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Researcher degrees of freedom in statistical software contribute
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Abstract

Researcher degrees of freedom can affect the results of hypothesis tests and consequently, the conclusions drawn from the
data. Previous research has documented variability in accuracy, speed, and documentation of output across various statisti-
cal software packages. In the current investigation, we conducted Pearson’s chi-square test of independence, Spearman’s
rank-ordered correlation, Kruskal-Wallis one-way analysis of variance, Wilcoxon Mann—Whitney U rank-sum tests, and
Wilcoxon signed-rank tests, along with estimates of skewness and kurtosis, on large, medium, and small samples of real and
simulated data in SPSS, SAS, Stata, and R and compared the results with those obtained through hand calculation using the
raw computational formulas. Multiple inconsistencies were found in the results produced between statistical packages due to
algorithmic variation, computational error, and statistical output. The most notable inconsistencies were due to algorithmic
variations in the computation of Pearson’s chi-square test conducted on 2 X 2 tables, where differences in p-values reported
by different software packages ranged from .005 to .162, largely as a function of sample size. We discuss how such incon-
sistencies may influence the conclusions drawn from the results of statistical analyses depending on the statistical software
used, and we urge researchers to analyze their data across multiple packages to check for inconsistencies and report details
regarding the statistical procedure used for data analysis.

Keywords Researcher degrees of freedom - Statistical software - Nonparametric procedures - Reproducibility - Statistical
conclusion validity

A fundamental component of the scientific method is sta-
tistical rigor, which has been defined as the “consistency in
conceptual development, epistemological stance, application
of analytical tools and transparent reporting of their use, and
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subsequent interpretation and reporting of findings” (Kohler
etal., 2017, p. 713). Maintaining statistical rigor ensures the
appropriate use of statistical analyses that uphold the scien-
tific method and contribute credible results to the scientific
literature. Among the most common threats to statistical
rigor are the inappropriate use of statistical analyses (Dar
et al., 1994; Garcia-Pérez, 2012; Schatz et al., 2005) and
the misreporting and misinterpretation of results (Bakker &
Wicherts, 2011; Berle & Starcevic, 2007).

The use of inappropriate statistical tests leads to unreli-
able measurement and threatens statistical conclusion valid-
ity, a special form of internal validity that concerns sources
of random error and the appropriate use of statistics and sta-
tistical tests (Cook & Campbell, 1979; Garcia-Pérez, 2012).
Inappropriate test usage often occurs when an analysis is
unable to produce a logical or reliable answer to the research
question (Garcia-Pérez, 2012). This is commonly seen when
traditional, non-robust procedures (e.g., t-test, analysis of
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Unreliable,
and Invalid

Fig. 1 Reliability is necessary but not sufficient for validity. Note.
Validity is not present when results are unreliable (left) and may not
be present when results are reliable but produced through the same,

variance, regression) are used when assumptions, such as
normality and homogeneity of variance, are violated (Hoek-
stra et al., 2012; Keselman et al., 1998; Osborne, 2008).
As aresult, type I and type II error rates are uncontrolled
and effect sizes may be over- or underestimated (Osborne &
Waters, 2002), ultimately leading to unreliable results and
invalid conclusions. This is a noteworthy problem within
the psychological science literature, where any mention of
checking parametric assumptions is found in roughly 8% of
published studies (Hoekstra et al., 2012; Keselman et al.,
1998; Osborne, 2008).

Reliability is necessary, but not sufficient, for validity
(Fig. 1). Replication failure is inevitable in the presence
of reporting error, which has been shown to occur at rela-
tively high rates in the psychological literature (Bakker &
Wicherts, 2011; Berle & Starcevic, 2007; Caperos & Pardo
Merino, 2013; Nuijten et al., 2017). While reporting error
often results from human error, a lack of knowledge of statis-
tical procedures and a lack of clarity in the output generated
by statistical software are also major contributors to the mis-
reporting and misinterpretation of findings. The principles
of reliability and validity highlight the importance of repro-
ducing results across various instruments, as one instrument
may produce invalid results just as reliably as another pro-
duces valid results. This also applies to the reliability of the
tools used to conduct statistical analyses, specifically the
output of various statistical software packages commonly
used within a field of research. Researchers rely on statistical
software to produce reliable and accurate results, particularly
when large datasets or complex statistical models are used;
however, researchers have found differences in computa-
tional speed (McCoach et al., 2018), accuracy (McCullough,
2000; McCullough & Heiser, 2008), and quantitative results
(Bergmann et al., 2000; Grieder & Steiner, 2020; Keeling
& Pavur, 2007) when the same data are analyzed by various
statistical software packages. Specifically, inconsistencies
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improper method (may be the result of direct replication; middle).
Validity is only supported by reliable results that are obtained through
adequate methods (right).

in algorithmic and computational procedures, rounding, and
the reporting of test statistics and p-values have been found
across various statistical software packages (Bergmann
et al., 2000). Such discrepancies may contribute to report-
ing error (Bakker & Wicherts, 2011; Levine & Atkin, 2004);
hence, the statistical software used for data analysis entails a
researcher degree of freedom that must be considered when
replication attempts are made.

Computational reproducibility can be further complicated
by factors such as version control, ambiguous dependen-
cies and programming, and human error in the reporting of
results. Although it is becoming increasingly common for
scientists to host data, scripts, and results on open-source
repositories, problems may still arise in replication. For
instance, failure to document file dependencies and lack of
clarity in file execution order may make it difficult to repli-
cate results exactly. Even with documentation and code pro-
vided, efforts to replicate results can often fail. One recent
investigation found that, out of a sample of 2000 studies with
accompanying R code, 74% failed to complete without error
(Trisovic et al., 2022). Third-party services (such as GitHub
and Docker) offer version control and containerization to
address these issues; however, researcher knowledge of these
services may be limited, as most scientific training does not
cover their use (Peikert & Brandmaier, 2021).

In this study, we investigate the reliability of four statisti-
cal software programs commonly used in the field of psy-
chology (SPSS, SAS, Stata, and R). To our knowledge, no
study to date has examined the reliability of nonparametric
statistical output across statistical software programs. We
chose the following five nonparametric statistical tests for
our primary analysis due to their common use in quantitative
research or their equivalence to commonly used parametric
procedures (Table 1): Pearson’s chi-square test of independ-
ence, Spearman’s rank-ordered correlation, Kruskal-Wal-
lis one-way analysis of variance, Wilcoxon Mann—Whitney
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U rank-sum test, and Wilcoxon signed-rank tests. We also
tested the reliability of estimates of skewness and kurtosis
produced by the four software programs, as these estimates
are often used by researchers when determining whether
nonparametric analysis is appropriate.

The decision to focus on nonparametric procedures was
determined through the consensus of all authors for the fol-
lowing reasons: (1) Nonparametric analyses are commonly
used in the literature to compare sample characteristics
between participant groups (e.g., Pearson’s chi-square test
of independence), although less commonly for various other
analyses. (2) While hand- and computer-based calculations
of common parametric analyses are typically covered in
undergraduate and graduate statistics courses, nonparamet-
ric analyses are rarely or never covered to the same degree,
especially in required statistics courses in the behavioral sci-
ences (Alder & Vollick, 2000; Friedrich et al., 2018). This
may lead to an increased reliance on statistical software for
computing such analyses and a decreased likelihood that
errors in computation will be noticed or that variations in
default algorithms used by different software platforms will
be known. (3) Other researchers have recently published
material comparing statistical software programs for com-
mon parametric analyses as well as more complex statistical
models (Bergmann et al., 2000; Brown et al., 2012; McCoach
et al., 2018; Oster & Hilbe, 2008a, 2008b; Wang & Johnson,
2019). (4) The authors felt confident in their own understand-
ing and in the capacity of the software programs used in the
present study to perform the chosen nonparametric analyses.

