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Abstract
The a priori calculation of statistical power has become common practice in behavioral and social sciences to calculate 
the necessary sample size for detecting an expected effect size with a certain probability (i.e., power). In multi-factorial 
repeated measures ANOVA, these calculations can sometimes be cumbersome, especially for higher-order interactions. For 
designs that only involve factors with two levels each, the paired t test can be used for power calculations, but some pitfalls 
need to be avoided. In this tutorial, we provide practical advice on how to express main and interaction effects in repeated 
measures ANOVA as single difference variables. In particular, we demonstrate how to calculate the effect size Cohen’s d 
of this difference variable either based on means, variances, and covariances of conditions or by transforming �2

p
 or �2

p
 from 

the ANOVA framework into d. With the effect size correctly specified, we then show how to use the t test for sample size 
considerations by means of an empirical example. The relevant R code is provided in an online repository for all example 
calculations covered in this article.
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A priori power calculations play a crucial role in psycho-
logical studies, as they allow researchers to determine the 
required sample size to detect an effect of a particular size 
with a desired probability, under the assumption that this 
effect actually exists (e.g., Cohen, 1988). As such, the utility 
of power analyses has long been known and advocated (e.g., 
Wilkinson & Task Force on Statistical Inference, Ameri-
can Psychological Association, Science Directorate, 1999). 
Yet, the seminal work by Cohen (1962) already revealed that 
most studies in psychology lack the adequate power to detect 
an effect of interest, and this state does not seem to have 

changed much (Maxwell, 2004; Sedlmeier & Gigerenzer, 
1989; Vankov, Bowers, & Munafò, 2014).

Issues of power analyses have received even more atten-
tion in the realm of the often-discussed “replication crisis”, 
that is, the observation that many published results cannot 
be replicated (e.g., Open Science Collaboration, 2015). 
Among other problems with underpowered studies (sum-
marized in, e.g., Brysbaert, 2019; Fraley & Vazire, 2014), 
the probability of replicating a result increases with the 
power of the original study (Ioannidis, 2005). Some funding 
agencies and journals explicitly require authors to include 
power considerations in their submissions, related questions 
are posed by reviewers, and it was even suggested to base 
quality judgments of journals (among other criteria) on the 
(mean) power of the studies published within them (Fraley 
& Vazire, 2014).

Yet, power analyses come with some obstacles once 
going beyond situations where two groups or conditions can 
be compared via t tests, and this seems in particular to be 
true for within-subject designs, where participants provide 
data for more than one condition (and often on multiple tri-
als per condition, as is typical for experiments in cognitive 
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psychology).1 Of course, there exists a wide range of articles 
and books on power analysis (e.g., Cohen, 1988; Keselman 
et al., 1998; Maxwell, Kelley, & Rausch, 2008; Olejnik 
& Algina, 2000; Perugini, Gallucci, & Costantini, 2018; 
Steiger, 2004), as well as software packages like G*Power 
(Faul, Erdfelder, Lang, & Buchner, 2007), Superpower (Lak-
ens & Caldwell, 2021), or pwr (Champely et al., 2020). Still, 
the correct specification of arguments is often unclear and 
this leaves researchers unsure whether their calculations are 
actually valid or not.

In this tutorial, we focus on the power analysis for a cer-
tain use case that often occurs in experimental cognitive 
psychology: Calculating the power for interactions or main 
effects in a repeated-measures analysis of variance (RM-
ANOVA), where each involved factor has only two levels. 
Despite the narrow focus, such designs are very common, 
for instance, in the field of cognitive control from where we 
also draw the example introduced below. Although our main 
motivation for writing this tutorial aims at power calculation 
for interactions, power calculation for main effects follows 
a highly related logic. This tutorial thus provides practical 
advice, software code, and formula to perform the necessary 
calculations for both main and interaction effects.

The focus of this tutorial

According to our experience in methodological consulting, 
there exists uncertainty about whether power calculations 
(for interactions) in within-subject designs can be performed 
with standard software packages such as G*Power (Faul et al., 
2007) or only achieved via simulations. For the special case of 
only two levels on each factor (i.e., a 2 × 2 × 2… design), the 
main and interaction effects can be conceived of as differences 
or “differences of differences”. These effects thus boil down 
to a simple difference variable for which the power analysis 
can then be done in the framework of a paired-samples t test. 
The advantage of this approach is clear: Power calculations for 
the t test are relatively straightforward and solely require the 
specification of an expected effect size in terms of Cohen’s d, 
instead of �2

p
 that is often used in the context of RM-ANOVA. 

Although it has been described in numerous standard texts how 
main and interaction effects can be expressed as differences  

(of differences; e.g., Aiken & West, 1991; Cohen, Cohen, 
West, & Aiken, 2013; Judd, McClelland, & Ryan, 2017; 
Maxwell & Delaney, 2004), we find that researchers rarely 
make use of this fact and the paired-samples t test for power 
calculations. This tutorial provides step-by-step instructions on 
how to express main and interaction effects as a difference (of 
differences) variable and how the effect size of such variables 
can be used to perform a power analysis.

Researchers can generally select one of three strategies to 
derive effect sizes. First, they can formulate a specific expec-
tation about the means and (co)variances of the dependent 
variables in a (multi-)factorial experimental design. Such an 
expectation can be informed by expertise or by a re-analysis 
of (multiple) data sets, for instance, in case one considers 
replicating an experiment or extending previous observa-
tions in a follow-up study. Second, they can have knowledge 
about previously reported effect sizes, for instance, because 
of an available meta-analysis or a review of the relevant lit-
erature. Third, they can rely on conventions prevalent in a 
certain field of research. Most prominently for psychology 
are the suggestions of Cohen (1988). In particular, Cohen 
proposed that the effect-size measures d = 0.2, d = 0.5, and d 
= 0.8 can be considered as small, medium, and large, respec-
tively, and identical labels were assigned to the effect-size 
measures �2

p
= .01 , �2

p
= .06 , and �2

p
= .14 in the context of 

ANOVAs. It is important to note – and this will be elabo-
rated on below – that it is not correct (and not even close to 
correct) to just use the semantic labels and conduct a power 
analysis for a t test with a large effect size d = 0.8 to com-
pute the power for a large interaction effect with �2

p
= .14 . In 

addition, although Cohen’s conventions are frequently used, 
they were meant to be a “last resort” strategy in case there is 
limited knowledge about the expected data pattern or effect 
size (see Correll, Mellinger, McClelland, & Judd, 2020, for a 
recent elaboration on this issue). Interestingly, meta-analyses 
have shown that typical effect sizes in psychological research 
are around d = 0.4, thus smaller as a medium effect accord-
ing to Cohen’s labels (Camerer et al., 2018; Open Science 
Collaboration, 2015; see also Brysbaert, 2019). Further-
more, a study that replicated numerous original studies has 
reported even smaller effect sizes in the order of d = 0.15 
(Klein et al., 2018). These findings align with the work by 
Schäfer and Schwarz (2019), who also found that effects 
from replications of studies were considerably smaller as 
compared to the original studies (see Janczyk et al., 2022, 
as a an example). Thus, we urge researchers to make an 
educated decision regarding the expected effect size when 
performing power analyses.

