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Abstract
Human infant crying evolved as a signal to elicit parental care and actively influences caregiving behaviors as well as 
infant–caregiver interactions. Automated cry detection algorithms have become more popular in recent decades, and while 
some models exist, they have not been evaluated thoroughly on daylong naturalistic audio recordings. Here, we validate a 
novel deep learning cry detection model by testing it in assessment scenarios important to developmental researchers. We 
also evaluate the deep learning model’s performance relative to LENA’s cry classifier, one of the most commonly used com-
mercial software systems for quantifying child crying. Broadly, we found that both deep learning and LENA model outputs 
showed convergent validity with human annotations of infant crying. However, the deep learning model had substantially 
higher accuracy metrics (recall, F1, kappa) and stronger correlations with human annotations at all timescales tested (24 h, 
1 h, and 5 min) relative to LENA. On average, LENA underestimated infant crying by 50 min every 24 h relative to human 
annotations and the deep learning model. Additionally, daily infant crying times detected by both automated models were 
lower than parent-report estimates in the literature. We provide recommendations and solutions for leveraging automated 
algorithms to detect infant crying in the home and make our training data and model code open source and publicly available.
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With the advent of ambulatory audio recorders in the past 
two decades, researchers can now collect high-fidelity day-
long recordings of a child’s everyday life. The Language 
Environment Analysis system (LENA; Greenwood et al., 
2011) is one of the most commonly used “off the shelf” 
hardware and software systems for quantifying a child’s 
audio environment (Cristia, Lavechin, et al., 2020b). One 
major benefit of this system is that it combines a daylong 
audio-recording with automated analyses to detect mark-
ers of activity relevant to child development. Although it 
is used primarily as a “speech pedometer” to detect adult 
word counts, child vocalizations, and parent–child con-
versational turns, it also includes algorithms that detect 
non-speech vocalizations, like a child laughing and crying 
(Greenwood et al., 2011). Given that individual differences 
in daily infant crying have been shown to predict infant 

reactivity and emotion regulation (Stifter & Spinrad, 2002), 
as well as caregiver mental health (Miller et al., 1993) and 
parenting behaviors (Barr et al., 2014), an automated algo-
rithm to detect infant crying in the home is a powerful tool 
for researchers interested in child development and family 
systems. As a result, examining the performance of differ-
ent automated cry algorithms is a critical research step. The 
current study extends the initial validation of a novel deep 
learning cry detection algorithm introduced by our team in 
Yao et al. (2022) by testing its performance relative to the 
LENA algorithm in assessment scenarios relevant to devel-
opmental researchers interested in automatically detecting 
infant cries from naturalistic child-centered audio.

Detecting infant crying episodes in the real-world 
environments where they typically occur is a challenging 
engineering problem. Many published cry algorithms are 
based on “clean” in-lab datasets where extraneous sounds 
are minimized. Models trained on real-world datasets 
generally have poor crying classification performance, 
and models trained on in-lab datasets do not generalize 
to real-world scenarios (Yao et al., 2022). Additionally, 
high-quality labeled real-world cry datasets have not been 
publicly available until recently (Yao et al., 2022). LENA’s 
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automated cry detection algorithm was trained and tested 
on real-world audio (Gilkerson et al., 2008), but a recent 
systematic review revealed that no external studies have 
reported on the validity of LENA’s cry classifier (Cristia 
et al., 2020a). Indeed, we know of no published work to 
date that has reported specifically on the performance of 
LENA’s cry algorithm, including LENA technical reports 
(Xu et al., 2009).

Given the limited information on the performance of 
LENA’s cry algorithm, our team developed an open-source 
deep learning (DL) algorithm for detecting infant cries 
from daylong naturalistic audio recordings (Yao et  al., 
2022). Because deep learning architectures introduced in 
the 2010s have greatly improved classification accuracy in 
several domains, from natural language processing to speech 
recognition (Deng & Yu, 2013), it is possible that our deep 
learning cry detection model will outperform LENA’s cry 
detection model, in particular because deep learning was 
not yet widely adopted during the development of LENA’s 
cry algorithm in the 2000s. Yao et al. (2022) do not consider 
or report the accuracy of LENA in their work, nor do they 
compare their model’s performance with LENA. Given the 
widespread adoption of the LENA system, we consider it 
valuable to examine and compare the accuracy of DL and 
LENA cry algorithms in scenarios important to develop-
mental researchers.