Nonparametric inference

The use of nonparametric procedures provides a way to
combat many of the threats to statistical rigor described
above. There are several advantages to nonparametric
methods, namely that they are distribution-free, and thus
require few assumptions about the underlying populations
from which the data are obtained. Their relative lack of
reliance on assumptions and distribution-free nature pro-
tects researchers from making false conclusions that can
result from misleading significance values obtained from
parametric procedures performed in the presence of vio-
lated assumptions (Potvin & Roff, 1993). Disadvantages to
using nonparametric methods exist as well, and the great-
est of these is that they are geared toward hypothesis test-
ing rather than effect estimation. Although it is possible
to obtain nonparametric estimates of effect and associated
confidence intervals, the processes by which this is done
is generally not straightforward (Whitley & Ball, 2002).
For example, while critical value tables for probability
distributions used for parametric analyses (e.g., z, t, F)
are commonly provided in textbooks and online resources,

@ Springer

such resources are scarce for the majority of nonparamet-
ric statistics. Furthermore, statistical software is often
limited in its ability to perform nonparametric procedures.

In contrast to parametric analyses, a large number of
algorithmic variations exist for the way in which rank-
based nonparametric methods can be implemented, and
statistical packages are not consistent in their application
of such procedures. The algorithms used to compute test
statistics for rank- and frequency-based nonparametric
tests vary in one or more of the following three ways:
(1) whether the exact, null distribution or an asymptotic,
large-sample approximation of the normal (z) or X2 dis-
tribution is used; and in the latter case, whether correc-
tions for (2) continuity and/or (3) tied ranks are applied
(Lehmann, 1998; Siegel & Castellan, 1988).

Exact versus asymptotic distributions

Exact p-values and confidence intervals are calculated
using the true underlying null distribution, which is dis-
crete in most parametric inference; however, due to com-
putational inefficiency and a lack of null distribution
tables for samples of approximately n > 30, an approxima-
tion of the true distribution is typically used to calculate
asymptotic probabilities for large samples. Asymptotic
distributions are approximations of the true underlying
distribution and rely on the central limit theorem, assum-
ing that the sample is large enough for the test statistic
to approach the normal distribution. Parameters that do
not assume a normal distribution, such as those derived
from rank-ordered nonparametric tests, are often estimated
using asymptotic distribution-free methods that evalu-
ate the median, rather than the mean (Huang & Bentler,
2015; Neave & Worthington, 1988). There is some con-
troversy over the appropriateness of asymptotic versus
exact p-values for statistical inference with contingency
tables (Garcia-Pérez & Nufiez-Anton, 2020; Lydersen
et al., 2009; Prescott, 2019); however, while exact and
asymptotic probabilities obtained from nonparametric
analysis are generally very similar when obtained from
large samples, they can be quite different when sample
sizes are small. In such situations, asymptotic p-values
may lead to unreliable and misleading conclusions if used
inappropriately. For example, in a systematic examination
of differences between asymptotic and exact probabilities
extracted from various nonparametric tests performed on
small samples, Mundry and Fischer (1997) found that,
relative to exact statistics, asymptotic procedures led to
an increase in type I error rates when used for Wilcoxon
signed-rank and Wilcoxon Mann—Whitney U tests and an
increase in type II error rates when used to compute Spear-
man’s rank-ordered correlation coefficient.
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Continuity correction

When asymptotic distributions are continuous (e.g., nor-
mal, Xz), a continuity correction (the addition or subtrac-
tion of 0.5 to a discrete x-value) may be applied to improve
approximations of the underlying discrete null distribution
of nonparametric procedures (Gibbons & Chakraborti,
2011). The appropriateness of continuity correction pro-
cedures is also controversial, however, as some argue that
they are only appropriate for one-sided tests (Haber, 1982;
Mantel, 1976). Some commonly used continuity correction
procedures, such as Yates’ correction for the chi-square test
(Yates, 1934), are systematically conservative, resulting in
overcorrected (larger) p-values when applied to two-sided
tests (Maxwell, 1976; Stefanescu et al., 2005). Arguments
against the use of a continuity correction for chi-square tests
of independence for 2 X 2 tables date back to 1947, where
Pearson stated that “... it becomes clear that in the case of
small samples, at any rate, this method of introducing the
normal approximation gives such an overestimate of the true
chances of falling beyond a contour [of p = .05 or .01] as
to be almost valueless” (p. 155). In support of this, simula-
tion studies have demonstrated that the application of Yates’
continuity correction to Pearson’s chi-square tests performed
on medium to small samples overcorrects the probability of
an outcome, resulting in below nominal type I error rates
and a substantial loss of power (Campbell, 2007; Garside &
Mack, 1976; Grizzle, 1967; Richardson, 1990). Despite this,
current textbooks and software packages are inconsistent in
their recommendation and default use of continuity correc-
tion procedures (Hitchcock, 2009).

Correction for ties

Rank-ordered statistics are typically assumed to be drawn
from a continuous population, of which the probability of
any two observations being equal in magnitude is zero (Gib-
bons & Chakraborti, 2011; Siegel, 1957). In practice, two or
more observations of the same magnitude commonly occur
due to measurement imprecision or because the population
distribution is actually discrete. Such observations are con-
sidered to be tied, and some method of assigning unique
ranks to tied values must be applied so that the test sta-
tistics that depend on relative magnitudes of observations
(i.e., rank-order statistics) can be computed (Gibbons &
Chakraborti, 2011). Most commonly, individual observa-
tions within a group of tied observations are assigned the
average of the group’s ranked value. Although this method
does not affect the mean ranked value, it reduces the vari-
ance in the ranks. This affects the underlying null distribu-
tion; thus, a correction for ties is typically applied to the
calculation of the test statistic.

The appropriateness of applying any of the algorithmic
variations described above depends on the characteristics
of the data. Typically, the default algorithms used within
a given statistical software package depend on the sample
size and the presence or absence of tied ranks. As a result,
a single software package may apply different procedures
to different datasets without user intervention. In addition,
the criteria used to determine when exact or asymptotic dis-
tributions are used and whether corrections are applied dif-
fer between software packages. To further complicate this,
multiple algorithms exist for determining exact statistics,
and various continuity corrections have been suggested for
a given nonparametric test; often, the algorithms and cor-
rection procedures used are simply the choice of the soft-
ware developer rather than that which is most appropriate
for the data. When the default algorithmic specifications
are not made clear in statistical output, non-statisticians
are unlikely to know whether correction procedures were
applied to asymptotic p-values or whether the probability
statistics reported are exact. As a consequence, inappropriate
procedures may be used, and statistical errors or misleading
results may be reported. Furthermore, because default algo-
rithms vary across statistical packages, the results reported
by researchers who are naive to the specific algorithms used
to compute them might have differed if another statistical
package had been used; thus, the conclusions made from
statistical analyses conducted under such conditions may be
mere reflections of the software used rather than the actual
data analyzed.

Transparency in research

To address recent concerns over replication (Open Science
Collaboration, 2015; 2012), the scientific community is call-
ing for transparency in research through open science, which
may aid in both reducing the number of false positives pub-
lished in the literature and increasing reproducibility and
replicability by encouraging ethical research practices (Ioan-
nidis, 2014). Proponents of open science advise research-
ers to document and share a detailed account of their study
procedures (Borghi & Van Gulick, 2018), make their data
available to the public, and preregister all studies. Some have
also argued that researchers should document all researcher
degrees of freedom (Wicherts et al., 2016), or choices that
researchers make when designing a study and collecting,
analyzing, and reporting the data (Simmons et al., 2011);
this should include a report of the statistical software (and
version) used and documentation of the command syntax
used for statistical analysis. Researcher degrees of freedom
may increase type I error rates, inflate effect sizes, misrepre-
sent the scientific process by undermining the hypothetico-
deductive model of the scientific method (Fig. 2), and lead to
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Fig.2 Researcher degrees of freedom compromise the hypothetico-
deductive model of the scientific method. Note. There are several
opportunities for researcher degrees of freedom (outside, in red) to
impede the scientific method, including a failure to control for bias,
lack of replication, low statistical power, poor quality control, lack of
documentation, analytical flexibility, inconsistencies in algorithms
used across statistical software (particularly relevant to the present
study), selective reporting, statistical fallacies, publication bias, and
lack of data sharing, among others. These factors work together to
undermine the robustness of published research. Adapted from The
Seven Deadly Sins of Psychology: A Manifesto for Reforming the
Culture of Scientific Practice, by C. Chambers, 2019, Princeton Uni-
versity Press, p. 17 and “A Manifesto for Reproducible Science,”
by Munafo et al., 2017

statistical findings that are difficult to reproduce in the same
data or replicate in new data (Asendorpf et al., 2013; Ioan-
nidis, 2005; Wicherts et al., 2016). Documenting researcher
degrees of freedom may make it possible to distinguish
between true and artifactual replication failures by showing
that significant findings occur only when another researcher
makes the exact same methodological decisions (Epskamp,
2019; Wicherts et al., 2016).