Strategies 1 and 2 are based on estimates from previ-
ous studies, which then serve to formulate effects at the 
population level. For Strategy 3, an effect size is directly 

1  Schäfer and Schwarz (2019) analyzed studies with and without pre-
registration and compared their sample sizes. For between-subject 
designs, sample sizes were larger for studies with pre-registration. In 
contrast, for studies using within-subject designs, sample sizes were 
smaller for studies with pre-registration. The authors attributed the 
former result to a more sensible use of power analyses. For the lat-
ter (unexpected) result they tentatively suggested that power analyses 
revealed a smaller sample size.
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specified at the population level. Importantly, Strategies 2 
and 3 require converting �2

p
/�̂2

p
 into the effect measure d/d̂  

for a power analysis in the t test framework.2 Of course, the 
various effect size measures can be converted into each other 
(as also implied by the conventions of Cohen), but this is 
(a) not trivial and (b) bears the potential of using the wrong 
transformation formula (i.e., to confuse the transformation 
for within- and between-subject designs). Below we demon-
strate how to determine d for the three strategies and point 
out common pitfalls. We will also include the effect size 
measure �̂2

p
 , which is less common, but often recommended 

due to its smaller bias (e.g., Carroll & Nordholm, 1975; 
Keselman, 1975).3

The tutorial is structured as follows: (1) In the upcoming 
section, we introduce an example for a 2 × 2 × 2 within-subject 
design that we use throughout this article to demonstrate 
calculations. We do not provide an extensive review on power 
analyses for every possible design, but focus on interactions 
and main effects in within-subject designs with two-level 
factors. (2) Afterward, we provide a step-by-step tutorial on 
how to express main and interaction effects in different designs 
as a single difference variable based on the dependent variables 
in a multi-factorial, repeated measures experimental design 
(Strategy 1). We show how to calculate the mean, variance, 
and effect size Cohen’s d for the difference variable using the 
means, variances, and covariances of the dependent variables. 
We explain how the effect size of the difference variable can 
then be used to perform a power analysis for the main and 
interaction effects. (3) In the section thereafter, we describe 
how to correctly convert �2

p
/𝜂̂2
p
 (or �̂2

p
 ) to Cohen’s d/d̂  in order 

to use the t test for power analyses (Strategies 2 and 3). We 
further describe challenges and pitfalls in the calculation and 
highlight that general rules of thumbs should be avoided 
(e.g., a medium �2

p
= .06 does not correspond to a medium 

Cohen’s d = 0.50 in case of within-subject designs). Along 
with the present tutorial, we provide software code in an 
online repository (https://​osf.​io/​87j5m/) and the R package 
powerANOVA (Langenberg, 2022) that comes with a graphical 
user interface and implements the calculations covered in 
this tutorial. The user interface is easy to use and will not be 
explained in this tutorial. Installation instructions can be found 
on the corresponding GitHub page (https://​github.​com/​lange​
nberg/​power​ANOVA).

A motivating example

Conflict tasks are often used in cognitive psychology to 
investigate how human performance is affected by task-
irrelevant stimuli or stimulus features. For example, in the 
Eriksen flanker task (Eriksen & Eriksen, 1974), participants 
respond to a centrally presented target stimulus (e.g., the 
identity of a letter S vs. H) with a left or right key press. The 
critical manipulation is that the target is surrounded by other 
letters, the flankers, that either signal the same response 
on congruent trials (e.g., SSSSS) or the other response on 
incongruent trials (e.g., HHSHH). Response times (RTs) 
are typically longer (and often error rates are higher) in the 
incongruent compared to congruent condition – the con-
gruency effect (CE). Another example is the Simon task 
(Simon & Rudell, 1967; for a review, see, Hommel, 2011). 
Participants have to respond, for example, to the identity 
of a letter, but this target stimulus is presented at a left or 
right location. If the (task-irrelevant) location is the same 
as the required response, this would be a congruent trial 
(e.g., the letter H requires a left response and the stimulus is 
presented on the left side). However, if the (task-irrelevant) 
location is different than the required response, this would be 
an incongruent trial (e.g., the letter H requires a left response 
and the stimulus is presented on the right side). Here, a CE 
is observed as well.

The size of the CE depends on several factors. One of the 
most often investigated factors is recent trial history, starting 
with work by Gratton, Coles, and Donchin (1992). In this 
line of research, the congruency of the preceding trial n − 1 
is considered in addition to the congruency of the current trial 
n. The typical observation is that the CE is larger if trial n − 1 
was congruent, compared to when it was incongruent (see 
the left panel of Fig. 1 for an illustration). This observation 
is known as the congruency sequence effect (CSE) and has 
been replicated many times (e.g., Praamstra, Kleine, & Schnit-
zler, 1999; Schmidt & Weissman, 2014; Stürmer, Leuthold, 
Soetens, Schröter, & Sommer, 2002; Wühr, 2004; for a review, 
see, Egner, 2007). The standard analysis approach would now 
be a 2 × 2 RM-ANOVA with trial n congruency and trial n − 1 
congruency as repeated measures, with a particular interest 
on the two-way interaction.

In principle, another independent variable could of course 
be added. Janczyk and Leuthold (2018), for example, sig-
naled N = 36 participants on each trial whether they were to 
respond manually or with their feet. Of interest was whether 
the effector system repeated or switched from trial n − 1 to 
trial n (see Fig. 1). In this case, a 2 × 2 × 2 RM-ANOVA 
with trial n congruency, trial n − 1 congruency, and effector 
system repetition (vs. switch) as repeated measures would 
be required.

2  In the following, “hats” will indicate estimators from a sample and 
symbols without a “hat” will indicate population parameters.
3  �̂2

p
 and �̂2

p
 are not to be confused with (generalized) �̂2

G
 and �̂2

G
 . The 

latter two measures have been proposed to make effect sizes compa-
rable across studies with different designs (e.g., Fleiss, 1969; Olejnik 
& Algina, 2003).

https://osf.io/87j5m/
https://github.com/langenberg/powerANOVA
https://github.com/langenberg/powerANOVA
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These examples are typical experiments from cogni-
tive psychology. The design often includes two (or three or 
even more) repeated measures factors with two levels each. 
In the following sections, we use data from Experiment 2 
(using a Simon task) of Janczyk and Leuthold (2018). This 
experiment followed a 2 × 2 × 2 design with the three fac-
tors congruency in trial n (factor A: A1 = incongruent, A2 
= congruent), congruency in trial n − 1 (factor B: B1 = 
incongruent, B2 = congruent), and effector system (factor 
C: C1 = repetition, C2 = switch), but we show how the 

calculations generalize to even more complex designs (i.e., 
2 × 2 × 2 ×… ). The means of each of the cells and the 
covariances can be found in Table 1.

Strategy 1: Means and covariances approach

In this section, we show how to express main and interac-
tion effects in a multi-factorial, repeated-measures design 
as difference variables and how power calculations relate 

Effector system: repetition Effector system: switch

incongruent congruent incongruent congruent

400

450

500

550

600

Trial n-1

R
T

 [
m

s]

Trial n incongruent congruent

Fig. 1   Illustration of the motivating example: a 2 × 2 × 2-interac-
tion reflecting the difference in the congruency sequence effect 
(CSE). Mean response times (RT) in milliseconds (ms) are depicted 
as a function of congruency in trial n − 1, congruency in trial n, and 
effector system repetition (vs. switch). When the effector system 
was repeated, mean RTs were 492 (SD = 82) and 483 ms (SD = 85, 
incongruent vs. congruent) when the previous trial was incongruent 

and 511 (SD = 75) and 444 ms (SD = 88) when the previous trial was 
congruent. When the effector system was switched, mean RTs were 
564 (SD = 107) and 533 ms (SD = 101) when the previous trial was 
incongruent and 566 (SD = 102) and 521 ms (SD = 107) when the 
previous trial was congruent. Error bars are confidence intervals 
based on the t tests comparing the congruent and incongruent condi-
tions of trial n 

Table 1   Means, variances, and covariances for the motivating example, that is, Experiment 2 of Janczyk and Leuthold (2018)

cong. = congruent; incong. = incongruent; rep. = repetition

Means Covariances

Trial n incong. incong. incong. incong. cong. cong. cong. cong.

Trial n − 1 incong. incong. cong. cong. incong. incong. cong. cong.