One such scenario is the ability to detect temporally pre-
cise estimates of individual crying episodes, not just sum-
maries of total crying time per day. For example, devel-
opmental researchers might be interested in automatically 
detecting a dynamic process like caregiver responsiveness 
to infant distress (Hubbard & van Ijzendoorn, 1991). In 
order to capture such a dynamic process unfolding over 
minutes rather than hours or days, a cry detection model 
would have to provide precise cry onset and offset times. 
Despite the importance of this possible use case, very lit-
tle attention has been paid to precise infant cry onsets and 
offsets in the home, in part because few algorithms exist to 
automatically and accurately capture the timing of these 
episodes. A valid cry algorithm should perform well at 
timescales ranging from minutes to hours.

Another scenario important to researchers is the ability 
to detect objective estimates of crying across development. 
Objective reports are valuable because the majority of infant 
cry estimates in the literature are subjective parent reports 
(Wolke et al., 2017) or manual annotations from audio record-
ings (Barr et al., 1988). Manually annotating infant cries is a 
labor-intensive process not scalable to large volumes of data 
and subjective reports of crying are often biased. For example, 
parent reports have been shown to differ significantly from 

manual annotations, sometimes up to 60 min per day (Cabana 
et al., 2021; Salisbury et al., 2001). Parent mental health is 
also associated with reports of infant negative emotionality, 
such that mothers with higher levels of depression and anxi-
ety report more infant crying (McGrath et al., 2008; Petzoldt 
et al., 2014), although the directionality and strength of this 
relationship has long been under investigation (Richters & Pel-
legrini, 1989). For example, infants of depressed mothers may 
cry more than infants of non-depressed mothers, exacerbating 
challenges to maternal mental health (Milgrom et al., 1995). 
Additionally, the trajectory of infant crying across develop-
ment is thought to peak at 6 weeks with approximately 120 
min of crying per day before falling to less than 60 min per 
day by 10 weeks (Barr, 1990; Wolke et al., 2017). However, 
this trajectory is based on parent report, and no study to date 
has confirmed this developmental trend in infant crying using 
automated model outputs.

The present study focuses on evaluating the performance 
of two cry algorithms – LENA and our novel DL model 
introduced in Yao et al. (2022) – in assessment scenarios 
relevant to developmental researchers. In particular, given 
the importance of accurate cry estimates across short and 
long timescales, we examine individual differences in infant 
crying at multiple timescales including 24 h, 1 h, and 5 min. 
We also evaluate the second-by-second accuracy of model-
based cries. Lastly, we compare LENA and DL cry outputs 
to objective human annotations and to previously reported 
large-scale parent reports of infant crying in the literature 
to examine the extent to which these various methods may 
alter what is known about the trajectory of daily infant cry-
ing across development.

Methods

Audio data were collected in the context of a broader study 
leveraging wearable sensors to examine the dynamics of 
mother-infant interaction in the home (de Barbaro et al., 
2022, manuscript submitted for publication). Mother–infant 
dyads were recruited via convenience sampling from the 
Austin, TX metropolitan area. We advertised the study 
using Facebook, online university event calendars, and fli-
ers posted in community health centers. As our broader 
study was designed to examine the dynamics of typical 
mother–infant interaction in the home, infants with con-
genital birth defects or a genetic condition as well as dyads 
with a primary residence located over 20 miles from the 
university were excluded (as we needed to travel to homes 
to deliver sensors). Multiple birth infants were excluded 
because their audio could capture multiple infants’ crying 
and not be comparable to other infants.
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Study protocol

First, a 90-min study introduction was conducted in 
participants’ homes. The study was conducted in Eng-
lish or Spanish depending on the household’s primary 
language. Research assistants showed mothers how to 
use multiple wearable devices, including the LENA 
device, a small child-safe recorder worn in a vest over 
the infant’s clothing. The LENA device captures the 
infant’s voice as well as other voices and sounds in the 
environment up to 10 feet away. Mothers were instructed 
to remove the vest during infant bathing and sleep, but 
keep it next to the infant and recording. Research assis-
tants videotaped mothers and infants completing a series 
of structured and unstructured assessments while wear-
ing their sensors.

At the end of the introductory session, mothers were 
provided with two LENA 2.0 devices and a charging 
station. LENA 2.0 has increased storage capacity and 
can record up to three 24-h recordings on one device. 
Mothers were asked to record for an additional 72 h 
over the course of the following week, with at least one 
continuous 48-h period during which they planned to be 
with their child (i.e., the child was not at daycare, typi-
cally the weekend). This 72 h is the corpus from which 
we selected recordings for the present study. Parents 
were instructed to follow their daily routines, includ-
ing leaving the home if needed. To maximize protocol 
adherence, mothers selected their recording windows in 
advance and we sent text message reminders to record. 
Following the session, mothers were compensated $100 
for their participation and received a small gift for their 
infant.

