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Abstract
Missing data and nonnormality are two common factors that can affect analysis results from structural equation modeling 
(SEM). The current study aims to address a challenging situation in which the two factors coexist (i.e., missing nonnormal 
data). Using Monte Carlo simulation, we evaluated the performance of four multiple imputation (MI) strategies with respect 
to parameter and standard error estimation. These strategies include MI with normality-based model (MI-NORM), predictive 
mean matching (MI-PMM), classification and regression trees (MI-CART), and random forest (MI-RF). We also compared 
these MI strategies with robust full information maximum likelihood (RFIML), a popular (non-imputation) method to deal 
with missing nonnormal data in SEM. The results suggest that MI-NORM had similar performance to RFIML. MI-PMM 
outperformed the other methods when data were not missing on the heavy tail of a skewed distribution. Although MI-CART 
and MI-RF do not require any distribution assumption, they did not perform well compared with the others. Based on the 
results, practical guidance is provided.

Keywords Missing data · Nonnormality · Multiple imputation · Full information maximum likelihood · Predictive mean 
matching · Classification and regression trees · Random forest

Structural equation modeling (SEM) is a flexible and pow-
erful analytical framework for testing complex multivariate 
relationships at the observed and/or latent variable levels 
(Bollen, 1989). It offers various estimation methods (e.g., 
maximum likelihood [ML] or weighted least squares esti-
mation methods) and can handle different types of data 
(e.g., continuous or categorical). The current article aims to 
address the coexistence of two common factors that could 
affect the performance of SEM with continuous data and 
ML estimation. These two factors are nonnormality and 
missing data. When mishandled, either factor alone could 
cause biased results. Specifically, nonnormality alone could 
lead to biased standard error estimates (Browne, 1984; Chou 
et al., 1991; Fan & Wang, 1998; Finch et al., 1997; Olsson 
et al., 2000). Missing data alone could cause bias not only 

in standard error estimates but also in parameter estimates 
(Enders, 2001a, 2001b).

Extensive research has addressed nonnormality with 
complete data (see Browne, 1984; Satorra & Bentler, 1994; 
Yuan & Hayashi, 2006). However, much less research has 
tackled the issue of nonnormality when data are incomplete, 
especially in the SEM framework. Missing data, ubiquitous 
in social and behavioral research, could add an extra layer of 
complexity on the top of nonnormality. There are different 
missing data techniques, such as full information maximum 
likelihood (FIML) and multiple imputation (MI; Enders, 
2001a, 2010; Graham, 2009; Rubin, 1976, 1996; Schafer 
& Graham, 2002). For MI in particular, missing data can 
be imputed in different ways (e.g., through a parametric or 
nonparametric model). Consequently, researchers are faced 
with multiple options, and it is not clear which option(s) 
would work best.

The purpose of the current study is thus to provide a 
systematic comparison of several available MI strategies 
to deal with missing nonnormal data in the context of 
SEM using Monte Carlo simulation. Although some of the 
strategies have been examined in the past in univariate or 
regression analyses (see more details below), the findings 
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are not automatically generalizable to SEM, as SEM allows 
researchers to model relationships at the latent variable level. 
Thus, we believe that our study can provide new insights into 
the missing data analysis literature.

The rest of the article is organized as follows. We first 
provide the background information for the study, including 
missing data mechanisms, a general description and compar-
ison of FIML and MI in dealing with normal missing data, 
and how the two approaches can be extended to accommo-
date missing nonnormal data. Because there are many ways 
to deal with missing nonnormal data when MI is used, we 
select a few available MI methods to study and provide the 
technical details for them. We then present the simulation 
study conducted to evaluate the performance of the selected 
MI methods compared with FIML in terms of parameter 
estimation. Finally, we discuss the results and limitations of 
the simulation study and provide practical recommendations 
to researchers on the use of these methods.

Background

Missing data mechanisms

Missing data mechanisms characterize the processes by 
which data become missing. Rubin (1976) developed a 
classification scheme with three missing data mechanisms. 
Suppose the probability of having missing data on a vari-
able Y is not related to the missing values of Y itself after 
controlling for the other variables in the analysis. Then, 
the data on Y are said to be missing at random (MAR). 
Otherwise, the data are said to be missing not at random 
(MNAR). A special case of MAR is missing completely 
at random (MCAR), in which the probability of missing 
data on Y is unrelated to Y's values or any other observed 
variables in the data set.

A general description of FIML and MI

Evidence shows that when missingness occurs in normal 
data, MAR, including MCAR, could be appropriately 
handled by modern missing data techniques such as full 
information maximum likelihood (FIML) and multiple 
imputation (MI; Enders, 2001a, 2010; Graham, 2009; 
Rubin, 1976, 1996; Schafer & Graham, 2002). FIML is 
a one-step approach that handles missing data simultane-
ously in the model estimation process. Specifically, FIML 
produced parameter estimates by iteratively maximizing 
the sum of N case-wise log-likelihood functions tailored 
to individual patterns of missing data (Enders, 2001a). 
MI, in comparison, typically involves three steps. It first 
generates multiply imputed data with missing values 

filled in (imputation phase), then fits the hypothesized 
model to each of the imputed data sets (analysis phase), 
and pools the results across imputed data sets to produce 
the final results (Rubin, 1987; pooling phase). Under cer-
tain assumptions, such as MAR, multivariate normality, 
and a plausible imputation model, both FIML and MI 
were found to produce unbiased parameter and standard 
error estimates (Collins et al., 2001; Enders & Bandalos, 
2001; Rubin, 1987; Savalei & Rhemtulla, 2012; Schafer 
& Graham, 2002).

Both methods have been widely used in practice. 
Although MI is more cumbersome to implement and can 
be less efficient than FIML (Yuan et al., 2012), there are 
unique benefits of using MI. First, MI is flexible, with a 
variety of imputation algorithms and imputation models 
available. Thus, it could potentially provide better treat-
ments for nonnormal and nonlinear relationships among 
variables (Asparouhov & Muthén, 2010; White et  al., 
2011). Second, MI can incorporate many more auxiliary 
variables than FIML. Savalei and Bentler (2009) showed 
that incorporating many auxiliary variables into the FIML 
analysis could yield odd structures for certain covariance 
matrices, causing convergence problems. In contrast, MI 
incorporates auxiliary variables in the imputation phase 
only, so it is less likely to cause problems in the analysis 
phase. In addition, MI creates complete data sets; thus, 
statistical methods that work only with complete data can 
be applied. For example, FIML cannot be used to deal with 
item-level missing data when the items are to be parceled 
and will not be directly included in the analysis model 
(Little et al., 2013). Although a two-stage ML could be 
used in this situation (TSML; Savalei & Rhemtulla, 2017), 
it requires sophisticated matrix algebra and has not been 
automated in standard software packages. Thus, most 
researchers do not have access to this approach. On the 
other hand, MI is widely available and can easily handle 
such situations by generating complete item scores before 
parceling (Enders & Mansolf, 2018; Gottschall et  al., 
2012).

Extending FIML and MI to account for nonnormality

Past research had found that nonnormality could lead to 
underestimated standard errors when FIML was used (End-
ers, 2001b). Methods to correct the bias have thus been 
developed. The most popular correction method is known as 
robust FIML (a.k.a., RFIML; Savalei & Falk, 2014), which 
uses a sandwich-like covariance matrix based on the results 
from FIML (Yuan & Bentler, 2000; Yuan & Hayashi, 2006). 
Research has found that RFIML performed well under 
MCAR or MAR, except when MAR data occurred mainly 
on the heavy tail of a distribution, and the proportion of 
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missing data was large (e.g., 30%, Enders, 2001b; Savalei 
& Falk, 2014).

There is no consensus on how to best account for nonnor-
mality in the imputation stage of MI. Our literature review 
suggests that four types of MI strategies have been examined 
for missing nonnormal data: (1) MI based on the assumption 
of multivariate normality, (2) normalizing the data using a 
transformation method first and then using the first approach 
to impute, (3) MI based on generalized parametric families 
that account for some specific nonnormal distributions, and 
(4) MI based on semi-parametric or nonparametric models 
that do not have distributional assumptions. The four types 
of strategies are explained below.

The first strategy ignores the nonnormality of the data 
(MI-NORM). Past research found that the robustness of MI-
NORM to the violation of normality varied across different 
parameter estimates. Demirtas et al. (2008) examined MI-
NORM by generating continuous data from a broad range 
of distributions, including normal, t, Laplace, and Beta dis-
tributions. They found that MI-NORM accurately estimated 
means and regression coefficients with these nonnormal 
distributions. However, the variance parameters could be 
biased, particularly when the sample size was small (e.g., N 
= 40). Other parameters that rely more on the tails of a dis-
tribution, such as extreme quantiles, were sensitive to non-
normality (Demirtas et al., 2008; Schafer, 1997). Yuan et al. 
(2012) also concluded that nonnormal data could severely 
impact the estimates of variance-covariance parameters.

The second strategy uses transformation to normalize 
nonnormal data before imputation (MI-TRANS). Transfor-
mation is a traditional approach for dealing with nonnormal 
data. Many transformation functions, such as log, exponen-
tial, square root, Box-Cox, and non-parametric, have been 
used in the past to reduce the skewness of a distribution 
(Allison, 2000; Honaker et al., 2011; Lee & Carlin, 2017; 
Schafer & Graham, 2002; von Hippel, 2005). After trans-
formation, MI-NORM can then be used to fill in the miss-
ing values in the transformed metric. These imputed values 
may be converted back to their original scales before the 
target analysis. Although the transformation method seems 
straightforward, it is usually not recommended, as it is often 
challenging to determine the best transformation function. If 
a wrong/suboptimal transformation method is used, it could 
hurt the imputation by distorting the relationships between 
the variable and the others, resulting in biased imputed val-
ues and follow-up analyses (von Hippel, 2013).

