Behavior Research Methods (2023) 55:3100-3119
https://doi.org/10.3758/513428-022-01936-y

=

Check for
updates

A comparison of multiple imputation strategies to deal with missing
nonnormal data in structural equation modeling

Fan Jia' - Wei Wu?

Accepted: 18 July 2022 / Published online: 29 August 2022
© The Psychonomic Society, Inc. 2022

Abstract

Missing data and nonnormality are two common factors that can affect analysis results from structural equation modeling
(SEM). The current study aims to address a challenging situation in which the two factors coexist (i.e., missing nonnormal
data). Using Monte Carlo simulation, we evaluated the performance of four multiple imputation (MI) strategies with respect
to parameter and standard error estimation. These strategies include MI with normality-based model (MI-NORM), predictive
mean matching (MI-PMM), classification and regression trees (MI-CART), and random forest (MI-RF). We also compared
these MI strategies with robust full information maximum likelihood (RFIML), a popular (non-imputation) method to deal
with missing nonnormal data in SEM. The results suggest that MI-NORM had similar performance to RFIML. MI-PMM
outperformed the other methods when data were not missing on the heavy tail of a skewed distribution. Although MI-CART
and MI-RF do not require any distribution assumption, they did not perform well compared with the others. Based on the
results, practical guidance is provided.

Keywords Missing data - Nonnormality - Multiple imputation - Full information maximum likelihood - Predictive mean
matching - Classification and regression trees - Random forest

Structural equation modeling (SEM) is a flexible and pow-
erful analytical framework for testing complex multivariate
relationships at the observed and/or latent variable levels
(Bollen, 1989). It offers various estimation methods (e.g.,
maximum likelihood [ML] or weighted least squares esti-
mation methods) and can handle different types of data
(e.g., continuous or categorical). The current article aims to
address the coexistence of two common factors that could
affect the performance of SEM with continuous data and
ML estimation. These two factors are nonnormality and
missing data. When mishandled, either factor alone could
cause biased results. Specifically, nonnormality alone could
lead to biased standard error estimates (Browne, 1984; Chou
et al., 1991; Fan & Wang, 1998; Finch et al., 1997; Olsson
et al., 2000). Missing data alone could cause bias not only
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in standard error estimates but also in parameter estimates
(Enders, 2001a, 2001b).

Extensive research has addressed nonnormality with
complete data (see Browne, 1984; Satorra & Bentler, 1994;
Yuan & Hayashi, 2006). However, much less research has
tackled the issue of nonnormality when data are incomplete,
especially in the SEM framework. Missing data, ubiquitous
in social and behavioral research, could add an extra layer of
complexity on the top of nonnormality. There are different
missing data techniques, such as full information maximum
likelihood (FIML) and multiple imputation (MI; Enders,
2001a, 2010; Graham, 2009; Rubin, 1976, 1996; Schafer
& Graham, 2002). For MI in particular, missing data can
be imputed in different ways (e.g., through a parametric or
nonparametric model). Consequently, researchers are faced
with multiple options, and it is not clear which option(s)
would work best.

The purpose of the current study is thus to provide a
systematic comparison of several available MI strategies
to deal with missing nonnormal data in the context of
SEM using Monte Carlo simulation. Although some of the
strategies have been examined in the past in univariate or
regression analyses (see more details below), the findings
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are not automatically generalizable to SEM, as SEM allows
researchers to model relationships at the latent variable level.
Thus, we believe that our study can provide new insights into
the missing data analysis literature.

The rest of the article is organized as follows. We first
provide the background information for the study, including
missing data mechanisms, a general description and compar-
ison of FIML and MI in dealing with normal missing data,
and how the two approaches can be extended to accommo-
date missing nonnormal data. Because there are many ways
to deal with missing nonnormal data when MI is used, we
select a few available MI methods to study and provide the
technical details for them. We then present the simulation
study conducted to evaluate the performance of the selected
MI methods compared with FIML in terms of parameter
estimation. Finally, we discuss the results and limitations of
the simulation study and provide practical recommendations
to researchers on the use of these methods.

Background
Missing data mechanisms

Missing data mechanisms characterize the processes by
which data become missing. Rubin (1976) developed a
classification scheme with three missing data mechanisms.
Suppose the probability of having missing data on a vari-
able Y is not related to the missing values of Y itself after
controlling for the other variables in the analysis. Then,
the data on Y are said to be missing at random (MAR).
Otherwise, the data are said to be missing not at random
(MNAR). A special case of MAR is missing completely
at random (MCAR), in which the probability of missing
data on Y is unrelated to Y's values or any other observed
variables in the data set.

A general description of FIML and MI

Evidence shows that when missingness occurs in normal
data, MAR, including MCAR, could be appropriately
handled by modern missing data techniques such as full
information maximum likelihood (FIML) and multiple
imputation (MI; Enders, 2001a, 2010; Graham, 2009;
Rubin, 1976, 1996; Schafer & Graham, 2002). FIML is
a one-step approach that handles missing data simultane-
ously in the model estimation process. Specifically, FIML
produced parameter estimates by iteratively maximizing
the sum of N case-wise log-likelihood functions tailored
to individual patterns of missing data (Enders, 2001a).
MI, in comparison, typically involves three steps. It first
generates multiply imputed data with missing values

filled in (imputation phase), then fits the hypothesized
model to each of the imputed data sets (analysis phase),
and pools the results across imputed data sets to produce
the final results (Rubin, 1987; pooling phase). Under cer-
tain assumptions, such as MAR, multivariate normality,
and a plausible imputation model, both FIML and MI
were found to produce unbiased parameter and standard
error estimates (Collins et al., 2001; Enders & Bandalos,
2001; Rubin, 1987; Savalei & Rhemtulla, 2012; Schafer
& Graham, 2002).

Both methods have been widely used in practice.
Although MI is more cumbersome to implement and can
be less efficient than FIML (Yuan et al., 2012), there are
unique benefits of using MI. First, MI is flexible, with a
variety of imputation algorithms and imputation models
available. Thus, it could potentially provide better treat-
ments for nonnormal and nonlinear relationships among
variables (Asparouhov & Muthén, 2010; White et al.,
2011). Second, MI can incorporate many more auxiliary
variables than FIML. Savalei and Bentler (2009) showed
that incorporating many auxiliary variables into the FIML
analysis could yield odd structures for certain covariance
matrices, causing convergence problems. In contrast, MI
incorporates auxiliary variables in the imputation phase
only, so it is less likely to cause problems in the analysis
phase. In addition, MI creates complete data sets; thus,
statistical methods that work only with complete data can
be applied. For example, FIML cannot be used to deal with
item-level missing data when the items are to be parceled
and will not be directly included in the analysis model
(Little et al., 2013). Although a two-stage ML could be
used in this situation (TSML; Savalei & Rhemtulla, 2017),
it requires sophisticated matrix algebra and has not been
automated in standard software packages. Thus, most
researchers do not have access to this approach. On the
other hand, MI is widely available and can easily handle
such situations by generating complete item scores before
parceling (Enders & Mansolf, 2018; Gottschall et al.,
2012).

Extending FIML and MI to account for nonnormality

Past research had found that nonnormality could lead to
underestimated standard errors when FIML was used (End-
ers, 2001b). Methods to correct the bias have thus been
developed. The most popular correction method is known as
robust FIML (a.k.a., RFIML; Savalei & Falk, 2014), which
uses a sandwich-like covariance matrix based on the results
from FIML (Yuan & Bentler, 2000; Yuan & Hayashi, 2006).
Research has found that RFIML performed well under
MCAR or MAR, except when MAR data occurred mainly
on the heavy tail of a distribution, and the proportion of
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missing data was large (e.g., 30%, Enders, 2001b; Savalei
& Falk, 2014).

There is no consensus on how to best account for nonnor-
mality in the imputation stage of MI. Our literature review
suggests that four types of MI strategies have been examined
for missing nonnormal data: (1) MI based on the assumption
of multivariate normality, (2) normalizing the data using a
transformation method first and then using the first approach
to impute, (3) MI based on generalized parametric families
that account for some specific nonnormal distributions, and
(4) MI based on semi-parametric or nonparametric models
that do not have distributional assumptions. The four types
of strategies are explained below.

The first strategy ignores the nonnormality of the data
(MI-NORM). Past research found that the robustness of MI-
NORM to the violation of normality varied across different
parameter estimates. Demirtas et al. (2008) examined MI-
NORM by generating continuous data from a broad range
of distributions, including normal, #, Laplace, and Beta dis-
tributions. They found that MI-NORM accurately estimated
means and regression coefficients with these nonnormal
distributions. However, the variance parameters could be
biased, particularly when the sample size was small (e.g., N
= 40). Other parameters that rely more on the tails of a dis-
tribution, such as extreme quantiles, were sensitive to non-
normality (Demirtas et al., 2008; Schafer, 1997). Yuan et al.
(2012) also concluded that nonnormal data could severely
impact the estimates of variance-covariance parameters.