Participants

Eighty-seven dyads were enrolled in the study and audio 
data were collected from N = 77 dyads. Given that crying 
rates have been shown to vary over the course of the day 
(James-Roberts & Halil, 1991), we chose to analyze 24-h 
recordings in this study to make daylong crying estimates 
comparable across participants. At least one continuous 24-h 
recording was collected from 55 participants. We selected 
a subset of 24-h recordings to include in the present study 
given the time-intensive nature of annotating infant cries. 
We stratified participants with 24-h recordings by age and 
then quasi-randomly sampled participants to ensure a broad 
range of infant ages. From N = 55 recordings, we annotated 
crying in a final sample of N = 27 participants resulting in 
27 annotated 24-h recordings (648 h in total). Table 1 depicts 
sample characteristics.

Cry detection

Human annotations  Eight trained research assistants (RAs) 
used ELAN (https://​archi​ve.​mpi.​nl/​tla/​elan) to annotate infant 
crying from the WAV audio output from LENA. For annota-
tion purposes, individual RAs were tasked with coding a non-
overlapping continuous 6-h section of each participant’s 24-h 
audio recording (vs. coding a continuous 24 h of the same 
participant, which could lead to coding fatigue). This meant 
that up to four RAs could code each 24-h recording. Simi-
lar to existing coding schemes (Hubbard & Van Ijzendoorn, 
1991), cries had a minimum duration of 3 s and were com-
bined if within 5 s. Fusses did not have a minimum duration. 
All neighboring crying and fussing sounds occurring within 
5 s of one another were combined, and fussing and crying 
annotations were collapsed into a single category labeled 
“crying.” All other sounds and silence were collapsed into a 

Table 1   Participant characteristics (n = 27)

n (%) M (SD), range

Mother age, years 30 (5), 22–42
Infant age, months 3.7 (1.7), 0.9–7.0
Infant gestational age, weeks 38 (2), 31–41
Infant sex, female 15 (55%)
Race/Ethnicity
    Black 2 (7%)
    Black, Hispanic 4 (15%)
    Hispanic 2 (7%)
    Multiracial 1 (4%)
    White, Hispanic 4  4 (15%)
    White, Non-Hispanic 14 (52%)
Maternal Education
    High school or less 3 (11%)
    Some college or trade school 6 (22%)
    College 9 (33%)
    Graduate School 9 (33%)
Family Status
    Married 22 (82%)
    Single Parent 2 (7%)
    Living with a partner without 

marriage
3 (11%)

Household Income
    Under $25k 2 (7%)
    $25k–49k 4 (15%)
    $50k–74k 6 (22%)
    $75k–99k 7 (26%)
    Over $100k 8 (30%)
Primary Household Language
    English 24 (89%)
    Spanish 3 (11%)
Number of other children in the home 1 (1), 0–5

https://archive.mpi.nl/tla/elan
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second category labeled “not crying.” To test RA interrater 
reliability, a subset of 6-h sections (n = 12, 72 h in total) 
were coded by multiple RAs and their codes were compared. 
RAs achieved a Cohen’s kappa score of 0.78. This value cor-
responds to 95% observer accuracy for a “highly variable” 
two-class coding scheme, i.e., a coding scheme with two 
annotations in which one annotation is much more prevalent 
than the other (Bakeman & Quera, 2011, p. 165). Given that 
“crying” (vs. “not crying”) was annotated only 4% of the time 
on average, our coding scheme meets the criteria for a highly 
variable coding scheme.

LENA  Recordings were processed via LENA software to 
obtain episodes of infant crying, which included cries and 
fusses (Gilkerson et al., 2017). As detailed above, LENA has 
not published accuracy data on their cry algorithm. How-
ever, “crying” is a sub-category of “child vocalization” in 
LENA’s algorithm, so we report briefly on the accuracy of 
LENA child vocalization markers below. In a recent system-
atic review of studies validating LENA, Cristia et al. (2020a) 
reported an average correlation of r = .77 between LENA 
and human annotations of child vocalizations from N = 5 
studies. In an extensive, independent evaluation of LENA’s 
key markers, Cristia et al. (2020b) found a strong association 
between child vocalization counts identified by LENA and 
human annotations (r = .65 in clips with some speech). They 
found that on average LENA missed four child vocalizations 
per 1–2-minute clip, resulting in an error rate of – 47%, sug-
gesting LENA had a tendency to underestimate child vocali-
zation counts in each clip relative to human annotations.

Deep learning (DL) model  Our team developed a DL cry 
detection model in order to improve real-world infant cry 
detection. We trained a support-vector machine (SVM) 
classifier using a combination of acoustic features and 
deep spectrum features generated from a modified AlexNet 
(see Yao et al., 2022 for full model details). AlexNet is a 
popular convolutional neural network (CNN) architecture 
with five convolutional layers and three fully connected 
layers (Krizhevsky et al., 2012). We modified the input 
and output layer to accommodate the size of mel-scaled 
spectrograms of the audio (used as input) and our case 
of binary classification. Batch normalization was also 
included to facilitate training.