The third strategy is to impute continuous missing val-
ues based on generalized parametric families for continuous 
data. A parametric family is a family of distribution func-
tions whose forms depend on a set of parameters. Rather 
than assuming a normal distribution, a generalized paramet-
ric family allows for various data distributions, making the 
imputation more flexible. In the last two decades, several 

generalized parametric families have been considered in 
MI, such as Tukey's gh distribution (Demirtas & Hedeker, 
2008; He & Raghunathan, 2009), t, lognormal, Beta, and 
Weibull distributions (Demirtas & Hedeker, 2008), Fleish-
man's power polynomials (Demirtas & Hedeker, 2008), 
and the generalized lambda distribution (Demirtas, 2009). 
Focusing on univariate distributions and MCAR data, these 
approaches outperformed the first strategy in estimating 
quantiles of continuous data; however, they did not show 
advantages in estimating the means of continuous variables. 
Like the transformation approach, it is also challenging to 
determine which distribution will best fit the data. Conse-
quently, additional bias could be introduced if a wrong dis-
tribution is used.

The fourth strategy is to impute missing nonnormal data 
based on semi-parametric or nonparametric methods. In the 
MI literature, semi-parametric methods such as local resid-
ual draws (LRD) and predictive mean matching (PMM), and 
nonparametric methods such as classification and regression 
trees (CART) and random forest (RF), have been evaluated 
for imputing missing nonnormal data. We refer to MI with 
these four methods as MI-LRD, MI-PMM, MI-CART, and 
MI-RF, respectively. He and Raghunathan (2009) found that 
MI-LRD and MI-PMM performed well for estimating mar-
ginal means, proportions, and regression coefficients when 
the error distribution was uniform or moderately skewed. 
However, both seemed to have difficulty handling extreme 
values and performed poorly under severe nonnormality. 
Lee and Carlin (2017) showed that MI-PMM could produce 
acceptable results for estimating means and regression coef-
ficients with N = 1000. MI-CART and MI-RF were found 
to outperform parametric and semi-parametric imputation 
methods, such as MI with logistic regression and MI-PMM, 
in dealing with nonlinear relationships of categorical vari-
ables (Doove et al., 2014; Shah et al., 2014). Hayes and 
McArdle (2017) examined the performance of MI-CART 
and MI-RF in estimating an interaction effect under various 
missing data generating mechanisms and distribution condi-
tions (both normal and nonnormal). Their results show that 
MI-CART and MI-RF were superior to MI-NORM under 
certain conditions, particularly when the sample size was 
large (N = 500–1000). However, MI-CART and MI-RF per-
formed poorly with small sample sizes and when the miss-
ingness had nonlinear relationships with other variables, 
regardless of the degree of nonnormality.

The current study is designed to systematically evaluate 
different MI methods to deal with missing nonnormal data 
in SEM in comparison to RFIML. Our goal is to investigate 
to what extent the methods can recover parameters in SEM 
under nonnormality. We hope that this investigation can pro-
vide valuable insights for future research.

To keep the scope of our study manageable, we did 
not include all available methods but those we believed 
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promising or likely to be used by practical researchers. We 
include MI-NORM to further examine its robustness to 
nonmorality in the context of SEM. We expect MI-NORM 
to have some robustness to nonnormality when it is not 
extreme. We also include MI-PMM, MI-CART, and MI-RF 
because they rely less on distributional assumptions and 
have shown some good performance in regression analy-
ses. We omitted MI-LRD because it performs similarly to 
MI-PMM and has limited software implementation (He & 
Raghunathan, 2009; Morris et al., 2014). We did not con-
sider the transformation or the generalized parametric fam-
ily strategies because of the limitations mentioned above. 
We included RFIML as a comparison approach. To help 
researchers better understand how the selected MI methods 
work, we provide the technical details below, including how 
the data are imputed in the imputation phase, the estimation 
method used in the analysis phase, and how the parameter 
estimates are pooled across imputations.

Selected MI methods for missing nonnormal 
data

Normal‑theory‑based imputation (MI‑NORM)

MI-NORM ignores nonnormality. It is typically imple-
mented using either of two algorithms: joint modeling (JM; 
Schafer, 2010) and expectation-maximization with boot-
strapping (EMB; Honaker et al., 2011). Both algorithms fill 
in missing values on multiple incomplete variables simul-
taneously and are theoretically equivalent. In the current 
study, we used the EMB algorithm for convenience. Briefly 
speaking, EMB generates a large number of bootstrapped 
samples first (Efron, 1979) and then uses the EM algorithm 
to obtain the maximum likelihood estimates of the mean and 
covariance matrix for the variables included in an imputation 
model for each bootstrapped sample. The EM estimates are 
then treated as a random draw of the imputation parameters 
and used to impute the missing data.

MI with semi‑parametric or nonparametric models

MI with semi-parametric or nonparametric models is imple-
mented using a so-called fully conditional specification 
(FCS) algorithm, also known as MI by chained equations 
(MICE; van Buuren et al., 2006; van Buuren & Groothuis-
Oudshoorn, 2011). Unlike JM or EMB, FCS imputes miss-
ing data on a variable-by-variable basis without relying on 
a multivariate normal distribution.

To illustrate a typical FCS process, let  y1,  y2, …,  yp be the 
p variables that need to be imputed and θ1, θ2, …, θp be the 
parameters that describe the distributions of the p variables 

(Mistler & Enders, 2017; van Buuren, 2018). Then the FCS 
at the tth iteration can be described as follows.

Because FCS imputes on a variable-by-variable basis, it 
has the flexibility to tailor the imputation model according 
to the nature of each incomplete variable. In other words, 
the imputation models can vary across variables. It can 
also accommodate a wide variety of imputation models, 
such as the semi-parametric and nonparametric methods 
considered in the current study.

MI with predictive mean matching (MI‑PMM)

The idea of MI-PMM is to impute each missing value 
by randomly drawing a value from its nearest observed 
neighbors (also called candidate donors) in terms of the 
predicted value of the same variable (Little, 1988). Dif-
ferent versions of PMM have been developed by varying 
one or some of the computational details. First, there are 
different ways to estimate the parameters in a predictive 
model (van Buuren, 2018). Using linear regression as an 
example, the parameters could be (i) least square param-
eters, (ii) random parameter values drawn from their poste-
rior distributions (Bayesian approach), or (iii) least square 
parameters computed from a bootstrap sample taken from 
the observed data. The first method ignores the sampling 
variability of the parameters and tends to produce biased 
results, especially when there are only a small number 
of predictors (Heitjan & Little, 1991; van Buuren, 2018). 
This problem can be alleviated by using the Bayesian 
approach or bootstrapping (Koller-Meinfelder, 2010).

Second, there are different matching methods. For 
example, matching can be done based on the distance 
between the predicted values or random draws from the 
posterior distribution of the observed or the posterior dis-
tribution of the missing data (e.g., type 1 matching or type 
2 matching; van Buuren, 2018). Lee and Carlin (2017) 
found that type 1 matching outperformed type 2 match-
ing for PMM in estimating marginal means and regres-
sion coefficients under various types of nonnormality. 
Finally, the number of candidate donors (denoted as d; see 

(1)

�
(t)

1
from P

(
�1|yobs1

, y
(t−1)

2
,… , y(t−1)

p

)

y
miss(t)

1
from P

(
ymiss
1

|yobs
1

, y
(t−1)

2
,… , y(t−1)

p
, �

(t)

1

)

�
(t)

2
from P

(
�2|yobs2

, y
(t)

1
, y

(t−1)

3
,… , y(t−1)

p

)

y
miss(t)

2
from P

(
ymiss
2

|yobs
2

, y
(t)

1
, y

(t−1)

3
,… , y(t−1)

p
, �

(t)

2

)

…

�
(t)
p

from P
(
�p|yobsp

, y
(t)

1
, y

(t)

2
,… , y

(t)

p−1

)

ymiss(t)
p

from P
(
ymiss
p

|yobs
p

, y
(t)

1
, y

(t)

2
,… , y

(t)

p−1
, �(t)

p

)



3104 Behavior Research Methods (2023) 55:3100–3119

1 3

Andridge & Little, 2010, for more details) can vary within 
a reasonable range. A general rule is that d should not be 
too small (results in little variability across imputed data 
sets) or too large (increases the chance of poor matches). 
Common values for d are 3, 5, and 10 (van Buuren, 2018; 
Morris et al., 2014). More research, however, is needed to 
establish a guideline for specifying d.

MI-PMM preserves the original distributions; thus, it 
has the potential to deal with missing nonnormal data. 
PMM is semi-parametric because it does not require a 
parametric model to define the distribution of missing 
data; however, a parametric predictive model, usually a 
linear regression model, is still needed to determine the 
candidate donor pool (Heitjan & Little, 1991; Schenker & 
Taylor, 1996). Although MI-PMM has been found to work 
well with nonnormal data in various scenarios (e.g., Di Zio 
& Guarnera, 2009; Kleinke, 2017; Morris et al., 2014), it 
has not been examined in the context of SEM.