The second strategy uses transformation to normalize
nonnormal data before imputation (MI-TRANS). Transfor-
mation is a traditional approach for dealing with nonnormal
data. Many transformation functions, such as log, exponen-
tial, square root, Box-Cox, and non-parametric, have been
used in the past to reduce the skewness of a distribution
(Allison, 2000; Honaker et al., 2011; Lee & Carlin, 2017,
Schafer & Graham, 2002; von Hippel, 2005). After trans-
formation, MI-NORM can then be used to fill in the miss-
ing values in the transformed metric. These imputed values
may be converted back to their original scales before the
target analysis. Although the transformation method seems
straightforward, it is usually not recommended, as it is often
challenging to determine the best transformation function. If
a wrong/suboptimal transformation method is used, it could
hurt the imputation by distorting the relationships between
the variable and the others, resulting in biased imputed val-
ues and follow-up analyses (von Hippel, 2013).

The third strategy is to impute continuous missing val-
ues based on generalized parametric families for continuous
data. A parametric family is a family of distribution func-
tions whose forms depend on a set of parameters. Rather
than assuming a normal distribution, a generalized paramet-
ric family allows for various data distributions, making the
imputation more flexible. In the last two decades, several
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generalized parametric families have been considered in
MI, such as Tukey's gh distribution (Demirtas & Hedeker,
2008; He & Raghunathan, 2009), ¢, lognormal, Beta, and
Weibull distributions (Demirtas & Hedeker, 2008), Fleish-
man's power polynomials (Demirtas & Hedeker, 2008),
and the generalized lambda distribution (Demirtas, 2009).
Focusing on univariate distributions and MCAR data, these
approaches outperformed the first strategy in estimating
quantiles of continuous data; however, they did not show
advantages in estimating the means of continuous variables.
Like the transformation approach, it is also challenging to
determine which distribution will best fit the data. Conse-
quently, additional bias could be introduced if a wrong dis-
tribution is used.

The fourth strategy is to impute missing nonnormal data
based on semi-parametric or nonparametric methods. In the
MI literature, semi-parametric methods such as local resid-
ual draws (LRD) and predictive mean matching (PMM), and
nonparametric methods such as classification and regression
trees (CART) and random forest (RF), have been evaluated
for imputing missing nonnormal data. We refer to MI with
these four methods as MI-LRD, MI-PMM, MI-CART, and
MI-REF, respectively. He and Raghunathan (2009) found that
MI-LRD and MI-PMM performed well for estimating mar-
ginal means, proportions, and regression coefficients when
the error distribution was uniform or moderately skewed.
However, both seemed to have difficulty handling extreme
values and performed poorly under severe nonnormality.
Lee and Carlin (2017) showed that MI-PMM could produce
acceptable results for estimating means and regression coef-
ficients with N = 1000. MI-CART and MI-RF were found
to outperform parametric and semi-parametric imputation
methods, such as MI with logistic regression and MI-PMM,
in dealing with nonlinear relationships of categorical vari-
ables (Doove et al., 2014; Shah et al., 2014). Hayes and
McArdle (2017) examined the performance of MI-CART
and MI-RF in estimating an interaction effect under various
missing data generating mechanisms and distribution condi-
tions (both normal and nonnormal). Their results show that
MI-CART and MI-RF were superior to MI-NORM under
certain conditions, particularly when the sample size was
large (N = 500-1000). However, MI-CART and MI-RF per-
formed poorly with small sample sizes and when the miss-
ingness had nonlinear relationships with other variables,
regardless of the degree of nonnormality.

The current study is designed to systematically evaluate
different MI methods to deal with missing nonnormal data
in SEM in comparison to RFIML. Our goal is to investigate
to what extent the methods can recover parameters in SEM
under nonnormality. We hope that this investigation can pro-
vide valuable insights for future research.

To keep the scope of our study manageable, we did
not include all available methods but those we believed
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promising or likely to be used by practical researchers. We
include MI-NORM to further examine its robustness to
nonmorality in the context of SEM. We expect MI-NORM
to have some robustness to nonnormality when it is not
extreme. We also include MI-PMM, MI-CART, and MI-RF
because they rely less on distributional assumptions and
have shown some good performance in regression analy-
ses. We omitted MI-LRD because it performs similarly to
MI-PMM and has limited software implementation (He &
Raghunathan, 2009; Morris et al., 2014). We did not con-
sider the transformation or the generalized parametric fam-
ily strategies because of the limitations mentioned above.
We included RFIML as a comparison approach. To help
researchers better understand how the selected MI methods
work, we provide the technical details below, including how
the data are imputed in the imputation phase, the estimation
method used in the analysis phase, and how the parameter
estimates are pooled across imputations.

Selected Ml methods for missing nonnormal
data

Normal-theory-based imputation (MI-NORM)

MI-NORM ignores nonnormality. It is typically imple-
mented using either of two algorithms: joint modeling (JM;
Schafer, 2010) and expectation-maximization with boot-
strapping (EMB; Honaker et al., 2011). Both algorithms fill
in missing values on multiple incomplete variables simul-
taneously and are theoretically equivalent. In the current
study, we used the EMB algorithm for convenience. Briefly
speaking, EMB generates a large number of bootstrapped
samples first (Efron, 1979) and then uses the EM algorithm
to obtain the maximum likelihood estimates of the mean and
covariance matrix for the variables included in an imputation
model for each bootstrapped sample. The EM estimates are
then treated as a random draw of the imputation parameters
and used to impute the missing data.

MI with semi-parametric or nonparametric models

MI with semi-parametric or nonparametric models is imple-
mented using a so-called fully conditional specification
(FCS) algorithm, also known as MI by chained equations
(MICE; van Buuren et al., 2006; van Buuren & Groothuis-
Oudshoorn, 2011). Unlike JM or EMB, FCS imputes miss-
ing data on a variable-by-variable basis without relying on
a multivariate normal distribution.

To illustrate a typical FCS process, lety;, y,, ..., y, be the
p variables that need to be imputed and 6, 6,, ..., Gp be the
parameters that describe the distributions of the p variables

(Mistler & Enders, 2017; van Buuren, 2018). Then the FCS
at the " iteration can be described as follows.
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Because FCS imputes on a variable-by-variable basis, it
has the flexibility to tailor the imputation model according
to the nature of each incomplete variable. In other words,
the imputation models can vary across variables. It can
also accommodate a wide variety of imputation models,
such as the semi-parametric and nonparametric methods
considered in the current study.

MI with predictive mean matching (MI-PMM)

The idea of MI-PMM is to impute each missing value
by randomly drawing a value from its nearest observed
neighbors (also called candidate donors) in terms of the
predicted value of the same variable (Little, 1988). Dif-
ferent versions of PMM have been developed by varying
one or some of the computational details. First, there are
different ways to estimate the parameters in a predictive
model (van Buuren, 2018). Using linear regression as an
example, the parameters could be (i) least square param-
eters, (ii) random parameter values drawn from their poste-
rior distributions (Bayesian approach), or (iii) least square
parameters computed from a bootstrap sample taken from
the observed data. The first method ignores the sampling
variability of the parameters and tends to produce biased
results, especially when there are only a small number
of predictors (Heitjan & Little, 1991; van Buuren, 2018).
This problem can be alleviated by using the Bayesian
approach or bootstrapping (Koller-Meinfelder, 2010).
Second, there are different matching methods. For
example, matching can be done based on the distance
between the predicted values or random draws from the
posterior distribution of the observed or the posterior dis-
tribution of the missing data (e.g., type 1 matching or type
2 matching; van Buuren, 2018). Lee and Carlin (2017)
found that type 1 matching outperformed type 2 match-
ing for PMM in estimating marginal means and regres-
sion coefficients under various types of nonnormality.
Finally, the number of candidate donors (denoted as d; see
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Andridge & Little, 2010, for more details) can vary within
a reasonable range. A general rule is that d should not be
too small (results in little variability across imputed data
sets) or too large (increases the chance of poor matches).
Common values for d are 3, 5, and 10 (van Buuren, 2018;
Morris et al., 2014). More research, however, is needed to
establish a guideline for specifying d.

MI-PMM preserves the original distributions; thus, it
has the potential to deal with missing nonnormal data.
PMM is semi-parametric because it does not require a
parametric model to define the distribution of missing
data; however, a parametric predictive model, usually a
linear regression model, is still needed to determine the
candidate donor pool (Heitjan & Little, 1991; Schenker &
Taylor, 1996). Although MI-PMM has been found to work
well with nonnormal data in various scenarios (e.g., Di Zio
& Guarnera, 2009; Kleinke, 2017; Morris et al., 2014), it
has not been examined in the context of SEM.

MI with classification and regression trees (MI-CART)

CART is a recursive partitioning method. CART stands
for classification trees or regression trees, depending on
whether the response variable is categorical or continu-
ous (Breiman et al., 1984). Unlike traditional regression
and classification methods, CART predicts a variable by
successively splitting a data set based on one other vari-
able at a time. The resulting subsets of data become more
homogeneous with each split (Breiman, 2001). Because
this splitting procedure and resulting subsets can be rep-
resented as a tree structure, these subsets are also referred
to as leaves of the tree (James et al., 2013). For the obser-
vations within the same leaves, the mean of the response
values is then used as the predicted value. When CART is
used for imputation, the missing values are imputed based
on these predicted values.

