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Abstract
Recent reform efforts have pushed toward a better understanding of the distinction between exploratory and confirmatory 
research, and appropriate use of each. As some utilize more exploratory tools, it may be tempting to employ multiple linear 
regression models. In this paper, we advocate for the use of random forest (RF) models. RF is able to obtain better predictive 
performance than traditional regression, while also inherently protecting against overfitting as well as detecting nonlinear 
effects and interactions among predictors. Given the advantages of RF compared to other statistical procedures, it is a tool 
commonly used within a plethora of industries, including stock trading, banking, pharmaceuticals, and patient healthcare 
planning. However, we find RF is used within the field of psychology comparatively less frequently. In the current paper, 
we advocate for RF as an important statistical tool within the context of behavioral and psychological research. In hopes of 
increasing the use of RF in the field of psychology, we provide information pertaining to the limitations one might confront 
in using RF and how to overcome such limitations. Moreover, we discuss various methods for how to optimally utilize RF 
with psychological data, such as nonparametric modeling, interaction and nonlinearity detection, variable selection, predic-
tion and classification modeling, and assessing parameters of Monte Carlo simulations. Throughout, we illustrate the use of 
RF with visualization strategies, aimed to make RF models more comprehensible and intuitive.
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There is little doubt the research landscape is rapidly chang-
ing. Many researchers are pushing for greater transparency 
and open science practices in general (Munafò et al., 2017; 
Nosek, Ebersole, DeHaven, & Mellor, 2018). There has 
been a corresponding call for more meaningful statistics 
(Cumming, 2014; Kruschke & Liddell, 2018), cumulative 
approaches to research (Cumming, 2014; Schmidt & Oh, 
2016), and greater reliance on data visualization (Fife, 2020; 
Fife & Rodgers, 2021; Tay, Parrigon, Huang, & LeBreton, 
2016). While some push for stricter standards of research 
practices (Nelson, Simmons, & Simonsohn, 2018), others 
(e.g., Fife & Rodgers, 2021) advocate that we broaden our 
perspective on what constitutes scientific research to include 
greater use of exploratory data analysis (EDA).

EDA is a data analytic philosophy that emphasizes “lis-
tening” to one’s data. (Tukey, 1986), the father and a vocal 

advocate for EDA, suggested that confirmatory research is 
akin to a prosecutor that places hypotheses on trial. EDA, 
on the other hand, is more like a detective, hunting for clues 
and letting the evidence speak for itself. As such, while con-
firmatory research is hypothesis-driven, EDA tends to be 
hypothesis-generating.

There are several reasons to expand the use of EDA. 
First, few applied researchers are actually ready to conduct 
confirmatory research, since it requires a detailed analysis 
plan that fully anticipates all analytic strategies without any 
deviation. In the words of McArdle, “… it can be said that 
exploratory analyses predominate our actual research activi-
ties. To be more extreme, we can assert there is actually no 
such thing as a true confirmatory analysis of data, nor should 
there be” (McArdle, 2012, p. 405).

Second, while most researchers have EDA intentions, 
some might mistakenly utilize CDA tools (Fife & Rodgers, 
2021).1 Fife & Rodgers, 2021 distinguished between “tools” 
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1  We don’t mean to imply that multiple regression is the only appro-
priate tool for those with CDA intentions, while those with EDA 
intentions can only use random forests. What we mean is that the 
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and “intentions.” There are many tools that were developed 
under the EDA paradigm that may have a place in CDA. For 
example, residual analyses were developed under the EDA 
paradigm (as a way to look for patterns the researcher failed 
to model), but can be used with CDA analyses as well (e.g., 
to verify/demonstrate the researcher met assumptions). On 
the other hand, CDA tools (e.g., hypothesis tests) are prob-
ably not appropriate for analyses with EDA intentions since 
their probability distributions rely on many assumptions not 
likely to be met when doing EDA (e.g., the sample size is 
planned in advance, multiple tests are corrected for multiple 
comparisons).