MI with classification and regression trees (MI‑CART)

CART is a recursive partitioning method. CART stands 
for classification trees or regression trees, depending on 
whether the response variable is categorical or continu-
ous (Breiman et al., 1984). Unlike traditional regression 
and classification methods, CART predicts a variable by 
successively splitting a data set based on one other vari-
able at a time. The resulting subsets of data become more 
homogeneous with each split (Breiman, 2001). Because 
this splitting procedure and resulting subsets can be rep-
resented as a tree structure, these subsets are also referred 
to as leaves of the tree (James et al., 2013). For the obser-
vations within the same leaves, the mean of the response 
values is then used as the predicted value. When CART is 
used for imputation, the missing values are imputed based 
on these predicted values.

MI with random forest (MI‑RF)

RF is an extension of CART. A single classification tree from 
CART is often prone to sample noise, limiting its generaliz-
ability (Doove et al., 2014; Kirasich et al., 2018). RF solves 
the problem by assembling results across many trees. Briefly 
speaking, RF generates multiple samples first based on the 
original data using resampling approaches such as bootstrap-
ping and then creates a tree for each sample. The predicted 
values from multiple trees are averaged to create the final 
prediction. In the same way as MI-CART, the final predicted 
values are used for imputing missing values. As mentioned 
above, CART and RF do not rely on distributional assump-
tions or parametric models, so they both have the potential 

to accommodate missing nonnormal data and nonlinear rela-
tionships (Doove et al., 2014; Shah et al., 2014).

Estimation methods used in the analysis phase

After imputation, the target analysis (SEM in this case) is 
applied to each imputed data set. Because the data are non-
normal, a robust ML estimator can be used to correct the 
bias in standard errors (SEs) due to nonnormality. Note that 
there are different versions of robust ML estimators. The 
one used in this study adopts the “sandwich” approach as in 
RFIML to adjust the standard errors (a.k.a., robust SEs or 
MLR SEs; Yuan & Bentler, 2000; Yuan & Hayashi, 2006). 
Specifically, the robust SEs are obtained from the asymptotic 
covariance matrix of the parameter estimates ( ̂𝜃):
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data.

Pooling procedures

In the pooling phase, outcomes from the analysis, such as 
point estimates and standard errors, are pooled into the final 
results, following Rubin's rules (Rubin, 1987). The final 
point estimates are obtained by taking the average across 
the imputations,
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represents the parameter estimates for the mth imputation. 
The pooled standard errors are the squared root of the sum 
of within-imputation variance  (VW), between-imputation 
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where VW is computed as the average of the squared standard 
errors (for nonnormal data, they are robust standard errors) 
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across M imputed data sets, and  VB is the variance of the M 
parameter estimates.

Simulation study

As mentioned above, this study examined five methods for 
dealing with missing nonnormal data in SEM: multivariate-
normality-based MI (MI-NORM), MI with predictive mean 
matching (MI-PMM), MI with classification and regression 
trees (MI-CART), MI with random forest (MI-RF), and 
RFIML. The performances of these methods are compared 
in estimating model parameters.

Design

Data were generated based on a three-factor SEM model, in 
which factor η2 was predicted by η1, and η3 was predicted 
by both η1 and η2. This type of model is commonly seen in 
the SEM literature (e.g., Bollen, 1989; Palomo et al., 2011). 
The data generation model is shown in Fig. 1. The popula-
tion values were the same as in Fig. 1 in Enders (2001b). The 
values of the structural paths among the three variables were 
0.4 (η1 ➔ η2), 0.286 (η1 ➔ η3) and 0.286 (η2 ➔ η3). Each 
factor was indicated by three manifest variables. The first 
factor loading of each factor was fixed to 1 for identification 
purposes, and the other loadings were all set to 1. The vari-
ance of η1 was set to 0.490, and the residual variance of η2 
and η3 was set to 0.412 and 0.378, respectively. The residual 
variance on the indicators was all set to 0.51. The indicators 
are all standard normal. We manipulated several factors in 
the data-generating process to create a wide range of condi-
tions, including the degree of nonnormality, missing data 
proportion and mechanism, and sample size. The sample 
size (N) was set at two levels: small (300) and large (600).

Degree of nonnormality

We varied the degree of nonnormality at three levels. 
Nonnormality is typically reflected by the third standard-
ized moment (skewness) and the fourth moment (kurtosis) 
around the mean of a distribution. The skewness describes 
the asymmetry of a distribution about its mean, and the kur-
tosis measures the “peakedness” of a distribution. For a uni-
variate normal distribution, the skewness is 0 and the kurto-
sis is 3 (or excess kurtosis = kurtosis – 3 = 0). In this study, 
nonnormal continuous data were generated following the 
method proposed in Vale and Maurelli (1983) and Fleish-
man (1978). The levels of nonnormality were specified using 
three combinations of univariate skewness (S) and excess 
kurtosis (K): mild (S = 1.5, K = 3), moderate (S = 2, K = 
7), and severe (S = 3, K = 21). The corresponding approxi-
mate multivariate kurtoses (Mardia, 1970) were 143, 187, 
and 314, respectively. These levels of nonnormality were 
reflective of the data observed in applied research (Curran 
et al., 1996) and were close to those used in Enders (2010) 
and Savalei and Falk (2014). For simplicity, all manifest 
variables had the same degree of nonnormality under each 
condition. The correlation matrix of the nonnormal data was 
consistent across the different levels of nonnormality.

Missing data conditions

We varied the missing data proportion (MP) as well as the 
missing data mechanisms. There are two levels of MP: small 
(15%) and large (30%). These levels are selected based on 
previous simulation studies and typical cases in SEM. We 
considered three missing data mechanisms: MCAR, MAR-
Head, and MAR-Tail. Missing data were imposed on only 
two indicators for each factor (specifically, missing values 

Fig. 1  The structural equation model for data generation
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occurred on  x1,  x2,  x4,  x5,  x7, and  x8, see Fig. 1). These miss-
ing data were created as follows.

MCAR data were generated by randomly deleting the 
desired proportion of values on each incomplete variable. 
MAR data were imposed through the following procedure. 
We first ranked the values of each of the three fully observed 
variables  (x3,  x6, and  x9). We then used the percentile ranks 
to determine the probabilities of missingness on the other 
two manifest variables of the same latent factor. For MAR-
Head, the probability of having missing data on  x1 was equal 

to 1 minus the percentile rank% of  x3. For instance, a case 
with the largest value on  x3 (100th percentile) would have a 
0% chance of missing the value on  x1, while the chance of 
having missing data on  x1 for a case at the 70th percentile 
on  x3 would be 30%. That is, the probability of missing an 
observation on  x1 increased as the  x3 value decreased. For 
each value on  x3, we compare its probability of missingness 
with a randomly drawn value from a uniform distribution 
ranging from 0% to 100%. If the random value was greater 
than the probability, the case would have missing data on  x1. 

MCAR MAR-Head-1 MAR-Tail-1

Fig. 2  Distributions of x1 (continuous) for one replication with N = 300 before (light gray) and after (dark gray) imposing 30% missing data
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This is done sequentially for other cases until the planned 
proportion of missing data (15% or 30%) is reached. Miss-
ing data on  x2 were imposed following the same rationale. 
Similarly, missing data on  x4 and  x5 were created based on 
the percentile ranks of  x6, and missingness on  x7 and  x8 
was determined by the percentile ranks of  x9. Because all 
manifest variables were positively skewed and positively 
correlated, more missing data were imposed on the head of 
the distributions.

MAR-Tail data were generated in a similar fashion, except 
that the probability of having missing data on  x1 was simply 
equal to the percentile rank% of  x3. For example, a case with 
the largest value on  x3 (100th percentile) would have a 100% 
chance of missing the value on  x1, while the chance of hav-
ing a missing value on  x1 would be 70% for a case at the 70th 
percentile on  x3. That is, the probability of missing a value 
on  x1 decreased as the  x3 value decreased. Same rule applied 
to other manifest variables. Under MAR-Tail, more missing 
data were imposed on the heavy tail of the distributions.

To demonstrate the distributions of the incomplete vari-
ables under the different missing data mechanisms and 
levels of nonnormality, we selected one incomplete vari-
able and visualized its distributions in Fig. 2 under various 
degrees of nonnormality and missing data mechanisms for 
one replication with N = 300 and MP = 30%. As shown in 
Fig. 2, nonnormality could be less detectable with miss-
ing data in the tail than in the head of the distribution. For 
example, the average skewness and kurtosis based on com-
plete cases decreased by 45% and 20%, respectively, after 
imposing missing data in the heavy tail of the distribution 
with severe nonnormality. When missing data occurred in 
the head of the distribution, in comparison, the skewness 
and kurtosis changed less (−8% and −13%, respectively).

In sum, there are 36 conditions (2 sample sizes × 3 
degrees of nonnormality × 2 missing data proportions × 3 
missing data mechanisms). We generated 1000 replicated 
samples in each condition.