Trial n Trial n − 1 Effector RT Effector rep. switch rep. switch rep. switch rep. switch

incong. incong. rep. 492 6726
incong. incong. switch 564 6855 11387
incong. cong. rep. 511 5237 6047 5608
incong. cong. switch 566 6136 9270 5878 10314
cong. incong. rep. 483 6400 6971 5190 6176 7202
cong. incong. switch 533 6018 8551 4909 7833 6583 10125
cong. cong. rep. 444 5976 5992 4599 5846 6321 6033 7708
cong. cong. switch 521 6815 10072 5925 9357 7361 9312 7058 11413
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to the mean and the variance of these difference variables. 
Using the mean and variance, the effect size of the differ-
ence variable can be expressed in terms of Cohen’s d, which 
can, in turn, be used for sample size and power calculations. 
With the following subsections, the complexity of the con-
sidered effects gradually increases, starting with a simple 
comparison of two means and ending with the interaction 
effects in a 2 × 2 × 2 design. Each subsection consists of two 
steps: (1) The main and interaction effects are expressed as 
differences between conditions and the mean and variance 
of this difference variable is calculated. (2) Based on these 
values, the effect size measure Cohen’s d is calculated and 
plugged into a procedure for performing the sample size and 
power analysis using R. We provide detailed R code for all 
of the examples covered in this tutorial in the accompanying 
online repository. For a more comprehensive introduction 
on RM-ANOVA and contrast coding, we would like to refer 
the reader to standard texts, such as Aiken and West (1991), 
Cohen et al. (2013), Judd et al. (2017), and Maxwell and 
Delaney (2004).

In the following subsections, we use the data from Experi-
ment 2 of Janczyk and Leuthold (2018). The left part of 
Table 1 provides the means of each experimental condition. 
The right part of the table provides the variances and covari-
ances of the original data. The values are organized as a 
matrix (thus a covariance matrix) of the pairwise covariances 
between the dependent variables. For instance, the covariance 
between the RT when trial n was congruent, trial n − 1 was 
congruent and the effector was repeated and RT when trial n 
was congruent, trial n − 1 was congruent and the effector 
switched was 7058 (last row, second last column). Covari-
ances between experimental conditions are important, 
because they affect the power of hypothesis tests (as will be 
shown below). In fact, correlations between dependent vari-
ables is the key difference between repeated measures 
ANOVA and between-subject ANOVA (e.g., Liesefeld & 
Janczyk, 2022). The  function in R provides one way 
of calculating the covariance matrix of a data set. The file 

 in the online repository provides example 
code to calculate this matrix for the original (already pre-
processed) data set. In what follows, we use the means, vari-
ances, and covariances of the study by Janczyk and Leuthold 
(2018), with the simplifying assumptions of (1) an equal vari-
ance for all conditions σ2 = 9000 (i.e., approximately the 
mean variance across the variables in the study, see Table 1) 
and (2) a covariance between the variables of σcov = 7200 and 
thus a correlation of ρ = 0.8 (i.e., approximately the mean 
correlation and covariance from the original data). The 
assumption of equal variances and covariances is also 
referred to as compound symmetry. The provided R code in 

this article and the online repository will also use equal  
variances and covariances. However, the code is very generic 
and can easily be altered to allow any arbitrary covariance 
matrix.

We want to highlight that the means and covariances 
(and thus effect sizes) calculated in this section are based 
on sample estimates from the study by Janczyk and Leuthold 
(2018). For power calculations, we have to assume that we 
know the population parameters and we here do so to illus-
trate the calculations. In practice, we should not rely on 
an estimate from a single study, but we should rather col-
lect multiple estimates (e.g., from the literature) to obtain 
a clearer picture. Sometimes, however, there may not be 
more information available. In this case, we need to use 
the few information available. Additionally, one should be 
aware that Cohen’s d overestimates the true effect size. By 
equating estimators with the true population parameters, 
we might thus slightly underestimate the required sample 
size to achieve a desired level of power. Bias corrections 
have been developed by, for instance, Hedges (1981) and 
can be used as an alternative (see also Goulet-Pelletier & 
Cousineau, 2018).

Lastly, we exclusively focus on a significance level of α 
= .05, as this convention is most often used in the field of 
psychology. We would like, however, to point out that this 
convention has been criticized and researchers have advo-
cated lower significance levels, such as α = .005 (Benjamin 
et al., 2017; Miller & Ulrich, 2019). Lakens et al. (2018) 
further proposed not to use a default significance level at 
all and that researchers should make a sound decision based 
on the individual study. A similar argument applies to the 
specification of the desired power, which we set to 1−β = .8 
throughout this article. We encourage researchers to think 
about and justify their choices of the significance level and 
the power in their studies.

Comparing two means

Step 1: Calculating the mean and the variance.  We will 
start with a very simple example on how to calculate the 
required sample size when comparing two means and how 
this can be expressed in terms of the mean and the variance 
of the difference between both conditions. Imagine we want 
to perform a simple test to determine whether RTs in the 
motivating example differ when trial n was incongruent, 
trial n − 1 was incongruent as well, and the effector system 
was repeated (A1B1C1) versus when trial n was congruent, 
trial n − 1 trial was incongruent, and the effector system 
was repeated (A2B1C1). The difference variable can then 
be defined as
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where X is the RT difference, and YA1B1C1 and YA2B1C1 are the 
RTs in the corresponding conditions. The mean of YA1B1C1 
is μA1B1C1 = 492 and the mean of YA2B1C1 is μA2B1C1 = 483 
(see Table 1). The variance in both conditions is σ2 = 9000 
and the covariance is σcov = 7200. The mean and variance of 
the difference variable X are then:

Step 2: Performing the power analysis.  It is now possible to 
calculate the effect-size measure Cohen’s d from the mean 
and the variance, which can then be used for sample size and 
power calculations:

The size of the effect is thus even less than small, following 
the conventions of Cohen (1988).

This effect size is calculated from a sample and prob-
ably does not match the effect size in the population. For 
the following analysis, however, we assume that this is the 
population effect size. We can then use this effect size and 
the t test to calculate the required sample size to achieve a 
power of 1−β = .8. In particular, we use a two-sided t test 
with α = .05 and obtain that we would need a sample size of 
at least N = 351 participants to detect an effect of dX = 0.15 
if this was indeed a true (but rather small) effect.

Many software packages offer the possibility to calculate 
the required sample size for a t test and so does R (R Core 
Team, 2021) with the function . The fol-
lowing command can be used to perform the above calcu- 
lations:

The argument  takes the effect size d,  is 
the desired power level,  is the desired signifi-
cance level,  indicates if the t test is one- or 
two-sided, and  is the type of the t test.

(1)X = YA1B1C1 − YA2B1C1

(2)
�X = �A1B1C1 − �A2B1C1

= 492 − 483 = 9

(3)�
2

X
= �

2 + �
2 − 2 ⋅ �

cov

= 9000 + 9000 − 2 ⋅ 7200 = 3600

(4)
dX =

�X

�X

=
9

√

3600
= 0.15

As a side note, the function also provides an argument , 
which can be used if  is the mean of the difference 
variable before dividing by the standard deviation. Hence, 
the above command is equivalent to the following command:

2 × 2 design: Main effects

Step 1: Calculating the mean and the variance.  In the previ-
ous example, we used RTs from only two conditions. For the 
next example, we increase the complexity of the difference 
and consider a subset of the factors, that is, we use the con-
ditions where the effector system was repeated. This leaves 
us with a 2 × 2 design consisting of the factors A and B. 
Although not as obvious as in the previous example, we can 
still use the t test for power analysis in this case.

