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Abstract
To obtain more accurate and robust feedback information from the students’ assessment outcomes and to communicate it 
to students and optimize teaching and learning strategies, educational researchers and practitioners must critically reflect 
on whether the existing methods of data analytics are capable of retrieving the information provided in the database. This 
study compared and contrasted the prediction performance of an item response theory method, particularly the use of an 
explanatory item response model (EIRM), and six supervised machine learning (ML) methods for predicting students’ item 
responses in educational assessments, considering student- and item-related background information. Each of seven predic-
tion methods was evaluated through cross-validation approaches under three prediction scenarios: (a) unrealized responses 
of new students to existing items, (b) unrealized responses of existing students to new items, and (c) missing responses of 
existing students to existing items. The results of a simulation study and two real-life assessment data examples showed that 
employing student- and item-related background information in addition to the item response data substantially increases 
the prediction accuracy for new students or items. We also found that the EIRM is as competitive as the best performing ML 
methods in predicting the student performance outcomes for the educational assessment datasets.

Keywords Item response theory · Explanatory item response model · Machine learning · Background information · 
Prediction performance · Educational assessment
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Introduction

Educational assessment is the systematic process of eval-
uating students’ knowledge, skills, and abilities to find 
better ways to refine teaching and learning. In practice, 
however, educational environments have been shown to 
vary across schools, classes, and course delivery modes 
(e.g., emergency remote context due to the COVID-19), 
making it difficult to create assessments that incorporate 
the nuances of instructional content in the test items (Jiao 
& Lissitz, 2020). Furthermore, an educational assessment 
that does not consider the needs of diverse student groups 
provides educators and administrators with limited feed-
back on their educational design decisions. That is to say, 
the context-aware assessment is necessary to evaluate and 
predict students’ learning outcomes more accurately and 
figure out strategies to refine and advance educational 
practices. Examples of contextual information that can 
be considered in the assessment include students’ demo-
graphic characteristics (e.g., gender, age, and primary lan-
guage), their prior knowledge level (e.g., previous courses 
taken), and components of the test design (e.g., item for-
mat and cognitive domains) they interact with.

In that regard, large-scale assessments of student 
learning (e.g., Trends in International Mathematics and 
Science Study, the Programme for International Student 
Assessment) have been considered to provide a window 
to the domain-specific knowledge and generate informa-
tion about students’ achievements in relation to some of 
the correlates of learning, such as student background, 
attitude, and perceptions, and perhaps school and home 
characteristics (Anderson et al., 2007). While the primary 
source of data for the student assessments is the infor-
mation obtained from student responses to a set of test 
items, a rich source of data that is often neglected when 
analyzing the assessment data is the variety of background 
information related to test-takers, test designs, educators, 
and schools. Utilizing such information in addition to the 
student responses on a test helps to understand and pre-
dict students’ performance outcomes in the educational 
assessment and hence to optimize teaching and learning 
strategies in educational practices.

To obtain more accurate and robust feedback infor-
mation from the students’ assessment outcomes and to 
communicate it to students, educational researchers and 
practitioners must critically reflect on whether the exist-
ing methods of data analytics are capable of retrieving 
the information provided in the database. This study pays 
attention to both theory-based and data-driven meth-
ods to investigate the prediction performance: one is an 
item response theory (IRT) method, and the others are 
machine learning (ML) methods. IRT is a theory-based 

psychometric approach to analyze categorical item 
response data typically obtained from educational assess-
ments. In basic IRT models, such as the Rasch model, the 
probability of a correct response is modeled as a nonlin-
ear function of students’ latent abilities and items’ dif-
ficulty parameters. In the realm of IRT, explanatory item 
response models (EIRM; De Boeck & Wilson, 2004) aim 
to explain and predict the parameters at either the stu-
dent side, the item side, or both sides of the item response 
data, by incorporating student- and item-related properties 
or features (i.e., background information) as explanatory 
variables in the statistical model. Although the EIRM was 
originally developed to enhance explanatory inferences 
from the data, it can be used for predictive purposes in 
that explanation and prediction are inherently conflated 
in a statistical model (Shmueli, 2010). For instance, an 
extended version of the EIRM was used to predict dichoto-
mous and/or polytomous item difficulties for the newly 
developed items (e.g., Kim & Wilson, 2020). Also, in the 
e-learning assessment, the EIRM was used to alleviate the 
cold-start problem in prediction that occurs when a new 
student joins an adaptive e-learning environment that aims 
to meet the student’s learning needs through adaptive item 
selection (e.g., Park et al., 2019). Using the EIRM with 
background information, the parameters of item difficulties 
and/or students’ latent abilities are predicted and thereby 
the categorical item responses are predicted based on the 
probability determined from the parameter estimates. Pro-
vided that the item responses are dichotomous, the pre-
dicted values are equal to 1 (correct answer) or 0 (incorrect 
answer), which implies that the EIRM can do classification 
to predict a binary class of the item responses.