All data were generated through R (R Core Team, 2017) 
using the function gen.nonnormal() developed by Zopluoglu 
(2013). RFIML was implemented in lavaan (MLR; Rosseel, 
2012), in which the convergence threshold (relative toler-
ance) is set at  10−10. MI-NORM was implemented using 
the R package Amelia, which employs the EMB algorithm 
(Honaker et al., 2011). The convergence threshold for EM 
was equal to  10−4. The FCS methods were implemented 
using the R package mice (van Buuren & Groothuis-Oud-
shoorn, 2011). The burn-in iterations were set at 20 for MI-
PMM and MI-RF based on a preliminary simulation study 
using one of the most challenging conditions (N =300, 30% 
missingness, MAR-Tail, and severe nonnormality). The 
number of donors for MI-PMM is set to 5 following Mor-
ris et al. (2014). For MI-RF, a minimum leaf size of 5 was 
used to create regression trees (Liaw & Wiener, 2002). The 

number of bootstrap samples in RF (i.e., the number of trees) 
was set to 10 (Doove et al., 2014). The MLR estimator in the 
lavaan package was used to analyze all the imputed data. For 
the imputation methods, 50 imputed data sets were generated 
following the guidelines developed by White et al. (2011). 
A replication was deemed converged if the model converged 
for all 50 imputed data sets.

Evaluation criteria

The performance of the examined methods was evaluated 
based on relative bias in parameter estimates (Est bias), rela-
tive bias in standard errors (SE bias), and confidence interval 
coverage (CIC) rates. The relative bias of a parameter θ is 
calculated as the difference between the average parameter 
estimate across replications within a design cell ( ̂𝜃est ) and the 
population value (θ0), divided by the true population value.

Following Muthén et al. (1987), we used ±10% as the 
acceptable cutoff points.

SE bias measures the accuracy of standard errors, which 
can be calculated as follows.

where SE is the average standard error across replications 
in a design cell, and ESE is the empirical standard error 
(i.e., the standard deviation of the parameter estimates across 
converged replications). We considered a SE bias accept-
able if its absolute value was less than 10% (Hoogland & 
Boomsma, 1998).

The CIC of a model parameter is estimated as the per-
centage of replications in which the 95% CIs covered the 
population value. Ideally, a CIC should equal 95%. Follow-
ing Bradley's (1978) “liberal criterion,” we consider a CIC 
acceptable if it is between 92.5% and 97.5%.

Results

As mentioned above, the methods are compared on three 
outcomes: Est bias, SE bias, and CIC. Given that the struc-
tural path coefficients, capturing predicting relationships at 
the latent variable level, are often of the most interest to 
researchers, the primary parameters were the three structural 
path coefficients (β2,1, β3,1 and β3,2). The secondary param-
eters are factor loadings and factor variances. For ease of 

(5)Est bias =

(
�̂
est

− �
�

)

�
�

× 100%

(6)SE Bias =

(
SE − ESE

)

ESE
× 100%
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presentation, we reported results for a representative param-
eter for each of them: the factor loading of  x3 (λ3) and the 
variance of factor η1 (φ1,1). The two parameters were chosen 
because their result patterns were consistent with the others. 
In addition, given that the MCAR and MAR-Head results 
were similar, we only report MCAR and MAR-Tail results 
below. The results for all parameters under all missing data 
mechanisms are available upon request. In the following, we 
organized the results by evaluation criterion, missing data 
mechanism, and type of parameter.

Bias in parameter estimates

MCAR 

As shown in Table 1, all methods produced negligible bias 
(|bias| < 10%) for all types of parameters, except for MI-RF. 
MI-RF was acceptable when the missing data proportion 
was low (i.e., MP = 15%). However, it yielded biased esti-
mates for all types of parameters with a larger amount of 
missing data. Specifically, with 30% missing data, MI-RF 

yielded negatively biased (< −10%) factor variance regard-
less of the sample size and degree of nonnormality, and posi-
tively biased (> 10%) loadings and path coefficients when 
the sample size was small (N = 300).

MAR‑Tail

Path coefficients As shown in Table 2, when missing data 
occurred mainly on the heavy tail of the distribution, both non-
parametric methods (MI-CART and MI-RF) produced over-
estimated path coefficients (|bias| > 10%), although estimates 
from MI-CART were slightly less biased. All other methods 
yielded negligible bias for path coefficients, except that RFIML 
produced slightly larger bias under severe nonnormality.

Loading and factor variance The design factors seemed to impact 
the parameter estimates for the representative factor loading and 
variance differently. The factor loading estimate mainly was influ-
enced by missing data proportion. When MP = 15%, all methods 
produced negligible bias (under 10%), with only a few exceptions. 
However, when MP = 30%, almost all methods failed, except 

Table 1  Biases (%) in parameter estimates under MCAR 

Biases lower than -10% or larger than 10% are in boldface

Mild non-normality Moderate non-normality Severe non-normality

  Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML 1.59 1.53 3.18 1.83 2.33 2.05 0.94 4.21 3.33 1.93 3.23 2.80 5.62 3.22 3.65
  MI-MVN -0.10 0.63 4.88 1.24 2.61 3.04 1.18 2.64 2.06 2.50 5.62 4.36 4.08 3.70 4.26
  MI-PMM 1.66 2.16 3.27 3.23 0.49 3.00 1.86 5.10 5.61 -1.93 6.83 4.12 7.67 7.46 -5.03
  MI-CART 1.28 1.55 3.14 3.37 -0.39 1.86 1.28 4.29 5.03 -2.20 5.29 3.69 7.12 6.55 -3.13
  MI-RF 9.01 6.18 7.65 10.33 -13.61 10.16 6.83 9.70 12.80 -15.91 13.81 10.29 12.66 14.50 -17.79

MP = 30%, N = 600
  RFIML 1.15 0.46 1.50 0.87 0.84 1.34 0.92 1.86 1.16 1.01 2.37 0.60 3.95 2.48 1.05
  MI-MVN 1.03 1.56 1.30 0.93 0.36 -1.00 -0.26 3.02 0.57 2.38 2.83 0.66 1.41 1.05 3.76
  MI-PMM 1.15 0.73 1.39 1.62 -0.14 1.61 1.60 2.26 2.12 -0.54 4.32 2.44 4.93 4.86 -3.62
  MI-CART 0.86 0.63 1.29 1.53 -0.68 1.11 1.23 1.86 2.01 -0.77 2.82 1.18 4.84 3.79 -1.98
  MI-RF 6.49 4.13 5.08 7.48 -11.91 7.08 5.08 6.02 8.10 -12.67 9.90 5.86 8.48 10.38 -14.74

MP = 15%, N = 300
  RFIML 1.22 1.30 3.28 1.46 1.60 2.03 1.04 3.17 2.75 1.25 2.14 1.79 5.33 2.59 2.55
  MI-MVN -0.21 0.57 2.83 0.88 1.69 2.37 1.47 2.30 2.24 0.24 3.18 2.29 3.26 2.84 3.84
  MI-PMM 1.40 1.63 3.07 2.17 0.61 2.44 1.28 3.31 3.74 -0.29 3.31 2.74 6.21 4.62 -1.18
  MI-CART 1.50 1.38 3.21 2.47 -0.01 2.19 1.21 2.96 3.83 -0.68 3.13 2.46 5.79 4.48 -0.65
  MI-RF 4.92 3.54 5.40 5.35 -5.93 6.07 3.67 5.62 7.08 -7.25 7.29 5.31 7.99 7.88 -7.35

MP = 15%, N = 600
  RFIML 0.99 0.45 1.16 0.60 0.64 1.17 0.95 1.53 0.90 0.62 1.81 0.45 3.42 1.97 1.03
  MI-MVN 0.24 1.20 1.10 0.53 0.54 -0.74 -0.19 2.03 0.41 1.47 2.51 0.15 0.91 1.03 2.07
  MI-PMM 1.10 0.65 1.14 0.96 0.09 1.41 1.39 1.62 1.32 -0.06 2.76 1.48 4.05 3.02 -1.07
  MI-CART 1.09 0.60 1.01 1.11 -0.41 1.04 0.76 1.49 1.34 -0.22 2.15 0.31 3.89 2.84 -0.31
  MI-RF 3.77 2.13 2.70 3.64 -5.49 3.96 2.66 3.29 4.16 -5.95 5.41 2.88 5.34 5.71 -6.56
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for MI-CART. In comparison, the factor variance estimate was 
sensitive to the degree of nonnormality. With mild nonnormal-
ity, most methods were acceptable, except that MI-CART and 
MI-RF yielded negatively biased factor variance in some condi-
tions. However, for moderate or severe nonnormality, all methods 
became problematic.

Bias in standard errors

MCAR 

Path coefficients With mild and moderate nonnormality, the 
SE biases of path coefficients were all within the acceptable 
range (|bias| < 10%; see Table 3). With severe nonnormality, 
RFIML and MI-NORM produced some negative SE biases 
for the path coefficients (< −10%). In contrast, MI-PMM, 
MI-CART, and MI-RF produced acceptable SEs for path 
coefficients even with severely nonnormal data.

Loading and factor variance For the loading, all methods 
were acceptable except that the SEs from MI-NORM were 
underestimated under moderate nonnormality with N = 300 
and severe nonnormality with both Ns. For factor variance, 
the SE biases were most prominent under severe nonnormal-
ity, where almost all methods, including RFIML, resulted in 
underestimated standard errors.

MAR‑Tail

Path coefficients As shown in Table 4, MI-RF had the worst 
performance for path coefficients when MAR missingness 
occurred mainly on the tail, especially when N = 300. MI-
CART performed better than MI-RF when MP =15% or N 
= 600. Other methods were generally better than MI-RF and 
MI-CART, although they produced a few unacceptable SEs 
for path coefficients when the sample size was small (N = 
300), a large proportion of data were missing (MP = 30%), 
or the data were severely nonnormal.