Assume we want to investigate the main effect of trial n 
(factor A). The main effect of factor A can be expressed as 
the sum of all conditions where trial n trial was incongruent 
(A1) minus the sum of all conditions where trial n was con-
gruent (A2). Thus, the difference variable can be defined as

and the value of the difference variable in the example is then:

Calculating the variance is slightly more difficult. Yet, the 
assumption that the variances and covariances are equal 
across conditions simplifies the formula. With k denoting the 
number of factors in the design (i.e., k = 2 in the present case), 
the variance of the difference variable can be calculated as:

The formula for the variance becomes more complicated when 
we want to use different variances for and covariances between 
conditions. We provide R scripts in the online repository that 
can be used as a template and the user only has to insert the 
correct values in the covariance matrix. The following chunk 

(5)
XA = (YA1B1 + YA1B2) − (YA2B1 + YA2B2)

= YA1B1 + YA1B2 − YA2B1 − YA2B2

(6)�XA
= �A1B1 + �A1B2 − �A2B1 − �A2B2

(7)= 492 + 511 − 483 − 444 = 76

(8)
�
2

XA

= 2k ⋅ �2 − 2k ⋅ �cov

= 22 ⋅ 9000 − 22 ⋅ 7200 = 7200
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of R code shows how the mean, the covariance matrix, and a 
contrast vector are specified in order to calculate the mean and 
the variance of the difference variable as defined above:

In Line 3, the means of the dependent variables are 
defined, which are equivalent to the means from Eq. 7. In 
Line 7, the covariance matrix of the dependent variables 
is defined, which conforms to the compound symmetry 
assumption. We can easily change the variances and covari-
ances to any other value if we do not want to assume com-
pound symmetry (with the constraint that the covariance 
matrix must be positive definite). Line 15 defines the con-
trast vector based on Eq. 6. The first two elements are 1, 
because the means μA1B1 and μA1B2 enter with a positive 
sign into that equation. The third and fourth elements are 
-1, because the means μA2B1 and μA2B2 enter with a negative 
sign. In Line 18, the mean of the difference variable is calcu-
lated by multiplying the contrast vector with the mean vector 
(i.e., the cross-product) and the result is printed in Line 20. 
In Line 23, the variance of the difference variable is cal-
culated by pre- and post-multiplying the covariance matrix 
with the contrast vector and the result is printed in Line 25.

Step 2: Performing the power analysis.  We again use the 
mean and variance of the difference variable to calculate 
Cohen’s d:

(9)

d
X
A

=
�
XA

�
XA

=
76

√

7200

≈ 0.9

Assuming that the effect size is the population effect size, 
we can calculate the sample size required to achieve a power 
of 1−β = .8. We find that we would need a sample size of 
at least N = 12 to detect the effect with a probability of 1−β 
= .8. The R command for this analysis is very similar as for 
the previous example. Only the argument  must be 
replaced by dXA

= 0.9 (in case  is set to its default value 
of 1).

2 × 2 design: Interaction effect

Step 1: Calculating the mean and the variance.  The interac-
tion effect in a 2 × 2 design can be expressed in terms of a 
difference variable as well. In this case, the difference is, in 
fact, a difference of differences. It is the RT difference of 
the differences where trial n − 1 was incongruent (B1) and 
where trial n − 1 was congruent (B2) between the two levels 
of trial n (A1 minus A2):

For clarification, XB | A1 indicates the RT difference between 
the condition where trial n − 1 trial was incongruent and 
the condition where trial n − 1 was congruent while trial n 
was incongruent. The mean of the difference variable for 
our example is:

The variance is again a bit more difficult. However, under 
compound symmetry, it turns out that the same formula as 
for the main effect can be used here (without compound 
symmetry, one would have to specify the exact covariance 
matrix, e.g., by adapting the R code of the supplemental 
material in the online repository):

Step 2: Performing the power analysis.  The effect size 
Cohen’s d is then calculated as

and the result can be considered a medium to large effect 
according to Cohen (1988).

Assuming that this value is the population effect size, the 
power calculation yields a required sample size of N = 19 to 
observe an effect of this magnitude with a power of 1−β = .8.

(10)
XA:B = XB | A1 − XB | A2

= (YA1B1 − YA1B2) − (YA2B1 − YA2B2)

= YA1B1 − YA1B2 − YA2B1 + YA2B2

(11)
�
X
A:B

= �
A1B1

− �
A1B2

− �
A2B1

+ �
A2B2

= 492 − 511 − 483 + 444 = −58

(12)
�
2

XA:B

= 2k ⋅ �2 − 2k ⋅ �cov

= 22 ⋅ 9000 − 22 ⋅ 7200 = 7200

(13)

d
X
A:B

=
�
XA:B

�
XA:B

=
−58

√

7200

≈ −0.68
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2 × 2 × 2 design: Main effects

Step 1: Calculating the mean and the variance.  We now use 
the full 2 × 2 × 2 design of the example. Again, a main effect 
in this design with three factors with two levels each can be 
expressed as a single difference variable.

Assume we want to investigate the main effect of trial 
n (factor A) as before, but we use the full design now. The 
procedure is just as for a 2 × 2 design. We compare the sum 
of all conditions where trial n is incongruent (A1) against 
the sum of all conditions where trial n is congruent (A2). We 
thus define the difference variable as:

The mean of the difference variable for our example can then 
be calculated as

and the variance can be calculated following Eq. 8 with  
k = 3:

In fact, the formula can be used for any number of factors as 
long as (1) the variances and covariances are equal and (2) 
the factors have only two levels each.

Step 2: Performing the power analysis.  Using the mean and 
variance of the difference variable, we can calculate Cohen’s 
d as

which is even larger than large following the conventions of 
Cohen (1988).

Using the effect size as the population effect size, we cal-
culate that we would need a sample size of N = 8 to achieve 
a power of 1−β = .8. This number is very low, due to the 
large effect size.

2 × 2 × 2 design: Two‑way interactions

Step 1: Calculating the mean and the variance.  The required 
calculations for the two-way interaction of, for example, factor 

(14)

XA = (YA1B1C1 + YA1B1C2 + YA1B2C1 + YA1B2C2)−

(YA2B1C1 + YA2B1C2 + YA2B2C1 + YA2B2C2)

= YA1B1C1 + YA1B1C2 + YA1B2C1 + YA1B2C2−

YA2B1C1 − YA2B1C2 − YA2B2C1 − YA2B2C2

(15)
�XA

= �A1B1C1 + �A1B1C2 + �A1B2C1 + �A1B2C2−

�A2B1C1 − �A2B1C2 − �A2B2C1 − �A2B2C2

= 492 + 564 + 511 + 566 − 483 − 533 − 444 − 521 = 152

(16)
�
2

XA

= 2k ⋅ �2 − 2k ⋅ �cov

= 23 ⋅ 9000 − 23 ⋅ 7200 = 14400

(17)

d
X
A

=
�
XA

�
XA

=
152

√

14400

≈ 1.27

A and B in the 2 × 2 × 2 design are very much the same as for 
the simpler 2 × 2 design. Only the number of involved vari-
ables is larger. The interaction effect is the difference of the 
differences between the incongruent (B1) and the congruent 
(B2) condition in trial n − 1 (factor B) between the incongru-
ent (A1) and the congruent (A2) condition in trial n (factor A) 
while summing across factor C. Expressed formally, this yields

and the expected value of the difference of differences vari-
able for the example can be calculated as:

For calculating the variance, we use the same formula as before. 
It does not matter whether we are dealing with a main effect or 
an interaction effect – the formula is the same under compound 
symmetry. Only the number of involved factors matters:

Step 2: Performing the power analysis.  With the mean and 
the variance, Cohen’s d is calculated as before:

Assuming this is the true effect size, we would need a sam-
ple size of N = 24 to achieve a power of 1−β = .8.