Rationale and objective

We see a gap in the current literature, as there are few pub-
lished studies that methodically document the differences
produced between statistical software programs. Although
some previous work has demonstrated the formulaic and
computational differences in the calculation of certain para-
metric and nonparametric methods (Bergmann et al., 2000;
Brown et al., 2012; McCoach et al., 2018; Oster & Hilbe,
2008a, 2008b; Wang & Johnson, 2019), this work is largely

@ Springer

geared toward mathematicians and statisticians, resulting in
considerable difficulty in generalization to various subfields
within the social and behavioral sciences. We believe that
the existence of such statistical discrepancies would con-
stitute a larger problem in the field that may be currently
overlooked; hence, the present methodological investigation
seeks to systematically document the reliability of statistical
output generated from five nonparametric analyses and two
measures of normality across four statistical software pack-
ages commonly used in the social and behavioral sciences:
SPSS, SAS, Stata, and R.

We conducted this investigation using a large sample
(n=1000) drawn from a public dataset that is widely used
in the social psychology literature. All analyses were con-
ducted using the default parameters of each software pack-
age and as few additional specifications/options as possible,
so as to reduce the number of researcher degrees of freedom
involved in our analysis. We hypothesized that the results of
all analyses would be largely consistent across the statistical
platforms, although minor discrepancies were expected at
the decimal point level due to rounding error. If any larger
discrepancies in the results were found, they were expected
to occur due to differences in the default algorithms used
across the software packages.

Additional investigations

Upon seeing the results of our primary analysis, we ques-
tioned whether the same findings would be observed in
smaller samples that more accurately reflect those seen in
the majority of the psychological science literature. We per-
formed an informal systematic review of the recent literature
to determine the appropriate sample sizes to use in these post
hoc investigations. The PsycINFO database was searched on
November 9, 2020, for peer-reviewed, English-language arti-
cles published in scientific journals within the last 5 years
that employed one or more of the nonparametric analyses
investigated herein using the following terms (search criteria
were applied within the full text of the article): “Chi-square”
OR “Spearman” OR “Kruskal-Wallis” OR “Wilcoxon” OR
“Mann—Whitney.” Published study protocols, conference
abstracts, meta-analyses, review articles, and mathematical
models were excluded. The search results included a total of
792 publications with linked full text available to PsycINFO
subscribers. The abstract and methods sections were exam-
ined, and the full-text article was retrieved for the first 100
studies (sorted by relevance) that met our inclusion criteria.
Data pertaining to sample size, nonparametric test(s) per-
formed, and statistical software package used were extracted
from each article (Supplemental Table S1).

The most recent 100 published studies within the psycho-
logical science literature that used nonparametric analyses
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reported results for samples sizes ranging from 9 to 2991
(M=377.64, SD=636.92, median=165.50). Based on these
data, our large-N sample size of n=1000 was as large as or
larger than approximately 90% of the samples represented
in these 100 studies. To generalize the results to more com-
monly reported sample sizes within the field, we replicated
our analysis on medium (n=200) and small (n=100) sample
sizes of nonoverlapping data taken from the same public
dataset used for the large-N analysis. The medium and small
sample sizes chosen approximately reflect the 60th and 30th
percentiles, respectively, of those represented in the recent
literature. It is important to note that, because the decision
to conduct the medium-N and small-N analyses was made
after the results of the initial, large-N analysis were known,
these post hoc investigations were conducted for explora-
tory purposes only. Specifically, we explored the extent to
which the inconsistencies found in the results of the large-N
analysis were present in the results of medium-N and small-
N analyses.

Finally, to determine the extent to which any discrepan-
cies found occurred consistently across various samples of
data, we performed our analyses on thirty simulated datasets
based on the properties of our original small-, medium-, and
large-N datasets for confirmatory purposes. The original and
simulated datasets are publicly available and can be found
in our Open Science Framework (OSF) storage directory at
https://osf.io/35umb/.

Method
Dataset

The open-source Race Implicit Association Test (IAT) 2018
data (Xu et al., 2014) were used for all of the present analy-
ses.! The Race IAT was designed to assess for underlying
attitudes toward white and black people that participants
may be unwilling or unable to identify within themselves
(Lane et al., 2007). Project Implicit hosts the Race IAT data
for public use (https://osf.io/gwofk/) and allows researchers
free access to the data. We chose this dataset due to its wide-
spread use within the social and behavioral sciences (e.g.,

! The original Race IAT Public 2018 dataset was downloaded on
June 6, 2019, from the data archives hosted on the Project Implicit
website (https://projectimplicit.net); however, the Project Implicit
data archives have since been relocated to https://osf.io/z4bd2/, where
the raw Race IAT Public dataset and corresponding codebook can be
accessed directly. It is unknown whether any data loss/corruption may
have occurred during this transition; thus, the raw dataset we down-
loaded prior to the relocation of the Project Implicit data archives,
which was used in the present analyses, can also be accessed from our
OSF storage directory.

14,200 results were returned for a single Google Scholar
search for “Implicit Association Test” AND “Race” on
November 8, 2020).

We selected eight variables (Table 2) from the Race IAT
Public 2018 dataset based on the relevance of their scale
of measurement and number of levels for nonparametric
analyses, the fewest number of missing data points, and
the likelihood of being used in the experimental research
published in the literature. It is important to emphasize that
the variables used in this work were not chosen for their
underlying measured constructs, and thus the results of our
analyses are not meant for conceptual interpretation; rather,
the variables used in the present study are solely meant for
the quantitative comparison of results obtained across sta-
tistical software packages.

The raw Race IAT Public 2018 dataset consists of 460
variables and 859,470 observations. Data cleaning was per-
formed using Stata version 16.1 (StataCorp LLC, College
Station, TX), and this initially involved dropping all observa-
tions from respondents who did not complete the Race IAT
(session_status values! =“C”), in addition to 1290 observa-
tions, which were dropped for respondents who failed to
complete all 120 trials across the four combined-task blocks
(N_3467 values <120). Finally, Excel was used to identify
59,530 of the remaining 414,167 observations, which were
removed due to missing data. From the remaining 354,637
observations, the small-, medium-, and large-N datasets were
generated by randomly selecting 100, 200, and 1000 nono-
verlapping observations, respectively, using Excel’s RAND
function. Observations randomly assigned numbers 1-1000,
1001-1200, and 1201-1300 were respectively assigned to
the large-, medium-, and small-N datasets.

Simulations

After obtaining preliminary results from the primary and
exploratory analyses, the decision was made to conduct
a simulation study to estimate the relative consistency of
computational errors and algorithmic variations that were
uncovered. Ten simulated datasets were generated for each
of the three original datasets, resulting in a total of thirty
simulations. Data were generated in MS Excel for Mac ver-
sion 16.4 using the random number generator function and
based on the properties of the original datasets (Supplemen-
tal Table S2). Five of the eight variables (sex, race, black,
white, order) follow a discrete distribution, and the remain-
ing three variables (latency, discriml, discrim?2) follow a
normal distribution, for which a seed of 1234 was used. The
simulated data mirror the descriptive properties of the full
dataset. All simulated datasets and tables with results for
each dataset are publicly available in our OSF repository
(https://osf.io/35umb/).
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Table 2 Variables selected from the Race IAT Public 2018 dataset for use in the present analyses

Variable name Description Measurement Levels
(IAT name) P scale
id Unique session identification number generated Strin B
(session_ID) when one begins the IAT &
sex . . . . .
(birthsex) Biological sex assigned at birth Nominal 2
race . - .
(raceomb_002) Racial association Nominal 8
black Feelings of warmth or coldness toward Black Ordinal 1
(tblack _0tol10) people
white Feelings of warmth or coldness toward White Ordinal 11
(twhite_0to10) people
order . .
(Order) Task presentation order Nominal 2
latency . . .
(Mn_Rt_all 3467) Mean reaction time across all task blocks Ratio -
discriml e
(D_biep. White_Good_36) Discriminability score on blocks 3 and 6 Interval -
i im2

discrim Discriminability score on blocks 4 and 7 Interval -

(D_biep.White_Good 47)

The full codebook for the variables used in the present study can be accessed in our OSF storage directory at https://osf.io/35umb/

Present analyses

We compared the results of five commonly used nonpara-
metric tests, including Pearson’s chi-square test of inde-
pendence, Spearman’s rank-ordered correlation (rho), the
Kruskal-Wallis one-way analysis of variance, the Wil-
coxon-Mann—Whitney U rank-sum test, and the Wilcoxon
signed-rank test. Each of these nonparametric tests are
described in detail in Table 1. Because it is often necessary
to evaluate normality when deciding whether parametric
tests are inappropriate, we also compared calculations of
skewness (the degree to which a set of data are symmetri-
cally or asymmetrically distributed around the mean) and
kurtosis (the extent to which the peakedness of a prob-
ability distribution deviates from the shape of a normal
distribution) across software platforms.