The DL model was trained on a balanced subset of 66 
h of data sampled from 24 participants’ audio record-
ings, including 7.9 h of annotated crying (training data-
set kappa score: 0.85). In Yao et al. (2022), we tested 
our DL model on the training dataset using leave-one-
participant-out cross validation, as is standard in the 
machine learning community. Additionally, to test the 
performance of the model on raw, continuous audio 
data, which represent its true use-case, we also tested 

model accuracy on a secondary testing dataset of 17 
non-overlapping participants’ continuous raw 24-h audio 
recordings (secondary testing dataset kappa score: 0.80). 
Results showed that the model performed well on both 
the sampled dataset and the 24-h continuous test dataset 
(F1= .61 and .61, respectively).

The present study compares LENA and DL cry detec-
tion models across 27 participants, eight of which overlap 
with the participants included in the training data in Yao 
et al. (2022). In order to test the DL’s predictive perfor-
mance on unseen data, we used a leave-one-participant-
out method to retrain the DL model for each of the eight 
overlapping participants by excluding that participant 
from the training dataset. Similar to the human annota-
tions, the DL model produces two labels: “crying” and 
“not crying”. Not crying includes all non-cry sounds 
and silence. For purposes of comparison, we translated 
LENA outputs into the same “crying” and “not crying” 
classifications.

Data analysis

First, we evaluated the 24-h DL and LENA model results 
for outliers, defined as more than 1.5*IQR above the 
third quartile or below the first quartile. We decided to 
employ a conservative strategy and remove outliers given 
the potential for model-based outputs to suggest unre-
alistically high amounts of crying (Gilkerson & Rich-
ards, 2020). The DL model outputs for two participants 
(4.4-month-old female, 2.3-month-old female) were deter-
mined to be outliers relative to other DL outputs with 653 
and 164 min of crying in 24 h, respectively. Relative to 
the other LENA outputs, the same 2.3-month-old female 
had LENA model output that met outlier criteria with 41 
min of crying in 24 h. The n = 2 DL and n = 1 LENA 
model outputs at 24 h, 1 h, and 5 min were excluded from 
subsequent analyses. Although outlier exclusion is not 
common in machine-learning papers, we excluded outli-
ers here to show researchers how to make practical use of 
models on a corpus of child-centered audio and illustrate 
the effect of outliers on different performance metrics.

Next, we evaluated the accuracy of cry onsets and off-
sets detected by LENA and DL models. We selected accu-
racy metrics common in both psychology and machine 
learning communities, namely, Cohen’s kappa, F1, preci-
sion, and recall. We used Cohen’s kappa to consider the 
moment-by-moment accuracy of each model’s outputs rel-
ative to human annotations using a statistic familiar to the 
psychology community. We also calculated classification 
accuracy (F1), positive predictive value (precision), and 
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sensitivity (recall) at each timescale of interest. At the 1-h 
and 5-min timescales, where we had an F1, precision, and 
recall value at each time interval, we calculated average 
values per participant before averaging across all partici-
pants to minimize possible between-person effects. We also 
tested infant age as a predictor of accuracy, specifically 
Cohen’s kappa. All accuracy metrics were calculated at 
the second level and provide a fine-grained analysis into 
model performance.

Next, we calculated Pearson correlation coefficients 
for crying (in minutes) between human annotations and 
our LENA and DL models. Although our data violated 
the assumptions for Pearson’s correlation (specifically 
normality and homogeneity of variance at the 1-h and 
5-min timescales), this is likely because of the high 
frequency of zero values at these timescales. Visual 
inspection of our raw data revealed that the relationship 
between human-annotated estimates and cry algorithm 
estimates was linear and consistent across the span of 
data (i.e., we did not observe a monotonic relationship), 
so we report Pearson’s R rather than a non-parametric 
correlation. Pearson correlation coefficients were cal-
culated for human vs. LENA crying and human vs. DL 
crying at 24 h, 1 h, and 5 min. Similar to above, at the 
1-h and 5-min timescales, we calculated correlation coef-
ficients per participant before averaging across partici-
pants. By calculating correlation coefficients in addition 
to standard accuracy metrics, we were able to evaluate 
the extent to which models agreed with human annota-
tions for each infant, rather than average model perfor-
mance across the entire sample.

Lastly, we compared the amounts of crying detected by our 
human, LENA, and DL models to existing parent reports in 
the literature. Parent-reported crying was obtained from an 
international meta-analysis conducted by Wolke et al. (2017), 
which showed that infant crying peaks at 6 weeks and falls by 
10 weeks. To examine this trend in our data, we grouped our 
participants into two age bins (younger than 10 weeks and 10 

weeks or older) and compared daily crying time (in minutes) 
across groups.