For example, one frequently misused and abused CDA 
tool is multiple regression. Researchers routinely perform 
multiple tests of significance with dozens of variables to 
identify a hypothesis that is supported by the data. However, 
the p values associated with these significance tests have 
no probabilistic meaning without protections in place (e.g., 
corrections for multiple comparisons, adherence to distri-
butional assumptions, (Cramer et al., 2016; Fife & Rodgers, 
2021)). Even with these protections, multiple regression is a 
poor tool to use for exploratory research, particularly when 
multiple variables are involved, mostly due to its tendency 
to capitalize on chance (see, e.g., McNeish, 2015).

As the research landscape evolves, we hope it becomes 
more friendly toward EDA analyses, and more receptive to 
EDA tools as well. One such tool is random forest (RF), 
a machine learning algorithm well equipped to handle the 
shortcomings of multiple regression. RF has several advan-
tages over traditional approaches. First, RF models reduce 
(but do not eliminate, (Gashler, Giraud-Carrier, & Mar-
tinez, 2008; Segal, 2004)overfitting (Breiman, 2001). Sec-
ond, these models and the classification (and decision trees 
upon which they are based) are nonparametric, providing 
more flexibility when statistical assumptions are untenable 
(Malley, Kruppa, Dasgupta, Malley, & Ziegler, 2012; Stein-
berg & Colla, 1995). Third, RF natively detects interaction 
and nonlinear effects without requiring the user to explic-
itly model these relationships (Ryo & Rillig, 2017; Touw 
et al., 2013). Finally, RF can be used in situations where 

the number of variables far exceeds the number of subjects 
(Breiman, 2001; Matsuki, Kuperman, & Van Dyke, 2016)2

In this paper, we hope to accomplish multiple goals. First, 
we describe how RF works and why it offers several advan-
tages over traditional statistical models. Second, we discuss 
its strengths and limitations as well as address common 
misconceptions. Finally, we conclude by discussing several 
novel and/or underutilized applications of RF in psychol-
ogy, in hopes to guide researchers in how best to utilize this 
statistical tool.

How random forest algorithms work

In this section, we intentionally provide a nontechnical over-
view of the RF procedure in an attempt to make RF less 
mystical and/or daunting. In addition, we have found that 
one need not understand the technical nuances of RF in order 
to capitalize on its strengths and use it to make interesting 
discoveries. For those more interested in a more technical 
treatment of RF, see (Strobl, Malley, & Tutz, 2009), as well 
as Chapter 8 of (James, Witten, Hastie, & Tibshirani, 2013).

Decision trees

The basic unit of analysis for RF models is a decision tree. 
Figure 1 shows an example of a decision tree, which is aimed 

Fig. 1   Example of a decision tree. This fictitious decision tree 
attempts to predict whether someone will use random forest based 
on their statistics anxiety and years of programming. Rectangles are 
called “nodes.” The dotted circles are the predictions of the model 
with the sample size of those meeting each condition listed under-
neath the fitted predictions

2  This is often called the “n < p” problem, where n is the number 
of participants and p is the number of variables. If this occurs, tradi-
tional statistical models cannot be estimated.

Footnote 1 (continued)
arsenal of multiple regression tools (e.g., p values, power calcula-
tion formulae, parametric properties) are probably better equipped to 
handle CDA intentions. Likewise, the tools associated with RF (e.g., 
bootstrapped sampling of individuals, sampling of variables, internal 
cross-validation, nonparametric) are better equipped to handle EDA 
intentions. Presumably, one can choose an a priori hypothesis with 
RF, but one cannot make probabilistic inferences or plan appropri-
ate samples sizes, which are requirements of “strict CDA” (Fife & 
Rodgers, 2021). Likewise, one can use multiple regression when their 
intentions are exploratory (for example, by using stepwise regres-
sion), but the EDA tools for RF are so much better.
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at determining whether an individual will choose to use an 
RF model for their personal research. The top box, or “node” 
asks whether the individual has statistics anxiety. For those 
who do, we predict they will not use RF. Model predictions 
are indicated by dotted circles, with the number of individu-
als who meet those conditions written below the dashed cir-
cles (e.g., 44 individuals reported having statistics anxiety). 
The second node asks how many years of experience the 
individual has in computer programming. For those with 
more than 3 years of experience, the model predicts they will 
use RF for their research. For those who do not, the model 
predicts they will not. Those nodes early in the decision 
tree (e.g., statistics anxiety) are called “branching nodes,” or 
“internal nodes,” while those nodes that do not branch into 
other nodes (e.g., years of programming) are called “termi-
nal nodes,” or “leaf nodes.” (Note: the predictions, indicated 
by circles, are not considered nodes).