Although we selected these nonparametric analyses to
test in the current study, we recommend that any analyses
conducted within MS Excel, SPSS, SAS, Stata, or R be
scrutinized and checked across two or more software pack-
ages. Researchers who use one software package exclu-
sively for their analyses may find it beneficial to replicate
their findings in different software packages, especially
when the underlying algorithmic procedures vary across
packages.

@ Springer

Documentation of procedure

The statistical software packages used include the following:
SPSS 27 (IBM Corporation, LLC, Armonk, NY, 2020), SAS
JMP Pro 15.0 (running SAS v 9.4; SAS Institute Inc., Cary,
NC, 2019), Stata 16.1 (StataCorp LLC, College Station, TX,
2020), and R 4.0.3 (The R Foundation, 2020). Although R
provides many libraries that we could have utilized in our
investigation, the purpose of this project was to evaluate the
reliability of nonparametric tests using the fewest researcher
degrees of freedom; thus, for the current study, we only used
the “stats” package, which is 1 of 14 pre-installed packages
in R (v 4.0.3). It is possible and likely that the results of
the same analyses produced by different R packages would
result in meaningful differences; however, that examination
is beyond the scope of the current paper. All code used to
generate results in command-line-based programs (Stata, R)
were documented, and in the case of programs that rely pri-
marily on a graphical user interface (SPSS, SAS JMP Pro),
the underlying command syntax generated from the point-
and-click commands was also documented. The primary and
simulated datasets, the scripts or command syntax used for
all analyses (including the MS Excel spreadsheets used for
hand calculations, which are described below), all relevant
help files/documentation provided by each software package,
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and logs of the full statistical output generated from each
software platform can be found in our OSF storage directory
at https://osf.io/35umb/.

Hand calculation procedures

Prior to comparing the results across packages, we calcu-
lated each test statistic and asymptotic p-value with and
without corrections for continuity and ties (when applicable)
using the raw, computational formulas (see Supplemental
Material), and these hand-calculated results were consid-
ered the ground truth by which all results generated from
statistical packages were compared. Due to the large size of
the dataset used, literal hand calculations were not possible.
Rather, we performed these calculations in MS Excel for
Mac version 16.4 (Microsoft Corporation, Redmond, WA,
2020) and henceforth refer to these results as those derived
by hand calculation. All hand calculations were checked for
accuracy independently by two or more researchers with
adequate knowledge of the relevant statistical procedures
and extensive experience using the formula builder function
in MS Excel.

Hand calculations are useful to perform if the results of
the same analyses are conflicted across two or more statisti-
cal software packages, as hand calculations may provide a
standard by which to compare the discrepant results pro-
duced by the statistics software. The benefit of hand calcu-
lation is that researchers may more easily determine where
the statistical software programs diverge, and which one is
providing the output intended by the researcher. This method
is best when documentation is ambiguous or missing (e.g., in
some R libraries). If documentation is present and thorough
across programs, checking the differences in documentation
may be easier than hand calculations.

The following procedures were involved in the hand cal-
culations for each statistical test (refer to the Supplemental
Material for additional detail):

e Pearson’s chi-square test of independence: To obtain
asymptotic test statistics, 2 X2 observed and expected
frequency tables were generated, and the resulting val-
ues were used to obtain the degrees of freedom, X2 test
statistic, and a right-tailed, asymptotic p-value with and
without Yate’s continuity correction.

e Spearman’s rank-ordered correlation: Spearman’s rank
correlation coefficient (rho) and a two-tailed, asymp-
totic p-value were generated after applying a correction
for ties. A table of tied ranks was also generated, where
unique values and the corresponding number of ties are
provided for each variable.

e  Kruskal-Wallis one-way analysis of variance: To obtain
asymptotic test statistics, a frequency table including the
rank sums and average squared rank sums was generated.

Additionally, the degrees of freedom, Kruskal-Wallis H
test statistics (following the Xz distribution), and right-
tailed, asymptotic p-values with and without a correction
for ties were calculated. To determine the tie correction
value (Cy), a second table was generated, which includes
a list of all unique values with the corresponding number
of ties, as well as a range of the number of tied values
present in each set of tied values.

e Wilcoxon Mann—Whitney U rank-sum test: To obtain
asymptotic test statistics, a frequency table was gener-
ated, which reports the number of total observations and
rank sums for each level of the grouping variable, as well
as the mean and variance of the Wilcoxon W statistic
and the mean and standard deviation of the rank sums
for the smaller of the two groups. Additionally, a second
table was generated to aid in the tie correction, which
includes a list of all unique values with the corresponding
number of ties. Finally, the following test statistics were
calculated after correcting for ties, both with and with-
out application of a continuity correction: Wilcoxon W,
Mann—Whitney U, z-statistic, and a two-tailed, asymp-
totic p-value.

e Wilcoxon signed-rank test: To obtain asymptotic test sta-
tistics, we generated a frequency table including the num-
ber of observations and rank sums for the positive and
negative ranks, as well as the number of zero differences,
the number of ties, and the mean and standard deviation
of the Wilcoxon T statistic (based on the positive ranks).
Due to a lack of tied ranks, no table of tied values was
produced for this analysis. Finally, the following test sta-
tistics were calculated both with and without application
of a continuity correction: Wilcoxon 7, z-statistic, and a
two-tailed, asymptotic p-value.

e Skewness and kurtosis: Computational formulas were
used to determine the population skewness (Cramér,
1946), sample skewness (Bliss, 1967), population kurto-
sis, where the mean kurtosis of the normal distribution is
equal to three (Bock, 1975), and excess sample kurtosis,
where the kurtosis of the normal distribution is corrected
to have a mean equal to zero (Cramér, 1946).

Criteria for meaningful differences in results

We used the following criteria to determine what would be
considered “meaningful” differences in results produced
across packages: inconsistencies due to (1) algorithmic
variation (e.g., no correction, adjustment for ties, continu-
ity correction), (2) computational error (i.e., results differ
from those obtained through hand calculation despite the
use of the same computational procedures described in
the software documentation), or (3) statistical output (e.g.,
reporting of exact versus asymptotic p-value; reporting a
p-value without the test statistic or vice versa). The latter

@ Springer


https://osf.io/35umb/

2822

Behavior Research Methods (2023) 55:2813-2837

criteria were included due to the assumption that the same
statistics should be reported across software programs, and
the use of any variations in the calculation of a test statistic
or p-value should be made explicitly clear in the output and
provided along with traditional (i.e., uncorrected) calcula-
tions. Finally, we selected these criteria because they have
the potential to affect statistical conclusion validity. We
recommend that researchers who choose to examine their
results across statistical software platforms assess for these
criteria as the cause for these meaningful differences.