Results

Moment‑by‑moment accuracy

We report the second-by-second accuracy metrics of 
the DL and LENA model in Table 2. The DL model 
achieved mean F1 = 0.59, with precision = 0.62 and 
recall = 0.62. The mean kappa score between human 
and DL-detected cry episodes was 0.53 (SD = 0.23, 
range 0.06–0.79), corresponding to 90–95% agreement 
between the ground truth and our DL model using the 
Bakeman and Quera (2011) criteria for highly variable 
two-class coding schemes, as described above. LENA 
achieved a mean F1 = 0.17, with precision = 0.81 and 
recall = 0.10. LENA achieved a mean kappa score of 
0.19 (SD = 0.12, range 0.02–0.54), corresponding to 
80% agreement using the same criteria. Figure 1 depicts 
a representative time series of infant cry episodes across 
models, selected because it had kappa values consistent 
with the average value observed across participants. Of 
note, including outliers did not meaningfully change DL 
or LENA average F1, precision, recall, or kappa values 
(see Table 2). However, outliers did affect correlation 
results (see below).

Correlations

Figure 2 depicts plots comparing human-annotated, DL, 
and LENA cry amounts at 24 h, 1 h, and 5 min. Correla-
tions at 24 h revealed the DL model outputs to be strongly 
correlated (r = .70) with human annotations, accurately 
estimating the duration of infant crying to within 1 min 
per day (overestimating by only 35 s per day, on average). 

Table 2   Deep learning (DL) and LENA model performance relative to human annotations

Precision Recall F1 Cohen’s kappa

24-hour model performance with outliers
DL     (n  = 27) M = 0.60, SD  = 0.23

Range  = 0.07–0.90
M  = 0.64, SD  = 0.20
Range  = 0.08–1

M  = 0.58, SD  = 0.21
Range  = 0.12–0.83

M  = 0.52, SD  = 0.24
Range  = 0.07–0.79

LENA (n  = 27) M  = 0.82, SD= 0.28
Range  = 0–1

M  = 0.11, SD  = 0.11
Range  = 0–0.45

M  = 0.19, SD  = 0.15
Range  = 0–0.61

M  = 0.20, SD  = 0.13
Range  = 0.02–0.54

24-hour model performance excluding outliers
DL       (n  = 25) M  = 0.62, SD = 0.21

Range  = 0.10–0.90
M  = 0.62, SD  = 0.19
Range  = 0.08–0.85

M  = 0.59, SD= 0.2
Range  = 0.14–0.83

M  = 0.53, SD  = 0.23
Range  = 0.06–0.79

LENA (n  = 26) M  = 0.81, SD = 0.28
Range  = 0–1

M  = 0.10, SD  = 0.09
Range  = 0–0.45

M  = 0.17, SD= 0.13
Range  = 0–0.61

M  = 0.19, SD  = 0.12
Range  = 0.02–0.54
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Correlations at 1 h (r = .86) and 5 min (r = .79) revealed 
very strong correlations with human annotations. Model 
predictions were accurate to within seconds of ground 
truth data (underestimating infant crying by only 5 s per 1 
h and 0.6 s per 5 min, on average). Evaluating correlations 
between human annotations and LENA, we found strong 
correlations at 24 h (r = .62) and 1 h (r = .75). On average, 

LENA underestimated infant crying by 51 min in 24 h 
and 2 min in 1 h. LENA was moderately correlated with 
human annotations at 5 min (r = .58), underestimating 
infant crying by 10 s on average. All reported correlations 
were positive and significant at the < .001 level. Mean, 
standard deviation, and range of crying outputs in minutes 
at each timescale are presented in Table 3.

Although outliers did not change DL accuracy metrics, 
they did impact DL correlations. We observed weaker cor-
relations between DL and human annotations at the 24-h 
timescale when including the n = 2 outliers detected in the 
DL output (r = .13 vs .70 at 24 h, r = .85 vs. .86 at 1 h, 
and r = .78 vs. .79 at 5 min), suggesting the importance of 
testing for and removing outliers when using this model. 
In contrast, we did not observe meaningful changes in the 
correlations between LENA and human annotations across 
timescales when including the n = 1 outlier detected from 
LENA output (r = .66 vs. .62 at 24 h, r = .76 vs. .75 at 1 
h, and r = .59 vs. .58 at 5 min).