Decision trees have been used for decades to model statis-
tical relationships. When entered into a computer algorithm, 
the computer will decide, algorithmically, where in the tree 

the nodes fall and also determine the optimal cutoff (e.g., 
3 versus 8 years of programming experience). From this 
single decision tree, the computer generates predictions. In 
this example, those with more than 3 years of experience in 
computer programming and who do not report anxiety about 
statistics will use RF, while those who do not meet both 
conditions will not. As with any other statistical model, we 
can identify how well we classify individuals. Specifically, 
when we speak of classification accuracy at the node level, 
we call it “node purity.”3

This example can be extended to continuous outcomes. 
Suppose one wanted to predict an individual’s income based 
on the following variables: a) their type of industry (sci-
ence and technology, service, or entertainment), and b) their 
level of self-efficacy. As before, a computer can optimally 
compute the cutoffs for each variable and levels within each 

Fig. 2   Another example of a decision tree, though this example 
includes a continuous outcome variable (income). This fictitious 
decision tree attempts to predict someone’s income from their indus-
try (entertainment, science and technology, and service) and their 

self-efficacy score. As before, dotted circles represent the prediction 
and the numbers below the circles indicate how many individuals 
matched those conditions

3  Accuracy can be determined both at the node level (which is called 
“node purity”) and at the forest level (which is called “prediction 
accuracy”).
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variable.4 However, with continuous outcomes, the predic-
tions for each individual are no longer binary, but rather 
individuals are assigned a value as a prediction (e.g., an 
income of $63,690). Prediction accuracy might then be eval-
uated using sum of squared residuals as is done in a simple 
regression model. Also similar to regression, the fit of the 
model can be visualized with scatterplots. Figure 2 shows 
the decision tree of this model, while Fig. 3 shows the cor-
responding fit of the model overlaid on a scatterplot. Notice 
that the fit of the model is nonlinear, and that the decision-
tree allows the fit of the model to “bend” with the data, as 
appropriate. Likewise, notice how the different prediction 
lines suggest an interaction effect. Specifically, self-efficacy 
increases with income for the science and technology, and 
service industries, but not for entertainment. Although we 
never explicitly asked the decision-tree to model an interac-
tion, it was detected through analysis. The tree simply and 
innately generated different predictions for different combi-
nations of the variables.

Random forest

RF utilizes multiple decision trees, often in the hundreds, 
if not thousands, hence the name random forest. Each tree 

in the forest will utilize a different and randomly selected 
set of observations and predictor variables, which is where 
the term “random” comes from. RF will randomly sample 
participants. By default, it samples with replacement (i.e., 
the sample is “boostrapped”), though one can easily sample 
without replacement. Typically, the sample size is set to 67% 
of the entire sample. This 67% sample is used to calibrate 
the decision tree. The remaining 33% are reserved for cross-
validation in what is called the “out of bag” (OOB) sample 
(Breiman, 2001), each OOB observation is passed through 
each tree to generate predictions. The prediction accuracy of 
the model is then evaluated based on the OOB sample. RF 
has repeatedly been shown to outperform regression models 
(both logistic and standard regression, (Couronné, Probst, & 
Boulesteix, 2018; Kirasich, Smith, & Sadler, 2018; Muchlin-
ski, Siroky, He, & Kocher, 2016)).5 Although the algorithm 
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Fig. 3   This plot shows raw data and predictions from the decision tree shown in Fig. 2. The lines visually reflect the predictions from the deci-
sion tree. These lines are nonlinear and suggest an interaction, even though the model never explicitly modeled nonlinear or interaction effects