MI with random forest (MI-RF)

RF is an extension of CART. A single classification tree from
CART is often prone to sample noise, limiting its generaliz-
ability (Doove et al., 2014; Kirasich et al., 2018). RF solves
the problem by assembling results across many trees. Briefly
speaking, RF generates multiple samples first based on the
original data using resampling approaches such as bootstrap-
ping and then creates a tree for each sample. The predicted
values from multiple trees are averaged to create the final
prediction. In the same way as MI-CART, the final predicted
values are used for imputing missing values. As mentioned
above, CART and RF do not rely on distributional assump-
tions or parametric models, so they both have the potential
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to accommodate missing nonnormal data and nonlinear rela-
tionships (Doove et al., 2014; Shah et al., 2014).

Estimation methods used in the analysis phase

After imputation, the target analysis (SEM in this case) is
applied to each imputed data set. Because the data are non-
normal, a robust ML estimator can be used to correct the
bias in standard errors (SEs) due to nonnormality. Note that
there are different versions of robust ML estimators. The
one used in this study adopts the “sandwich” approach as in
RFIML to adjust the standard errors (a.k.a., robust SEs or
MLR SEs; Yuan & Bentler, 2000; Yuan & Hayashi, 2006).
Specifically, the robust SEs are obtained from the asymptotic
covariance matrix of the parameter estimates ©0):

nCov(é) =A"'BA™! 2

where the “bread” part A = — o %, and the “meat”

partg— y" (%) x (%) . The derivatives in both A and

B are evaluated at é, and /(0); is the log-likelihood for case i.
When data are normal, A= ]§, and Eq. 2 can be reduced to
nCov(®) = A~!, which is the ML asymptotic covariance
matrix under the normality assumptions (i.e., the inverse of
the observed information matrix; Yuan & Bentler, 2000). Lai
(2018) found that this correction method was superior to
other analytical techniques in estimating SEs and confidence
intervals (CIs) of SEM parameters with complete nonnormal
data.

Pooling procedures

In the pooling phase, outcomes from the analysis, such as
point estimates and standard errors, are pooled into the final
results, following Rubin's rules (Rubin, 1987). The final
point estimates are obtained by taking the average across
the imputations,

M
_ 1 R
0=— E 0
Mmz]'[n )

where M denotes the number of imputed data sets, and ém
represents the parameter estimates for the m™ imputation.
The pooled standard errors are the squared root of the sum
of within-imputation variance (Vy,), between-imputation
variance (Vp), and a correction factor (Vz/M),

Vy = Vi + Vg + o 4
T— "W B M ()

where Vy;, is computed as the average of the squared standard
errors (for nonnormal data, they are robust standard errors)
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Fig. 1 The structural equation model for data generation

across M imputed data sets, and Vy is the variance of the M
parameter estimates.

Simulation study

As mentioned above, this study examined five methods for
dealing with missing nonnormal data in SEM: multivariate-
normality-based MI (MI-NORM), MI with predictive mean
matching (MI-PMM), MI with classification and regression
trees (MI-CART), MI with random forest (MI-RF), and
RFIML. The performances of these methods are compared
in estimating model parameters.

Design

Data were generated based on a three-factor SEM model, in
which factor 5, was predicted by #,, and 5, was predicted
by both #; and #,. This type of model is commonly seen in
the SEM literature (e.g., Bollen, 1989; Palomo et al., 2011).
The data generation model is shown in Fig. 1. The popula-
tion values were the same as in Fig. 1 in Enders (2001b). The
values of the structural paths among the three variables were
0.4 (1, => 1), 0.286 (17, => n3) and 0.286 (17, => 13). Each
factor was indicated by three manifest variables. The first
factor loading of each factor was fixed to 1 for identification
purposes, and the other loadings were all set to 1. The vari-
ance of 77; was set to 0.490, and the residual variance of 7,
and 55 was set to 0.412 and 0.378, respectively. The residual
variance on the indicators was all set to 0.51. The indicators
are all standard normal. We manipulated several factors in
the data-generating process to create a wide range of condi-
tions, including the degree of nonnormality, missing data
proportion and mechanism, and sample size. The sample
size (V) was set at two levels: small (300) and large (600).

Degree of nonnormality

We varied the degree of nonnormality at three levels.
Nonnormality is typically reflected by the third standard-
ized moment (skewness) and the fourth moment (kurtosis)
around the mean of a distribution. The skewness describes
the asymmetry of a distribution about its mean, and the kur-
tosis measures the “peakedness” of a distribution. For a uni-
variate normal distribution, the skewness is 0 and the kurto-
sis is 3 (or excess kurtosis = kurtosis — 3 = 0). In this study,
nonnormal continuous data were generated following the
method proposed in Vale and Maurelli (1983) and Fleish-
man (1978). The levels of nonnormality were specified using
three combinations of univariate skewness (S) and excess
kurtosis (K): mild (S = 1.5, K = 3), moderate (S =2, K =
7), and severe (S = 3, K = 21). The corresponding approxi-
mate multivariate kurtoses (Mardia, 1970) were 143, 187,
and 314, respectively. These levels of nonnormality were
reflective of the data observed in applied research (Curran
et al., 1996) and were close to those used in Enders (2010)
and Savalei and Falk (2014). For simplicity, all manifest
variables had the same degree of nonnormality under each
condition. The correlation matrix of the nonnormal data was
consistent across the different levels of nonnormality.

Missing data conditions

We varied the missing data proportion (MP) as well as the
missing data mechanisms. There are two levels of MP: small
(15%) and large (30%). These levels are selected based on
previous simulation studies and typical cases in SEM. We
considered three missing data mechanisms: MCAR, MAR-
Head, and MAR-Tail. Missing data were imposed on only
two indicators for each factor (specifically, missing values

@ Springer



3106

Behavior Research Methods (2023) 55:3100-3119

occurred on X;, X,, X4, X5, X7, and Xg, see Fig. 1). These miss-
ing data were created as follows.

MCAR data were generated by randomly deleting the
desired proportion of values on each incomplete variable.
MAR data were imposed through the following procedure.
We first ranked the values of each of the three fully observed
variables (X3, X4, and Xq). We then used the percentile ranks
to determine the probabilities of missingness on the other
two manifest variables of the same latent factor. For MAR-
Head, the probability of having missing data on x; was equal

MCAR
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0% chance of missing the value on x,, while the chance of
having missing data on x, for a case at the 70th percentile
on x3; would be 30%. That is, the probability of missing an
observation on X, increased as the x5 value decreased. For
each value on x5, we compare its probability of missingness
with a randomly drawn value from a uniform distribution
ranging from 0% to 100%. If the random value was greater
than the probability, the case would have missing data on x;.
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Fig.2 Distributions of x1 (continuous) for one replication with N = 300 before (light gray) and after (dark gray) imposing 30% missing data
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This is done sequentially for other cases until the planned
proportion of missing data (15% or 30%) is reached. Miss-
ing data on x, were imposed following the same rationale.
Similarly, missing data on x, and x5 were created based on
the percentile ranks of x4, and missingness on x, and Xg
was determined by the percentile ranks of x4. Because all
manifest variables were positively skewed and positively
correlated, more missing data were imposed on the head of
the distributions.

MAR-Tail data were generated in a similar fashion, except
that the probability of having missing data on x; was simply
equal to the percentile rank% of x; For example, a case with
the largest value on x5 (100th percentile) would have a 100%
chance of missing the value on x,, while the chance of hav-
ing a missing value on x; would be 70% for a case at the 70th
percentile on x5. That is, the probability of missing a value
on x, decreased as the x5 value decreased. Same rule applied
to other manifest variables. Under MAR-Tail, more missing
data were imposed on the heavy tail of the distributions.

To demonstrate the distributions of the incomplete vari-
ables under the different missing data mechanisms and
levels of nonnormality, we selected one incomplete vari-
able and visualized its distributions in Fig. 2 under various
degrees of nonnormality and missing data mechanisms for
one replication with N = 300 and MP = 30%. As shown in
Fig. 2, nonnormality could be less detectable with miss-
ing data in the tail than in the head of the distribution. For
example, the average skewness and kurtosis based on com-
plete cases decreased by 45% and 20%, respectively, after
imposing missing data in the heavy tail of the distribution
with severe nonnormality. When missing data occurred in
the head of the distribution, in comparison, the skewness
and kurtosis changed less (—8% and —13%, respectively).

In sum, there are 36 conditions (2 sample sizes X 3
degrees of nonnormality X 2 missing data proportions X 3
missing data mechanisms). We generated 1000 replicated
samples in each condition.

