery was investigated for FMM-CF-1S 
(see Table 4). FMM-F-3S was excluded from this analysis 
given its overall poor correct enumeration rates. FMM-
CF-1S tended to overestimate covariate effects on class 
and factors but underestimate effect size, which is aligned 
with the finding in study 2 when this model was correctly 

Fig. 3  Correct class enumeration rates of one-step and three-step 
FMMs (study 2). FMM-1S and FMM-3S refer to one-step and three-
step FMM with covariate effect on class, respectively; FMM-CF-1S 

is one-step FMM with covariate effects on class and factor; FMM-F-
3S is the adjusted three-step FMM with covariate effect on factor in 
the first step
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specified. When correct enumeration rates were high, all 
three parameters reached minimal bias. Of note, severe 
inflation of type I error rates was observed for covariate 
effects on factors, unless enumeration rates were high.

To sum up, overspecification of FMM by estimating 
covariate effects on factors when they were zero in the 
population would have a negative impact on class enu-
meration, but more so for the three-step approach. Large 
class separation and/or large sample size are needed to 
ensure adequate performance of FMM-CF-1S with regard 
to class enumeration and parameter recovery.

Discussion

To comprehensively evaluate the performance of one-step 
and three-step approaches in FMM, we conducted a series 
of simulation studies to examine class enumeration and 
parameter recovery under correct specification, misspecifi-
cation, and overfitting concerning direct covariate effect(s) 
on factors. Major findings are summarized in Table 5 for 
each simulation study and discussed here with regard to two 
decisions in covariate inclusion: when to include covariates 
(one-step and three-step approaches) and how to specify 

Table 3  Parameter recovery of one-step FMMs (study 2)

ES = effect size; COVC = covariate effect on class; COVF = covariate effect on factor; Rebias = relative bias. Relative bias with absolute value 
≤ .05 are in bold

ES COVC COVF N COVC ES COVF

FMM-1S FMM-CF-1S FMM-1S FMM-CF-1S FMM-CF-1S

Rebias Power Rebias Power Rebias Power Rebias Power Rebias Power

1 .5 .2 250 4.94 .72 8.79 .60 .12 .89 −.28 .45 .42 .71
500 2.38 .85 4.05 .63 .09 .97 −.41 .44 .34 .76
1000 2.15 .97 5.04 .69 .09 .99 −.52 .41 .32 .86
2000 1.93 1.00 2.22 .57 .07 1.00 −.56 .38 .32 .91

.6 250 7.00 .92 3.73 .57 .62 .99 −.41 .46 .02 .99
500 7.34 .95 2.67 .57 .60 .99 −.50 .43 .02 .99
1000 6.26 1.00 2.87 .61 .58 .99 −.55 .44 .01 .99
2000 6.07 1.00 3.52 .58 .57 1.00 −.58 .41 .01 .99

2 .2 250 .70 .95 .66 .65 .36 .99 −.13 .54 .55 .63
500 .43 .98 .16 .81 .35 1.00 −.16 .64 .30 .65
1000 .37 1.00 .07 .94 .35 1.00 −.04 .86 .09 .84
2000 .43 1.00 .03 .99 .34 1.00 .01 .98 .00 .98

.6 250 1.59 1.00 .73 .76 1.01 1.00 −.18 .59 .08 1.00
500 1.46 .99 .14 .84 .98 1.00 −.12 .75 .04 .99
1000 1.38 1.00 .05 .95 .98 1.00 −.02 .94 .01 1.00
2000 1.31 1.00 .02 1.00 .98 1.00 .01 1.00 .00 1.00

2 .5 .2 250 1.02 .96 2.97 .60 −.01 .98 −.58 .47 .48 .71
500 1.60 .99 1.70 .71 .02 1.00 −.52 .57 .39 .83
1000 .61 1.00 1.56 .88 .03 1.00 −.47 .61 .33 .94
2000 .57 .99 1.33 .82 .03 1.00 −.50 .58 .31 .98

.6 250 3.84 .92 2.40 .69 −.01 .97 −.55 .54 −.05 .99
500 3.22 .97 1.70 .73 −.01 1.00 −.53 .56 −.04 1.00
1000 3.09 1.00 1.25 .89 −.01 1.00 −.42 .67 −.03 1.00
2000 2.96 1.00 1.40 .82 −.02 1.00 −.47 .60 −.04 .99

2 .2 250 .24 .99 .11 .98 .14 1.00 −.01 .98 .08 .56
500 .19 1.00 .00 1.00 .12 1.00 .00 1.00 .02 .82
1000 .19 1.00 .01 1.00 .12 1.00 .00 1.00 .02 .99
2000 .18 1.00 .01 1.00 .12 1.00 .00 1.00 −.01 1.00

.6 250 .67 .99 .10 .99 .40 .99 −.01 .98 .01 1.00
500 .62 1.00 .00 1.00 .40 1.00 .00 1.00 .00 1.00
1000 .60 1.00 .01 1.00 .40 1.00 .00 1.00 .00 1.00
2000 .58 1.00 .01 1.00 .40 1.00 .00 1.00 .00 1.00
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covariate effects (whether or not the covariate effect on fac-
tor should be estimated).