Results

The default procedures and algorithms used by SPSS, SAS,
Stata, and R to conduct Pearson’s chi-square test of inde-
pendence, Spearman’s rank correlation coefficient (rho),
Kruskal-Wallis one-way analysis of variance, Wilcoxon
Mann—Whitney U rank-sum test, Wilcoxon signed-rank
test, skewness, and kurtosis are reported in Table 3. Addi-
tionally, Table 3 includes details regarding the hypothesis
tested, according to the respective package’s help files/
documentation, the statistical output generated from each
analysis, and the basic command syntax with additional
options or arguments that must be specified by the user
(i.e., are not applied by default) in order to generate specific
results (e.g., test statistic, exact p-values) or to use alterna-
tive algorithms (e.g., apply a continuity correction). Greater
detail regarding the default procedures and algorithms used
by each package can be found in the Supplemental Mate-
rial and in the help files/documentation for each software
package; we have extracted the relevant documentation for
the present analyses, and it is included in our OSF storage
repository at https://osf.io/35umb/.

The numerical results of all large-, medium-, and small-
N analyses are reported in Tables 4, 5, and 6, respectively,
for comparison across all statistical packages with the hand-
calculated results. The results in each table are organized
according to the default algorithms used by a given package
(i.e., asymptotic test statistics with or without correction for
ties and/or continuity). Exact p-values were not generated by
hand for any analysis.

Algorithmic variation

The default algorithms used to produce the results of all
analyses differ widely across the four packages we compared.

Pearson’s chi-square

When conducting Pearson’s chi-square test, SAS and Stata
apply no continuity correction, R applies Yates’ continuity

@ Springer

correction, and SPSS generates results both with and without
Yates’ continuity correction. As a result, the only p-value
produced by R is larger than the only p-values produced
by SAS and Stata by values of .049, .073, and .154 for the
large-, medium-, and small-N analyses, respectively. Addi-
tionally, Fisher’s exact one- and two-tailed p-values are pro-
vided by SPSS for all data and by SAS for 2 X2 contingency
tables, by default. With the exception of minor rounding
discrepancies, the two-tailed p-values provided were equal
between SPSS and SAS across the large-, medium-, and
small-N analyses.

Spearman’s rho

All four packages adjust for ties, by default, when computing
Spearman’s rho; however, if no ties are present and the sam-
ple size is less than 1290, R will produce an exact p-value in
place of the asymptotic p-value.

Kruskal-Wallis

Although no ties were present in the variables assessed by
the Kruskal-Wallis test, R does not adjust for ties by default,
whereas results are adjusted for ties, by default, in SPSS and
SAS, and Stata produces results both with and without an
adjustment for ties.

Wilcoxon Mann-Whitney U

When performing the Wilcoxon Mann—Whitney U test, all
packages adjust for ties; however, SAS and R also apply a
continuity correction, by default, resulting in p-values that
are larger by values of .001 and .002 than those which are
produced by SPSS and Stata for the medium- and small-N
analyses, respectively. Additionally, the formulas used to
calculate the Wilcoxon Mann—Whitney U test statistics are
not consistent across packages. In Stata and R, Wilcoxon’s
W is calculated according to the method originally defined
by Wilcoxon (1945), where W is the sum of ranks for the first
sample (determined by the values that define each group in
ascending order), whereas Wilcoxon’s W is defined by SPSS
as the sum of ranks for the second sample and by SAS as the
sum of ranks for the sample of smaller size (if sample sizes
are equal, the sum of ranks for the second sample is used).
As a result, SPSS produced different values for W and U,
along with an inverted z-statistic across the large-, medium-,
and small-N analyses, and SAS produced a different value
for W and an inverted z-statistic for the large- and small-N
analyses. Finally, Stata also produces an exact p-value for
samples less than or equal to 200 using a recursive algorithm
defined by Hill and Peto (1971). No other packages produced
exact p-values for the Wilcoxon Mann—Whitney U; however,
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Table 4 Results obtained across packages compared with hand calculations for the large-N analyses

Test Algorithm Statistic Hand calculation SPSS SAS Stata R
Pearson’s chi-square df 1 1 1 1 1
Asymptotic x> 0.168 0.168 0.168 0.168 -
p 0.682 0.682 0.682 0.682 -
Continuity x> 0.119 0.119 - - 0.119
p 0.731 0.731 - - 0.731
Exact p - 0.696 0.697 - -
Spearman’s rho Ties T 0.591 0.591 0.591 0.591 0.591
p 0.000 0.000 0.000 0.000 0.000
Kruskal-Wallis df 7 7 7 7 7
Asymptotic X2 9.508 - - 9.508 9.509
P 0.218 - - 0.218 0.218
Ties x> 9.508 9.508 9.509 9.508 -
p 0.218 0.218 0.218 0.218 -
Wilcoxon Mann—Whitney U w 256,248 244,252 244252 - -
U 129,492 120,499 - - 129492°
Ties b4 1.001 -1.001 - 1.001 -
P 0.317 0.317 - 0.317 -
Continuity z 1.001 - —1.001 - -
)4 0.317 - 0.317 - 0.317
Wilcoxon signed-rank T 211,006 - —39244* - 211006°
Ties b4 —4.296 —4.296 - —4.296 -
P 0.000 0.000 0.000 0.000 -
Continuity Z —4.296 - - - -
P 0.000 - - - 0.000
Skewness Population 7.463 - - 7.463 -
Sample 7.474 7.474 7.474 - -
Kurtosis Population 127.313 - - 127.313 -
Sample 124.943 124.943 124.943 - -

n=1000. Results are organized according to the default algorithms used by each program, as noted in the respective output and/or help files/
documentation. Bold values indicate results that are inconsistent with the hand-calculated results, or those that are inconsistent between pack-
ages, in the case of exact p-values. The values reported from “asymptotic” algorithms are those that were computed with no correction for ties
or continuity applied. Dashes indicate values that were not provided in the default output produced by the respective statistical package or those

that were not able to be produced by hand (i.e., exact p-values)
Test statistic labeled as “S”

PTest statistic labeled as “W”

“Test statistic labeled as “V”’

it is of note that for sample sizes less than 50, R will produce
an exact p-value, calculated using the algorithm described
by Bauer (1972) with a Hodges and Lehmann (1963) estima-
tion, in place of the asymptotic p-value.

Wilcoxon signed-rank

Similar to the procedures applied to the Wilcoxon
Mann-Whitney U, while all packages adjust for ties
when performing the Wilcoxon signed-rank test, R is
the only package to also apply a continuity correction,
by default; however, this did not affect the p-values
produced by R to a meaningful amount, as the only

discrepancy was observed for the p-value derived from
the small-N analysis, which was smaller by a value of
.001 in R, relative to the values produced by SPSS,
SAS, and Stata. Additionally, the algorithm used to
calculate the Wilcoxon T statistic in SAS differs from
the generally accepted definition provided by Wilcoxon
(1945), where the test statistic is the smaller of either
the sum of ranks with positive differences or the sum
of ranks with negative differences. This definition is
used by SPSS, Stata, and R; however, the test statistic
produced by SAS is based on the sum of the absolute
value of signed ranks.
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Table 5 Results obtained across packages compared with hand calculations for the medium-N analyses

Test Algorithm Statistic Hand calculation SPSS SAS Stata R
Pearson’s chi-square df 1 1 1 1 1
Asymptotic X’ 1.040 1.040 1.040 1.040 -
D 0.308 0.308 0.308 0.308 -
Continuity X’ 0.767 0.767 - - 0.767
D 0.381 0.381 - - 0.381
Exact P - 0.318 0.318 - -
Spearman’s rho Ties T 0.686 0.686 0.686 0.686 0.686
p 0.000 0.000 0.000 0.000 0.000
Kruskal-Wallis df 7 7 7 7 7
Asymptotic x2 11.344 - - 11.344 11.344
p 0.124 - - 0.124 0.124
Ties® x2 11.344 11.344 11.344 11.344 -
p 0.124 0.124 0.124 0.124 -
Wilcoxon Mann—Whitney U w 9685.5 10,414.5 9685.5° - N
U 5220.5 4743.5 - - 5220.5¢
Ties® z 0.598 —0.598 - 0.598 -
D 0.550 0.550 - 0.550 -
Continuity z 0.597 - 0.597 - -
D 0.551 - 0.551 - 0.551
Exact p - - - 0.551 -
Wilcoxon signed-rank T 8484 - —1566" - 84844
Ties® b4 -1.911 -1.911 - -1.911 -
p 0.056 0.056 0.056 0.056 -
Continuity z -1.911 - - - -
p 0.056 - - - 0.056
Exact p - - - 0.056 -
Skewness Population 2.964 - - 2.964 -
Sample 2.986 2.986 2.986 - -
Kurtosis Population 17.670 - - 17.670 -
Sample 15.075 15.075 15.075 - -

n=200. Results are organized according to the default algorithms used by each program, as noted in the respective output and/or help files/
documentation. Bold values indicate results that are inconsistent with the hand-calculated results, or those that are inconsistent between pack-
ages, in the case of exact p-values. The values reported from “asymptotic” algorithms are those that were computed with no correction for ties
or continuity applied. Dashes indicate values that were not provided in the default output produced by the respective statistical package or those

that were not able to be produced by hand (i.e., exact p-values)