2 × 2 × 2 design: Three‑way interactions

Step 1: Calculating the mean and the variance.  Finally, we 
consider how to express a three-way interaction in terms of 
a difference. In fact, this interaction is a difference of differ-
ences of differences. In other words, the three-way interaction 
expresses whether the interaction B × C is different for the two 
levels of factor A. This difference variable can be written as:

(18)

X
A:B

= X
B | A1

− X
B | A2

= [(Y
A1B1C1

+ Y
A1B1C2

) − (Y
A1B2C1

+ Y
A1B2C2

)]−

[(Y
A2B1C1

+ Y
A2B1C2

) − (Y
A2B2C1

+ Y
A2B2C2

)]

= Y
A1B1C1

+ Y
A1B1C2

− Y
A1B2C1

− Y
A1B2C2

−

Y
A2B1C1

− Y
A2B1C2

+ Y
A2B2C1

+ Y
A2B2C2

(19)
�XA:B

= �A1B1C1 + �A1B1C2 − �A1B2C1 − �A1B2C2−

�A2B1C1 − �A2B1C2 + �A2B2C1 + �A2B2C2

= 492 + 564 − 511 − 566 − 483 − 533 + 444 + 521 = −72

(20)
�
2

XA:B

= 2k ⋅ �2 − 2k ⋅ �cov

= 23 ⋅ 9000 − 23 ⋅ 7200 = 14400

(21)

d
X
A:B

=
�
XA:B

�
XA:B

=
−72

√

14400

= −0.6

(22)

X
A:B:C

= X
B:C | A1

− X
B:C | A2

= (X
C | A1B1

− X
C | A1B2

) − (X
C | A2B1

− X
C | A2B2

)

= [(Y
A1B1C1

− Y
A1B1C2

) − (Y
A1B2C1

− Y
A1B2C2

)]−

[(Y
A2B1C1

− Y
A2B1C2

) − (Y
A2B2C1

− Y
A2B2C2

)]

= Y
A1B1C1

− Y
A1B1C2

− Y
A1B2C1

+ Y
A1B2C2

−

Y
A2B1C1

+ Y
A2B1C2

+ Y
A2B2C1

− Y
A2B2C2
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We see that we calculate the difference between C1 and C2 
in the innermost parentheses. We then calculate the differ-
ence of this difference between the two levels of B1 and 
B2. Finally, we calculate the differences of this difference 
between the two levels A1 and A2. The value of this differ-
ence for our example can be calculated as

and we use the very same formula as before to calculate the 
variance for this three-way interaction:

Step 2: Performing the power analysis.  Using these values, 
Cohen’s d for the three-way interaction is calculated as

and we find that a sample size of N = 61 is needed to find an 
effect of this magnitude with a power of 1−β = .8.

Excursus: The role of the correlation and the order 
of the interaction

Correlation among conditions.  We can also express the vari-
ance of the difference variable in terms of the variances of 
the dependent variables and their correlation ρ (instead of 
their covariance):

This equation directly shows how the variance of the difference 
variable depends on the correlation between the dependent vari-
ables. In particular, the variance of the difference variable 
becomes smaller if the correlation is larger (i.e., 1 − ρ will 
decrease when ρ increases) and vice versa. This is especially 
important when performing a power analysis, because the effect 
size used for the power analysis depends on the variance of the 
difference variable. Looking back to the previous example in the 
Section “2 × 2 design: Interaction effect”, the variance of the 
difference variable was �2

XA:B

= 7200 and the corresponding 
effect size was dXA:B

≈ −0.68 . Recall that the correlation among 
the dependent variables is ρ = 0.8. However, if the correlation 
were only ρ = 0.2, the variance would be four times as large, that 
is, �2

XA:B

= 22 ⋅ 9000 − 22 ⋅ 0.2 ⋅ 9000 = 28800 , and thus the 
effect size would be only half the size dXA:B

=
−58

√

28800
≈ −0.34 . 

(23)
�
X
A:B:C

= �
A1B1C1

− �
A1B1C2

− �
A1B2C1

+ �
A1B2C2

−

�
A2B1C1

+ �
A2B1C2

+ �
A2B2C1

− �
A2B2C2

= 492 − 564 − 511 + 566 − 483 + 533 + 444 − 521 = −44

(24)
�
2

XA:B:C

= 2k ⋅ �2 − 2k ⋅ �cov

= 23 ⋅ 9000 − 23 ⋅ 7200 = 14400

(25)

d
X
A:B:C

=
�
XA:B:C

�
XA:B:C

=
−44

√

14400

≈ −0.37

(26)�
2

X
= 2k ⋅ �2 − 2k ⋅ � ⋅ �2 = 2k ⋅ �2(1 − �)

The required sample size to achieve a power of 1−β = .8 for this 
case would dramatically increase from N = 19 to N = 70.

Order of effects.  Another interesting fact when considering 
Eq. 26 is that the variance of the difference variable increases 
(and thus the effect size and power decrease) with the size of 
the design. The variance for the main and interaction effects 
in a 2 × 2 design is (with values taken from our example)

and is

for a 2 × 2 × 2 design. The consequence is that the effect size 
decreases by the order of 

√

2 , which in turn has implications 
for statistical power and sample size calculations.

Implicit correlation between dependent variables.  Finally, 
we would like to raise awareness about a possible mistake 
that researchers might commit. In particular, researchers 
might use the variance of the dependent variables’ variance 
σ2 when calculating the variance of the difference variable, 
thereby ignoring the correlation between the dependent vari-
ables. The reason for this could be that researchers do not 
have information about the covariance of the variables or 
they do not know how to perform the calculations properly. 
However, when calculating Cohen’s d of a difference vari-
able, we must not assume that the variance of the difference 
variable is equal to the variance of the dependent variables. 
Instead, we have to calculate the variance based on the vari-
ances and covariances of the dependent variables. Failing 
to do so can have a dramatic impact on power calculations. 
This is because we implicitly make an assumption about the 
correlation when equating both variances:

That is, if we assume that �2

X
 (the variance of the difference 

variable) and σ2 (the variance of the dependent variables) 
are equal when comparing two means, we implicitly assume 
a correlation of, e.g., ρ = 0.5 if k = 1. The correlation even 
increases for more complex designs. For difference variables 
of main and interaction effects in a 2 × 2 design, the correla-
tion is ρ = 0.75, and for a 2 × 2 × 2 design, the correlation 
is ρ = 0.875. This might have a huge impact on sample size 
calculations, because – as we have seen earlier – the power 

(27)�
2

X2∶2

= 22 ⋅ 9000 − 22 ⋅ 0.8 ⋅ 9000 = 7200

(28)�
2

X2∶2∶2

= 23 ⋅ 9000 − 23 ⋅ 0.8 ⋅ 9000 = 14400

(29)�
2

X
= 2k ⋅ �2(1 − �)

(30)set �
2

X
= �

2
⇒ �

2 = 2
k
⋅ �

2(1 − �)

(31)⇔ � =
2k−1

2k
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is also a function of the correlation. As a consequence, the 
required sample size may be underestimated (or overesti-
mated) if the true correlation is in fact lower (or higher) than 
the implied correlation.

For instance, consider the comparison of two means from 
the beginning of this section. The effect size was d = 0.15 
and N = 351 were needed to detect this effect with a proba-
bility of 1−β = .8. Without taking into account the covari-
ance between the RTs in the two conditions, we would 
assume the effect is d =

9
√

9000
≈ 0.09 , thus requiring a sam-

ple size of N = 875. The problem also occurs with higher-
order interactions. In the 2 × 2 × 2 example right before this 
excursus, the effect size was d = − 0.37 and we would 
require N = 61 subjects to detect the effect with a probability 
of 1−β = .8. If we neglected the covariance, we would 
assume the effect is d =

−44
√

9000
≈ −0.46 , thus requiring a 

sample size of N = 39.

Strategy 2 and 3: Effect size approach

The critical aspect when conducting power analyses via the t 
test is the correct specification of Cohen’s d. In the previous 
section, we have described a strategy that requires speci-
fying the exact mean and covariance structure or knowing 
the correct d at a population level. In the present section, 
we will consider an “effect size approach”: A researcher 
might have an idea about the effect size of an interaction 
or a main effect (for an overview and a review of common 
effect size measures, see e.g., Bakeman, 2005; Carroll & 
Nordholm,  1975;  Cohen,  1973;  Keselman et  al.,  1998; 
Lakens, 2013; Levine & Hullett, 2002; Olejnik & Algina, 
2000, 2003; Richardson, 2011; Steiger, 2004), and is now 
confronted with transforming these values to d.

Two cases can be distinguished. First, it could be that 
researchers have knowledge about an observed effect size 
(e.g., from a previous experiment or from a meta-analysis). 
In this case, the observed �̂2

p
 or �̂2

p
 value needs to be trans-

formed into d̂  . Second, one might formulate the expectations 
on �2

p
 at the population level (e.g., as a minimum effect size 

of interest), and then transform this value to d.4 Although 
both transformations are very similar, the calculations differ 
slightly. In the former, the transformation is done at the level 
of observed values, while in the latter the transformation is 
done at the level of population parameters. If sample sizes 
are large, both lead to approximately equal results though.