Table 2  Biases (%) in parameter estimates under MAR-Tail

Biases lower than -10% or larger than 10% are in boldface

Mild non-normality Moderate non-normality Severe non-normality

  Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML -5.43 -1.09 -1.46 10.12 7.01 -8.15 -5.28 -3.09 10.98 13.29 -8.46 -4.70 -5.16 13.12 14.12
  MI-MVN -0.91 -1.52 1.76 11.07 8.64 -3.75 -3.73 0.54 13.35 11.86 -3.52 2.23 0.43 17.23 8.64
  MI-PMM 2.74 7.52 6.29 20.04 -14.84 3.34 3.27 7.73 21.95 -17.43 9.07 7.34 15.39 26.25 -26.72
  MI-CART 17.62 19.04 17.94 8.93 -26.89 19.02 13.86 22.98 9.51 -28.00 23.54 17.85 22.50 12.92 -33.92
  MI-RF 26.89 22.13 22.61 20.62 -46.90 30.83 19.87 25.61 21.30 -49.12 33.97 24.31 30.02 27.43 -53.77

MP = 30%, N = 600
  RFIML -6.49 -5.58 -5.50 8.34 5.96 -11.43 -10.00 -6.94 9.45 11.86 -10.74 -6.32 -7.30 14.62 7.94
  MI-MVN -3.85 -2.93 -1.47 10.42 3.68 -6.84 -5.71 -3.26 11.17 9.14 -5.90 -2.18 -4.51 15.80 6.05
  MI-PMM -1.99 -1.13 -0.19 13.07 -9.94 -1.34 -1.78 2.62 16.18 -13.89 8.28 9.42 6.21 22.52 -26.00
  MI-CART 11.62 8.74 9.34 2.66 -20.41 12.42 8.57 10.44 4.36 -23.37 19.19 17.15 14.90 8.21 -29.59
  MI-RF 22.72 14.98 15.99 14.94 -43.76 23.45 14.23 19.09 16.31 -46.30 31.41 24.81 21.08 22.59 -52.67

MP = 15%, N = 300
  RFIML -4.00 -0.40 -1.96 6.44 7.05 -7.10 -4.70 -3.28 8.26 12.24 -8.71 -6.09 -6.67 8.88 20.18
  MI-MVN -3.63 -3.08 1.34 6.44 7.80 -6.10 -4.54 -2.12 8.23 13.27 -7.26 -2.34 -4.85 12.02 17.20
  MI-PMM -0.66 3.04 2.96 9.83 -7.01 1.13 1.11 4.10 13.19 -10.04 6.11 4.69 7.34 15.25 -16.70
  MI-CART 10.80 12.23 9.88 1.27 -20.80 13.20 11.48 12.09 3.06 -24.23 19.68 14.29 15.60 3.15 -29.13
  MI-RF 17.01 15.49 13.22 4.19 -33.59 19.51 14.33 15.70 5.00 -36.33 26.34 19.17 19.67 7.80 -42.70

MP = 15%, N = 600
  RFIML -4.97 -3.51 -3.27 5.45 6.32 -9.14 -8.17 -6.64 6.75 12.41 -11.47 -8.33 -7.90 9.83 16.72
  MI-MVN -4.24 -2.23 -1.21 6.42 4.77 -7.43 -6.04 -5.05 7.65 11.17 -8.29 -5.41 -8.17 10.49 14.72
  MI-PMM -1.72 -0.60 0.10 7.20 -5.76 -1.73 -1.84 0.12 9.19 -8.63 5.00 4.66 3.56 13.41 -16.45
  MI-CART 9.31 7.99 7.04 -0.59 -18.66 10.35 7.69 7.43 -0.26 -20.55 17.66 14.40 12.82 1.97 -26.22
  MI-RF 14.36 10.59 10.62 1.83 -31.53 16.19 10.63 11.24 2.62 -34.60 23.77 17.70 15.52 5.99 -41.33
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Loading and factor variance For the loading, MI-RF yielded 
biased SEs in all conditions; other methods generally performed 
well with only a few exceptions. For the factor variance, MI-
PMM and MI-CART produced large negatively biased SEs in 
all conditions; RFIML and MI-NORM produced SE biases in 
all conditions with severely nonnormality, and MI-RF yielded 
biased SEs under nonnormality only when MP = 30%.

Confidence interval coverage

MCAR 

Path coefficients Table 5 shows the CICs from the exam-
ined methods under MCAR. The CICs of path coefficients 
from all methods were within the acceptable range (92.5% 
to 97.5%) under mild and moderate nonnormality, except 
that RFIML produced CICs below 92.5% for β2,1 when the 
data were moderately nonnormal. When data were severely 
nonnormal, RFIML and MI-NORM yielded CICs below 
92.5% for all three path coefficients in almost all conditions. 

MI-PMM, MI-CART, and MI-RF, in comparison, tended 
to produce adequate CICs for the path coefficients across 
sample sizes, missing data proportions, and degrees of non-
normality, with only a few exceptions.

Loading and factor variance The CICs for the loading 
showed different patterns. CICs from RFIML and MI-
NORM could drop below or close to 92.5% with moderate 
or severe nonnormality, MI-PMM and MI-CART performed 
well across all conditions, and the CICs from MI-RF tended 
to be higher than 97.5% for MP = 30%, especially with the 
small sample size (N = 300). For the factor variance, MI-RF 
produced CICs below 92.5% in all conditions. The other 
methods generally performed well under mild nonnormal-
ity but yielded unacceptable CICs in most conditions under 
moderate and severe nonnormality.

MAR‑Tail

Path coefficients Under MAR-Tail, CICs for the path coef-
ficients from RFIML were under 92.5% in most conditions 

Table 3  Biases (%) in standard errors under MCAR 

Biases lower than -10% or larger than 10% are in boldface

Mild non-normality Moderate non-normality Severe non-normality

  Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML -4.93 -6.08 -1.37 -4.99 -3.45 -8.37 -3.70 -2.66 -10.27 -8.16 -10.01 -10.21 -8.60 -8.64 -19.49
  MI-MVN -2.59 -0.05 -4.79 -5.66 -5.72 -3.80 0.13 -6.51 -10.97 -10.44 -14.49 -9.41 -5.39 -15.42 -25.05
  MI-PMM -2.58 -3.19 2.08 -2.32 -2.30 -2.86 -0.42 3.47 -5.88 -4.18 -1.39 3.37 5.08 3.30 -8.34
  MI-CART -3.99 -3.26 1.75 -9.35 -6.90 -4.36 -2.16 0.82 -9.38 -7.83 -5.97 -1.78 0.27 -4.37 -28.78
  MI-RF 4.36 3.09 7.93 11.25 6.13 1.64 5.15 9.06 6.37 2.60 1.91 4.39 5.69 8.98 -7.35

MP = 30%, N = 600
  RFIML 1.58 -0.90 0.25 -0.10 0.06 -2.55 -1.59 -5.86 -5.27 -1.47 -9.05 -6.01 -9.04 -7.01 -14.44
  MI-MVN -4.45 -3.80 -4.63 -8.55 -7.39 -1.11 -4.32 -4.14 -9.88 -10.59 -15.12 -12.88 -9.79 -16.85 -23.34
  MI-PMM 3.12 0.51 0.71 1.33 -0.29 -1.33 -1.47 -5.45 -2.44 -0.80 -5.70 -1.03 -3.73 -1.28 -10.41
  MI-CART 0.74 0.05 0.39 -4.71 -4.31 -1.97 -1.13 -6.35 -7.38 -5.22 -6.31 -1.02 -4.35 -6.33 -16.27
  MI-RF 6.15 3.52 5.98 13.25 6.26 3.03 4.19 -1.72 7.23 4.79 -1.88 3.79 1.37 6.19 -9.90

MP = 15%, N = 300
  RFIML -1.99 -5.19 -0.50 -3.75 -1.76 -6.80 -2.27 -1.26 -8.61 -6.28 -10.14 -6.95 -7.46 -7.48 -21.93
  MI-MVN -1.58 -1.40 -1.69 -4.58 -3.75 -5.20 -1.40 -4.43 -10.85 -7.25 -15.73 -9.77 -6.69 -18.69 -29.03
  MI-PMM -1.16 -3.92 1.91 -3.01 -1.57 -4.79 -0.05 0.05 -6.99 -5.53 -5.94 -2.32 -3.18 -3.06 -19.66
  MI-CART -1.91 -4.06 0.75 -6.64 -3.85 -4.93 -1.49 -0.82 -8.59 -7.57 -8.91 -3.30 -3.14 -7.66 -24.08
  MI-RF 2.25 0.03 4.25 3.92 2.79 -1.69 2.40 3.03 -0.33 -1.31 -4.53 -0.20 -0.22 -0.82 -21.37

MP = 15%, N = 600
  RFIML 0.58 -1.75 0.42 -2.04 -2.24 -2.97 0.98 -6.03 -5.63 -1.51 -9.62 -6.80 -8.21 -7.37 -16.48
  MI-MVN -1.20 -2.99 -2.17 -5.89 -4.42 0.18 -1.28 -3.44 -7.08 -7.19 -11.87 -8.30 -8.00 -15.07 -19.12
  MI-PMM 1.06 -1.51 0.67 -0.96 -2.28 -2.30 2.48 -5.23 -3.56 -0.56 -7.45 -3.92 -5.96 -4.66 -13.53
  MI-CART 0.54 -2.48 -0.09 -4.44 -4.24 -2.92 2.98 -7.46 -6.57 -2.55 -7.99 -3.82 -6.28 -8.35 -17.77
  MI-RF 3.41 0.93 3.37 5.38 2.16 -0.38 5.28 -3.18 1.40 2.99 -5.66 -1.57 -2.98 -1.73 -13.91
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(see Table 6). The performance of MI-NORM became worse 
as the degree of nonnormality increased. Specifically, with 
severely nonnormal data, CICs for the path coefficients from 
MI-NORM dropped below 92.5% but were slightly better 
than RFIML. MI-RF led to greater than 97.5% CICs for path 
coefficients in all conditions. Among all the examined meth-
ods, MI-PMM and MI-CART were the best as they produced 
CICs closer to 95% in most conditions, regardless of sample 
size, missing data proportion, and nonnormality.