*No ties present
bTest statistic labeled as “S”

“Test statistic labeled as “W”

dTest statistic labeled as “V”’

Skewness and kurtosis

Finally, unbiased calculations of sample skewness and
excess sample kurtosis (where the expected value for kur-
tosis of a sample with a normal distribution is 0) are only
used by SPSS and SAS. Despite the bias inherent in the use
of population estimates, Stata does not provide any other
built-in option for the way in which these measures of nor-
mality are estimated for a sample of data. Additionally, it

@ Springer

is important to note that R has no built-in functionality for
calculating skewness or kurtosis.

Simulations

The results of the simulation studies shed further light
on the impact of algorithmic variations on the results
of nonparametric analyses between software packages
(tables with the simulations results can be found in our
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Table 6 Results obtained across packages compared with hand calculations for the small-N analyses
Test Algorithm Statistic Hand calculation SPSS SAS Stata R
Pearson’s chi-square df 1 1 1 1 1
Asymptotic x* 0.164 0.164 0.164 0.164 -
p 0.685 0.685 0.685 0.685 -
Continuity x? 0.041 0.041 - - 0.041
p 0.839 0.839 - - 0.839
Exact p - 0.840 0.840 - -
Spearman’s rho Ties Ty 0.523 0.523 0.523 0.523 0.523
p 0.000 0.000 0.000 0.000 0.000
Kruskal-Wallis df 5 5 5 5 5
Asymptotic x2 5.139 - - 5.139 5.139
P 0.399 - - 0.399 0.399
Ties® X2 5.139 5.139 5.139 5.139 -
P 0.399 0.399 0.399 0.399 -
Wilcoxon Mann—Whitney U w 2648 2402 2402° - -
U 1373 1127 - - 1373¢
Ties® b4 0.861 —0.861 - 0.861 -
P 0.389 0.389 - 0.389 -
Continuity z 0.858 - —0.858 - -
p 0.391 - 0.391 - 0.391
Exact p - - - 0.391 -
Wilcoxon signed-rank T 2100 - —425P - 2100¢
Ties* z —1.461 —1.461 - —1.461 -
p 0.144 0.144 0.145 0.144 -
Continuity Z —1.463 - - - -
p 0.143 - - - 0.144
Exact p - - - 0.145 -
Skewness Population 0.696 - - 0.696 -
Sample 0.707 0.707 0.707 - -
Kurtosis Population 3.171 - - 3.171 -
Sample 0.242 0.242 0.242 - -

n=100. Results are organized according to the default algorithms used by each program, as noted in the respective output and/or help files/
documentation. Bold values indicate results that are inconsistent with the hand-calculated results, or those that are inconsistent between pack-
ages, in the case of exact p-values. The values reported from “asymptotic” algorithms are those that were computed with no correction for ties
or continuity applied. Dashes indicate values that were not provided in the default output produced by the respective statistical package or those

that were not able to be produced by hand (i.e., exact p-values)
*No ties present

bTest statistic labeled as “S”

“Test statistic labeled as “W”

dTest statistic labeled as “V”

OSF storage at https://osf.io/35umb/). Of particular impor-
tance is the extent to which the p-values differ between
uncorrected and continuity-corrected p-values produced
for Pearson’s chi-square. Across all 30 simulations, the
difference in continuity-corrected versus uncorrected
p-values ranged from .005 to .162 (M =.082, SD =.050).
These differences were more extensive for the smaller
samples (Fig. 3), where the results for the small-N sim-
ulations differed by an average of .123 (SD =.048), and

those of the large-N simulations differed by an average
of .033 (SD=.018). While continuity-corrected p-values
were the same as uncorrected p-values produced for the
Wilcoxon tests in the large-N simulations, continuity-cor-
rected p-values for the Wilcoxon Mann—Whitney U test
were greater by a value of .001 on 7 of the 10 medium-N
simulations, and by an average value of .002 (SD =.001)
for all of the small-N simulations.
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Fig.3 Average difference in Yates’ continuity-corrected ver-
sus uncorrected asymptotic p-values for Pearson’s chi-square test
across large, medium, and small sample sizes. Note. Large n=1000;
medium n=200; small n=100; average values are based on differ-
ences (continuity-corrected — uncorrected) in two-tailed p-values
across primary and simulated datasets, with the standard deviation of
the differences reflected in the error bars.

Computational error

Few inconsistencies due to computational error were
observed between the hand-calculated results and those
produced by the statistical packages, and all appeared in
the results from the simulated datasets. These inconsist-
encies could not be reduced to rounding error when the
same computational procedures were used for calculation
(according to the documentation provided by the software)
and were therefore determined to be produced by the statisti-
cal package in error. The most prevalent error occurred in
several of the results provided by SPSS for the Wilcoxon
Mann-Whitney U test across the large-, medium-, and small-
N simulations, where Wilcoxon’s W was computed as the
sum of ranks for the first sample. The documentation clearly
states that the sum of ranks for the second sample is used
to calculate Wilcoxon’s W, and there is no apparent pattern
as to when this deviation from the documented procedure
would occur. Although the results produced matched those
obtained through hand calculation, we consider them to be
due to computational error, as the method used to obtain
these findings is not consistent with that which is described

@ Springer

in the package’s documentation. Additionally, SPSS and R
failed to compute the test statistic and continuity-corrected
p-value for Pearson’s chi-square test on two of the simulated
medium-N datasets and one of the simulated small-N data-
sets due to the presence of one cell with zero observations in
the 2 X 2 contingency table; the exact p-values produced by
SPSS and SAS for these three simulated datasets were also
affected by this (i.e., p=1.000).

Statistical output

Extensive differences were observed in the statistical output
produced for each nonparametric test across the four statis-
tical packages, and the output was consistent within each
package across the primary and simulated analyses. Each
package produces a variety of statistical output in addition
to the specific test statistics that are typically required to be
reported and interpreted in the literature (Table 3); see the
Supplemental Material for details of the statistical output
provided across packages. With regard to the inferential sta-
tistics that are necessary for one to make basic conclusions
about the hypothesis that was tested (i.e., the test statistics,
degrees of freedom, and p-values), several inconsistencies
continued to be seen across SPSS, SAS, Stata, and R.

Pearson’s chi-square and Kruskal-Wallis

While test statistics, degrees of freedom, and p-values
were reported by all packages for Pearson’s chi-square and
Kruskal-Wallis tests, only SPSS provided these both with and
without continuity correction for Pearson’s chi-square, and
only Stata provided these both with and without an adjust-
ment for ties for the Kruskal-Wallis test. Fisher’s exact one-
and two-tailed p-values are reported with Pearson’s chi-square
results by SPSS and SAS, by default, for 2 X2 contingency
tables. Stata will also produce Fisher’s exact p-values for
any data if the option, exact, is included in the command.
Across the primary and simulated datasets, exact two-tailed
p-values reported by SPSS and SAS differed from uncor-
rected and continuity-corrected asymptotic p-values as a
function of sample size (Fig. 4). On average, exact two-tailed
p-values were greater than uncorrected asymptotic p-values
by .021 (SD=.015), .049 (SD=.031), and .055 (SD=.046)
for the large-, medium-, and small-N analyses, respectively.
In contrast, exact two-tailed p-values were smaller than conti-
nuity-corrected asymptotic p-values obtained from the large-,
medium-, and small-N datasets by values of —.013 (SD=.010),
—.047 (§$D=.032), and —.071 (SD =.049), respectively.