5  As we’ve previously mentioned, RF models reduce (Gashler et al., 
2008; Segal, 2004), but do not eliminate overfitting. This reduction 
in overfitting is due to the fact that RF models are an “ensemble” 
method. Ensemble methods combine (aggregate) multiple base mod-
els in an attempt to separate the noise from the signal. Also, because 
RF models internally cross-validate, they can yield an estimate of the 
cross-validation accuracy. This cross-validation accuracy occurs at 
the tree level. It does not natively cross-validate at the forest level. 
To adequately gauge overfitting would likely require a fresh dataset. 
Alternatively, one could split the data prior to beginning RF building, 
build a forest with a training set, and then validate the entire forest on 
the reserved validation set. Throughout this manuscript, our discus-
sions of OOB and overfitting are referring to the cross-validation that 
occurs at the tree level.

4  It may seem odd that Fig.  2 shows different cutoff values for se 
(21.5 vs. 12.5). However, remember that these cutoffs are for different 
industries (service versus science). There is no reason to suspect the 
optimal cutoff of se will be identical for both industries.
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defaults to a sample size of 67%, this can be modified to 
include more or less of the sample.

In addition to random sampling individuals, RF will also 
randomly sample variables. By default, RF generally sam-
ples 

√

m variables when the outcome is categorical and m/3 
when the outcome is numeric, where m is the total number 
of variables. For example, suppose one has five predictor 
variables of income: industry, self-efficacy, years of educa-
tion, parental socioeconomic status (SES), and geographic 
region. In this case, m, the total number of variables equals 
five and the algorithm will sample 

√

5 ≈ 2 variables. So, the 
first tree might sample self-efficacy and parental SES, while 
the second tree might sample parental SES and geographic 
region. (This random sampling of variables technically hap-
pens at the node level, not at the tree level). The number of 
variables selected can also be modified to sample more or 
less variables.

Once variables have been sampled, the algorithm then 
builds a decision tree from this subset of predictors. As with 
regular decision trees, the computer determines the hierar-
chy of the tree, the optimal cutoff values for the node splits, 
and the predicted scores for each individual. Given each tree 
contains a different set of predictors, each tree may produce 
different predictions for each row in the dataset. Addition-
ally, because each tree uses only a subset of the variables, 
there is never any concern about running out of degrees of 
freedom to test the model.6

Once RF constructs multiple decision trees, one can 
assess the “variable importance” (VI) of each predictor in 
the model. Various measures of VI exist, but each attempts 
to evaluate how the fit of the model is improved by the inclu-
sion of each individual predictor. Once such a measure is the 
mean decrease in impurity (also known as the “Gini index”). 
This index simply compares the prediction accuracy of deci-
sion trees both before and after the inclusion of the predictor 
of interest. For example, if we omitted the “Years of pro-
gramming” node in Fig. 1 and simply categorized all those 
without statistics anxiety as “Yes,” 11 individuals who were 

classified as “No” would now be classified as “Yes.” If we 
compare the accuracy of this prediction to the prediction 
where the model includes the “Years of programming” node, 
that would tell us how important “Years of programming” is 
in predicting the outcome. If we were then to do that with all 
variables across all trees (and weight this by the number of 
times that variable is used for splitting), that would give us 
the “mean decrease in impurity,” or Gini index.

While computationally easy to assess, the mean decrease 
in impurity suffers from a major limitation. Specifically, 
variables with many possible values (e.g., continuous vari-
ables) have inflated estimates of VI relative to variables with 
few possible values (e.g., one’s gender classification, (Strobl, 
Boulesteix, Zeileis, & Hothorn, 2007)). Put differently, two 
variables with identical predictive accuracy will have differ-
ent VI estimates if one has more unique values.