Loading and factor variance For the loading, RFIML and 
MI-NORM generally yielded acceptable CICs, except when 
data are severely nonnormal and N = 600. MI-PMM pro-
duced acceptable CICs, except that the CICs were above 
97.5% when the sample size was small (N = 300) and the 
missing data proportion was large (MP = 30%). In com-
parison, MI-RF led to CICs greater than 97.5% in almost 
all conditions. Among all the methods, MI-CART appeared 
to produce the best CICs for the loading. The patterns were 
different regarding CICs for factor variance. The CICs from 
all donor-based methods tended to be too low (< 92.5%) in 

all conditions. RFIML and MI-NORM worked well with 
mildly or moderately nonnormal data. However, they could 
not produce a sufficient CIC with severely nonnormal data, 
especially when the missing data proportion was large.

Empirical example

An empirical example is used to illustrate the examined 
methods. The data used in the example were from the 
longitudinal Fragile Families and Child Wellbeing Study 
(FFCWS; Reichman et al., 2001). The data were collected 
from mothers and fathers shortly after their children’s births 
between 1998 and 2000 and when the children were 1, 3, 
5, 9, and 15 years old. Inspired by Marchand-Reilly and 
Yaure (2019), we built a structural equation model with 
three constructs: parents’ relationship at age 5 (η1), child’s 
internalizing behaviors at age 5 (η2), and child’s internal-
izing behaviors at age 15 (η3).

In this model, β2,1, β3,1 and β3,2 represent the effects of 
η1 on η2, η1 on η3, and η2 on η3, respectively. The indicators 

Table 4  Biases (%) in standard errors under MAR-Tail

Biases lower than -10% or larger than 10% are in boldface

Mild non-normality Moderate non-normality Severe non-normality

  Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML -4.79 -9.12 -4.34 -4.40 -3.18 -9.48 -7.67 -2.40 -8.29 -5.03 -7.92 -12.34 -9.16 -7.76 -16.80
  MI-MVN 5.12 4.92 -4.98 1.75 -2.32 3.80 8.68 2.07 2.00 -1.62 -4.76 -0.87 -6.57 -9.88 -5.84
  MI-PMM -0.70 2.93 5.87 4.17 -14.88 -3.05 10.04 11.54 2.99 -14.31 -3.85 9.37 4.27 5.94 -23.48
  MI-CART 3.92 19.68 16.54 7.76 -13.89 1.19 19.50 15.78 4.56 -16.18 -4.00 20.92 17.24 -0.31 -31.30
  MI-RF 13.83 26.51 26.84 25.29 2.51 16.27 38.42 34.43 29.45 6.94 16.36 44.06 50.21 25.27 -14.59

MP = 30%, N = 600
  RFIML -2.02 -5.82 -3.59 -3.24 -1.44 -3.29 -1.65 -3.35 -0.69 -4.48 -8.71 -14.09 -7.51 -8.23 -11.21
  MI-MVN -2.37 -0.99 -2.35 -0.74 -4.34 -2.62 -3.92 -4.27 -4.97 -7.90 -8.43 -5.09 -7.01 -13.34 -14.91
  MI-PMM -9.56 -2.82 -2.22 -8.85 -22.98 -13.41 3.45 -4.01 -9.77 -23.00 -13.82 -6.12 1.70 -4.37 -27.65
  MI-CART -5.80 1.88 4.93 1.41 -15.66 -0.18 11.58 2.13 -2.18 -24.28 -7.76 3.32 6.70 2.21 -34.68
  MI-RF 2.61 9.04 9.76 11.37 -4.95 5.70 16.76 11.53 13.83 -6.98 3.41 14.59 23.76 18.96 -15.27

MP = 15%, N = 300
  RFIML -3.69 -5.00 -2.10 -2.91 -4.15 -3.48 -3.33 0.64 -7.08 -2.62 -10.84 -9.15 -3.76 -8.76 -10.61
  MI-MVN 0.73 2.63 -3.70 -4.82 -4.74 -1.71 1.46 -2.32 -5.86 -5.13 -4.22 -5.57 -7.56 -13.59 -10.49
  MI-PMM -4.02 1.92 5.66 1.69 -14.98 -4.08 5.60 5.25 -3.35 -15.03 -0.61 6.13 6.94 7.16 -17.64
  MI-CART -4.44 2.61 4.95 2.87 -17.54 -2.60 5.15 11.74 -7.67 -12.03 -4.46 9.87 9.29 2.71 -27.39
  MI-RF 7.52 15.39 16.38 18.79 6.90 10.47 19.06 23.03 15.87 6.98 9.10 21.66 26.49 20.06 -4.32

MP = 15%, N = 600
  RFIML 0.13 -0.30 -3.19 -1.95 -0.60 -0.05 0.29 -3.19 3.00 2.06 -5.47 -12.36 -8.11 -6.23 -10.17
  MI-MVN -1.16 -3.06 -2.93 -1.70 -3.64 -2.61 -0.51 -2.01 -2.12 -4.40 -9.18 -6.68 -4.38 -11.46 -12.36
  MI-PMM -7.83 2.80 -3.25 -3.29 -21.40 -3.95 5.33 -3.82 1.58 -16.60 -12.98 -4.52 0.75 0.79 -24.43
  MI-CART -4.62 3.93 3.20 -0.06 -13.56 -2.44 4.62 2.25 2.85 -16.54 -7.85 -1.80 0.63 -1.24 -27.05
  MI-RF 4.19 13.63 11.13 12.99 3.09 9.24 17.00 10.51 17.89 7.00 4.77 11.08 13.52 16.31 -9.52
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were scale scores (averaged across items) of mothers’ rat-
ings on co-parenting quality and relationship quality for η1, 
and anxious/depressed and withdrawn/depressed for both 
η2 and η3 (see Dush et al., 2011; Marchand-Reilly & Yaure, 
2019). Table 7 shows the descriptive statistics of the indi-
cators, including minimum, maximum, skewness (ranged 
from −2.01 to 1.90), and excess kurtosis (ranged from 0.91 
to 5.20). The skewness and kurtosis values indicate mild to 
moderate nonnormality. To demonstrate the impact of the 
missing data mechanism, we selected a complete subsample 
(N = 940) from the original data and imposed 15% missing 
data on one indicator of each construct based on the three 
missing data mechanisms (MACR, MAR-Head, and MAR-
Tail) examined in the simulation study.

The parameter and standard error estimates obtained from 
the five missing data methods are shown in Table 8. The com-
plete data results were also included in the table to evaluate the 
missing data methods. The parameter and SE estimates from all 
methods were slightly different than those from the complete 
data under MCAR and MAR-Head. However, larger differences 
were observed under MAR-Tail. Notably, the parameter and SE 

estimates from MI-RF deviated furthest away from the com-
plete data results under MAR-Tail. The result was consistent 
with the findings from the simulation study.

Discussion

The current study extended the past research on missing 
nonnormal data by investigating the performance of sev-
eral MI methods in comparison with RFIML in recover-
ing common parameters (i.e., structural path coefficients, 
loadings, and factor variances) in SEM. It considered a 
broad range of conditions, including various sample sizes, 
degrees of nonnormality, missing data proportions, and 
missing data generating mechanisms. It evaluated the 
methods using bias in point and SE estimates, as well as 
CIC. The results suggest that the design factors had a dif-
ferential influence on the estimates of the different types of 
parameters. In general, the factor variance estimates were 
found to be more sensitive to the degree of non-normality 
than the path coefficient and loading estimates.