ML is a modern data-driven approach to develop compu-
tationally efficient and accurate predictive algorithms (Shm-
ueli, 2010). Regarding the item response prediction, there 
has been a substantial increase in exploring the potential of 
ML methods. Among the ML families, supervised learning 
(Horvitz & Mulligan, 2015) uses an available data set in 
order to obtain a model where the corresponding learning 
process is referred to as training. In the context of educa-
tional assessment, the training set includes the data gen-
erated through learner–item interactions that are described 
by students (e.g., gender) and items (e.g., item difficulty); 
and the labels refer to the student–item interaction. Using 
this training data, one can build a function (model) which 
performs target predictions (output variable) for new obser-
vations (i.e., student responses to items unsolved; Witten 
et al., 2011). The most common prediction tasks include 
classification (predicting categorical values) and regression 
(predicting numerical values) for the new observations.

Previously, several studies have applied ML methods to 
the contexts of educational assessment and most of them 
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employed the effective ML methods to develop predictive 
models for students’ performance outcomes, mostly binary 
item responses. These models are often trained over stu-
dent- and/or item-related background information (or fea-
tures). The task is often to perform student grades or drop-
out predictions. For example, Kotsiantis (2012) showed that 
a decision-support system can be built to predict students’ 
performance outcomes. More specifically, the system was 
trained on students’ demographic information and marks in 
written assignments, addressing student grade prediction as 
a regression problem. In addition, in the study by Rovira 
et al. (2017), ML was employed for students’ grades and 
dropout intention prediction. The authors proposed a per-
sonalized course recommendation model based on the data 
from computer science, law, and mathematics courses and 
investigated course preferences as well as course complete-
ness ratios using decision tree learning (Hsia et al., 2008). 
Lykourentzou et al. (2009) proposed a dropout prediction 
method for e-learning courses using a combination of mul-
tiple ML techniques.

Furthermore, recent studies have attempted to create 
methodological connections between IRT and ML methods. 
For example, Bergner et al. (2012) derived that (multidi-
mensional) IRT models can be viewed as a specific instance 
of collaborative filtering algorithms. Pliakos et al. (2019) 
proposed a hybrid approach that combines person ability 
and item difficulty estimates from IRT into ML methods 
using student- and item-related information to improve the 
accuracy of item response prediction. Gonzalez (2020) com-
pared IRT and ML approaches for diagnostic assessment 
as well as individual classification and concluded that ML 
methods using logistic regression and random forest could 
have comparable classification accuracy to the psychometric 
methods using estimated IRT scores.

Despite the increasing number of studies in the topic, 
to our knowledge, there are relatively few studies that have 
compared and contrasted IRT and ML methods considering 
student- and item-related background information to predict 
student outcomes for educational assessments. Furthermore, 
little is known about prediction performance of both meth-
ods to examine potential prediction scenarios in educational 
assessments. Given that predicting student outcomes in a 
test is forecasting unrealized or missing item responses, one 
may be interested in predicting (a) unrealized responses of 
new students to existing items where there are no historical 
data about their performance (new student cold-start); (b) 
unrealized responses of existing students to new items that 
haven’t been attempted by anyone in the assessment system 
(new item cold-start); and (c) missing responses of existing 
students to the items that already exist in the system.

In this paper, we approach these prediction scenarios 
using a range of supervised learning methods—decision tree 
learning, similarity-based methods, tree-ensemble learning, 

statistical classifier, and neural networks—as well as an 
EIRM to predict a binary class (correct or incorrect) of stu-
dents’ responses to item-based assessments. Each prediction 
method is evaluated through cross-validation approaches 
under the three (above-mentioned) prediction scenarios. In a 
simulation study, we further examine factors that affect their 
prediction performance in various data conditions. Next, we 
demonstrate their application by means of two educational 
assessment datasets in real-life settings. We end with conclu-
sions and a discussion.

Prediction methods

Item response theory (IRT) method

As explanatory IRT (EIRT) modeling, the EIRM enables 
explanatory and predictive inferences from assessment data 
by incorporating student- and/or item-related background 
information (i.e., features or properties) as explanatory 
variables in the statistical model. Compared to descriptive 
IRT models such as a Rasch model which simply describes 
(differences in) student abilities and item difficulties, the 
EIRM approach implies the use of person explanatory, item 
explanatory, and doubly explanatory IRT models (De Boeck 
& Wilson, 2004), which can explain differences at the stu-
dent side, item side, and both sides of the item response data, 
respectively. Once the effects of the explanatory variables 
are estimated from the assessment data through a relevant 
EIRM, one can use the estimates to predict person param-
eters (student latent abilities or proficiencies) and/or item 
parameters (item difficulties). These predicted parameters 
can be used in turn to compute the item response probabili-
ties from which derive students’ assessment outcomes via a 
stochastic process, and also the categorical item responses 
are predicted from the computed probabilities inversely.