When correctly specified, one-step and three-step per-
form equally well if (1) a large effect size (i.e., 2) is coupled 
with sample size of 500 or above, or (2) a moderate effect 
size (1.50) is coupled with sample size of 2000. Otherwise, 
the one-step approach outperforms the three-step approach 
given more accurate class enumeration. The superior per-
formance of the one-step approach is consistent with pre-
vious simulation studies on mixture models and can be 
explained by the benefit of including covariate effects on 
the latent class variable—enhancing class separation (Lubke 
& Muthén, 2007; Park & Yu, 2018; Wang et al., 2020; Wang 
et al., 2021).

Results also showed that the one-step FMM is more 
robust than the three-step approach to model misspecifica-
tion or overfitting concerning the direct covariate effect on 
factor. In this study, the three-step FMM performed poorly, 
consistently under-extracting classes across conditions, 
which was contrary to the finding of previous studies under 
regression mixtures, LCA, and GMM that class enumera-
tion was adequate (Diallo et al., 2017; Hu et al., 2017; M. 
Kim et al., 2016; Nylund-Gibson & Masyn, 2016). This 
gap might occur because the data generated in this scenario 
are quite complex (with two types of covariate effects), 
and without good covariates that can contribute to class 
separation, three-step FMM fails to accurately identify the 

heterogeneity in the data. Class enumeration was improved 
for the adjusted three-step FMM that estimated the covariate 
effect on factor in the first step, but only when large effect 
size was coupled with small covariate effect on latent class. 
This approach also had bias across the examined parameters 
even when class enumeration was accurate, which was also 
found in Asparouhov and Muthén (2014) in the context of 
GMM when class separation was comparable between these 
two studies. However, they found no bias when class separa-
tion was greater (i.e., 4 and 6 standard deviations apart in 
the intercept factor mean or corresponding entropy values 
of .85 and .95).

When one-step FMM is adopted, the optimal specification 
of covariate effects depends on class separation and sample 
size. When class separation was small and sample size was 
small (i.e., 250 or 500 examined in this study), FMMs with 
covariate effects on the latent class variable only were shown 
to perform adequately in terms of class enumeration and 
parameter recovery. This was true even when the covariate 
effect was misspecified (covariate effects on the factors were 
ignored). Thus, it is recommended to avoid overfitting in this 
scenario. When class separation was small but sample size 
was large, misspecification became a more concerning issue, 
as it would lead to severe over-extraction of latent classes, 
whereas overfitting of covariate effects (estimating covariate 
effects on both the latent class variable and the factor when 
the latter did not exist in the population) could still lead to 

Table 4  Results of one-step and three-step FMMs with overfitting of covariate effects (study 3)

ES = effect size; COVC = covariate effect on class; BIC = Bayesian information criterion; saBIC = sample size-adjusted BIC; Rebias = relative 
bias. Correct enumeration rates ≥ .70 and relative bias with absolute value ≤ .05 are in bold

ES COVC N FMM-CF-1S FMM-F-3S

Class Enumeration COVC COVF ES Class Enumera-
tion

BIC saBIC Rebias Power Bias Type I Rebias Power BIC saBIC

1 .5 250 .03 .30 8.26 .58 .11 .36 −.24 .45 .02 .20
500 .01 .12 2.96 .59 .09 .41 −.39 .44 .01 .11
1000 .00 .03 4.65 .64 .09 .47 −.50 .42 .00 .04
2000 .00 .03 3.54 .60 .09 .48 −.55 .39 .00 .02

2 250 .04 .38 1.22 .67 .13 .41 −.12 .55 .02 .17
500 .01 .48 .18 .79 .08 .30 −.16 .64 .00 .09
1000 .13 .72 .10 .91 .02 .12 −.05 .86 .00 .02
2000 .67 .98 .03 .99 .00 .07 .00 .98 .00 .00

2 .5 250 .15 .31 2.79 .62 .14 .39 −.52 .51 .28 .53
500 .30 .34 1.72 .71 .13 .44 −.53 .56 .63 .77
1000 .42 .41 2.86 .89 .11 .47 −.47 .62 .82 .81
2000 .42 .42 1.27 .78 .10 .49 −.50 .58 .96 .96