All data were generated through R (R Core Team, 2017)
using the function gen.nonnormal() developed by Zopluoglu
(2013). RFIML was implemented in lavaan (MLR; Rosseel,
2012), in which the convergence threshold (relative toler-
ance) is set at 10719, MI-NORM was implemented using
the R package Amelia, which employs the EMB algorithm
(Honaker et al., 2011). The convergence threshold for EM
was equal to 107, The FCS methods were implemented
using the R package mice (van Buuren & Groothuis-Oud-
shoorn, 2011). The burn-in iterations were set at 20 for MI-
PMM and MI-RF based on a preliminary simulation study
using one of the most challenging conditions (N =300, 30%
missingness, MAR-Tail, and severe nonnormality). The
number of donors for MI-PMM is set to 5 following Mor-
ris et al. (2014). For MI-RF, a minimum leaf size of 5 was
used to create regression trees (Liaw & Wiener, 2002). The

number of bootstrap samples in RF (i.e., the number of trees)
was set to 10 (Doove et al., 2014). The MLR estimator in the
lavaan package was used to analyze all the imputed data. For
the imputation methods, 50 imputed data sets were generated
following the guidelines developed by White et al. (2011).
A replication was deemed converged if the model converged
for all 50 imputed data sets.

Evaluation criteria

The performance of the examined methods was evaluated
based on relative bias in parameter estimates (Est bias), rela-
tive bias in standard errors (SE bias), and confidence interval
coverage (CIC) rates. The relative bias of a parameter 6 is
calculated as the difference between the average parameter
estimate across replications within a design cell (,,,) and the
population value (6,), divided by the true population value.

(éest - 00)

0

Est bias = x 100% (%)

Following Muthén et al. (1987), we used +£10% as the
acceptable cutoff points.

SE bias measures the accuracy of standard errors, which
can be calculated as follows.

(S_E - ESE)

L X100% ©)
ESE

SE Bias =

where SE is the average standard error across replications
in a design cell, and ESE is the empirical standard error
(i.e., the standard deviation of the parameter estimates across
converged replications). We considered a SE bias accept-
able if its absolute value was less than 10% (Hoogland &
Boomsma, 1998).

The CIC of a model parameter is estimated as the per-
centage of replications in which the 95% CIs covered the
population value. Ideally, a CIC should equal 95%. Follow-
ing Bradley's (1978) “liberal criterion,” we consider a CIC
acceptable if it is between 92.5% and 97.5%.

Results

As mentioned above, the methods are compared on three
outcomes: Est bias, SE bias, and CIC. Given that the struc-
tural path coefficients, capturing predicting relationships at
the latent variable level, are often of the most interest to
researchers, the primary parameters were the three structural
path coefficients (f, |, #; | and f3;,). The secondary param-
eters are factor loadings and factor variances. For ease of
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Table 1 Biases (%) in parameter estimates under MCAR

Mild non-normality

Moderate non-normality

Severe non-normality

Method Ba,i Ps.1 Bsz A3 P Ba.1 Bs.1 Psa M P11 Ba.1 Ps.1 P32 A3 P
MP =30%, N =300
RFIML 1.59 153 3.18 1.83 2.33 2.05 094 421 333 1.93 323 2.80 5.62 3.22 3.65
MI-MVN  -0.10 0.63 488 1.24 2.61 3.04 1.18 2.64 2.06 2.50 5.62 4.36 4.08 370  4.26
MI-PMM 166 2.16 327 3.23 0.49 3.00 1.86 5.10 5.61 -1.93 6.83 4.12 7.67 7.46 -5.03
MI-CART 128 1.55 3.14 3.37 -0.39 1.86 1.28 429 5.03 -2.20 5.29 3.69 7.12 6.55 -3.13
MI-RF 9.01 6.18 7.65 1033 -13.61 1016 6.83 970 12.80 -1591 13.81 10.29 12.66 14.50 -17.79
MP = 30%, N = 600
RFIML 1.15 046 150 0.87 0.84 1.34 092 1.86 1.16 1.01 2.37 0.60 3.95 2.48 1.05
MI-MVN  1.03 156 130 093 0.36 -1.00  -0.26 3.02 0.57 2.38 2.83 0.66 1.41 1.05 3.76
MI-PMM  1.15 0.73 139 1.62 -0.14 1.61 1.60 226 2.12 -0.54 432 244 493 4.86 -3.62
MI-CART 0.86 0.63 129 1.53 -0.68 1.11 123 1.86 2.01 -0.77 2.82 1.18 4.84 3.79 -1.98
MI-RF 649 413 508 748 -11.91  7.08 5.08 6.02 8.10 -12.67 9.90 5.86 8.48 10.38 -14.74
MP = 15%, N =300
RFIML 1.22 130 3.28 146 1.60 2.03 1.04 3.17 275 1.25 2.14 1.79 5.33 2.59 2.55
MI-MVN  -021 0.57 283 0.88 1.69 2.37 1.47 230 224 0.24 3.18 2.29 3.26 2.84 3.84
MI-PMM 140 1.63 3.07 2.17 0.61 2.44 1.28 331 3.74 -0.29 3.31 2.74 6.21 4.62 -1.18
MI-CART 150 1.38 321 247 -0.01 2.19 1.21 296 3.83 -0.68 3.13 2.46 579 448 -0.65
MI-RF 492 354 540 535 -5.93 6.07 367 562 7.08 -7.25 7.29 5.31 7.99 7.88 -7.35
MP =15%, N = 600
RFIML 099 045 1.16 0.60 0.64 1.17 095 153 090 0.62 1.81 0.45 342 1.97 1.03
MI-MVN 024 120 1.10 0.53 0.54 -0.74  -0.19 203 041 1.47 2.51 0.15 091 1.03 2.07
MI-PMM  1.10 0.65 1.14 0.96 0.09 1.41 .39  1.62 132 -0.06 2.76 1.48 4.05 3.02 -1.07
MI-CART 1.09 0.60 1.01 1.11 -0.41 1.04 076 149 1.34 -0.22 2.15 0.31 3.89 2.84 -0.31
MI-RF 377 213 270 3.64 -5.49 3.96 266 329 4.16 -5.95 5.41 2.88 534 571 -6.56

Biases lower than -10% or larger than 10% are in boldface

presentation, we reported results for a representative param-
eter for each of them: the factor loading of x5 (A;) and the
variance of factor n; (¢, ;). The two parameters were chosen
because their result patterns were consistent with the others.
In addition, given that the MCAR and MAR-Head results
were similar, we only report MCAR and MAR-Tail results
below. The results for all parameters under all missing data
mechanisms are available upon request. In the following, we
organized the results by evaluation criterion, missing data
mechanism, and type of parameter.

Bias in parameter estimates
MCAR

As shown in Table 1, all methods produced negligible bias
(Ibiasl < 10%) for all types of parameters, except for MI-RF.
MI-RF was acceptable when the missing data proportion
was low (i.e., MP = 15%). However, it yielded biased esti-
mates for all types of parameters with a larger amount of
missing data. Specifically, with 30% missing data, MI-RF
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yielded negatively biased (< —10%) factor variance regard-
less of the sample size and degree of nonnormality, and posi-
tively biased (> 10%) loadings and path coefficients when
the sample size was small (N = 300).

MAR-Tail

Path coefficients As shown in Table 2, when missing data
occurred mainly on the heavy tail of the distribution, both non-
parametric methods (MI-CART and MI-RF) produced over-
estimated path coefficients (Ibiasl > 10%), although estimates
from MI-CART were slightly less biased. All other methods
yielded negligible bias for path coefficients, except that RFIML
produced slightly larger bias under severe nonnormality.

Loading and factor variance The design factors seemed to impact
the parameter estimates for the representative factor loading and
variance differently. The factor loading estimate mainly was influ-
enced by missing data proportion. When MP = 15%, all methods
produced negligible bias (under 10%), with only a few exceptions.
However, when MP = 30%, almost all methods failed, except
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Table 2 Biases (%) in parameter estimates under MAR-Tail