Given the dichotomous (binary) item responses in the 
real-life assessment data examples and the three predic-
tion scenarios we have considered, we focus on a doubly 
explanatory dichotomous IRT model (see De Boeck & Wil-
son, 2004). In addition to random person effects, the model 
includes random item effects, taking into account that in 
practice there is typically no perfect explanation/prediction 
of students’ abilities and items’ difficulties based on observ-
able background information (De Boeck, 2008). This model 
is regarded as a crossed random effects model, namely cross-
classification multilevel logistic model (Van den Noortgate 
et al., 2003). Because item responses (i.e., first-level obser-
vations) are nested in each of both persons and items (i.e., 
second-level units) but these two are not nested within each 
other, allowing for random effects on both parameters in the 
model makes them crossed; the two random effects on per-
sons and items from the item responses are cross-classified.
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Thus, this extended doubly explanatory dichotomous IRT 
model is a latent regression linear logistic test model with 
random item errors, which can predict both student profi-
ciencies and/or item difficulties and predict in turn student 
outcomes by employing student- and/or item-related infor-
mation. This model will be hereafter referred to as the EIRM 
or the EIRT, for the purpose of calling it simply in this paper. 
A mathematical expression of the EIRM we used as an IRT 
method here is formulated as follows:

where ypi is the dichotomous item response of student p 
(p = 1, …, P) on item i (i = 1, …, I), α0 is the overall intercept 
representing the overall logit of the probability of a correct 
response over students and items (when all background 
information variables are equal to zero), ωj is the regression 
weight or the effect of student-related background informa-
tion variable j on student proficiencies, zpj is the value of 
student p on student-related background information varia-
ble j (j = 1, …, J), ϵp is a random noise/error or residual on 
student proficiencies, �p ∼ N

(

0, �2
p

)

 , γk is the regression 
weight or the effect of item-related background information 
variable k on item difficulties, xik is the value of item-related 
background information variable k (k = 1, …, K) for item i, 
and ϵi is an random noisy/error on item difficulties, 
�i ∼ N

(

0, �2

i

)

 . We used the R package, “lme4” (Bates et al., 
2014) to fit the EIRM to simulated data and two real-life 
assessment datasets.

Machine learning (ML) methods

In the machine learning set-up, we treated item- and stu-
dent-related background information as input and the student 
response y as the binary output to be predicted. In this study, 
we explored a variety of ML algorithms that are extensively 

(1)

ln
P
(

ypi = 1
)

P
(

ypi = 0
) = Logit P

(

ypi = 1
)

= �0 +

(

∑J

j=1
�jzpj + �p

)

−

(

∑K

k=1
�kxik + �i

)

,

employed for classification tasks (See Table 1 below). We 
chose the following algorithms not only because of their 
popularity but also with the aim to provide a diverse enough 
comparison pool of different ML methods. These methods 
are well established in the field of machine learning, repre-
senting prominent families of ML models, such as neural 
networks, decision tree learning, tree-ensemble learning, 
similarity-based methods, and statistical methods. It is worth 
noting that because of the “no free lunch” theorem (Wolp-
ert & Macready, 1997), we cannot know in advance which 
algorithm will perform best on a given set of data, and we 
are therefore encouraged testing multiple models.

The first method we considered is decision tree learn-
ing (DT; Breiman et al., 2017; Quinlan, 1986). Here, the 
learning process was achieved by building a decision tree, 
a flowchart-like structure composed of nodes and edges 
which connect them, as shown in Fig. 1. The initial node 
is called root node and it contains all the training samples, 
here students and items. From the root of the tree, every 
node is recursively split based on a splitting criterion until 
final nodes (leaves, without an output edge) are reached. The 
labels corresponding to samples within each leaf are then 
used to determine the predicted label for (future) samples 
that end up in the same leaf at the end of the partitioning 
procedure. The most common labeling procedure follows a 
majority rule approach: the most common label of the leaf is 
used to predict labels for new samples within the same leaf.

DTs are popular due to their scalability and interpretabil-
ity advantages. However, they often suffer from instability 
in their predictions and from overfitting. Although decision 
trees are considered relatively weak classifiers, when com-
bined with ensemble learning they can provide state of the 
art results (Fernández-Delgado et al., 2014). These ensem-
ble methods build many decision trees and the responses 
from such trees are combined to get the final output of the 
model. The trees therefore contribute all to the final pre-
diction for a new sample according to rules determined by 
the ensemble method. In this study, we decided to include 

Table 1  Presentation of the tuned parameters related to each method

Method family Method Hyperparameters

Item response theory Explanatory item response model (EIRM) Not applicable
Decision tree learning Decision tree (DT) Minimum samples per leaf {5,25,50,75,100}
Tree ensemble learning Random forest (RF) Min samples per leaf {1, 2, 5}, # trees: 200
Tree ensemble learning Gradient boosting (GB) Max tree depth {3, 6}; learning rate {0.001, 0.01, 0.1}; number of esti-

mators {100, 200}
Similarity-based method k-Nearest neighbors (k-NN) Number of neighbors {5,10,25,50,75,100}
Statistical classifier Quadratic discriminant analysis (QDA) Not applicable
Neural Network Multi layer perceptron (MLP) classifier # hidden layers {2, 3}, neurons per layer {10, 20, 25, 40, 50}; learning 

parameter α (L2 regularization term) {0.00001, 0.0001, 0.001, 0.01, 
0.1}
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two tree-ensemble methods: Random Forest (RF; Breiman, 
2001) and Gradient Boosting (GB; Chen & Guestrin, 2016; 
Friedman, 2001).