We begin by introducing the conversion on both levels for 
the simple case of comparing only two means of the whole 

design (similar to what we have done in Section “Comparing 
two means” of the previous section). Although it might not 
be very common to express an effect size in terms of �2

p
 in 

this case, this is of course possible and we can also use an 
F-test to compare the two means (i.e., a one-way ANOVA 
with one factor that has two levels). Importantly, the rela-
tion holds for main and interaction effects in multi-factorial 
repeated measures designs, which will be considered there-
after. The section will be finished by considering a tempting, 
but wrong, approach based on the semantic labels of effect 
sizes as suggested by Cohen (1988).

Comparing two means

We first consider the sample level. In this case, the relation 
between �̂2

p
/�̂2

p
 and Cohen’s d̂  for the within-subject case is 

(for more details on this, see Appendix A),

where N indicates the sample size. For the example used in 
Section “Comparing two means” of the previous section, 
the effect size of that comparison can also be expressed as 
�̂
2
p
= 0.023 or �̂2

p
= 0.5 Using Eq. 32, Cohen’s d is

matching exactly the previously calculated value. This con-
version could be done with a simple R function as well:

Calling this function as  
yields d̂ = 0.15.

Thus, having obtained some typical effect sizes in terms of 
�̂
2
p
 from, for example, a literature review, we can transform those 

values to Cohen’s d̂  , and use the result for sample size calcula-
tions and a power analysis using the t test. This can be done in 

(32)d̂ =

√

�̂2
p
⋅(N−1)

N−�̂2
p
⋅N

(33)d̂ =

√

�̂2
p
N−�̂2

p
+1

N−�̂2
p
⋅N

,

(34)d̂ =

√

0.023⋅35

36−0.023⋅36
= 0.15

4  Note that �2
p
 is equal to �2

p
 at the population level

5  Note that, if the effect of interest is small, �̂2

p
 can turn out negative. 

In this case, �̂2

p
 is set to zero. This is the reason why the result of 

d̂ = 0.167 , which we obtain using Eq.  33 does not match with 
d̂ = 0.15 from Eq. 32. If �̂2

p
 equals zero, then d̂  equals 1

√

N
 , and thus 

1
√

N
 is a lower bound for d̂  when converting from �̂2

p
 . Conversely, 

when converting from d̂  to �̂2

p
 , �̂2

p
 will be negative if �d <

1
√

N

.
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the exact same way as described in Step 2 in the subsections of 
“Strategy 1: Means and covariances approach”:

A single sample estimate for the effect size may be used 
when we only have limited knowledge about the true effect 
size, for instance, when there is just a single study at hand. 
Ideally, we should pool multiple estimates, of course. Any-
how, we should be aware that �̂2

p
 , �̂2

p
 , and Cohen’s d̂  overes-

timate the true effect size and we thus likely underestimate 
the sample size required to achieve a desired level of power 
(e.g., Mordkoff, 2019; Goulet-Pelletier & Cousineau, 2018).

In some instances, we might ”know” the effect size at 
the population level to perform a power analysis (e.g., by 
considering a minimum effect size of interest). Then, �2

p
 and 

�
2
p
 are identical, and the transformation to Cohen’s d slightly 

changes to (for more details on this, see Appendix B):

Note that this transformation is no longer dependent on the 
sample size, because it is based on the population effect size. 
If we “know” the true population effect size �2

p
 , we should 

use Eq. 35 and perform the power analysis on its result. A 
simple R function to perform the transformation could be:

Calling the function with  
yields d = 0.153. This value slightly differs from the pre-
vious transformation, because we assume that �2

p
= .023 

matches the true effect size at the population level (i.e., we 
ignore the bias of the estimator).

Main and interaction effects

The transformations shown in the previous section also hold 
true for main effects and interactions as long as the effect 
of interest can be expressed in terms of a single difference 
variable (i.e., the test has one numerator degree of freedom). 

(35)d =

√

�2
p

1−�2
p

In the previous section, we have already stated that all main 
and interaction effects in 2 × 2 ×... × 2 designs can indeed 
be expressed in terms of a single difference variable.

As an example, we use the three-way interaction based 
on Experiment 2 by Janczyk and Leuthold (2018), similar 
to what we have done in Section “2 × 2 × 2 design: Three-
way interactions” of the previous section. For this effect, the 
effect size is �̂2

p
= .118 . Applying Eq. 32, we obtain

which again matches the value from Section “2 × 2 × 2 
design: Three-way interactions” of the previous section. In 
the next step, we can then use this effect size and the t test 
to estimate the required sample size and perform a power 
analysis, just as it was done in the previous section.

Table 2 provides an excerpt of sample sizes required for 
achieving a power level of 1−β = .8 for different values 
of �2

p
 and �2

p
 , respectively. It shall provide a quick way for 

researchers to conduct a priori power considerations for a 
main or interaction effect of interest.

It is also noteworthy that this transformation holds for 
designs with factors with more than two levels – as long as the 
effect of interest consists of a subset of factors that only have 
two levels. Consider, for example, a 3 × 2 × 2 design (i.e., 
factor A has three levels, B has two levels, C has two levels). 
The main effects of factor B and C and the interaction effect 
B:C have only one numerator degree of freedom or, stated 
differently, the involved factors have only two levels each. 
For such effects, the relations outlined above hold true as well 
(for a tutorial on contrast coding in complex multi-factorial 
designs, see Schad, Vasishth, Hohenstein, & Kliegl, 2020).

Converting effect sizes via Cohen’s semantic labels

Against the background from the previous sections, we 
finally consider a possible mistake that an incautious 
researcher may commit when converting �2

p
 to d: Wrongly 

applying the formulas for within-subject versus between-
subject cases (see also Brysbaert, 2019).

Remember that, according to the suggestions of Cohen 
(1988), d = 0.2 is considered a small, d = 0.5 a medium, and 
d = 0.8 a large effect, while �2

p
= .01 is considered small, 

�
2
p
= .06 medium, and �2

p
= .14 large. It is well known that 

small, medium, and large effect sizes indeed correspond to 
each other in the between-subject case with two groups, as 
this conversion was derived from Cohen’s f (see also Appen-
dix C, and Cohen, 1988):

(36)d̂ =

√

0.118⋅35

36−0.118⋅36
= 0.36

(37)d
between

= 2f = 2 ⋅

√

�2
p

1−�2
p
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It is tempting to calculate the power for a “small”, 
“medium”, or “large” interaction in terms of �2

p
 by simply 

applying the semantic labels and choose the corresponding 
convention in terms of Cohen’s d. However, as should have 
become clear from this section (see in particular Eq. 35), a 
conversion according to Eq. 37 is not valid in the within-
subject case, where the relation between d and �2

p
 is instead 

(see Appendix D for the proof):

Consequently, a researcher would have to divide the 
expected d by two, and as a result, the required sample sizes 
often differ considerably. For instance, a researcher may 
expect a (large) effect size of �2

p
= .14 according to a recent 

meta-analysis in the field. Using the (wrongly assumed) cor-
responding large value of d = 0.8, results in a required sam-
ple size of N = 15 to achieve a power of at least 1−β = .8. 
The formula above, however, suggests to use d = 0.4 instead, 
which yields a sample size of N = 52.

Discussion

Running well-powered experiments helps increasing the 
reproducibility of psychological research (see Ioannidis, 2005; 
Fraley & Vazire, 2014). Calculating the power, however, can 
be complicated as soon as one goes beyond the designs of 
simple t tests. Because of this, it is useful to conceive main and 
interaction effects of factors as “differences of differences”, 
which eventually can be treated in the framework of a t test.