Mild non-normality

Moderate non-normality

Severe non-normality

Method Ba.i Bs.1 [i2%) A3 P Pa.1 Ps.1 P32 A3 P Pa.1 Ps.1 B3z A3 P
MP =30%, N =300
RFIML 543  -1.09 -146 1012 7.01 -8.15  -528  -3.09 1098 1329 -846 -470 -516 13.12 14.12
MI-MVN  -091 -1.52 176 11.07 8.64 -3.75  -373 054 1335 11.86 -352 223 043 1723 8.64
MI-PMM 274 752 629 20.04 -14.84 334 3.27 7.73 2195 -17.43 9.07 734 1539 26.25 -26.72
MI-CART 17.62 19.04 1794 893 -26.89 19.02 13.86 2298 9.51 -28.00 23.54 17.85 22.50 1292 -33.92
MI-RF 26.89 22.13 22.61 20.62 -46.90 30.83 19.87 25.61 2130 -49.12 3397 2431 30.02 2743 -53.77
MP = 30%, N = 600
RFIML -6.49 -558 -550 834 596 -11.43 -10.00 -694 945 11.86 -10.74 -6.32 -7.30 14.62 7.94
MI-MVN 385 -293 -147 1042 3.68 -6.84 571  -326 11.17 9.14 -590 -2.18 -451 15.80 6.05
MI-PMM -199 -1.13 -0.19 13.07 -994 -134 -1.78 262 16.18 -13.89 8.28 942 621 2252 -26.00
MI-CART 11.62 8.74 934 266 -20.41 1242 8.57 1044 436 -2337 19.19 17.15 1490 821 -29.59
MI-RF 2272 1498 15.99 1494 -43.76 2345 1423 19.09 16.31 -46.30 31.41 2481 21.08 22.59 -52.67
MP =15%, N = 300
RFIML -4.00 -040 -196 644 7.05 <710 470 -328 826 1224 -871 -6.09 -6.67 888 20.18
MI-MVN  -3.63 -3.08 134 644 780 -6.10 454 2,12 823 1327 -726 -2.34 -485 12.02 17.20
MI-PMM -0.66 3.04 296 983 -7.01 1.13 1.11 4.10 1319 -10.04 6.11 469 734 1525 -16.70
MI-CART 10.80 12.23 988 127 -20.80 1320 1148 12.09 3.06 -2423 19.68 1429 1560 3.15 -29.13
MI-RF 17.01 1549 1322 419 -3359 1951 1433 1570 500 -36.33 26.34 19.17 19.67 7.80 -42.70
MP = 15%, N = 600
RFIML -497 -3.51 -327 545 6.32 -9.14 -8.17 -6.64 675 1241 -1147 -833 -790 983 16.72
MI-MVN 424 223 -121 642 477 -743 604 -5.05 7.65 11.17 -829 -541 -8.17 1049 14.72
MI-PMM -1.72 -0.60 0.10 720 -576 -1.73 -184 0.12 9.19 -8.63 5.00 4.66 356 1341 -16.45
MI-CART 931 799 7.04 -0.59 -18.66 10.35 7.69 743  -026 -20.55 17.66 1440 12.82 197 -26.22
MI-RF 1436 10.59 10.62 1.83 -31.53 16.19 10.63 11.24 2.62 -34.60 23.77 17.70 1552 599 -41.33

Biases lower than -10% or larger than 10% are in boldface

for MI-CART. In comparison, the factor variance estimate was
sensitive to the degree of nonnormality. With mild nonnormal-
ity, most methods were acceptable, except that MI-CART and
MI-RF yielded negatively biased factor variance in some condi-
tions. However, for moderate or severe nonnormality, all methods
became problematic.

Bias in standard errors

MCAR

Path coefficients With mild and moderate nonnormality, the
SE biases of path coefficients were all within the acceptable
range (Ibiasl < 10%; see Table 3). With severe nonnormality,
RFIML and MI-NORM produced some negative SE biases
for the path coefficients (< —10%). In contrast, MI-PMM,
MI-CART, and MI-RF produced acceptable SEs for path
coefficients even with severely nonnormal data.

Loading and factor variance For the loading, all methods
were acceptable except that the SEs from MI-NORM were
underestimated under moderate nonnormality with N = 300
and severe nonnormality with both Ns. For factor variance,
the SE biases were most prominent under severe nonnormal-
ity, where almost all methods, including RFIML, resulted in
underestimated standard errors.

MAR-Tail

Path coefficients As shown in Table 4, MI-RF had the worst
performance for path coefficients when MAR missingness
occurred mainly on the tail, especially when N = 300. MI-
CART performed better than MI-RF when MP=15% or N
= 600. Other methods were generally better than MI-RF and
MI-CART, although they produced a few unacceptable SEs
for path coefficients when the sample size was small (N =
300), a large proportion of data were missing (MP = 30%),
or the data were severely nonnormal.
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Table 3 Biases (%) in standard errors under MCAR

Mild non-normality

Moderate non-normality

Severe non-normality

Method Pai Ps.1 B3z A3 P Ba.1 Ps.1 B3z A3 P11 P21 Ps.1 P32 A3 P
MP =30%, N =300
RFIML -493 -6.08 -137 -499 -345 -837 -3.70 -2.66 -10.27 -8.16 -10.01 -10.21 -8.60 -8.64 -19.49
MI-MVN  -2.59 -0.05 -479 -566 -572 -3.80 0.13 -651 -1097 -1044 -1449 -941 -5.39  -1542 -25.05
MI-PMM  -2.58 -3.19 208 -232 -230 -2.86 -042 347 588 -418 -139 337 5.08 3.30 -8.34
MI-CART -399 -326 175 935 -690 -436 -2.16 082 -938 -783 -597 -1.78 027 -437 -28.78
MI-RF 436 3.09 793 1125 6.13 1.64 515 9.06 6.37 2.60 1.91 4.39 569 898 -7.35
MP = 30%, N = 600
RFIML 1.58 -090 025 -0.10 0.06 -255 -159 -586 -527 -147 -9.05 -6.01 -9.04 -7.01 -14.44
MI-MVN 445 -380 -4.63 -855 -739 -1.11 -432 -414 -9838 -10.59 -15.12 -12.88 -9.79 -16.85 -23.34
MI-PMM 312 051 071 133  -029 -133 -147 -545 -244 080 -570 -1.03 -3.73 -1.28 -1041
MI-CART 0.74 005 039 -471 -431 -197 -1.13 -635 -738 -522 -6.31 -1.02 435 -633 -16.27
MI-RF 6.15 352 598 1325 626 3.03 419 -1.72 7.23 4.79 -1.88  3.79 1.37  6.19 -9.90
MP = 15%, N =300
RFIML -1.99 519 -050 -375 -1.76 -6.80 -2.27 -1.26 -8.61 -6.28  -10.14 -695 -746 -748 -21.93
MI-MVN  -1.58 -140 -1.69 -458 -375 -520 -140 -443 -1085 -725 -1573 -9.77 -6.69 -18.69 -29.03
MI-PMM -1.16 -392 191 -3.01 -1.57 -479 -005 005 -699 -553 -594 -232 -318 -3.06 -19.66
MI-CART -191 -4.06 0.75 -6.64 -385 -493 -149 -082 -859 -757 -891 -3.30 -3.14 -7.66  -24.08
MI-RF 225 003 425 392 279 -1.69 240 3.03 -033 -1.31 453  -020 -022 -0.82 -21.37
MP = 15%, N = 600
RFIML 058 -1.75 042 -2.04 -224 -297 098 -6.03 -563 -1.51 -9.62 -6.80 -821 -737 -1648
MI-MVN  -1.20 -299 -2.17 -589 -442 0.18 -1.28 -344 -708 -7.19 -11.87 -830 -8.00 -15.07 -19.12
MI-PMM 1.06 -1.51 067 -096 -2.28 -230 248 -523 -356 -056 -745 -392 -596 -4.66 -13.53
MI-CART 054 -248 -0.09 -444 -424 -292 298 -746 -6.57 -255 -799 -382 -628 -835 -17.77
MI-RF 341 093 337 538 216 -038 528 -3.18 140 2.99 -5.66  -1.57 298 -1.73 -13.91

Biases lower than -10% or larger than 10% are in boldface

Loading and factor variance For the loading, MI-RF yielded
biased SEs in all conditions; other methods generally performed
well with only a few exceptions. For the factor variance, MI-
PMM and MI-CART produced large negatively biased SEs in
all conditions; RFIML and MI-NORM produced SE biases in
all conditions with severely nonnormality, and MI-RF yielded
biased SEs under nonnormality only when MP = 30%.

Confidence interval coverage

MCAR

Path coefficients Table 5 shows the CICs from the exam-
ined methods under MCAR. The CICs of path coefficients
from all methods were within the acceptable range (92.5%
to 97.5%) under mild and moderate nonnormality, except
that RFIML produced CICs below 92.5% for 3, ;| when the
data were moderately nonnormal. When data were severely
nonnormal, RFIML and MI-NORM yielded CICs below
92.5% for all three path coefficients in almost all conditions.
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MI-PMM, MI-CART, and MI-RF, in comparison, tended
to produce adequate CICs for the path coefficients across
sample sizes, missing data proportions, and degrees of non-
normality, with only a few exceptions.

Loading and factor variance The CICs for the loading
showed different patterns. CICs from RFIML and MI-
NORM could drop below or close to 92.5% with moderate
or severe nonnormality, MI-PMM and MI-CART performed
well across all conditions, and the CICs from MI-RF tended
to be higher than 97.5% for MP = 30%, especially with the
small sample size (N = 300). For the factor variance, MI-RF
produced CICs below 92.5% in all conditions. The other
methods generally performed well under mild nonnormal-
ity but yielded unacceptable CICs in most conditions under
moderate and severe nonnormality.