An alternative measure of VI, called “permutation VI” 
does not suffer from the same bias. This measure is also 
called “mean decrease in accuracy,” but we will call it “per-
mutation VI” so as to not confuse it with mean decrease in 
impurity. This approach works by randomly shuffling OOB 
participants’ scores for each node in a decision tree. For 
example, Table 1 shows an example where scores are shuf-
fled. In this case, the first OOB person had a score of five, 
but after permutation was given the score associated with the 
second individual (a two). This shuffling removes any cor-
relations between the variables in the dataset. The algorithm 
can then assess the accuracy of the model before versus after 
shuffling. If there is a large difference in OOB predictions 
before versus after shuffling the scores for a particular vari-
able, we can conclude that variable has a strong association 
with the outcome.

For binary outcomes, the permuted VI score indicates the 
average change in OOB error (before versus after shuffling) 
across all trees. For example, if a variable’s permutation VI 
is 0.3, that says that, relative to shuffled scores, the unshuf-
fled scores had OOB scores lower by 30%. For continuous 
variables, the permutation VI score represents the difference 
in sum of squared errors between shuffled and unshuffled 
datasets.

Table 1   Simulated dataset where the self-efficacy scores were per-
muted (or shuffled). Permutation breaks any association between the 
other variables (e.g., income, in this case) and the shuffled variable

Income Self-efficacy  
(before permutation)

Self-efficacy  
(after permutation)

45 5 2
57 2 2
64 2 5
40 6 6
61 5 5

6  This statement requires some clarification. Degrees of freedom 
is defined as the number of observations (N) minus the number of 
parameters estimated. When the number of parameters estimated is 
equal to the sample size, our degrees of freedom will be zero and 
the model will fit perfectly. For example, suppose one had only two 
observations. If they were to try to fit a simple regression model, their 
model would fit a slope and an intercept (two parameters). Also, their 
model would fit their data perfectly (because the line will pass exactly 
through the two datapoints). Likewise, if one has three datapoints and 
attempts to fit a model with two predictors, it too will estimate three 
parameters (two slopes and an intercept) and will fit perfectly. Perfect 
fits are problematic for statistical tests because these tests compute a 
ratio of “signal” to “noise.” When the model fits perfectly, there is no 
noise and this ratio requires division by zero, which is not possible. 
Consequently, there is no way to determine how well the model fits 
the data when degrees of freedom are zero. For more information, see 
(Rodgers, 2019).
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Another advantage of the permutation VI measure is that 
missing data are handled naturally (Hapfelmeier, Hothorn, 
Ulm, & Strobl, 2012). If an individual is missing a score on 
a particular variable (say, years of education), the shuffling 
of scores will simply assign that missing value to another 
individual.

The disadvantage of permutation VI is that it is compu-
tationally expensive. The computer must shuffle scores for 
every variable, across every node, across every tree in which 
it appears. Yet this disadvantage becomes increasingly less 
frustrating as computers become more powerful.

These VI measures allow researchers to winnow down 
a large list of variables into a smaller subset of contend-
ers for further exploration. This could be done ad hoc (e.g., 
by choosing to investigate the top three variables), or more 
concretely. For example, (Genuer, Poggi, & Tuleau-Malot, 
2010) utilized mean decrease in impurity VI to develop an 
objective variable selection algorithm. This algorithm works 
by generating multiple forests so one can estimate variabil-
ity in VI estimates, which can then be used to essentially 
determine which variables have VIs that exceed chance. This 
algorithm can be found in the VSURF package in R (Genuer, 
Poggi, & Tuleau-Malot, 2019).

In summary, RF models generate hundreds or thousands 
of decision trees to produce aggregated predictions, all the 
while natively detecting interactions and nonlinear patterns. 
Because these models utilize random sampling of variables, 
the models circumvent the n < p problem and reduce overfit-
ting. These characteristics, we will show, represent a serious 
advantage for doing many types of research.