2 250 .86 .72 .13 .98 .02 .09 −.02 .97 .03 .23
500 1.00 .91 .01 1.00 .01 .06 .00 1.00 .01 .15
1000 1.00 .99 .01 1.00 .00 .05 .00 1.00 .00 .07
2000 1.00 1.00 .01 1.00 .00 .05 .00 1.00 .01 .18
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adequate class enumeration and parameter recovery when 
the sample size was 1000 and over. Thus, in this case we 
would recommend fitting covariate effects on both the latent 
class variable and the factor.

When large class separation (defined as an effect size of 
2.0 combined with a covariate effect of 2.0 on the latent 
class variable) is expected, FMMs with covariate effects on 
both the latent class variable and the factor can be fitted. 
When the covariate effect on the factor was truly present, 
this model outperformed others in terms of class enumera-
tion and parameter recovery. When the covariate effect on 
the factor was zero in the population, this overspecified 
model yielded satisfactory class enumeration and parameter 
recovery under large class separation. Note that when class 
separation was not large, the overspecified model tended to 
under-extract the number of classes, underestimate effect 
size, and yield high type I error rates for the covariate effect 
on the factor. This might occur because the between-class 
differences in factor means are absorbed by the covariate 
effect on the factor as within-class variations in factor scores 
(Wang et al., 2020).

We provide a few additional recommendations that might 
help practitioners conduct FMM analyses. First, saBIC is 
more reliable than BIC in class enumeration when class 
separation is small and/or sample size is small (1000 or 
below), which is aligned with the methodological literature 
(e.g., E. Kim et al., 2016; Wang et al., 2020). Otherwise, the 
performance of the two indices is comparable. When class 
separation is small, AIC can be used in conjunction with 
saBIC for model selection, but generally speaking, AIC is 
not recommended due to the tendency to over-extract the 
number of classes (Cho & Cohen, 2010; Henson et al., 2007; 
Nylund et al., 2007; Wang et al., 2020). Second, large sam-
ple size will benefit class enumeration and parameter recov-
ery. While a sample size of 500 seems to be the minimum for 
FMM, sample size of 1000 or more is needed in particular 
when more complex covariate effects are estimated (effects 
on both class and factor). Interested readers can refer to 
Wang et al. (2021) for additional guidelines on sample size 
requirements for FMM. Third, since the inclusion of good 
predictors of latent class membership would improve class 
separation and thus class enumeration, it is important to 

Table 5  Summary of findings for studies 1, 2, and 3
Parameter recoveryPopulation 

amodels
Analytical 

models
Class enumeration

Covariate effect on 
class

Effect size Covariate effect 
on factor

Conclusions

Study 1: Correct Specification of Covariate Effect
FMM-1S High correct enumeration rates 

especially with larger class separation 

and larger sample size 

Overestimation with 

small sample size, 

adequate type I 

error control, high 

power 

—

FMM-3S Class enumeration comparable to 

FMM-1S when class separation was 

large; otherwise, lower correct 

enumeration rates 

Underestimation 

with small sample 

size, adequate type 

I error control, high 

power 

Bias only when 

small sample size 

coupled with 

small class 

separation
—

When class 

separation was large, 

FMM-1S and FMM-

3S performed 

equally well. When 

class separation was 

small, FMM-1S was 

preferred. 

Study 2: Misspecification of covariate effect (omitting effect on factor)
FMM-CF-1S High correct enumeration rates 

especially with larger class separation 

and larger sample size

Accurate with high 

enumeration rates, 

overestimation in 

other conditions 

Accurate with 

high enumeration 

rates, 

underestimation in 

other conditions

Accurate with 

large class 

separation 

FMM-1S High correct enumeration rates when 

the ignored covariate effect on factor 

was small

Overestimation Overestimation

—

FMM-3S Poor enumeration, under-extraction of 

classes 
— — —

FMM-F-3S High correct enumeration rates only 

when large effect size coupled with 

small covariate effect on class 

— — —

FMM-3S performed 

poorly. FMM-F-3S 

had improved 

performance. FMM-

C-1S performed 

well when the 

ignored effect on 

factor was small. 

FMM-CF-1S was 

recommended. 