MAR-Tail

Path coefficients Under MAR-Tail, CICs for the path coef-
ficients from RFIML were under 92.5% in most conditions
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Table 4 Biases (%) in standard errors under MAR-Tail

Mild non-normality

Moderate non-normality

Severe non-normality

Method Ba Ps.1 B3z A3 P Ba.1 Bs.1 B3z A3 P Ba.1 Ps.1 P32 A3 P
MP =30%, N =300
RFIML 479 9.12 -434 -440 -3.18 948 -7.67 -240 -829 -503 -792 -12.34 -9.16 -7.76 -16.80
MI-MVN 512 492 498 175 -232 3.80 868 207 200 -162 -476 -0.87 -6.57 -988 -584
MI-PMM -0.70 293 587 4.17 -1488 -3.05 10.04 11.54 299 -1431 -3.85 937 427 594 -23.48
MI-CART 392 19.68 16.54 7.76 -13.89 1.19 19.50 15.78 456 -16.18 -4.00 20.92 17.24 -031 -31.30
MI-RF 13.83 26.51 26.84 2529 251 16.27 3842 3443 2945 694 16.36  44.06 50.21 25.27 -14.59
MP = 30%, N = 600
RFIML -2.02 -5.82 -359 -324 -144 329 -1.65 -335 -069 -448 -871 -14.09 -751 -823 -11.21
MI-MVN  -2.37 -099 -235 -074 -434 262 -392 -427 -497 -790 -843 -509 -7.01 -13.34 -14.91
MI-PMM -9.56 -2.82 -2.22 -8.85 -2298 -1341 345 -401 -9.77 -23.00 -13.82 -6.12 1.70 -437 -27.65
MI-CART -5.80 1.88 493 141 -1566 -0.18 11.58 2.13 -2.18 -2428 -7.76 3.32 6.70 2.21 -34.68
MI-RF 261 9.04 976 11.37 495 5.0 16.76 11.53 13.83 -698 3.41 14.59 23.76 18.96 -15.27
MP =15%, N = 300
RFIML -3.69 -5.00 -2.10 -291 415 -348 -333 0.64 -7.08 -2.62 -10.84 -9.15 -376 -8.76 -10.61
MI-MVN 073 263 -370 -482 -474 -1.71 146 232 -586 -5.13 -422 557 -756 -13.59 -10.49
MI-PMM 402 192 566 169 -1498 -408 560 525 -335 -15.03 -0.61 6.13 694 7.16 -17.64
MI-CART -444 261 495 287 -17.54 -2.60 515 11.74 -7.67 -12.03 -446 9.87 929 271 -27.39
MI-RF 7.52 1539 1638 18.79 6.90 1047 19.06 23.03 15.87 6.98 9.10 21.66 2649 20.06 -4.32
MP = 15%, N = 600
RFIML 0.13  -030 -3.19 -195 -0.60 -0.05 029 -3.19 3.00 2.06 -547  -1236 -8.11 -623 -10.17
MI-MVN  -1.16 -3.06 -293 -1.70 -364 -261 -051 -201 -2.12 -440 -9.18 -6.68 -438 -11.46 -12.36
MI-PMM -7.83 280 -325 -329 -2140 -395 533 -382 158 -16.60 -1298 -452 0.75 0.79 -24.43
MI-CART -4.62 393 320 -0.06 -13.56 -244 462 225 285 -1654 -785 -1.80 0.63 -1.24 -27.05
MI-RF 419 13.63 11.13 1299 3.09 9.24 17.00 10.51 17.89 7.00 4.77 11.08 13.52 1631 -9.52

Biases lower than -10% or larger than 10% are in boldface

(see Table 6). The performance of MI-NORM became worse
as the degree of nonnormality increased. Specifically, with
severely nonnormal data, CICs for the path coefficients from
MI-NORM dropped below 92.5% but were slightly better
than RFIML. MI-RF led to greater than 97.5% CICs for path
coefficients in all conditions. Among all the examined meth-
ods, MI-PMM and MI-CART were the best as they produced
CICs closer to 95% in most conditions, regardless of sample
size, missing data proportion, and nonnormality.

Loading and factor variance For the loading, RFIML and
MI-NORM generally yielded acceptable CICs, except when
data are severely nonnormal and N = 600. MI-PMM pro-
duced acceptable CICs, except that the CICs were above
97.5% when the sample size was small (N = 300) and the
missing data proportion was large (MP = 30%). In com-
parison, MI-RF led to CICs greater than 97.5% in almost
all conditions. Among all the methods, MI-CART appeared
to produce the best CICs for the loading. The patterns were
different regarding CICs for factor variance. The CICs from
all donor-based methods tended to be too low (< 92.5%) in

all conditions. RFIML and MI-NORM worked well with
mildly or moderately nonnormal data. However, they could
not produce a sufficient CIC with severely nonnormal data,
especially when the missing data proportion was large.

Empirical example

An empirical example is used to illustrate the examined
methods. The data used in the example were from the
longitudinal Fragile Families and Child Wellbeing Study
(FFCWS; Reichman et al., 2001). The data were collected
from mothers and fathers shortly after their children’s births
between 1998 and 2000 and when the children were 1, 3,
5,9, and 15 years old. Inspired by Marchand-Reilly and
Yaure (2019), we built a structural equation model with
three constructs: parents’ relationship at age 5 (n;), child’s
internalizing behaviors at age 5 (n,), and child’s internal-
izing behaviors at age 15 (13).

In this model, 3, f;; and B3, represent the effects of
1, on 1, 1; on 13, and 1, on 13, respectively. The indicators
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Table 5 Confidence interval coverages (CICs) under MCAR

Mild non-normality

Moderate non-normality

Severe non-normality

Method Ba.i Ps.1 P32 A3 P11 Ba,i Bs.1 B3z A3 P Pa.1 Bs.1 P32 3 P
MP =30%, N =300
RFIML 93.30 93.20 94.10 9280 92.60 91.10 9330 94.10 91.90 88.50 88.79 89.49 91.89 9349 86.89
MI-MVN 9340 9523 9452 9259 9299 9440 94.19 93.67 9232 90.87 90.34 9251 93.00 88.77 8345
MI-PMM 94,12 9392 9534 9493 9230 9275 9479 95.10 94.08 88.56 92.03 93.71 95.06 96.52 85.07
MI-CART 94.08 9377 9540 92.65 9142 91.56 94.85 9434 9331 88.16 91.57 92.83 9389 9557 84.93
MI-RF 96.76 9582 96.65 9833 8546 9634 96.86 96.76 97.80 7835 9544 9544 9554 98.30 75.58
MP = 30%, N = 600
RFIML 93.60 94.10 95.10 94.00 93.60 9220 94.10 93.60 93.00 93.10 91.30 91.70 93.00 92.50 89.10
MI-MVN  95.10 9420 9430 93.10 9270 93.80 9340 93.70 9220 9190 89.27 91.17 90.57 89.67 87.16
MI-PMM 9429 9439 9479 9539 9399 9339 94.19 9399 9439 9238 93.37 9427 9397 9487 87.74
MI-CART 9438 94.48 9479 93.67 93.05 9275 93.87 94.08 93.05 9142 9254 9346 9438 9294 86.91
MI-RF 96.03 95.61 9634 97.81 8527 9551 9551 9509 96.66 8359 96.03 9561 96.03 96.87 78.58
MP = 15%, N =300
RFIML 94.10 93.70 9530 93.10 9290 9210 94.10 93.70 9270 88.80 88.90 90.70 91.40 91.60 87.90
MI-MVN 9330 93.60 9500 9290 9390 9349 92.69 93.89 92.19 89.99 87.77 90.60 90.50 87.46 85.04
MI-PMM 9428 9398 95.69 93.88 92.88 9259 9449 9459 9389 89.18 90.34 9256 9346 9497 85.71
MI-CART 94.38 93.77 9581 9275 92.65 9275 9459 93.87 9285 8836 89.44 9221 9251 93.74 86.05
MI-RF 96.24 95.09 97.07 96.66 90.39 94.15 9530 9551 9551 84.85 92.04 9340 94.14 96.75 82.62
MP = 15%, N = 600
RFIML 94.60 94.80 9580 9450 9390 9210 9530 93.80 9370 92.30 90.90 92.20 92.70 92.20 88.20
MI-MVN 9480 93.80 9520 9290 93.60 93.80 94.10 9550 9270 92.80 91.30 9230 91.10 90.00 87.40
MI-PMM 9459 94.69 9579 94.69 93.09 9299 9579 9399 9429 9228 9238 93.19 94.19 9449 88.48
MI-CART 94.18 9438 9571 9448 92.85 92.85 9561 9326 9254 92.03 92.13 92.85 9448 93.16 88.05
MI-RF 95.61 9540 96.66 9634 90.60 9436 96.13 9446 95.61 89.45 9373 9457 94.67 9498 84.33

CICs lower than 92.5% are in boldface; CICs greater than 97.5% are in boldface and underscored

were scale scores (averaged across items) of mothers’ rat-
ings on co-parenting quality and relationship quality for n,,
and anxious/depressed and withdrawn/depressed for both
1, and n; (see Dush et al., 2011; Marchand-Reilly & Yaure,
2019). Table 7 shows the descriptive statistics of the indi-
cators, including minimum, maximum, skewness (ranged
from —2.01 to 1.90), and excess kurtosis (ranged from 0.91
to 5.20). The skewness and kurtosis values indicate mild to
moderate nonnormality. To demonstrate the impact of the
missing data mechanism, we selected a complete subsample
(N = 940) from the original data and imposed 15% missing
data on one indicator of each construct based on the three
missing data mechanisms (MACR, MAR-Head, and MAR-
Tail) examined in the simulation study.