Developmental trends

Figure 3 shows developmental trends in amount of daily 
crying for human, DL, LENA, and parent-report (estimates 
drawn from Wolke et al., 2017). Consistent with parent-
report estimates, we found that infants cried significantly 
more when less than 10 weeks compared to 10 weeks or 
more in human (B = – 23.45, p < .001), LENA (B = – 2.65, 
p = .047), and DL (B = –15.09, p = .031) outputs. However, 

Fig. 1   Representative time series of infant crying detected by LENA, 
deep learning (DL), and human annotations. This 7-month-old female 
was selected because individual kappa scores (DL = 0.65, LENA 
= 0.19) were representative of the broader sample’s average kappa 
scores (DL = 0.53, LENA = 0.19). Model accuracy metrics calcu-
lated for this 24-hour recording: DL F1 = 0.66, precision = 0.67, 
recall = 0.64; LENA F1 = 0.16, precision = 0.96, recall = 0.09

r = .58r = .62

r = .70 r = .86 r = .79

r = .75

Fig. 2   Correlations of LENA and deep learning (DL) cry durations with human-annotated cry durations at varying timescales
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unlike Wolke, our participants did not show a peak in crying 
at 6 weeks in human, DL, or LENA outputs.

LENA consistently underestimated daily infant crying 
relative to human, DL, and Wolke outputs from 3 to 30 
weeks. To examine if age systematically predicted model 
performance, we tested age as a predictor of Cohen’s kappa 
score. For the LENA model, age did not significantly predict 
kappa scores (B = – 0.003, p = .852). For the DL model, 
younger infants had higher kappa scores than older infants 
(B = – 0.061, p = .019). Figure 4 depicts kappa scores by 
age, showing that the DL model performs better for younger 
infants relative to older infants and, on average, the DL 
model performs better than the LENA model for all ages.

Discussion

The present study demonstrates the validity of a novel deep 
learning model for detecting infant crying from child-centered 
audio recordings. Broadly, we found that both LENA and DL 
models showed at least “acceptable” convergent validity (r 
> .50) with human annotations of infant crying at each time-
scale (Abma et al., 2016). However, the DL model published 
by Yao et al. (2022) dramatically outperformed LENA in 
moment-by-moment accuracy, with recall values nearly six 
times higher than LENA. LENA’s low recall values led to a 
dramatic underestimation of crying relative to human coders, 
missing almost one hour of crying per day. Below, we review 
these results in detail and provide practical recommendations 
for researchers interested in automated cry algorithms.

Although both DL and LENA model outputs captured indi-
vidual differences in infant crying, we found stronger corre-
lations for DL (vs. LENA) at each timescale. LENA showed 
acceptable convergent validity (as defined by r > .50) at all time-
scales and the DL model displayed strong convergent validity 
(as defined by r > .70) at all timescales (Abma et al., 2016). 
Correlations were highest at 1 h, then 5 min, then 24 h for the 

Table 3   Mean (SD) and range of cry amounts (in minutes) across 
timescales

24 h 1 h 5 min

Human 58.6 (31.9), 5.5–120.0 2.4 (3.9), 0–28.4 0.2 (0.6), 0–5
DL 57.5 (30.4), 8.2–126.3 2.4 (3.7), 0–19.7 0.2 (0.6), 0–5
LENA 7.2 (5.8), 0.3–23.0 0.3 (0.8), 0–10.5 0.02 (0.1), 0–2.2
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Fig. 3   Developmental trend in crying across cry detection meth-
ods. Mean and standard deviation of minutes crying per day by cry 
method. Sample size by weeks for human, deep learning (DL) and 
LENA cry detection methods: 3 to 4 weeks (n = 1), 5 to 6 (n = 2), 7 

to 9 (n = 3), 10 to 12 (n = 3), 13 to 15 (n = 3), 16 to 18 (n = 5), 19 to 
21 (n = 1), 22 to 24 (n = 3), 25 to 27 (n = 3), 28 to 30 (n = 1). Wolke 
et al. did not report cry values past 12 weeks
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DL model. For LENA, correlations were highest at 1 h, then 
24 h, then 5 min. Correlations may have been highest at 1-h 
timescales because misclassifications were less apparent than in 
5-min timescales and variability in correlation coefficients was 
averaged out compared to the 24-h timescales. Although LENA 
had acceptable correlations, it underestimated infant crying at 
each timescale, missing 51 min of crying every 24 h. This shows 
that despite being able to detect relative differences in infant 
crying across participants, LENA performs poorly when tasked 
with detecting total amounts of crying.