An important characteristic of the RF method is the diver-
sity that is enforced among the trees. This is obtained by using 
bootstrap replicates of the training set and random selection of 
the features (or background information) describing the samples. 
More specifically, each decision tree of the ensemble is con-
structed on a random subset of the training set. Moreover, every 
node of that tree is split by computing the best possible split 
among a random subset of selected feature candidates, leading 
to further diversification. The final prediction is yielded as the 
average of the predictions of individual trees. Tree-based learn-
ing has many advantages, such as scalability and computational 
efficiency. GB is another ensemble model based on trees. In this 
method, trees are built in succession: the first tree represents an 
initial coarse fit and every subsequent tree represents a fit of the 
prediction error made until the previous step. The procedure 
continues until a large number of trees is built, and the final 
prediction of the model is a (weighted) sum of the single-tree 
predictions. Gradient boosting trees and especially a variant 
denoted as eXtreme Gradient Boosting (XGBoost), are widely 
utilized and respected by the ML community1.

Apart from the tree-ensembles methods, we take into con-
sideration additional widespread classification algorithms. 
The k-nearest neighbors’ classifier (k-NN; Altman, 1992) 
classifies new samples based on the most common class 
among their k nearest neighbors in the input (features or 
background information) space. Similarity is computed upon 
the values of the input features, such as student-related fea-
tures (age, primary language) and item-related features (type 
of task, vocabulary). As a consequence, samples deemed to 
be similar are labeled as part of the same class.

Another widespread classification algorithm is the 
quadratic discriminant analysis (QDA; Tharwat, 2016). 
This statistical classification technique considers a set of 
observations and groups them in classes with the same out-
come following a quadratic decision surface. For each new 
observation, the QDA method calculates the probability of 
belonging to each class and assigns the label to the class 
with the highest probability. That is, assuming we are in a 
case where sample labels yi either have the value “0” or “1”, 
QDA assigns observations to the class “1” if:

and to the class “0” otherwise.
Finally, we considered one algorithm from the (Deep) 

Neural Network family. In particular, we employed the 
multi-layer perceptron (MLP; Hastie et al., 2009; Van Der 
Malsburg, 1986) classifier, as illustrated in Fig. 2, a feed-
forward neural network with many possible configurations 
in its architecture (number of neurons, number of layers) 
and signal propagation (activation function, backpropa-
gation) that can be chosen or tuned. In our example, we 
provide student- and item-related background information 
to the input layer, and the output layer predicts the prob-
ability of being part of class “0” or class “1”. We opted 
for a network with a rectified linear unit (RELU) activa-
tion function and a stochastic gradient-based algorithm for 
weight optimization called “Adam” (Kingma & Ba, 2017).

Comparison procedure

Prediction scenarios

The overarching goal of this paper is to investigate the per-
formance of IRT and ML methods in predicting a binary 
(correct or incorrect) class of students’ item responses 
on the educational assessments. A total of seven predic-
tion methods were compared through a simulation study 
(Sect. 4) and two real-life data examples obtained from 
university- and national- level summative assessments 
(Sect. 5). In the item response data from the educational 
assessments, unobserved response values are supposed to 
be predicted. The unobserved responses in the data are 
either unrealized or missing in the assessment system. 
Since responses of new students to new items have noth-
ing to do with the assessment system, three prediction 
scenarios are considered for each item response dataset, 
as described in the three panels of Fig. 3:

• Predicting new students’  (Pnew) unrealized responses for 
existing items (I), we refer to this set-up as (new) student 
scenario from now on, illustrated in the left panel;

P
(

yi =
ε1ε

)

≥ 0.5

Fig. 1  A simple illustration example of a decision tree

1 “XGBoost – ML winning solutions (incomplete list)” in https:// 
github. com/ dmlc/ xgboo st/ tree/ master/ demo# machi ne- learn ing- chall 
enge- winni ng- solut ions

https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
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• Predicting existing students’ (P) unrealized responses for 
new items  (Inew), the (new) item scenario, illustrated in 
the central panel;

• Predicting existing students’ (P) missing responses for 
existing items (I), student–item pair scenario, illustrated 
in the right panel.

With regard to the ML methods, we addressed the data 
settings above as single-output (univariate) classification 
tasks. In order to achieve this, we constructed the data 
matrix as the Cartesian product of student and item sam-
ples. Each sample in our task is therefore a pair of a student 
(P) and an item (I). The data matrix is composed of |P| x |I| 
pair-samples and each pair is described by a concatenation 
of student-related and item-related background information. 
The construction of the data matrix is illustrated in Fig. 4.

Evaluation metrics

We considered three evaluation criteria including area under 
receiver operating characteristic (AUROC) curve, area under 
precision recall (AUPR) curve, and mean squared error (MSE). 
Note that the ROC curve represents the ratio between true-
positive (TP) rate, 

(

TP

TP+FN

)

and false-positive (FP) rate, 
(

FP

FP+TN

)

 at various probability thresholds, where FN and TN 
indicate the number of false negatives and true negatives, 
respectively. The precision recall curve is defined as the preci-
sion, 

(

TP

TP+FP

)

 against the recall, 
(

TP

TP+FN

)

 , again for various 
thresholds. In case of totally random predictions the AUROC 
value is approximately equal to 0.5 and AUPR is equal to the 
frequency of the positive class. For both measures, 1 is the 
value achievable by a model with perfect predictions. In 

Fig. 2  A schematic illustration of a multi-layer perceptron with input, hidden and output layers

Fig. 3  Illustrations of the three prediction scenarios
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addition, the MSE is defined as MSE
(

ypi, ŷpi
)

= E
(

ypi − ŷpi
)2 , 

where ypi is the observed response and ŷpi is the predicted one.