The parameter and standard error estimates obtained from
the five missing data methods are shown in Table 8. The com-
plete data results were also included in the table to evaluate the
missing data methods. The parameter and SE estimates from all
methods were slightly different than those from the complete
data under MCAR and MAR-Head. However, larger differences
were observed under MAR-Tail. Notably, the parameter and SE
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estimates from MI-RF deviated furthest away from the com-
plete data results under MAR-Tail. The result was consistent
with the findings from the simulation study.

Discussion

The current study extended the past research on missing
nonnormal data by investigating the performance of sev-
eral MI methods in comparison with RFIML in recover-
ing common parameters (i.e., structural path coefficients,
loadings, and factor variances) in SEM. It considered a
broad range of conditions, including various sample sizes,
degrees of nonnormality, missing data proportions, and
missing data generating mechanisms. It evaluated the
methods using bias in point and SE estimates, as well as
CIC. The results suggest that the design factors had a dif-
ferential influence on the estimates of the different types of
parameters. In general, the factor variance estimates were
found to be more sensitive to the degree of non-normality
than the path coefficient and loading estimates.
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Table 6 Confidence interval coverages (CICs) under MAR-Tail
Mild non-normality Moderate non-normality Severe non-normality
Method P21 P31 Pz A P11 Ba.1 Pa.i Paa A3 P Pa.1 P P32 A3 P
MP =30%, N =300
RFIML 88.40 90.90 90.50 9620 92.70 84.75 89.37 90.77 9539 93.88 84.13 84.02 8635 9292 90.29
MI-MVN 9425 9370 9288 9740 9493 91.51 9350 9430 96.55 94.69 89.16 91.58 91.44 9244 90.44
MI-PMM 9350 93.75 9534 9828 77.57 91.08 95.18 96,51 98.07 7530 91.89 9356 9575 9820 62.29
MI-CART 9585 97.11 97.11 9623 7010 9476 96.71 9829 96.83 64.56 9497 9649 97.08 95.67 52.63
MI-RF 98.71 98.61 9936 9936 3934 97.72 9935 9924 99.24 3833 9911 98.67 9944 99.11 29.67
MP = 30%, N = 600
RFIML 89.60 9140 90.80 9490 94.00 8430 87.30 89.00 9370 94.70 83.87 86.27 87.58 88.88 91.28
MI-MVN 9135 93.76 9276 95.88 93.86 89.68 89.88 9138 9279 9329 86.99 89.86 89.45 86.99 90.16
MI-PMM  89.34 9225 91.55 9527 7857 87.81 93.05 9275 9577 7372 9323 91.71 93.02 9535 58.95
MI-CART 9577 95.15 95.05 94.12 7278 95.15 9536 9577 94.63 64.81 9537 93.82 96.19 9464 52.63
MI-RF 97.07 98.12 9791 99.06 2832 96.66 98.12 98.64 98.96 26.75 97.81 98.12 98.64 98.64 21.11
MP = 15%, N =300
RFIML 90.70 9390 92.60 9550 9390 88.49 89.99 90.99 9429 9550 83.75 8546 88.06 92.88 93.48
MI-MVN  93.05 94.06 9295 9587 94.06 89.10 92.73 93.54 9435 9526 87.32 91.09 89.10 92.87 9298
MI-PMM 9141 9464 9525 97.07 83.72 92.00 9545 9443 97.06 79.66 92.59 93.74 9509 97.08 72.34
MI-CART 9423 96.80 9526 93.71 72.68 9494 9690 96.28 94.11 67.05 9550 9540 96.03 93.72 59.21
MI-RF 98.21 9842 9832 9779 58.61 97.38 9853 98.85 97.28 53.19 9831 98.00 98.63 9747 43.31
MP = 15%, N = 600
RFIML 91.30 94.70 91.70 9530 9530 87.60 90.10 90.80 9440 9630 84.80 85.80 88.50 92.10 95.20
MI-MVN 9240 9330 9340 9420 9330 89.50 9140 91.70 9350 9420 86.49 88.49 88.79 90.29 9499
MI-PMM  91.68 94.69 92.79 9559 83.87 90.28 93.69 9259 96.69 79.96 91.87 92.77 9438 95.08 69.88
MI-CART 9448 96.63 9571 93.56 71.09 9560 9581 9519 93.66 67.69 9427 9478 9519 93.86 55.78
MI-RF 96.45 9749 9791 9739 4587 9697 98.12 9791 9822 4159 96.76 9781 97.28 98.54 33.75
CICs lower than 92.5% are in boldface; CICs greater than 97.5% are in boldface and underscored
Table 7 Empirical example: Descriptive statistics
Construct Indicator Min Max Skewness Excess kurtosis Imposed
missing-
ness
Parents’ relationship at age 5 Co-parenting quality 2.17 4.00 -2.01 5.20 Yes
Relationship quality 1.22 4.11 -0.93 0.91 No
Child’s internalizing behaviors at age 5 Anxious/depressed 1.00 2.56 1.47 2.88 Yes
Withdrawn/depressed 1.00 2.14 1.24 1.66 No
Child’s internalizing behaviors at age 15 Anxious/depressed 1.00 3.00 1.90 4.40 Yes
Withdrawn/depressed 1.00 3.00 1.78 2.93 No

This study also revealed similarities and discrepancies
of the methods under the various conditions examined in
the study and provided valuable insights about their empir-
ical performance. Regarding the two parametric methods
(RFIML and MI-NORM), we found that RFIML generally
performed well under MCAR or MAR, except when MAR
occurred mainly on the heavy tail of the data distribution
(i.e., MAR-Tail), and the proportion of missing data was

large. These findings are consistent with previous research
(e.g., Enders, 2001b; Savalei & Falk, 2014). The overall
performance of MI-NORM was similar to that of RFIML,
particularly under mild and moderate nonnormality. Under
MAR-Tail, MI-NORM could even outperform RFIML by
producing slightly better CICs for path coefficients.
Regarding the semi-parametric and nonparametric
methods, we expected MI-PMM, MI-CART, and MI-RF to
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Table 8 Empirical example: Comparison of missing data methods

Ba,1 Bs,1 B3z
Est. SE Est. SE Est. SE

Complete data

MLR -0.169 0.040 -0.277 0.066 0.362 0.091
MCAR

RFIML -0.178 0.043 -0.254 0.069 0.364 0.103

MI-NORM -0.175 0.042 -0.249 0.067 0.377 0.103

MI-PMM -0.177 0.043 -0.250 0.070 0.374 0.107

MI-CART -0.170 0.045 -0.250 0.069 0.359 0.100

MI-RF -0.183 0.051 -0.260 0.079 0.364 0.110
MAR-Head

RFIML -0.170 0.041 -0.292 0.071 0.359 0.098

MI-NORM -0.164 0.041 -0.298 0.069 0.360 0.099

MI-PMM -0.160 0.041 -0.292 0.069 0.371 0.095

MI-CART -0.164 0.043 -0.282 0.072 0.373 0.094

MI-RF -0.159 0.047 -0.278 0.080 0.387 0.108
MAR-Tail

RFIML -0.193 0.049 -0.297 0.086 0.372 0.100

MI-NORM -0.202 0.050 -0.276 0.081 0.381 0.109

MI-PMM -0.199 0.061 -0.293 0.091 0.351 0.111

MI-CART -0.227 0.068 -0.230 0.084 0411 0.119

MI-RF -0.342 0.135 -0.424 0.236 0.533 0.289

outperform MI-NORM in dealing with missing nonnormal
data because they rely less on the normality assumption.
However, the results did not fully support the expectation.
When missing data were MCAR or MAR-Head, MI-PMM
was comparable to or, in some conditions, even better than
MI-NORM or RFIML. For example, it produced better SEs
and CICs under moderate and severe nonnormality. How-
ever, it could result in more biased point and SE estimates
than MI-NORM or RFIML under MAR-Tail, especially
when the sample size was small and the missing data pro-
portion was large. MI-CART performed similarly to MI-
PMM, except it was more sensitive to small sample sizes
under MAR-Tail. The overall performance of MI-RF was
poor across conditions, especially under MAR-Tail. As men-
tioned above, studies found that MI-CART and MI-RF were
able to deal with interactions or nonlinearities adequately
(Doove et al., 2014; Shah et al., 2014). These studies, how-
ever, were not conducted in the SEM context and did not
involve nonnormality in data. Our findings shed light on
the performance of these methods in a broader range of
situations. The combination of these results implies that the
nonparametric methods may have difficulty handling certain
types of nonnormality, for example, nonnormality that is not
due to nonlinear relationships among observed variables.
Based on these findings, we offer the following rec-
ommendations to substantive researchers. Note that these
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recommendations are only limited to the conditions exam-
ined in the study. RFIML generally performed well in
dealing with missing data and nonnormality, except that it
yielded lower CICs (< 90%) under MCAR and MAR-Head
with moderate and severe nonnormality, or under MAR-Tail
regardless of the degree of nonnormality. MI-NORM was
in general comparable to RFIML; thus, it could serve as an
alternative to RFIML if Ml is to be adopted. Although MI-
PMM showed some advantages over RFIML and MI-NORM
under moderate and severely nonnormality when missing
data were MCAR or MAR-Head, it generally had problems
estimating parameters when the missing data mechanism
was MAR-Tail. Thus, we only recommend it when the miss-
ing data mechanism is not MAR-Tail. MI-CART was compa-
rable to MI-PMM under MCAR or MAR-Head, but it could
yield more severely biased point and standard error estimates
than MI-PMM did under MAR-Tail. Since MI-CART is not
better than MI-PMM, and MI-RF was worse than the other
methods in many conditions, we do not recommend either
approach. It is important to note that when the nonnormality
is severe, all these methods could fail, especially with small
sample size and a large proportion of missing data.