In this tutorial article, we focused on exactly this situation 
and discussed how to use the t test to perform power analyses 
in multi-factorial repeated measures designs that involve factors 
with two levels only (i.e., hypothesis tests with one numerator 

(38)dwithin = f =

√

�2
p

1−�2
p

degree of freedom). Two cases can be distinguished. In the 
first case, means, variances, and covariances of the dependent  
variable are available for each experimental condition and com-
binations thereof. In the second case, previously reported or 
expected effect sizes are available in terms of �2

p
/�̂2

p
 or �̂2

p
 . In 

either case, a translation into d̂  or d is desired, and we dem-
onstrated how to do so. To aid with the required calculations, 
we provide example R code in an online repository. Moreover, 
we developed an R package called powerANOVA (Langenberg, 
2022) for this article that comes with a graphical user interface 
and implements the presented procedures.

Key message

The good news is that functions calculating the power in 
the framework of t tests can indeed be used to calculate 
the power in 2 × 2 ×... within-subject designs. Yet, some 
measures of precaution are required to correctly perform 
the calculations.

Based on the means of the dependent variables, it is easy 
to establish the correct numerator of d when conceiving the 
effect of interest as a difference variable (e.g., as a “differ-
ences of differences” in case of interactions). The critical 
part is how to calculate the correct standard deviation for the 
denominator. Importantly, the correct value is not simply the 
(averaged) standard deviation within the conditions. Rather 
its correct calculation includes all variances within and the 
correlations/covariances between the conditions.

Nowadays, most scientific publications present means and 
some form of variability in figures and/or tables. However, 
converting standard errors back into variances is not straight-
forward when they are, for example, based on the error term 
from an ANOVA (Loftus & Masson, 1994). Furthermore, 
correlations/covariances of the dependent measures between 
the conditions are almost never reported. Thus, researchers 

Table 2   Required sample size to achieve a statistical power of 1−β = .8 given α = .05 and the effect size �2
p
 or �2

p
 in RM-ANOVA for effects 

with one numerator degree of freedom

Row names indicate the first decimal place of �2
p
∕�2

p
 , column names indicate the second decimal place. For instance, N = 26 subjects are 

required to achieve a power of 1−β = .8 for an effect size of �2
p
∕�2

p
= .25 (third row, sixth column)

�
2

p
∕�2

p

�
2

p
∕�2

p
 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 779 387 256 191 152 125 107 93 82
0.1 73 66 60 55 51 47 44 41 38 36
0.2 34 32 30 29 27 26 25 24 23 22
0.3 21 20 19 18 18 17 16 16 15 15
0.4 14 14 13 13 13 12 12 11 11 11
0.5 10 10 10 10 9 9 9 9 8 8
0.6 8 8 7 7 7 7 7 7 6 6
0.7 6 6 6 6 5 5 5 5 5 5
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likely have to set their (co-)variances/correlations based on a 
reasonable expectation or by calculating them from a raw data 
set. For this reason, we consider it helpful if researchers also 
report correlations/covariances (and perhaps even variances). 
With this information at hand, power analyses for interactions 
in 2 × 2 ×... × 2 designs can be performed straightforward.

Power analysis can also be performed based on typi-
cal effect sizes �̂2

p
 , �2

p
 , or �̂2

p
 for the experimental context 

in which their study is embedded. These effect sizes may 
be derived from previous research, a meta-analysis, or sim-
ply be assumed. In this case, a relationship between those 
measures and Cohen’s d̂  or d exists. Yet, it would be wrong 
to simply equate them based on their semantic meaning as 
proposed by Cohen (1988) (i.e., as small, medium, or large 
effects). More precisely, if, for instance, a value �2

p
= .14 is 

assumed for the 2 × 2 interaction (thus a “large” effect), the 
correct value entered into functions calculating the power for 
t tests is not d = 0.8, but rather half of it (see Eq. 35).

Limitations and further directions

The clearest limitation of this article is its scope on within-
subject designs with factors of two levels each. Importantly, 
different factorial designs that include the same experimen-
tal manipulation may produce different effect size estimates 
if they include additional manipulations or covariates. For 
instance, imagine an experiment that investigates the CE in 
a Simon task and additionally includes the covariate age. 
In this case, the experiment may be able to explain a larger 
amount of variance as another experiment that uses the exact 
same design, but does not account for age. As a result, par-
tial effect size estimates can differ. To resolve this issue, 
generalized effect size estimators have been developed, such 
as generalized η2 ( �2

G
 ). The present article does not cover 

generalized effect size estimators, but integrating our consid-
erations in the context of generalized effect size estimators 
could be an interesting research question.

Power analysis is also a topic in multilevel models 
(MLM; also referred to as hierarchical models or random 
effects models; Fitzmaurice, Laird, & Ware, 2011; Laird 
& Ware, 1982), which have become increasingly popular 
in experimental cognitive psychology. Typically, replica-
tions in each condition are averaged within participants in 
order to be able to use RM-ANOVA (i.e., a single value 
per participant and condition). MLM models are able to 
include multiple replications per participant and to account 
for heterogeneity in main and interaction effects. This can 
ultimately increase statistical power as all available informa-
tion can be used. There are a number of articles available 
that cover power analysis in multilevel models. For instance, 
Brysbaert and Stevens (2018) and Kumle, Võ, and Dra-
schkow (2021) wrote two helpful tutorials (see also, Arend 
& Schäfer, 2019; DeBruine & Barr, 2021; Lafit et al., 2021). 

There are, furthermore, various software packages that can 
perform the necessary calculations (mixedpower, Kumle, 
Võ, & Draschkow, 2020; simglm, LeBeau, 2019; pamm, 
Martin, 2020; simr, Green & MacLeod, 2016; powerlmm, 
Magnusson, 2018). The packages mixedpower and simr are 
introduced in a comprehensive way by Kumle et al. (2021).

Replications across experimental conditions can also be 
incorporated using latent variable models. For instance, in a 
Simon task, replications in the congruent condition in trial n 
can be used as indicators to measure the RT in that condition 
more reliably. This way, measurement error can explicitly be 
modeled and main and interaction effects can then be tested 
on the latent variable level. Langenberg, Helm, and Mayer 
(2022) showed how to test main and interaction effects in 
RM-ANOVA using latent variables. It could also be an inter-
esting research question how the calculations in this tutorial 
article generalize to latent variable models.

Conclusions

In summary, this tutorial article aimed at deepening the 
understanding of main and interaction effects and how to 
express them in terms of difference variables, in an attempt 
to clarify whether or not the framework of a t test can be 
used to calculate power for interaction effects in within-sub-
ject designs. The required calculations to do so are covered 
in an extensive online repository.

Appendix A: From �̂2
p
 and �̂2

p
 to Cohen’s d̂

Within RM-ANOVA, hypothesis tests are usually based on 
the sums of squares. The sums of squares are a measure for 
the part of the variance that can be attributed to the involved 
factors and interactions, and the part that can be attributed 
to error associated with the factors and interactions. The 
F-statistic is the ratio of mean sums of squares (Nesselroade 
& Cattell, 1988), that is,

where MSeffect is the mean sum of squares from the main 
or interaction effect of interest (e.g., an interaction between 
factor A and factor B), and MSerror is the mean error sum of 
squares. Both are defined as the respective sums of squares 
divided by the corresponding degrees of freedom df1 (effect) 
and df2 (error):

(39)F =
MSeffect

MSerror
,

(40)MSeffect =
SSeffect

df1

(41)MSerror =
SSerror

df2
.
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The effect sizes �2
p
 and �2

p
 (e.g., Bakeman, 2005; Carroll 

& Nordholm, 1975; Cohen, 1973; Keselman et al., 1998; 
Lakens, 2013; Levine & Hullett, 2002; Olejnik & Algina, 2000, 
2003; Richardson, 2011; Steiger, 2004) are estimated as:

The equations slightly differ as both estimators are biased 
to a different extent. �̂2

p
 is known to be less biased, �̂2

p
 is, 

however, used more often in practice (Okada, 2013; Rich-
ardson, 2011). For study designs that only involve factors 
with two levels each, the main and interaction effects have 
one numerator degree of freedom (i.e., df1 = 1). In this case, 
a simple relationship between F and t holds, as the empiri-
cal F-statistic is identical to the square of the empirical 
t-statistic:

Using these definitions and a relation between t and d̂  , it is 
possible to translate the RM-ANOVA effect size measures 
into Cohen’s d̂  . The reasoning is that, from Eqs. 39, 42, 
and 43, it can be seen that both the F-statistic as well as the 
effect size measures are a function of the sums of squares. By 
rearranging, the effect size measures can thus be expressed 
as a function of the F-statistic (Friedman, 1968; Kennedy, 
1970), and with Eq. 44 they can be expressed as a function 
of the t-statistic (see also, Mordkoff, 2019):

(42)�̂
2
p
=

SSeffect

SSeffect+SSerror

(43)�̂
2
p
=

df1(MSeffect−MSerror)

SSeffect+(N−df1)MSerror
.