Although not specific to crying, Cristia et al. (2020b) found a 
similar correlation coefficient between human and LENA child 
vocalization counts (r = .65), with LENA underestimating child 
vocalizations relative to humans. This is consistent with our pat-
tern of results and the correlation we observed (r = .62) between 
human and LENA cries across 24-h recordings. Given the rela-
tively high correlations between summaries of LENA outputs 
and human annotations, researchers using LENA outputs could 
improve their crying estimates at all timescales (and in particular, 
at 24 h) by applying a linear transformation to their data (see for 
example, de Barbaro et al., 2022, manuscript submitted for publi-
cation). In particular, the regression coefficients we derived when 
predicting human annotated crying from LENA cry outputs 
can be used to “transform” LENA outputs into more accurate 
estimates of true crying time. For example, if LENA reports 10 
min of crying in a 24-h recording, using the regression equation 
derived from our results would lead to an updated estimate of 64 
min of crying per day. Our data suggest that this would be much 
closer to the true crying times annotated by trained researchers. 
Table 4 presents regression equations to transform LENA cry 
outputs summarized from 24-h, 1-h, and 5-min recordings.

The DL model had much stronger moment-by-moment accu-
racy compared to LENA (kappa = .53 vs. .19, observer accuracy 
= 90–95% vs. 80%, F1 = .59 vs .17, recall = .62 vs .10, respec-
tively). Note that the Cohen’s kappa values for both models are 

low because this accuracy statistic penalizes agreement that is 
“expected”, or could occur by chance (i.e., both models detect-
ing “not crying” because it occurred 96% of the recording time, 
on average). Simulations have established that kappa values for 
highly variable, two-class annotated data like our own are sub-
stantially diminished relative to less variable higher-class data, 
even when coding accuracy is held constant (as detailed in Bake-
man & Quera, 2011). Across all accuracy metrics, however, the 
DL model performed better than LENA, indicating it is particu-
larly suited to developmental researchers interested in dyadic or 
time-locked analyses, for example, where accurate cry detection 
at short timescales is critical. Confusion matrices revealed that 
LENA did not consistently mislabel true cries with any particular 
label, but rather classified them variously (Figure S1), with over-
lapping sounds (OLN) and other child (CXN) labels occurring 
most frequently. Importantly, LENA’s low recall suggests that 
LENA did not capture approximately 90% of true cries, which 
is likely leading to the underestimates of overall cry detection. 
Despite its low recall, LENA had higher precision than our DL 
model (precision = .81 vs. .62, respectively), meaning that when 
crying was predicted by LENA it was correct a majority of the 
time, which is consistent with the LENA developers’ focus on 
precision over sensitivity (Gilkerson & Richards, 2020). How-
ever, the balance between LENA’s precision and recall was poor, 
meaning that the model was overly cautious in its prediction 
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Fig. 4   Kappa scores by age for deep learning (DL) and LENA cry models

Table 4   Regression equations to transform LENA data

a  x = LENA minutes of crying, y = human-annotated minutes of  
crying

Timescale Regression equation a

24 h y = 3.0675x + 34.412
1 h y = 3.277x + 1.3154
5 min y = 2.7567x + 0.1376
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strategy. For these reasons, kappa also showed lower agreement 
between LENA and human codes relative to DL.

Of note, we did observe inconsistencies in model per-
formance across individuals in both models (see Table 2 for 
ranges). It is possible that some participants have higher levels 
of noise in their audio, which could contribute to weaker model 
performance. For example, the n = 2 outliers we identified from 
DL outputs had high levels of ambient noise in their recordings, 
which likely interfered with the model’s performance and led to 
an overestimation of infant crying in both cases. Of note, these 
two outliers did not influence DL model accuracy metrics (preci-
sion, recall, F1, kappa), but did weaken convergent validity to 
human annotations. Although outliers may not be detected using 
traditional machine-learning performance metrics, model pre-
dictions are susceptible to noise in the data. As such, we recom-
mend that researchers at least investigate outliers in their model 
results from external child-centered audio corpora.

We also found that infant age contributed to inconsistencies in 
model performance in the DL model, where kappa scores were 
relatively higher for younger vs. older infants (Fig. 4). In particu-
lar, for researchers working with infants under 3 months of age, 
LENA may not capture a large proportion of infant cries. Addi-
tionally, the DL model appears particularly well suited for infants 
less than 3 months of age. These data suggest that younger infants 
may have different acoustic properties of crying relative to older 
infants. However, although age predicted DL kappa scores, we 
found that kappa scores were higher on average for the DL model 
vs. LENA across our 1- to 7-month-old sample, suggesting that 
the DL model still outperforms LENA across development.

Results across both models suggested that crying time 
decreased after the first 10 weeks of life, consistent with pre-
vious reports (Wolke et al., 2017). Notably, the crying times 
recorded by both automated models were substantially lower 
than those from parent report published in recent studies. For 
example, Wolke et al. (2017) reported mean daily crying times up 
to 130 min/day (M = 133.3, SD = 70.1) in the first 10 weeks of 
life. The cry algorithms we tested, as well as our human annota-
tors, detected cry durations closer to 60 min/day (M = 61.8, SD 
= 42.2). This finding expands upon previous work that parents 
overestimate crying relative to trained human annotators by a fac-
tor of two or three (Cabana et al., 2021) by replicating this pattern 
of results with an automated cry algorithm. Practically speaking, 
this could mean that the thresholds for colic (typically greater 
than 3 h per day) should be adjusted when automated tools are 
used to determine daily cry duration (Wessel et al., 1954).