Common misconceptions

In the previous section, we outlined several advantages of 
RF models. Given that psychological research frequently 
encounters nonlinear patterns (Hayes, Laurenceau, Feldman, 
Strauss, & Cardaciotto, 2007; Helmich et al., 2020; Lord & 
Novick, 1968; Mattei, 2014), violated assumptions (Micceri, 
1989; Skidmore & Thompson, 2013; Van Horn et al., 2012), 
and interactions (Cronbach, 1975), it is somewhat surprising 
to see RF models so infrequently used. We suspect the rea-
son for this is that researchers have common misconceptions 
about RF models.7

The first, and perhaps most common misconception, is 
that RF models are inappropriate when one is examining a 

small number of predictor variables. We suspect this mis-
conception stems from the fact that RF was initially designed 
to handle very large numbers of predictor variables (e.g., 
more variables than observations as with genetic or bio-
medical research). While this is true, this does not mean RF 
models cannot be used with a small number of variables, 
especially when one wants to leverage RF’s ability to detect 
interactions and/or nonlinear effects.

Another misconception we have encountered is that one 
must have a large sample size to utilize RF models. In real-
ity, RF models do no worse than traditional models (e.g., 
regression) and likely do much better. Estimates of cross-
validation accuracy (i.e., OOB error) will reflect the uncer-
tainty associated with the smaller sample sizes. Granted, if 
sample sizes are small enough and/or the signal in the data 
are weak enough, these OOB estimates will report that the 
model struggles to predict the outcome of interest. In this 
sense, RF models do struggle with smaller sample sizes. 
However, we see this as a feature of RF, not a limitation. 
For example, in order to determine whether certain variables 
contribute to a prediction model, it is better for the model to 
admit difficulty (e.g., through imprecise predictions) than to 
capitalize on chance patterns as linear models might.8

While these common misconceptions can be easily dis-
missed, there are some genuine limitations of RF models. We 
will outline and address these limitations in the next section.

Limitations of RF models

RF models are “black box” algorithms

Single decision trees can be easily and intuitively interpreted 
visually if there are not too many nodes. However, the pre-
dictions of individual decision trees are highly unstable. 
Depending on the number of predictors within an analysis, 
the predictor variable chosen for the first branching node can 
be different across two single decision trees. Moreover, this 

8  Sampling variability will affect RF models in different ways. 
Growing a small number of decision trees increases the variabil-
ity of VI estimates ((Wang, Yang, & Luo, 2016)). Because it costs 
the researcher nothing other than computational time, it is generally 
recommended to grow large forests (e.g., at least 500 trees). On the 
other hand, having a small sample size cannot be fixed algorithmi-
cally. Under extreme cases, the OOB sample will be small and thus 
OOB/VI estimates will be highly unstable. Likewise, there may not 
be that many unique values from which to bootstrap. However, once 
again, this is a problem not unique to RF models. All statistical mod-
els will struggle with small sample sizes (unless one has strong priors 
in a Bayesian analysis. See e.g., Depaoli, 2013). However, splitting 
the dataset into training and testing might exacerbate the problem of 
small sample sizes, at least at the individual tree level. However, this 
problem can be partially offset by generating a large number of trees 
(Wang et  al., 2016). Even still, RF models are preferred to models 
that do not include cross-validation.

7  Most of these misconceptions have come from personal experi-
ence of the authors. While we cannot pinpoint exact statements in 
the literature where people have stated misconceptions, we have 
encountered resistance from colleagues and reviewers when we have 
recommended RF models. In this section, we aim to address these 
misconceptions, which might be preventing the utilization of RF in 
psychological research.
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difference likely alters the entire structure of the tree and the 
terminal node prediction between two decision trees might 
vary drastically (Strobl et al., 2009).

RF addresses this instability by aggregating terminal node 
predictions across hundreds or thousands of decision trees. 
Although this process is the very reason for the advantages 
of RF, limitations remain. Specifically, as RF is a computer-
generated machine learning model, it is fundamentally a 
“black box” algorithm (Breiman, 2001), making it difficult 
to interpret the model itself. It would be unfeasible, for exam-
ple, to visually display all decision trees generated from the 
random forest. More specifically, while regression models 
yield a simple algebraic equation following analysis, RF does 
not. In order to predict new observations, one would save the 
hundreds or thousands of single decision trees into a com-
puter program and feed new data through the saved program.