Given that the performance of the examined methods
is highly contingent on the missing data mechanism, it
would be helpful to explore the missing data mechanism of
the data at hand. Researchers could utilize available prior
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knowledge on the distribution of the target variable to deter-
mine whether the missing data likely occurred on the tail or
head of the distribution. This could shed some light on the
possible degree and direction of potential bias. In addition,
it appears that a larger sample size would mitigate the influ-
ence of missing data and nonnormality. Thus, if possible,
researchers should plan a relatively large sample size for
SEM, accounting for potential missingness and nonnormal-
ity in the data.

Limitations

Several limitations of the study are worth mentioning. First,
we only examined a three-factor SEM model where miss-
ing data were imposed on two indicators of each factor. To
explore whether the examined methods perform differently
when applied to other kinds of SEM models, we provided an
additional empirical example in the Appendix with a Multiple
Indictor Multiple Cause (MIMIC) model. Similar to the empir-
ical example described above, MI-CART and MI-RF yielded
the most different results compared with those from the com-
plete data. This is also consistent with the findings from the
simulation. More models could be investigated in the future.

Second, we only considered univariate unconditional
nonnormality, and the degree of nonnormality was set to
be constant across all variables. In practice, nonnormality
could occur after conditioning on other variables (i.e., con-
ditional nonnormality). The degree of nonnormality could
vary across variables, or nonnormality may come from cat-
egorical—such as ordinal—indicators. We refer readers to
Jia and Wu (2019) for methods to deal with missing ordinal
data. More conditions could be examined in future research.

Third, the MAR on each indicator was only determined
by another indicator of the same factor. In reality, the MAR
mechanism could be much more complex. Future research
may examine other MAR data that are determined by a com-
bination of variables.

Fourth, as donor-based methods, the capability of MI-
PMM, MI-CART, and MI-RF is dependent on the avail-
ability of suitable donors in the sample. Thus, they require
a larger sample size than the other examined MI methods,
especially when a larger proportion of data are missing. For
example, Lee and Carlin (2017) used N =1000 for estimating
marginal means; Doove et al. (2014) also generated 1000
observations for multiple regression and logistic regression
models. To preliminarily explore the sample size issue, we
selected the worst scenario in the simulation (MP = 30%,
severe nonnormality, and MAR-Tail) and used it to exam-
ine whether the MI-RF performance would change if we
increased the sample size to 1000 or 10,000. We found that
the accuracy of parameter estimates improved as the sample
size increased. Nevertheless, even with N = 10,000, large
bias for path coefficients (13-20%) and latent factor variance

(41-45%) were still observed. We did not consider sample
sizes larger than 10,000 due to the limit of time and compu-
tational power. It would be interesting to conduct a full-scale
simulation study to thoroughly examine the effect of sample
size on the donor-based MI methods.

Fifth, the performance of the recursive partitioning meth-
ods, MI-CART and MI-RF, could be affected by the settings
of hyperparameters such as the number of trees (for RF) and
the size of leaves. In this study, we used the hyperparameter
values found reliable in past research (e.g., Doove et al.,
2014; Shah et al., 2014). Per the suggestion of a reviewer, we
conducted a small ad-hoc simulation to explore the impact of
hyperparameters on the performance of MI-RF. We did not
find noticeably different results in the conditions we chose:
different numbers of trees (10, 50, and 100 trees), and differ-
ent leaf sizes (5, 10, and 20 donors in each leaf). Strategies
for optimizing hyperparameters for RF (e.g., random search
and sequential model-based optimization) can be found in
the machine learning literature (Probst et al., 2019). How-
ever, these strategies have not been fully implemented in
behavioral studies, especially when combined with missing
data imputation. Further research is warranted.

Finally, we did not include model fit evaluation in the cur-
rent study. The robust ML method will produce a corrected
(correct for nonnormality) chi-square test statistic for model
fit. To our knowledge, there is not yet a clear solution for
pooling corrected chi-square test statistics across imputa-
tions (Enders & Mansolf, 2018). Future work is needed to
identify/develop an appropriate pooling method, based on
which the performance of MI methods for missing nonnor-
mal data in model fit evaluation could be examined.

Appendix

This is an additional empirical example to demonstrate the
differences among the examined missing nonnormal data
methods. Inspired by Fan et al. (2010), we used the data
from Educational Longitudinal Study of 2002 (National
Center for Education Statistics, 2002) to examine the
covariance between two latent constructs (students’ moti-
vation and parent-school communication concerning poor
performance), and the effect of two observed variables
(socioeconomic status [SES] and gender) on them. In this
Multiple Indictor Multiple Cause (MIMIC) model, students’
motivation was measured by three composite scores: Math
self-efficacy, English self-efficacy, and general effort and
persistence. Parent-school communication concerning poor
performance had two indicators: frequencies of school con-
tacted parent about poor performance, and frequencies of
parent contacted school about poor performance.

We chose a complete subsample (N = 1287) from the
original data and imposed 15% missing data on all the three
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SES

Gender

Fig. A1. MIMIC Model

Table A1 Point and standard errors estimates of selected parameters

Math self-
A1 efficacy
Stufien'F S A21  |English self-
motivation efficacy
Effort and
persistence
Parent-school School
R contacted
communication arent
about poor £
performance s, Parent
contacted >
school

48! 721 ¥

Complete

MLR 0.088 (0.024) *  0.028 (0.024)  -0.024 (0.006) *
MCAR

RFIML 0.082 (0.026) *  0.037 (0.026) -0.023 (0.007) *

MI-NORM  0.083 (0.026) *  0.036 (0.026) -0.023 (0.007) *

MI-PMM 0.087 (0.026) *  0.036 (0.026)  -0.023 (0.007) *

MI-CART  0.086 (0.026) * 0.033 (0.026) -0.023 (0.007) *

MI-RF 0.083 (0.026) *  0.037 (0.025) -0.022 (0.007) *
MAR-Head

RFIML 0.078 (0.033) *  0.030 (0.026) -0.022 (0.007) *

MI-NORM  0.073 (0.031) *  0.028 (0.026) -0.021 (0.006) *

MI-PMM 0.087 (0.031) *  0.028 (0.026) -0.021 (0.007) *

MI-CART  0.007 (0.027) 0.011 (0.026)  -0.020 (0.007) *

MI-RF 0.055 (0.029) 0.025 (0.027)  -0.023 (0.007) *
MAR-Tail

RFIML 0.092 (0.030) *  0.035 (0.027) -0.028 (0.007) *
MI-NORM 0.093 (0.032) *  0.035 (0.027)  -0.029 (0.007) *
MI-PMM 0.074 (0.031) *  0.040 (0.027) -0.028 (0.007) *
MI-CART -0.016 (0.027)  0.079 (0.026)  -0.027 (0.007) *
MI-RF 0.059 (0.029) *  0.046 (0.026) -0.028 (0.007) *

Standard errors are in parentheses. The * symbol indicates signifi-

cance at a = 0.05

indicators of student’s motivation, based on the three miss-
ing data mechanisms: MACR, MAR-Head, and MAR-Tail.

@ Springer

In both MAR conditions, we used SES to determine the
probabilities of missingness on those indicators.

The parameter and standard error estimates obtained from
the five missing data methods in comparison with complete
data results are shown in Table A1. Under MCAR, all miss-
ing data methods yielded comparable results with that of the
complete data, while under MAR-Head and MAR-Tail, larg-
est differences were found to be associated with the effect
of SES on student’s motivation (y,,). Specifically, for the
point estimate, MI-PMM performed the best under MAR-
Head, while underestimated y,; under MAR-Tail. RFIML
and MI-NORM yielded smaller y;, under MAR-Head and
overestimated y,; under MAR-Tail. The estimates obtained
from MI-CART and MI-RF in both MAR conditions were
drastically smaller than the complete data results. All meth-
ods yielded inflated standard errors of y;, to a certain degree
in both MAR conditions.
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