Practical considerations

Ultimately, researchers should consider their research ques-
tion when deciding how important it is to use the DL model vs. 
LENA on child-centered audio. Although we recommend using 
the DL model as it outperformed LENA in accuracy metrics and 

correlations at all timescales across development, we found that 
both DL and LENA models can detect crying to an “acceptable” 
degree of convergent validity to human annotations. This means 
that model outputs from either the DL or LENA model (only 
after LENA outputs have been transformed to increase crying 
estimates) could be used in a number of research situations. For 
example, both models could estimate amount of infant crying, 
providing objective reports for infant temperament or colic (Barr 
et al., 1992) or comparing groups of babies in crying volume, 
like infants of mothers with depression or anxiety relative to 
community controls. Both models could also be used to detect 
relative differences in crying between or within participants, for 
example, testing the hypothesis that relatively higher values of 
exposure to infant crying are related to higher levels of parent 
anxiety (Brooker et al., 2015). In contrast, only the DL model 
could be used to accurately detect the majority of individual cry 
episodes in a 24-h, 1-h, or 5-min recording. This is particularly 
important in situations where onset and offset times of crying 
are critical to the research question, like maternal sensitivity to 
infant distress, or if researchers are interested in characterizing 
“typical” parental responses to randomly selected crying epi-
sodes. In addition, researchers working with infants under 10 
weeks of age should use the DL model as it outperforms LENA 
at all ages, but especially in younger infants.

Although we validated the DL model across a number of sce-
narios in the present study, we recommend additional testing to 
examine its generalizability to other child-centered audio corpora. 
A model is only as good as its training data, and performance 
in one sample may not generalize to other potentially distinct 
samples. Systematic differences in the acoustics of crying or the 
structure of “non-cry" background noise – related to children’s 
age, household language, or social-economic circumstances 
– could all affect model performance. For example, neonates 
show native language-specific differences in the structure of their 
cry melodies (Prochnow et al., 2019). As such, we note that our 
DL model (Yao et al., 2022) was tested on audio collected by 
1- to 7-month-old infants from mostly English-speaking homes, 
who were 52% non-Hispanic White (15% Hispanic White, 7% 
Hispanic, 7% Black, 15% Hispanic Black, 4% multiracial) and 
whose mothers had a relatively high educational attainment (33% 
graduate school, 33% college diploma, 22% some college, 11% 
high school diploma or less). Our testing data was 89% English-
speaking and 11% Spanish-speaking. Although our model did 
not perform systematically worse on our Spanish-language 
infants, the extent to which melodic differences (present in other 
languages or in a larger Spanish-speaking sample) may impact 
the DL model’s performance is unknown. Further evaluating the 
generalizability of the DL model to other samples is a worthwhile 
next research step.

Our sample characteristics could also affect differences in the 
reported accuracy between the LENA and DL model. LENA 
was trained and tested on a broader age range of children (trained 
on 1- to 42-month-olds and tested on 2- to 36-month-olds; 
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Gilkerson et al., 2008) and the DL model was trained and tested 
in a sample with a higher proportion of highly educated moth-
ers. Mismatches between the LENA training data and the testing 
dataset used in the present study could contribute to LENA’s 
relatively worse performance on our testing dataset. However, 
given that our age ranges overlapped with LENA’s training 
data, it is not unreasonable to assess LENA’s performance in 
this younger sample. Moreover, given the importance of crying 
during infancy in particular (Wolke et al., 2017), we believe 
the training and testing datasets presented here represent a sam-
ple that will be of relevance and interest to the developmental 
community.

More broadly, we recommend that models trained on one 
sample be tested and validated on distinct samples, different 
in infant age or family language for example, as model per-
formance may differ across these samples owing to potential 
differences in the structure of cries to be learned. As with all 
models, validating the DL model across different child-centered 
audio corpora with families diverse in language, sociodemo-
graphic factors, family structures, and home environments is 
necessary to verify its generalizability.

Conclusions

Automated measures of infant crying afford researchers the 
opportunity to systematically access an everyday, ecologi-
cally important signal in its naturalistic setting. In the current 
study, we validated a deep learning model for detecting infant 
crying from child-centered audio and showed how it dramati-
cally outperforms LENA in real-world assessment scenarios 
important to developmental researchers. We also present our 
training data and open source code to support future model 
improvements. By leveraging wearable devices and automated 
algorithms to detect infant crying in its natural setting, we can 
better access the dynamics of early development to support 
infants and families.
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