Experimental protocol

We validated the performance of the prediction methods in a 
nested k-fold cross validation (CV) procedure with five inner 
folds for parameter tuning and ten outer folds for performance 
evaluation. This nested CV, albeit computationally expensive, 
is a good practice to avoid optimistic estimation of model per-
formance and therefore reduce selection bias (Cawley & Tal-
bot, 2010). We performed parameter tuning with grid search 
to increase performance of the algorithms; more details about 
the corresponding parameters and their tested values are found 
in Table 1.

Lastly, in order to test for statistically significant differences 
among all the methods, we followed the procedure suggested 
by Demšar (2006). In particular, we conducted a Friedman test 
(Friedman, 1940), based on the average ranks of each method's 
performance across 4 datasets × 3 prediction scenarios. If the 
omnibus test shows that there was a statistically significant dif-
ference at significance level .05 among the competing methods 
(p ≤ .05), we further conducted a Nemenyi test (Nemenyi, 
1963) for a post hoc comparison. The post hoc test computes 
a “Critical Difference” (CD; Demšar, 2006), also referred to 
as Critical Distance, threshold for a given significance level 
(again, a significance level of .05 was used), and if the dif-
ference between the average ranks of two methods is greater 
than the CD, the performance of the two is concluded to be 
statistically significantly different.

Simulation study

Design

To examine how predictive capability of the EIRM and 
ML methods are affected by different aspects of the 

assessment data, we conducted a cross-validation with 
simulated datasets. Table 2 shows four simulated data-
sets differentiated by the specific conditions of data size 
and degree of noise. To generate student p’s response to 
item i, we used an EIRM; specifically, the student ability 
parameter (ϵpm) was generated to have multidimensionality 
(while the EIRM assumes unidimensionality for analyzing 
the data):

• Student component. For student fixed effects, each 
dataset has J = 15 student-related variables, zpj (j = 
1, …, J); and the corresponding coefficients ωj were 
randomly sampled from independent univariate normal 
distributions, N(0.2, 1). The intercept, α0 was set at 1.2. 
For student random effects, true values for student p 
in M-dimensional ability space, ϵp= (ϵp1, …, ϵpM)′ is a 
vector of M student-specific deviations that were ran-
domly sampled from MVN(μ, Σ), where μ = (0, …, 0)′ 
and ρmm′= 0.3 (m ≠ m′). And qi= (qi1, …, qiM)′ is a vector 
of M coefficients for item i that specify the relations 
between the item and each individual ability; each of 
them was randomly sampled from Bernoulli (.5).

• Item component. For item effects, each dataset has 
K=10 item-related variables, xik (k = 1, …, K); and the 
corresponding fixed coefficients γk were randomly sam-
pled from N(0.5, 1). For random item effects, true values 
for item i, ϵi were randomly drawn from N(0.5, 1).

Based on the data-generation scheme, we want to 
examine the effects of three factors on their prediction 
accuracy and consistency, including (a) data size, (b) 
degree of noise in the student- and item-related vari-
ables. More specifically, we are interested in observing 
the effects caused by a reduction of the data size as well 

(4)
Logit P

(

Ypi = 1
)

= �0 +

∑J

j=1
�jzpj + q

�

i
�p −

(

∑K

k=1
�kxik + �i

)

Fig. 4  An illustration of the data matrix construction for the ML methods
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as the effects of an increase of the degree of noise. For 
this purpose:

• Data size. To examine the extent to which the prediction 
methods are affected by the shortage of data for training, 
we consider two types of data sizes in large-scale educa-
tional assessments: a typical (normal) size (1000 students 
– 100 items) and a small size (100 students – ten items). 
In comparing the two data sizes, we look at the two data-
sets with random noise level set at a low level (10%); and 
dimensionality in student ability set at a moderate level, 
so M = 9.

• Noise. To examine the extent to which the prediction 
methods are affected by the different level of noise for 
training, we considered three levels of noise: 10% (low), 
30% (moderate), and 60% (high). We define noise by the 
percentage of the random effect variance (ϵpm) compared 
to the total variance in the student component for each 
dimension, 

�

∑J

j=1
�jzpj + �pm

�

 , indicating the portion that 
is not explained by the set of student-related variables. 
The number of student-related variables was fixed at 15; 
similarly, the number of item-related background infor-
mation variables was fixed at 10 as generally there is 
more information about students as compared to items.

Because the data-generation was carried out using the 
EIRM, one can expect that the EIRM may be more beneficial 
when comparing the performance of different prediction meth-
ods among IRT and ML approaches. To alleviate such poten-
tial problems, the student ability parameters were assumed to 
be multidimensional in the data generation process, whereas a 
unidimensional EIRM model was used in the analysis.

Results

Figures 5, 6 and 7 visualize results of response prediction 
of the seven prediction methods (one IRT and six ML meth-
ods) across the simulated datasets. Each figure includes three 

panels for the experimental scenarios introduced in Sect. 3.1: 
new student scenario (top), new item scenario (middle), and 
student–item pair scenario (bottom). Each figure consists 
of a set of bar charts for the performance metrics− AUPR 
(Fig. 5), AUROC (Fig. 6), and MSE (Fig. 7) (on the y-axis) 
for a combination of different competing methods and the 
simulation conditions (on the x-axis). Note that greater val-
ues of AUPR and AUROC and smaller values in MSE indi-
cate better performance (i.e., predictive capability).