Wilcoxon Mann-Whitney U

In the output produced for the Wilcoxon Mann—Whitney U
test, SPSS alone generated Wilcoxon’s W, Mann—Whitney’s
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Fig.4 Average differences in Fisher’s exact (two-tailed) versus
uncorrected and continuity-corrected asymptotic p-values for Pear-
son’s chi-square test across large, medium, and small sample sizes.
Note. Large n=1000; medium n=200; small n=100; average values
are based on differences (exact — asymptotic) in two-tailed p-values
across primary and simulated datasets, with the standard deviation of
the differences reflected in the error bars.

U, the asymptotic test statistic (z-statistic), and the asymp-
totic p-value. In contrast, the output from SAS and Stata
did not include the Mann—Whitney U statistic, and while
Wilcoxon’s W technically appears in the rank-sum frequency
table, it is neither clearly indicated nor differentiated from
the other rank-sum values reported in Stata’s output. Addi-
tionally, only the Mann—Whitney U statistic and the conti-
nuity-corrected p-value are provided in the output generated
in R; however, the test statistic is incorrectly labeled as “W.”
Exact two-tailed p-values for the Wilcoxon Mann—Whitney
U test are also reported by Stata for samples of n <200 and
therefore appear in our medium- and small-N results; exact
p-values were very similar to asymptotic p-values across all
medium- and small-N datasets. No other packages produced
exact statistics for the Wilcoxon Mann—Whitney U test per-
formed on our data; however, an exact two-tailed p-value is
reported by R in place of the continuity-corrected p-value
when n <50 and no ties are present, and according to the
documentation, SPSS reports an exact 2*one-tailed p-value
along with the asymptotic p-value when n is “not too large.”

Wilcoxon signed-rank
Finally, none of the four packages reported all of the funda-

mental inferential statistics in their output for the Wilcoxon
signed-rank test. While both SPSS and Stata report the

asymptotic z-statistic and p-value, neither reports the Wil-
coxon T statistic (although it appears without a label in the
rank-sum frequency table). In contrast, while the Wilcoxon
T statistic and p-values are reported in the output of both
SAS and R, neither of these packages reports the asymptotic
z-statistic, and R incorrectly labels the test statistic as “V.”
An exact two-tailed p-value was generated by Stata for the
medium- and small-N analyses, and this occurs by default
for samples of n <200; exact p-values were very similar to
asymptotic p-values across all medium- and small-N data-
sets. No other exact statistics were generated for the Wil-
coxon signed-rank test across packages; however, SAS will
report an exact p-value when n <20 and R will replace the
asymptotic p-value with an exact p-value when n <50 and
no ties are present. It is important to note that SAS labels all
test statistics as “S,” even though several test statistics are
commonly defined by specific labels.

Discussion

In the current era of psychological science, much of the
field’s attention has been directed at methodological prac-
tices and reproducible science. However, we have seen lit-
tle evidence that this increased attention has brought much
awareness to inconsistencies between statistical software
packages. The present study investigated whether the same
results would be generated from the same nonparametric
statistical procedures when performed on the same dataset
by different statistical software packages. Although results
were largely consistent across software packages, our find-
ings bring into question the extent to which reporting error
and/or misinterpreted results are present in the psychological
science literature. Our most notable findings were related to
the extent of algorithmic variation that exists across pack-
ages for a given nonparametric analysis. The algorithms
implemented are often native to each software package and
do not require user specification, and they are not consist-
ently applied within a single package for samples with vary-
ing characteristics. These adjustments included performing
automatic corrections or transformations that, while useful
in certain situations, are not always readily apparent to and
may not be desirable by the user conducting the tests.

In our data, the algorithmic variations generally resulted
in minor test statistic or p-value discrepancies that may not
have substantial impacts on one’s statistical conclusions.
The exception to this lies in the continuity-corrected ver-
sus uncorrected p-values generated for Pearson’s chi-square
analysis (Fig. 3). By default, uncorrected p-values are gen-
erated by SAS and Stata, and Yates’ continuity correction
is applied to the calculation of the chi-square statistic in R,
resulting in a larger p-value. The only p-value produced by
SAS and Stata was smaller than the only p-value produced
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by R by an average value of .083 across our primary and
simulated datasets. The differences in continuity-corrected
and uncorrected p-values ranged from .005 to .162, largely
as a function of sample size. In addition, Fisher’s exact
p-values are provided with these results by some packages,
depending on the characteristics of the data. When pro-
vided with the results of our analyses, exact p-values were
larger than uncorrected asymptotic p-values but smaller than
continuity-corrected asymptotic p-values, and these differ-
ences also varied as a function of sample size (Fig. 4). The
discrepancies seen here demonstrate the potential for statis-
tical conclusions to be influenced by the software package
used, especially when users are unaware of the underlying
algorithm used or naive as to when/if a continuity correc-
tion or exact statistic is appropriate. This has important
implications, given that Pearson’s chi-square is among the
most commonly used nonparametric tests in the psychologi-
cal science literature. Furthermore, in cases where multiple
p-values are provided for a given test, a naive user may be
inclined to report the value that supports their hypothesis,
especially if they are not sure which p-value is the most
appropriate for their data.

Perhaps the most intriguing finding, however, is the
computational error we encountered from SPSS, where
the program would unpredictably calculate the Wilcoxon
Mann—Whitney U test statistic based on the rank sum of the
first sample, when the documentation clearly states that the
second sample is used for calculation. Although this has no
effect on the p-value and should not impact conclusions of
statistical significance, the inverted z-statistic may result in
confusion over the direction of an effect.

Overall, our findings suggest that the results of several
common nonparametric tests and measures of normality
differ when performed on the same data across SPSS, SAS,
Stata, and R. These differences were driven primarily by the
inconsistent application of default algorithmic procedures
across software packages. Furthermore, our medium- and
small-N analyses revealed that, as we approach sample sizes
more commonly used in the current literature, discrepancies
in statistical output are increased, due to the application of
continuity corrections or calculation of exact statistics.

We also found that some statistical output generated from
these nonparametric tests included unnecessary informa-
tion. We believe that programs producing unnecessary and
ambiguous output may increase confusion and/or selective
reporting of misleading results in the literature, especially
when there is no clear indication or description of the values
generated. In particular, we argue that confusion is more
likely when a student, psychological science researcher, or
other non-statistician investigator attempts to interpret the
results of a single test when multiple p-values are present in
the generated output. This may be especially relevant when
algorithms used to generate the different p-values are not
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clearly indicated in the output or defined in the documen-
tation. At worst, when multiple p-values are provided for
a single test, we fear that publication bias and the current
“publish or perish” mentality in scientific research may lead
to selective reporting of whichever p-value most closely
aligns with the hypothesis. Taken together, these factors and
discrepancies may contribute to the replication failure in the
social and behavioral science literature.

Overall, although we found that there were no discrep-
ancies across statistical packages that would result in an
incorrect conclusion from our data, the findings do suggest
that within statistics packages, poor documentation and
labeling of output may lead to an incorrect conclusion. For
example, we found large differences in p-values between
continuity-corrected and uncorrected p-values. It is possible
that a researcher may select the smaller of the two p-values,
either purposefully, due to unclear labeling of the output,
or because it is the only p-value a given statistical pack-
age produces. As can be seen in Figs. 3 and 4, differences
in p-values that occur due to algorithmic variations can be
large, especially in smaller datasets.

Limitations and future directions

The current investigation has noteworthy limitations.
Although we found differences in the results generated
across software packages, we want to encourage caution
when generalizing these findings to other programs and
other versions of the software. Software developers (espe-
cially those working on open-access software, like R) are
continually updating their programs and correcting bugs in
the software. Many of the errors we found may be due to
bugs in the software that have not yet been discovered or due
to differences in the output selected by the program; thus,
the findings discussed herein are specific to the programs
we compared and the versions of these programs we used
for the present analyses. We encourage readers to consider
the context in which the present discrepancies across results
were found and to use the present findings as motivation to
more closely consider their own statistical results. It is also
important to note that the inconsistent findings considered
to be due to computational error may not be the result of
miscalculation per se; these results were simply referred to
as computational error because they did not reflect the true
result when the computational procedures described in the
packages’ documentation were followed. It is likely that the
procedures were incorrectly described in the documenta-
tion, and in such cases, these inconsistencies would be better
described as misspecifications than error.