Study 3:Overfitting of covariate effect (estimating a true zero effect on factor)
FMM-CF-1S High correct enumeration rates with 

large class separation, poor 

enumeration (under-extraction of 

classes) in other conditions

Accurate with high 

enumeration rates, 

overestimation in 

other conditions

Accurate with 

high enumeration 

rates, 

underestimation in 

other conditions

Accurate with 

high enumeration 

rates, 

overestimation in 

other conditions

FMM-F-3S High correct enumeration rates with 

large effect size and small covariate 

effect on class

— — —

FMM-CF-1S had 

better enumeration 

than FMM-F-3S.

FMM-1S and FMM-3S = one-step and three-step FMM with covariate effect on class; FMM-CF-1S = one-step FMM with covariate effects on 
class and factor; FMM-F-3S = adjusted three-step FMM with covariate effect on factor in the first step. aFigures in this table are generic popula-
tion models that represent the covariate effect on the latent class variable only (for studies 1 and 3), and covariate effects on both the latent class 
variable and factors (study 2)
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identify potentially strong predictors of latent class member-
ship, which might be obtained or approximated by consult-
ing substantive theories or relevant literature. Note that we 
observed minimal contributions of a small covariate effect 
on class (defined as .50 in this study or odds ratio of 1.65) to 
class enumeration and parameter recovery when both covari-
ate effects on class and factor were present. Therefore, we 
would recommend the search for covariates that potentially 
have a stronger effect than .50. Lastly, applied researchers 
are strongly advised to investigate the psychometric proper-
ties of the scale prior to conducting FMM analyses. Specifi-
cally, the additional set of simulation we conducted showed 
that lower factor loadings and higher factor correlations 
would worsen the performance of both one-step and three-
step approaches. Thus, high factor loadings and reasonable 
(i.e., not too high) factor correlations will be desirable for 
the subsequent FMM analyses.

Limitations and conclusions

Although this series of simulation studies provided a rela-
tively comprehensive evaluation of one-step and three-step 
approaches in FMM, generalization of findings beyond the 
set of conditions examined in the current study should be 
exercised with caution. Specifically, this study only consid-
ered one covariate, whereas in applied research, multiple 
covariates might be available and considered to be included 
in FMM. We expect that the inclusion of good covariates as 
in the one-step approach would benefit class enumeration 
regardless of the number of covariates; however, it remains 
unknown whether the suggested specification of covari-
ate effects (i.e., on both class and factor) would be tenable 
when multiple covariates are present. The covariate effects 
are much more complex than the scenarios examined in this 
study. For instance, when one covariate has an effect on both 
class and factor, another covariate might only impact latent 
class membership or have no impact on FMM parameters 
at all. Considering the complexity of these scenarios with 
multiple covariate effects, additional research is needed to 
further investigate the specification of covariate effects, 
including but not limited to the impact of misspecification 
or overfitting.

Another important direction for future research is to 
comprehensively evaluate and examine covariate inclu-
sion approaches in FMM when there are direct covariate 
effects on items. This study focused on direct covariate 
effects on factors, but direct covariate effects on items have 
been discussed in FMM and the general mixture modeling 
framework (De Ayala et al., 2002; Lee & Beretvas, 2014; 
Lubke & Muthén, 2005; Masyn, 2017; Tay et al., 2011; 
Vermunt & Magidson, 2021). In particular, Vermunt and 
Magidson (2021) proposed a modified three-step approach 
in LCA to account for direct covariate effects on indicators 

which conceptually indicate measurement noninvariance 
with respect to covariates. In their proposed step-one anal-
ysis, covariates with direct effects on indicators should be 
included as well as the effects of these covariates on the 
latent class variable. The step-three analysis allows the 
classification error correction matrix to differ across cat-
egories of covariates that have direct effects on indicators. 
It remains unknown how this proposed approach would 
perform in FMM relative to the one-step and three-step 
approaches considered in this study.

Although we recommend the one-step approach over the 
three-step, we are aware of the criticism that the formation 
of latent classes and class assignment is model-dependent. 
When different covariates are included, latent class solu-
tions are subject to change. Therefore, it is important to iden-
tify proper covariates that are well grounded in substantive 
theories so that latent class solutions are meaningful and 
interpretable.

Despite the limitations, we believe the study provides 
insightful information for practitioners in conducting FMM. 
Although the performance of three-step FMM is compara-
ble to that of one-step FMM when class separation is large 
and model specification is correct, one-step FMM is the 
preferred approach to covariate inclusion, as the inclusion 
of good covariates can benefit class enumeration and the 
model is more robust to misspecification or overfitting with 
regard to covariate effects. We suggest fitting FMM with 
covariate effects on the latent class variable and the factor. 
We also highlight the importance of identifying theoretically 
grounded proper covariates and obtaining a large sample 
size (1000 or more), as well as the reliable performance of 
saBIC in class enumeration.
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