Table 5  Confidence interval coverages (CICs) under MCAR 

CICs lower than 92.5% are in boldface; CICs greater than 97.5% are in boldface and underscored

Mild non-normality Moderate non-normality Severe non-normality

  Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML 93.30 93.20 94.10 92.80 92.60 91.10 93.30 94.10 91.90 88.50 88.79 89.49 91.89 93.49 86.89
  MI-MVN 93.40 95.23 94.52 92.59 92.99 94.40 94.19 93.67 92.32 90.87 90.34 92.51 93.00 88.77 83.45
  MI-PMM 94.12 93.92 95.34 94.93 92.30 92.75 94.79 95.10 94.08 88.56 92.03 93.71 95.06 96.52 85.07
  MI-CART 94.08 93.77 95.40 92.65 91.42 91.56 94.85 94.34 93.31 88.16 91.57 92.83 93.89 95.57 84.93
  MI-RF 96.76 95.82 96.65 98.33 85.46 96.34 96.86 96.76 97.80 78.35 95.44 95.44 95.54 98.30 75.58

MP = 30%, N = 600
  RFIML 93.60 94.10 95.10 94.00 93.60 92.20 94.10 93.60 93.00 93.10 91.30 91.70 93.00 92.50 89.10
  MI-MVN 95.10 94.20 94.30 93.10 92.70 93.80 93.40 93.70 92.20 91.90 89.27 91.17 90.57 89.67 87.16
  MI-PMM 94.29 94.39 94.79 95.39 93.99 93.39 94.19 93.99 94.39 92.38 93.37 94.27 93.97 94.87 87.74
  MI-CART 94.38 94.48 94.79 93.67 93.05 92.75 93.87 94.08 93.05 91.42 92.54 93.46 94.38 92.94 86.91
  MI-RF 96.03 95.61 96.34 97.81 85.27 95.51 95.51 95.09 96.66 83.59 96.03 95.61 96.03 96.87 78.58

MP = 15%, N = 300
  RFIML 94.10 93.70 95.30 93.10 92.90 92.10 94.10 93.70 92.70 88.80 88.90 90.70 91.40 91.60 87.90
  MI-MVN 93.30 93.60 95.00 92.90 93.90 93.49 92.69 93.89 92.19 89.99 87.77 90.60 90.50 87.46 85.04
  MI-PMM 94.28 93.98 95.69 93.88 92.88 92.59 94.49 94.59 93.89 89.18 90.34 92.56 93.46 94.97 85.71
  MI-CART 94.38 93.77 95.81 92.75 92.65 92.75 94.59 93.87 92.85 88.36 89.44 92.21 92.51 93.74 86.05
  MI-RF 96.24 95.09 97.07 96.66 90.39 94.15 95.30 95.51 95.51 84.85 92.04 93.40 94.14 96.75 82.62

MP = 15%, N = 600
  RFIML 94.60 94.80 95.80 94.50 93.90 92.10 95.30 93.80 93.70 92.30 90.90 92.20 92.70 92.20 88.20
  MI-MVN 94.80 93.80 95.20 92.90 93.60 93.80 94.10 95.50 92.70 92.80 91.30 92.30 91.10 90.00 87.40
  MI-PMM 94.59 94.69 95.79 94.69 93.09 92.99 95.79 93.99 94.29 92.28 92.38 93.19 94.19 94.49 88.48
  MI-CART 94.18 94.38 95.71 94.48 92.85 92.85 95.61 93.26 92.54 92.03 92.13 92.85 94.48 93.16 88.05
  MI-RF 95.61 95.40 96.66 96.34 90.60 94.36 96.13 94.46 95.61 89.45 93.73 94.57 94.67 94.98 84.33
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This study also revealed similarities and discrepancies 
of the methods under the various conditions examined in 
the study and provided valuable insights about their empir-
ical performance. Regarding the two parametric methods 
(RFIML and MI-NORM), we found that RFIML generally 
performed well under MCAR or MAR, except when MAR 
occurred mainly on the heavy tail of the data distribution 
(i.e., MAR-Tail), and the proportion of missing data was 

large. These findings are consistent with previous research 
(e.g., Enders, 2001b; Savalei & Falk, 2014). The overall 
performance of MI-NORM was similar to that of RFIML, 
particularly under mild and moderate nonnormality. Under 
MAR-Tail, MI-NORM could even outperform RFIML by 
producing slightly better CICs for path coefficients.

Regarding the semi-parametric and nonparametric 
methods, we expected MI-PMM, MI-CART, and MI-RF to 

Table 6  Confidence interval coverages (CICs) under MAR-Tail

CICs lower than 92.5% are in boldface; CICs greater than 97.5% are in boldface and underscored

Mild non-normality Moderate non-normality Severe non-normality

Method β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1 β2,1 β3,1 β3,2 λ3 φ1,1

MP = 30%, N = 300
  RFIML 88.40 90.90 90.50 96.20 92.70 84.75 89.37 90.77 95.39 93.88 84.13 84.02 86.35 92.92 90.29
  MI-MVN 94.25 93.70 92.88 97.40 94.93 91.51 93.50 94.30 96.55 94.69 89.16 91.58 91.44 92.44 90.44
  MI-PMM 93.50 93.75 95.34 98.28 77.57 91.08 95.18 96.51 98.07 75.30 91.89 93.56 95.75 98.20 62.29
  MI-CART 95.85 97.11 97.11 96.23 70.10 94.76 96.71 98.29 96.83 64.56 94.97 96.49 97.08 95.67 52.63
  MI-RF 98.71 98.61 99.36 99.36 39.34 97.72 99.35 99.24 99.24 38.33 99.11 98.67 99.44 99.11 29.67

MP = 30%, N = 600
  RFIML 89.60 91.40 90.80 94.90 94.00 84.30 87.30 89.00 93.70 94.70 83.87 86.27 87.58 88.88 91.28
  MI-MVN 91.35 93.76 92.76 95.88 93.86 89.68 89.88 91.38 92.79 93.29 86.99 89.86 89.45 86.99 90.16
  MI-PMM 89.34 92.25 91.55 95.27 78.57 87.81 93.05 92.75 95.77 73.72 93.23 91.71 93.02 95.35 58.95
  MI-CART 95.77 95.15 95.05 94.12 72.78 95.15 95.36 95.77 94.63 64.81 95.37 93.82 96.19 94.64 52.63
  MI-RF 97.07 98.12 97.91 99.06 28.32 96.66 98.12 98.64 98.96 26.75 97.81 98.12 98.64 98.64 21.11

MP = 15%, N = 300
  RFIML 90.70 93.90 92.60 95.50 93.90 88.49 89.99 90.99 94.29 95.50 83.75 85.46 88.06 92.88 93.48
  MI-MVN 93.05 94.06 92.95 95.87 94.06 89.10 92.73 93.54 94.35 95.26 87.32 91.09 89.10 92.87 92.98
  MI-PMM 91.41 94.64 95.25 97.07 83.72 92.00 95.45 94.43 97.06 79.66 92.59 93.74 95.09 97.08 72.34
  MI-CART 94.23 96.80 95.26 93.71 72.68 94.94 96.90 96.28 94.11 67.05 95.50 95.40 96.03 93.72 59.21
  MI-RF 98.21 98.42 98.32 97.79 58.61 97.38 98.53 98.85 97.28 53.19 98.31 98.00 98.63 97.47 43.31

MP = 15%, N = 600
  RFIML 91.30 94.70 91.70 95.30 95.30 87.60 90.10 90.80 94.40 96.30 84.80 85.80 88.50 92.10 95.20
  MI-MVN 92.40 93.30 93.40 94.20 93.30 89.50 91.40 91.70 93.50 94.20 86.49 88.49 88.79 90.29 94.99
  MI-PMM 91.68 94.69 92.79 95.59 83.87 90.28 93.69 92.59 96.69 79.96 91.87 92.77 94.38 95.08 69.88
  MI-CART 94.48 96.63 95.71 93.56 71.09 95.60 95.81 95.19 93.66 67.69 94.27 94.78 95.19 93.86 55.78
  MI-RF 96.45 97.49 97.91 97.39 45.87 96.97 98.12 97.91 98.22 41.59 96.76 97.81 97.28 98.54 33.75

Table 7  Empirical example: Descriptive statistics

Construct Indicator Min Max Skewness Excess kurtosis Imposed 
missing-
ness

Parents’ relationship at age 5 Co-parenting quality 2.17 4.00 -2.01 5.20 Yes
Relationship quality 1.22 4.11 -0.93 0.91 No

Child’s internalizing behaviors at age 5 Anxious/depressed 1.00 2.56 1.47 2.88 Yes
Withdrawn/depressed 1.00 2.14 1.24 1.66 No

Child’s internalizing behaviors at age 15 Anxious/depressed 1.00 3.00 1.90 4.40 Yes
Withdrawn/depressed 1.00 3.00 1.78 2.93 No
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outperform MI-NORM in dealing with missing nonnormal 
data because they rely less on the normality assumption. 
However, the results did not fully support the expectation. 
When missing data were MCAR or MAR-Head, MI-PMM 
was comparable to or, in some conditions, even better than 
MI-NORM or RFIML. For example, it produced better SEs 
and CICs under moderate and severe nonnormality. How-
ever, it could result in more biased point and SE estimates 
than MI-NORM or RFIML under MAR-Tail, especially 
when the sample size was small and the missing data pro-
portion was large. MI-CART performed similarly to MI-
PMM, except it was more sensitive to small sample sizes 
under MAR-Tail. The overall performance of MI-RF was 
poor across conditions, especially under MAR-Tail. As men-
tioned above, studies found that MI-CART and MI-RF were 
able to deal with interactions or nonlinearities adequately 
(Doove et al., 2014; Shah et al., 2014). These studies, how-
ever, were not conducted in the SEM context and did not 
involve nonnormality in data. Our findings shed light on 
the performance of these methods in a broader range of 
situations. The combination of these results implies that the 
nonparametric methods may have difficulty handling certain 
types of nonnormality, for example, nonnormality that is not 
due to nonlinear relationships among observed variables.