In general, we found that the prediction accuracy differs 
by the three prediction scenarios. Specifically, the best over-
all performance is seen under the new student–item pair sce-
nario across methods (on average, AUPR = .861; AUROC 
= .9; MSE = 0.143), followed by the new item scenario (on 
average, AUPR = .827; AUROC = .872; MSE = 0.169) 
and the new student scenarios (on average, AUPR = .782; 
AUROC = .840; MSE = 0.185). Also, we found that EIRM 
shows the highest AUPR and AUROC and the lowest MSE 
across datasets (on average, AUPR = .886; AUROC = .918; 
MSE = 0.137). Among the ML methods, GB (on average, 
AUPR = .832; AUROC = .880; MSE = 0.157) and RF (on 
average, AUPR = .829; AUROC = .878; MSE = 0.158) 
show the best performance followed by MLP. The DT and 
QDA yield the worst performance.

A comparison of the small- and typical-sized datasets 
(with 10% noise and nine dimensions) suggests that per-
formance of any method gets worse for small-sized data-
set as compared to typical -sized dataset. In particular, DT 
seems to be vulnerable to the small-sized dataset with AUPR 
values less than or equal to .8 in the new student and item 
scenarios.

For the effect of random noise on performance, results 
highlight that the prediction accuracy drops with increasing 
levels of random noise. We observed a minimal difference 
between the setups with 30% noise compared to the ones 
with 10% noise and the difference increased when increas-
ing the noise parameter to 60%. We also found that with a 
60% noise level for new student scenario that reveals overall 
the lowest accuracy, EIRM still has AUPR values greater 
than .75, while the values are less than .70 for all MLs in 
the scenario; it suggests that the performance of the ML 
methods is more affected by the increasing random noise 
(weaker explanatory power of the student- and item-related 
background information) than EIRM, implying the robust-
ness of EIRM.

The results of the statistical analysis are summarized 
in Fig. 8, where the test results in regard of AUROCs are 
visualized using the R package “scmamp” (Calvo & San-
tafé Rodrigo, 2016). In the figure, the average ranks of the 
methods are indicated by vertical lines (e.g., the average 
rank of EIRM is 1); in addition, the methods that are not 
statistically significantly different are connected by thicker 
horizontal segments. We found that EIRM was the best 

Table 2  Summary of the four simulated datasets

In each dataset, tenfold CV for three prediction scenarios (new stu-
dents, new items, and student–item pair scenarios) were conducted

Dataset description Data size Complexity

Small, 10% Small
(100 students–10 items)

Noise: 10%

Normal, 10% Typical (Normal)
(1000 students–100 items)Normal, 30% Noise: 30%

Normal, 60% Noise: 60%
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Fig. 5  Summary of simulation study: AUPR



2118 Behavior Research Methods (2023) 55:2109–2124

1 3

Fig. 6  Summary of simulation study: AUROC
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performing method in terms of the robustness and accuracy 
(ranked first), but it is not statistically significantly different 
from GB and RF. It is also confirmed that RF and MLP lied 

somewhere in the middle of the performance spectrum (with 
RF outperforming MLP, although not significantly). On the 
lower end, QDA and DT are grouped together with KNN, 

Fig. 7  Summary of simulation study: MSE
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with QDA and DT showing the worst performance overall. 
Note that results of the test based on AUPRs and MSEs 
shows the same conclusion (see Appendix).

Real‑life assessment data examples

Although the purpose of the simulation study was helpful 
to examine the effect of different aspects of assessments, 
we acknowledge that the data generation procedure was still 
constrained by the IRT framework. In this section, we con-
duct additional experiments based on real-life settings: we 
employed two educational assessment datasets in university- 
and national-settings. Same as the simulation study, in each 
dataset, we conducted a tenfold cross-validation study for 
three prediction scenarios.

Statistical knowledge assessment data

A first dataset comes from a test from the final grade of the 
general track of secondary education in Belgium, evaluating 
a statistical knowledge domain. The dataset consists of the 
responses of n = 2044 students (S) that were assessed on 20 
items (I). The students’ responses to the items were recorded 
as dichotomous variables. Specifically, Yip = 1 if the student 
p has responded to the item i correctly; Yip = 0, otherwise. 
A set of 22 student-related variables for student properties 
including status of dyslexia, dyscalculia, AD(H)D, ASS, 
another language problem, school type, resident area, and so 
on were incorporated in each method. Similarly, a total of six 
item-related variables for item properties including question 
type, attainment target, and so on were incorporated in each 
method. The categorical variables among those were dummy 
coded using the preprocessing module of the Scikit-learn 
library (Pedregosa et al., 2011) v. 0.23.1 in Python 3.7.7. 
Additionally, we used Python to impute the few missing 

values with MICE (van Buuren & Groothuis-Oudshoorn, 
2011) through the IterativeImputer module in Scikit-learn.