(44)F = t2 .

(45)

�̂
2
p
=

SSeffect

SSeffect+SSerror

=

MSeffect

MSeffect+MSerror ⋅ df2

=

F⋅MSerror

F ⋅MSerror+MSerror ⋅ df2

=
F

F+df2

=
t2

t2+df2

(46)

�̂
2
p
=

(MSeffect−MSerror)

SSeffect+(N−1)MSerror

=
F ⋅MSerror−MSerror

F ⋅MSerror+(N−1)MSerror

=
F−1

F+N−1

=
t2−1

t2+N−1
.

In case df1 = 1, df2 equals N − 1 and thus the denomina-
tors of Eqs. 45 and 46 are equivalent. However, the numera-
tors slightly differ. We can now use the relation

and plug it into Eqs. 45 and 46. Solving for d̂  yields:

Although the equations differ, the calculations will lead to 
the same Cohen’s d̂ .

Appendix B: From �2
p
 and �2

p
 to d 

at the population level

When effect sizes need to be formulated directly at the popu-
lation level, for instance, by defining a minimum �2

p
 that is 

considered relevant, �2
p
 has to be transformed into d. To this 

end, �2
p
 and �2

p
 is defined at the population level for the exam-

ple with one numerator degree of freedom as:

where μX and σX are the expected value and standard deviation 
of the interaction variable when it is expressed as a “difference 
of differences” (see Section “Strategy 1: Means and covariances 
approach”, for more details, see also Appendix D). Note that 
�
2
p
 is equal to �2

p
 as both effect size measures are the same at 

the population level, only their estimators from the sample are 
different. By extending Eq. 49 by �2

X
 , one can rearrange it as a 

function of d:

Solving for d then yields the conversion from �2
p
 to d (see 

also Brysbaert, 2019):

t = d̂

√

N

(47)d̂ =

√

�̂2
p
⋅(N−1)

N−�̂2
p
⋅N

(48)d̂ =

√

�̂2

p
N−�̂2

p
+1

N−�̂2

p
⋅N

.

(49)�
2
p
= �

2
p
=

�
2

X

�
2

X
+�2

X

,

�
2

p
=

�
2

X

�
2

X
+�

2

X

⋅

�
2

X

�
2

X

=

�
2

X

�
2

X

�
2

X

�
2

X

+

�
2

X

�
2

X

=
d2

d2+1

(50)d
within

=

√

�2
p

1−�2
p

.
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Two things are worth pointing out. First, the transforma-
tions expressed at the sample and population level are related 
to each other. Except for df2 and N, Eq. 50 at the population 
level is identical to Eq. 47 at the sample level. In fact, if we 
consider that df2 gets larger with N, both are approximately 
equal. Second, the derived equations differ from the com-
mon conversion of �2

p
 into Cohen’s d for between-subject 

designs (see Appendices C and D). For between-subject 
designs �2

p
 translates to d as

Thus, the same effect size in terms of �2
p
 translates differ-

ently to Cohen’s d for within- and between-subject designs. 
However, d for the within-subject case is only half as large 
as d for the between-subject case, which can dramatically 
change power calculations (see also Brysbaert, 2019, for 
the same argument).

Appendix C: Cohen’s d and f 
in between‑subject designs

This appendix details the relationship between Cohen’s f 2, 
�
2
p
 , and d for the between-subject case at the population level 

(Cohen, 1988). To this end, let us first state the formula for 
f 2 and �2

p
:

(51)dbetween = 2 ⋅

√

�2
p

1−�2
p

.

(52)f 2 =
�
2

effect

�2

(53)�
2
p
=

�
2

effect

�
2

effect
+�2

,

and σ2 is the variance within each group. We can therefore 
express f 2 as:

The key is now to rewrite this equation in a way that it 
involves d =

�1−�2

�
:

The original effect size categories suggested by Cohen 
(1988) state that a small effect accounts for 1% of the 
variance, a medium effect accounts for 6%, and a large 
effect accounts for 14% in terms of �2

p
 . The categories for 

Cohen’s d were then derived using the above formula, 
which gives d = 2

√

0.01

1−0.01
≈ 0.2 , d = 2

√

0.06

1−0.06
≈ 0.5 , and 

d = 2

√

0.14

1−0.14
≈ 0.8.

Appendix D: Cohen’s d and f 
in within‑subject designs

This appendix shows the relation between Cohen’s f and d for 
within-subject designs. Again, Cohen’s f and �2

p
 are defined as:

where �2

effect
 is the variance attributable to the effect of interest, 

and σ2 is the error variance. For within-subject designs, the 
relation between f and �2

p
 is the same as for between-subject 

�
2

effect
=

1

2

2
∑

i=1

(�i − �)2 =
1

2

2
∑

i=1

�

�i −
�1+�2

2

�2

,

f 2 =

1

2

∑2

i=1

�

�i−
�1+�2

2

�2

�2
.

⇒ f
2 =

1

2

[

(

�
1
−

�1+�2

2

)2

+

(

�
2
−

�1+�2

2

)2
]

�2

=

1

2

[

(

2�1−�1−�2

2

)2

+

(

2�2−�1−�2

2

)2
]

�2

=

1

2

[

(

�1−�2

2

)2

+

(

�2−�1

2

)2
]

�2

=

1

2

[

(

�1−�2

2

)2

+

(

�2−�1

2

)2
]

�2

=
1

4

(�
1
−�

2
)2

�2
=

1

4
d
2

⇔ f =
1

2
d or d = 2f

(54)f 2 =
�
2

effect

�2

(55)�
2
p
=

�
2

effect

�
2

effect
+�2

,

where �2

effect
 is the variance attributable to the effect of inter-

est, and σ2 is the error variance. The general relationship 
between f 2 and �2

p
 is straightforward and well known. Rewrit-

ing Eq. 52 in terms of �2

effect
 and plugging this into Eq. 53 

yields

Solving this equation for f2 then yields

Now consider the relationship between f 2 and d in a simple 
two-group between-subject design (i.e., the standard two-
sample t test). Here, �2

effect
 is the sum of squared differences 

between the population means μi (i ∈{1, 2}) and the grand 
mean μ (i.e., the average deviation from the grand mean)

�
2
p
=

f 2�2

f 2�2+�2
=

f 2

f 2+1
.

f 2 =
�
2
p

1−�2
p

.
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designs, that is, f 2 =
�
2
p

1−�2
p

 . However, the relation between f and 

Cohen’s d is different. �2

effect
 is the squared mean of the differ-

ence variable and σ2 is the variance of the difference variable. 
For instance, for a one-way design with two levels, �2

effect
 is 

given by:

and σ2 is given by:

where �2

1
 and �2

2
 are the variances within each condition, and 

σ1,2 is the covariance between conditions. Consequently, f 
can be expressed in terms of d:

It follows that, in the within-subject case, a small effect 
accounting for 1% of the variance yields d =

√

0.01

1−0.01
≈ 0.1 , 

a medium effect gives d =

√

0.06

1−0.06
≈ 0.25 , and a large effect 

gives d =

√

0.14

1−0.14
≈ 0.4.
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