Based on these findings, we offer the following rec-
ommendations to substantive researchers. Note that these 

recommendations are only limited to the conditions exam-
ined in the study. RFIML generally performed well in 
dealing with missing data and nonnormality, except that it 
yielded lower CICs (< 90%) under MCAR and MAR-Head 
with moderate and severe nonnormality, or under MAR-Tail 
regardless of the degree of nonnormality. MI-NORM was 
in general comparable to RFIML; thus, it could serve as an 
alternative to RFIML if MI is to be adopted. Although MI-
PMM showed some advantages over RFIML and MI-NORM 
under moderate and severely nonnormality when missing 
data were MCAR or MAR-Head, it generally had problems 
estimating parameters when the missing data mechanism 
was MAR-Tail. Thus, we only recommend it when the miss-
ing data mechanism is not MAR-Tail. MI-CART was compa-
rable to MI-PMM under MCAR or MAR-Head, but it could 
yield more severely biased point and standard error estimates 
than MI-PMM did under MAR-Tail. Since MI-CART is not 
better than MI-PMM, and MI-RF was worse than the other 
methods in many conditions, we do not recommend either 
approach. It is important to note that when the nonnormality 
is severe, all these methods could fail, especially with small 
sample size and a large proportion of missing data.

Given that the performance of the examined methods 
is highly contingent on the missing data mechanism, it 
would be helpful to explore the missing data mechanism of 
the data at hand. Researchers could utilize available prior 

Table 8  Empirical example: Comparison of missing data methods

β2,1 β3,1 β3,2

Est. SE Est. SE Est. SE

Complete data
  MLR -0.169 0.040 -0.277 0.066 0.362 0.091

MCAR 
  RFIML -0.178 0.043 -0.254 0.069 0.364 0.103
  MI-NORM -0.175 0.042 -0.249 0.067 0.377 0.103
  MI-PMM -0.177 0.043 -0.250 0.070 0.374 0.107
  MI-CART -0.170 0.045 -0.250 0.069 0.359 0.100
  MI-RF -0.183 0.051 -0.260 0.079 0.364 0.110

MAR-Head
  RFIML -0.170 0.041 -0.292 0.071 0.359 0.098
  MI-NORM -0.164 0.041 -0.298 0.069 0.360 0.099
  MI-PMM -0.160 0.041 -0.292 0.069 0.371 0.095
  MI-CART -0.164 0.043 -0.282 0.072 0.373 0.094
  MI-RF -0.159 0.047 -0.278 0.080 0.387 0.108

MAR-Tail
  RFIML -0.193 0.049 -0.297 0.086 0.372 0.100
  MI-NORM -0.202 0.050 -0.276 0.081 0.381 0.109
  MI-PMM -0.199 0.061 -0.293 0.091 0.351 0.111
  MI-CART -0.227 0.068 -0.230 0.084 0.411 0.119
  MI-RF -0.342 0.135 -0.424 0.236 0.533 0.289
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knowledge on the distribution of the target variable to deter-
mine whether the missing data likely occurred on the tail or 
head of the distribution. This could shed some light on the 
possible degree and direction of potential bias. In addition, 
it appears that a larger sample size would mitigate the influ-
ence of missing data and nonnormality. Thus, if possible, 
researchers should plan a relatively large sample size for 
SEM, accounting for potential missingness and nonnormal-
ity in the data.

Limitations

Several limitations of the study are worth mentioning. First, 
we only examined a three-factor SEM model where miss-
ing data were imposed on two indicators of each factor. To 
explore whether the examined methods perform differently 
when applied to other kinds of SEM models, we provided an 
additional empirical example in the Appendix with a Multiple 
Indictor Multiple Cause (MIMIC) model. Similar to the empir-
ical example described above, MI-CART and MI-RF yielded 
the most different results compared with those from the com-
plete data. This is also consistent with the findings from the 
simulation. More models could be investigated in the future.

Second, we only considered univariate unconditional 
nonnormality, and the degree of nonnormality was set to 
be constant across all variables. In practice, nonnormality 
could occur after conditioning on other variables (i.e., con-
ditional nonnormality). The degree of nonnormality could 
vary across variables, or nonnormality may come from cat-
egorical—such as ordinal—indicators. We refer readers to 
Jia and Wu (2019) for methods to deal with missing ordinal 
data. More conditions could be examined in future research.

Third, the MAR on each indicator was only determined 
by another indicator of the same factor. In reality, the MAR 
mechanism could be much more complex. Future research 
may examine other MAR data that are determined by a com-
bination of variables. 

Fourth, as donor-based methods, the capability of MI-
PMM, MI-CART, and MI-RF is dependent on the avail-
ability of suitable donors in the sample. Thus, they require 
a larger sample size than the other examined MI methods, 
especially when a larger proportion of data are missing. For 
example, Lee and Carlin (2017) used N =1000 for estimating 
marginal means; Doove et al. (2014) also generated 1000 
observations for multiple regression and logistic regression 
models. To preliminarily explore the sample size issue, we 
selected the worst scenario in the simulation (MP = 30%, 
severe nonnormality, and MAR-Tail) and used it to exam-
ine whether the MI-RF performance would change if we 
increased the sample size to 1000 or 10,000. We found that 
the accuracy of parameter estimates improved as the sample 
size increased. Nevertheless, even with N = 10,000, large 
bias for path coefficients (13–20%) and latent factor variance 

(41–45%) were still observed. We did not consider sample 
sizes larger than 10,000 due to the limit of time and compu-
tational power. It would be interesting to conduct a full-scale 
simulation study to thoroughly examine the effect of sample 
size on the donor-based MI methods.

Fifth, the performance of the recursive partitioning meth-
ods, MI-CART and MI-RF, could be affected by the settings 
of hyperparameters such as the number of trees (for RF) and 
the size of leaves. In this study, we used the hyperparameter 
values found reliable in past research (e.g., Doove et al., 
2014; Shah et al., 2014). Per the suggestion of a reviewer, we 
conducted a small ad-hoc simulation to explore the impact of 
hyperparameters on the performance of MI-RF. We did not 
find noticeably different results in the conditions we chose: 
different numbers of trees (10, 50, and 100 trees), and differ-
ent leaf sizes (5, 10, and 20 donors in each leaf). Strategies 
for optimizing hyperparameters for RF (e.g., random search 
and sequential model-based optimization) can be found in 
the machine learning literature (Probst et al., 2019). How-
ever, these strategies have not been fully implemented in 
behavioral studies, especially when combined with missing 
data imputation. Further research is warranted.

Finally, we did not include model fit evaluation in the cur-
rent study. The robust ML method will produce a corrected 
(correct for nonnormality) chi-square test statistic for model 
fit. To our knowledge, there is not yet a clear solution for 
pooling corrected chi-square test statistics across imputa-
tions (Enders & Mansolf, 2018). Future work is needed to 
identify/develop an appropriate pooling method, based on 
which the performance of MI methods for missing nonnor-
mal data in model fit evaluation could be examined.

Appendix

This is an additional empirical example to demonstrate the 
differences among the examined missing nonnormal data 
methods. Inspired by Fan et al. (2010), we used the data 
from Educational Longitudinal Study of 2002 (National 
Center for Education Statistics, 2002) to examine the 
covariance between two latent constructs (students’ moti-
vation and parent-school communication concerning poor 
performance), and the effect of two observed variables 
(socioeconomic status [SES] and gender) on them. In this 
Multiple Indictor Multiple Cause (MIMIC) model, students’ 
motivation was measured by three composite scores: Math 
self-efficacy, English self-efficacy, and general effort and 
persistence. Parent-school communication concerning poor 
performance had two indicators: frequencies of school con-
tacted parent about poor performance, and frequencies of 
parent contacted school about poor performance.

We chose a complete subsample (N = 1287) from the 
original data and imposed 15% missing data on all the three 
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indicators of student’s motivation, based on the three miss-
ing data mechanisms: MACR, MAR-Head, and MAR-Tail. 

In both MAR conditions, we used SES to determine the 
probabilities of missingness on those indicators.

The parameter and standard error estimates obtained from 
the five missing data methods in comparison with complete 
data results are shown in Table A1. Under MCAR, all miss-
ing data methods yielded comparable results with that of the 
complete data, while under MAR-Head and MAR-Tail, larg-
est differences were found to be associated with the effect 
of SES on student’s motivation (γ11). Specifically, for the 
point estimate, MI-PMM performed the best under MAR-
Head, while underestimated γ11 under MAR-Tail. RFIML 
and MI-NORM yielded smaller γ11 under MAR-Head and 
overestimated γ11 under MAR-Tail. The estimates obtained 
from MI-CART and MI-RF in both MAR conditions were 
drastically smaller than the complete data results. All meth-
ods yielded inflated standard errors of γ11 to a certain degree 
in both MAR conditions.
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Fig. A1. MIMIC Model

Table A1  Point and standard errors estimates of selected parameters

Standard errors are in parentheses. The * symbol indicates signifi-
cance at α = 0.05

γ11 γ21 Ψ12

Complete
  MLR 0.088 (0.024) * 0.028 (0.024) -0.024 (0.006) *

MCAR 
  RFIML 0.082 (0.026) * 0.037 (0.026) -0.023 (0.007) *
  MI-NORM 0.083 (0.026) * 0.036 (0.026) -0.023 (0.007) *
  MI-PMM 0.087 (0.026) * 0.036 (0.026) -0.023 (0.007) *
  MI-CART 0.086 (0.026) * 0.033 (0.026) -0.023 (0.007) *
  MI-RF 0.083 (0.026) * 0.037 (0.025) -0.022 (0.007) *

MAR-Head
  RFIML 0.078 (0.033) * 0.030 (0.026) -0.022 (0.007) *
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