However, while the fitted algorithm cannot be easily con-
ceptualized, the output of the model can because users can 
visualize the predictions of a RF model. To do so, one could 
feed the RF model a new dataset containing a wide range of 
predictor values. RF will then use the forest for the new data 
to estimate predictions. Of course, many statistical programs 
will do this sort of prediction automatically. As an example, 
Fig. 4 displays the same data as shown in Fig. 3, but with the 
fits of a RF model instead of the fits of a single decision-tree.

One convenient tool for visualizing RF models is Flexplot 
(Fife, 2021), which is a software application available in R, 
JASP, and Jamovi. Flexplot is designed to visualize statisti-
cal models and has many native functions for visualizing RF 
models. Flexplot can easily visualize a few variables, though 

visualizing more than a few variables can be less intuitive. 
For guidance on visualizing more than a few variables, see 
(Fife, Longo, Correll, & Tremoulet, 2021) for the JASP ver-
sion of Flexplot and (Fife, 2021) for the R version. Or, for 
a systematic strategy for visualizing multivariate data with 
Flexplot, see (Fife & Mendoza, 2021). An alternative to mul-
tivariate visualizations is to plot what are called “marginal” 
relationships. For example, one might use an added variable 
plot to visualize the relationship between self-efficacy and 
income, holding all other variables constant.

In addition to visualizing predictions, one could also con-
ceptualize variable importance metrics. As mentioned previ-
ously, VI metrics are intuitive to interpret and do not require 
users to peek within the black box or to visualize multivariate 
relationships. For the previous dataset, self-efficacy has a VI 
of 28.584, which can be roughly interpreted to mean that, 
relative to a model that excludes industry, the model with 
industry is approximately $28,584 closer to predicting one’s 
actual income. Additionally, the VI for self-efficacy is 13.544.

RF models lack distributional theory

A second disadvantage of RF is that these algorithms lack 
statistical distribution theory. While RF’s nonparametric 
approach is advantageous when assumptions are violated, 
this also makes it difficult to make sophisticated statistical 
inferences. For example, one cannot derive a p value or a 
confidence interval from a population distribution. One can 
obtain substitutes with resampling procedures and from 
these substitutes derive confidence intervals or make other 
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Fig. 4   This shows the same data displayed in Fig. 3, but the fits are from a RF model
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sorts of inferences. However, these inferences are tied to 
the data at hand, though past research has shown that RF 
predictions have parametric characteristics and can often 
be used for statistical inferences (McAlexander & Mentch, 
2020), including prediction intervals (Zhang, Zimmerman, 
Nettleton, & Nordman, 2019). Also, RF performs quite well 
in making inferences beyond the data (Fox et al., 2017; Gao, 
Wen, & Zhang, 2019; Lu et al., 2016).

Despite this limitation, we rarely see any reason to use RF as 
the final step in the research process as statistics are tools that 
allow us to make ever-more-precise mathematical statements 
about theory. For this reason, nonparametric models are simply 
“hacks”; they allow us to temporarily acquire an answer to a 
question in such a way that we don’t deceive ourselves (e.g., 
by violating a statistical assumption). Arguably, the ultimate 
goal of research is to have precise mathematical parametric 
models, but often these nonparametric models are a necessary 
pit stop.9 RF models, while rarely (if ever) the final destination 
of a theory’s journey, they do assist in moving from imprecise 
nonparametric answers to specific parametric formulations. We 
will discuss examples of this process in later sections.

In short, RF models detect interactions, model nonpara-
metric relationships, and they reduce overfitting. While they 
are considered a “black box” algorithm, their predictions can 
be easily visualized (e.g., by using Flexplot), particularly 
when one limits visualizations to only a few variables. Addi-
tionally, RF models are best considered a pit stop toward 
parametric modeling, rather than the final step in theoretical 
development.