Our results may not generalize to other, more commonly
used statistical procedures, such as parametric analyses. A
large contributor to the heterogeneity we found in results
across statistical packages was due to algorithmic variation,
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particularly those related to continuity corrections and the
calculation of exact p-values. These procedures are not rele-
vant in parametric analyses; thus, there may be fewer ways in
which the results of parametric statistics could differ across
software packages. It is also important that our findings are
replicated using other meaningful data so as to determine
the extent to which the discrepancies seen here may impact
results from data of more practical or clinical importance.
Further, we strongly encourage future work to leverage sys-
tematic and meta-analytic methods to examine the existing
literature in terms of statistical rigor, researcher degrees
of freedom, and methodology involved when conducting
nonparametric analysis, as such work would greatly benefit
ongoing replication efforts. Additionally, a similar consid-
eration of the most frequently used statistical methods in the
general psychological science literature is needed. While we
conducted a cursory review of nonparametric methods used
in the recent psychological science literature, a meta-analy-
sis or systematic review documenting researcher degrees of
freedom in methods used when performing nonparametric
analysis would provide a clearer understanding of the current
state of the problem in our field.

Bootstrapping is a technique used to replicate the results
of an analysis a large number of times across simulated data-
sets given a chosen distribution. The technique is growing
in popularity and is frequently being included in the lat-
est statistical software. We did not conduct our simulations
by pulling the formulas from each statistical software plat-
form and testing them within the program itself to exam-
ine how they perform comparatively, and the lack of such
simulation procedures conducted in this manner may be a
limitation. Still, we did not include this simulation as we
argue that it is beyond the scope of the current paper (i.e.,
we can address the question of whether there are differences
in output across software packages without conducting a
large simulation in R). Further, although using bootstrapping
may address some limitations of relying on a single analysis
in a single statistical software package (e.g., by producing
simulated confidence intervals), we caution using bootstrap-
ping as a “fix” for discrepancies across statistical software.
Bootstrapping analyses may be prone to the same variations
in computations, formulas, labeling, and output across statis-
tical software that the analyses examined in the current paper
produced. Thus, our recommendation for cross-examining
results applies similarly to bootstrapping and other simula-
tion techniques.

Finally, we would like to note the open-source nature
of R that separates it from the other statistical packages
evaluated herein. Any user can create libraries that can be
download and used by others for their analyses. User-written
libraries do not undergo any rigorous testing or vetting pro-
cesses; thus, there is a risk in utilizing libraries outside of
the 14 that are built into the program, as they may be prone

to error. Furthermore, the documentation for these user-
written libraries ranges from comprehensive to none. Given
these limitations, if a researcher only uses R with third-party
libraries to analyze their data, cross-examination between R
and other established statistical software platforms may be
especially important.

Implications and recommendations

The present results raise questions about previous replica-
tion efforts. It is well known within the social and behavioral
sciences that efforts to replicate many landmark studies have
failed (Open Science Collaboration, 2015). It is possible that
algorithmic variation or other differences in the computation
or reporting of results between statistical software packages
may be contributing to this problem, and future replication
efforts should consider this possibility and focus on deter-
mining whether failures to replicate may be due, at least in
part, to differences between the software used. The hetero-
geneity we have demonstrated in our results speaks to the
importance of open-access science; without knowing the
underlying procedures used to generate statistical results, it
may be difficult to directly replicate previous studies. Repli-
cation efforts within the social and behavioral sciences have
made significant strides toward promoting open-access sci-
ence, but work remains to be done.

The results of the current study suggest that researchers
may benefit from cross-examining their results across statis-
tical software platforms. We recommend making a consist-
ent practice of analyzing the results from one statistical soft-
ware platform to at least one other platform. We argue that
this practice may reduce the chances of drawing inaccurate
conclusions due to inconsistencies or errors in the output,
labeling, or underlying algorithms used by a given software
package. At the time of this publication, Stata appeared to
be the most consistent with our hand calculations. However,
the differences described in the current paper are likely to be
resolved or altered through software updates, so this may not
always be the case. Furthermore, consistency with hand cal-
culation does not necessarily mean one platform produced
more accurate results than another, but that the algorithms
used to compute the results were more consistent with our
expectations, based on original formulas provided in text-
books and other literature. Finally, if inconsistencies arise in
a cross-examination, we recommend checking documenta-
tion and conducting hand calculations to best determine the
root of the discrepancies. Thus, we argue that the choice to
cross-examine one’s results across software platforms and to
review the formulas provided in the software’s documenta-
tion are more important than the choice of software. Once
researchers have chosen which software to use, they should
provide a justification for their choice in their manuscript.

@ Springer
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We advocate for fully open-access science, including pub-
lic hosting of datasets, command syntax used to generate
results, and all study materials used in the final analysis.
New organizations, such as the Open Science Framework
(OSF), have made considerable progress in the promotion
of open-access science by emphasizing the preregistration
of scientific studies, where researchers may report all study
procedures prior to beginning data collection and publish
the results upon study completion. Additionally, OSF has
data-hosting options that allow researchers to post their
datasets and analysis pipelines for future replication efforts.
This level of transparency in science remains promising, as
more publishers require the documentation of study proce-
dures and as academia begins to encourage preregistration
and sharing of all study data and materials. We suggest that
future studies continue this trend of transparency.

We strongly encourage all researchers, regardless of
career stage, to carefully examine the documentation in
software packages, and to ensure that the package selected
is performing the test as they expect it to. Furthermore, users
should be aware of the computational idiosyncrasies of the
software used to conduct the statistical analyses, and it is
recommended that the results are compared across platforms
to avoid reporting errors or misleading results that are due to
algorithmic variation, computational error, or other output-
related characteristics of a given program. Of utmost impor-
tance is the necessity for adequate reporting of the statistical
procedures used when analyzing data and full transparency
when publishing the results of such analyses.

We also suggest that future work consider the use of
outside services to address issues, such as version control,
containerization, and ambiguous documentation of code/
dependencies, which may cause future replications to fail.
GitHub is a popular third-party service that allows for
the hosting of version-controlled code. Similarly, Docker
is another service that constructs a virtual environment
(referred to as a “container”) that allows individuals to
share not only their code, but also all of the dependencies
and software needed to run the code. The use of contain-
ers eliminates any ambiguity that may arise concerning file
execution order or the dependencies required to replicate
an analysis. Further, we strongly encourage researchers to
consider clearly annotating any code, scripts, or other docu-
mentation shared publicly. Commenting at each step of a
script not only increases clarity and transparency, but will
assist future replication efforts in understanding the steps
of the analysis that were taken. An excellent example of the
level of transparency required is provided by Peikert and col-
leagues’ (2021) tutorial on accomplishing these tasks in R.

Some of the burden of open-access science lies on the
shoulders of the software developers. Several issues were
present in the help files and documentation provided by
the software packages, where the information provided for

@ Springer

the various analyses we conducted was often lacking suf-
ficient information about a given test (e.g., R) or about the
algorithms used to produce the results (e.g., Stata), and in
some cases, the documentation was not easily accessible
(e.g., SAS) or was difficult to interpret (e.g., SPSS). Ambi-
guity in documentation could play a role in the inconsistent
replication of scientific experiments that has been noted in
recent years, and it is essential that the software developers
are made aware of the importance of clear, exhaustive, and
easily accessible documentation for these packages.

Conclusion

The results of our study demonstrate the unreliability of
results produced for nonparametric tests and measures of
normality across SPSS, SAS JMP Pro, Stata, and R. The
inconsistent results were primarily due to differences in the
default algorithms used; however, computational error and
differences in statistical output also contributed to the unreli-
ability of results. These discrepancies, along with unneces-
sary and/or unclearly defined statistical output generated for
a given test, may contribute to confusion, selective reporting
or reporting error, and ultimately, replication failure. We
urge researchers to refer to documentation when interpret-
ing results (when it is available), compare their statistical
results across software platforms, and describe all statistical
procedures, including the statistical software package used,
when publishing results, to aid in the success of future rep-
lication efforts.
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