National assessment of French data

The national assessment of French data (Denis et  al., 
2018) consists of the responses of n = 1950 students (S) 
assessed on 22 French listening items (I) administered in 
primary schools of Flemish region of Belgium. The stu-
dents’ responses to the items were recorded as dichotomous 
variables. Specifically, Yip = 1 if the student p has responded 
to the item i correctly and Yip = 0, otherwise. In addition, 
data from 33 student-related variables were used, including 
the status of primary language type, dyslexia, dyscalculia, 
AD(H)D, ASS, another language problem, school type, and 
so on. Also, 15 item-related variables were used, including 
attainment type, type of task, visual support, and vocabu-
lary. Similar to the first data example, there are no missing 
values in the item response data, nor in the item properties 
data. However, there were missing values in the student; the 
students with missing values in a majority of the background 
information were dropped, resulting in a new total of n = 
1918 students. The remaining missing values in the student 
properties data were imputed through MICE after a one-hot 
encoding was applied to the categorical variables.

Results

Table 3 summarizes results of the tenfold CV from the two 
datasets, including mean values of AUPR, AUROC, and 
MSE averaged over the ten outer folds and the corresponding 
SD values (in brackets). For the first dataset, we found that 
the two tree-ensemble methods i.e., GB and RF perform the 
best in all three prediction scenarios; EIRM performed well 
in the next place. On the other hand, in the second dataset, 

Fig. 8  Results of post hoc tests after Friedman test (AUROC)
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EIRM performed the best in all setting, followed by GB, RF, 
or MLP in the next places. In other words, the performance 
ranks were very similar to our simulation results. In both 
datasets, QDA had the poorest performance.

Among the three prediction scenarios, the best overall 
performance is seen under the student–item pair scenario as 
in the simulation result. However, in these real-life assess-
ments, we found that performance on new item scenario 
is generally poorer than the new student scenario; and the 
performance was noticeably worse for DT. Considering that 
there were 6 item-related variables for the first dataset but 
relatively a greater number of variables in the second dataset 
(i.e., 15 item-related variables), we found that factors that 
make the learning task less efficient are both of quantity and 
quality of the related variables in the training sets.

Conclusion and discussion

The overarching goal of this paper is to examine IRT and 
ML methods to be able to find ways to obtain more personal-
ized information about student learning. We evaluated the 
prediction performance in terms of the robustness and accu-
racy of an EIRM and a range of supervised ML algorithms in 

the simulated and real-life educational assessment data sets. 
We found that using student- and item-related background 
information (explanatory variables) in addition to the student 
outcome data, we obtain good prediction performance for 
the cold-start problems, also in situations where no historical 
data is available for a new student or item. Among the fac-
tors that we considered in the simulation, we found that the 
explanatory power of student- and item-related background 
information in accounting for variations in student ability 
and item difficulty has the most impact on the prediction 
accuracy in any prediction scenario. Therefore, the study 
recommends that educational researchers and practition-
ers do not neglect richness of such contextual information 
about the students and test items when the goal is to predict 
learning outcomes. What is proposed in this study would 
be helpful to provide education policy makers and teachers 
with more accurate group-based statistics capitalizing on 
rich data in large-scale assessments (e.g., PISA or TIMSS) 
when the goal is to fine-tune the strategies for building effec-
tive teaching and learning environments.

Among the seven prediction methods we used, the simu-
lation study showed that the (unidimensional) EIRM outper-
formed ML methods in a consistent manner across condi-
tions; the EIRM is more accurate and robust on the whole. 

Table 3  Average AUROC, AUPR, and MSE results from the two datasets

Best values are indicated in bold and standard deviations in parenthesis

Real data 1 Real data 2

AUROC AUPR MSE AUROC AUPR MSE

EIRM 0.709 (.007) 0.737 (.015) 0.215 (.003) 0.750 (.009) 0.854 (.010) 0.182 (.005)
RF 0.723 (.009) 0.752 (.016) 0.210 (.003) 0.726 (.009) 0.835 (.011) 0.188 (.004)
GB 0.725 (.008) 0.757 (.014) 0.210 (.003) 0.725 (.008) 0.838 (.010) 0.189 (.005)

New DT 0.704 (.010) 0.733 (.017) 0.217 (.004) 0.700 (.005) 0.813 (.012) 0.197 (.004)
student k-NN 0.687 (.009) 0.711 (.013) 0.222 (.003) 0.668 (.011) 0.794 (.012) 0.202 (.005)
scenario QDA 0.669 (.014) 0.699(.022) 0.256 (.009) 0.666 (.018) 0.797 (.018) 0.351(.038)

MLP 0.698 (.012) 0.722 (.021) 0.219 (.005) 0.711 (.010) 0.820 (.017) 0.195 (.006)
EIRM 0.691 (.056) 0.719 (.093) 0.232 (.033) 0.702 (.054) 0.825 (.075) 0.226 (.061)
RF 0.713 (.052) 0.745 (.075) 0.212 (.020) 0.653 (.061) 0.784 (.106) 0.225 (.059)
GB 0.713 (.047) 0.741 (.082) 0.212 (.021) 0.656 (.055) 0.791 (.096) 0.230 (.060)

New item DT 0.662 (.045) 0.694 (.088) 0.227 (.021) 0.587 (.050) 0.734 (.112) 0.247 (.070)
scenario k-NN 0.686 (.048) 0.712 (.079) 0.224 (.017) 0.652 (.027) 0.775 (.101) 0.216 (.047)

QDA 0.608 (.074) 0.646 (.083) 0.298 (.060) 0.545 (.097) 0.722 (.124) 0.432 (.123)
MLP 0.664 (.051) 0.694 (.105) 0.228 (.031) 0.656 (.050) 0.790 (.095) 0.223 (.058)
EIRM 0.750 (.004) 0.780 (.005) 0.201 (.002) 0.777 (.006) 0.873 (.005) 0.173 (.002)

 Student–item pair RF 0.752 (.005) 0.784 (.005) 0.200 (.002) 0.730 (.009) 0.841 (.006) 0.187 (.002)
scenario GB 0.752 (.004) 0.783 (.004) 0.200 (.002) 0.748 (.008) 0.854 (.007) 0.182 (.002)

DT 0.712 (.004) 0.746 (.004) 0.214 (.001) 0.701 (.009) 0.815 (.009) 0.196 (.003)
k-NN 0.717 (.005) 0.744 (.006) 0.212 (.002) 0.697 (.009) 0.817 (.006) 0.197 (.002)
QDA 0.678 (.009) 0.706 (.006) 0.252 (.005) 0.678 (.011) 0.802 (.007) 0.326 (.020)
MLP 0.725 (.005) 0.756 (.004) 0.210 (.002) 0.734 (.009) 0.843 (.006) 0.187 (.003)
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Because the data-generation was carried out by the EIRM 
(while the student ability parameters was assumed to be mul-
tidimensional), however, it must have given the (unidimen-
sional) EIRM a certain level of advantage over the ML mod-
els. Even so, it is noteworthy that the strictly “theory-based” 
EIRM method is also highly competitive, compared to the 
data-driven ML methods, in solving prediction tasks for the 
real-life settings of educational assessments. On the other 
hand, it is also worth noting that some of the ML methods, 
GB, RF, and MLP, performed as accurately as the EIRM, 
when the educational assessment data possess properties of 
IRT. Among the three highly performing ML methods, MLP 
showed inferior performance to the two tree-ensemble meth-
ods. The relatively small number of background informa-
tion describing the samples (students and items) may explain 
this phenomenon. Modern deep neural network approaches, 
albeit effective in general, often fail to meet the related high 
expectations when it comes to small background information 
sets (low dimensional feature spaces).

After completing the study, and in view of its limita-
tions, future research with the following methodological 
challenges would be beneficial. First, regarding the score-
point scales, our study focuses on data with dichotomous 
item responses. We acknowledge that current data we used 
in our real-life example had a relatively small number 
of items even compared with other national assessment 
data. As educational assessments (e.g., TIMSS, PISA) 
nowadays tend to have more of the constructed-response 
questions to measure complex problem-solving skills, 
score-point scales that one assessment data has are likely 
to be more complex e.g., a combination of dichotomous 
and polytomous responses. In such cases, it is possible 
that performance of the ML methods as well as the EIRM 
could provide an additional perspective on our comparison 
study. Second, the study can be extended to assessment 
data from an e-learning environment. In this case, because 
students have more freedom to access the environment and 
the students’ background may be more diverse, the student 
cold-start problems should be addressed carefully (e.g., 
Park et al., 2019). Third, given the excellent performance 
of EIRM on the one hand and GB or RF on the other 
hand, it would be interesting to investigate whether their 
performance can be further boosted by combining them 
in a hybrid model. Finally, considering more advanced 
machine learning methods that were specifically designed 
to learn from interaction data would be interesting. For 
example, Bi-clustering trees (Pliakos et al., 2018) as well 
as bi-clustering tree-ensembles (Pliakos & Vens, 2019) 
are extensions of typical tree-based learning models to 
the interaction data setting. In such a setting, one has two 
sets of samples instead of a single one and the output vari-
ables to be predicted, often represented as an interaction 
matrix, define whether two samples interact or not. More 

specifically, in Pliakos et al. (2018) a bi-clustering tree 
that integrated features from both sets of samples into a 
unified learning process was proposed. Next, in Pliakos 
and Vens (2019) this methodology was extended to tree-
ensembles, transferring popular tree-ensemble methods, 
such as random forests, to the setting of interaction pre-
diction. Model-based collaborative filtering (CF; Bergner 
et al., 2012) is a ML-based approach that is also capable 
of estimating parameters for students and items similar to 
IRT approach. In the domain of CF, a Bayesian probabil-
istic matrix factorization (Salakhutdinov & Mnih, 2008) 
seems to be an extensively used technique addressing the 
student- and item-background information to improve rec-
ommendation systems. In addition, (Huang et al., 2020) 
presents a new deep tabular data modeling architecture 
for supervised and semi-supervised learning. It is based 
on self-attention transformers that transform categorical 
features into robust contextual embedding achieving high 
prediction performance even in cases with noisy or miss-
ing data. In the future, such a model could be utilized to 
learn from student as well as item related data in order to 
generate accurate student response predictions.

Appendix

Extra figures with post hot tests after the Friedman test being 
performed on AUPR and MSE are the following:

AUPR plot:

MSE plot:
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