Having covered the strengths, misconceptions, and limi-
tations of RF models, we now turn to the core crux of our 
paper. As we hope to show, RF models can be used in novel 
and unique ways. In the following section, we identify a 
few strategies one might use to leverage the strengths and 
advantages of RF in psychological research.

Common, uncommon, and novel 
applications of RF models

The variety of applications of RF continues to expand in 
psychological research. In this section, we discuss a num-
ber of different strategies for using RF models. For each 

approach, we describe an overall strategy and demonstrate 
this strategy with applied examples.

Variable selection then parametric modeling

Perhaps the most common reason people use RF models is 
for variable selection. For example, RF models have been 
used in psychology to predict correlates of nonsuicidal self-
injury (Ammerman, Jacobucci, & McCloskey, 2018), smok-
ing behaviors (Kitsantas, Moore, & Sly, 2007), utilization 
of psychiatric services (Rossi, Amaddeo, Sandri, & Tan-
sella, 2005), adherence to HIV testing (Pan, Liu, Metsch, & 
Feaster, 2017), and use of Internet-based psychotherapeutic 
treatment for depression and anxiety (Wallert et al., 2018).

Very often researchers are not necessarily, or at least pres-
ently, interested in developing theoretical explanations of 
psychological phenomena. Rather, researchers may wish to 
describe a phenomenon (Mõttus et al., 2020), or to winnow 
down a large list of candidate variables to a smaller subset 
of viable predictors. While algorithms exist for doing this 
in multiple regression (i.e., the various stepwise regres-
sion methods), these methods cross-validate poorly (Smith, 
2018). Instead, RF can be used. The ensemble of decision 
trees improves cross-validation accuracy.

One limitation to this approach is that RF treats VI meas-
ures as if they represent the final stage of analysis. As we 
said previously, RF models are best considered as data ana-
lytic pit stops; they are powerful tools that offer valuable 
insight into how we might then utilize parametric models, 
particularly when paired with visualizations. In the follow-
ing section, we illustrate how one might leverage VI meas-
ures as a means of gaining additional insights.

Example and overall strategy

When attempting to identify a small number of variables 
from a large set of candidates, we recommend the following 
strategy:

1.	 Enter all variables of interest into a RF model and com-
pute variable importance

2.	 Sort the variables in terms of VI.
3.	 Select a small number of candidate variables to visualize 

(e.g., the top four variables as measured by VI).
4.	 Visualize the RF predictions for this small group of can-

didate variables. Visualizing multivariate data can be 
tricky, though we suggest (Fife & Mendoza, 2021) or 
(Fife, 2021) for simple multivariate visualization strate-
gies.

5.	 Use the visuals from Step #4 to select appropriate vari-
ables for parametric modeling. The preceding step might 
suggest a certain variable is not helpful to the model, 

9  A similar statement can be made of models aimed to predict ver-
sus describe a phenomenon. Generally, classical statistical techniques 
(e.g., t-tests, ANOVAs, regressions) are used to describe associations, 
often as part of an effort to explain human behavior. Machine learn-
ing techniques, on the other hand, are more often concerned with 
prediction. However, we see prediction as a stepping-stone toward 
explanation, much like parametric models are a stepping-stone toward 
parametric models. In a sense, the maturity of one’s science could be 
said to move from nonparametric/prediction models to parametric/
explanatory models. See (Fife & Rodgers, 2021), as well as (Mõttus 
et al., 2020).
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that two variables interact, or a nonlinear pattern exists. 
That step will guide the choice of parametric model.

When one uses this strategy, they retain many of the bene-
fits of RF (i.e., cross-validation, native interaction detection, 
and native nonlinear detection), without the disadvantages 
(i.e., “black box” algorithm).

As an example, we simulated a dataset that contained 
the outcome variable of suicidal ideation and eight pre-
dictor variables: locus of control, depression, age, gender, 
parental income, grades, social support, and parental history 
of depression. The data were simulated in such a way that 
age had a nonlinear relationship with suicidal ideation and 
depression and social support had an interaction.

We began by computing VI for each of the predictor vari-
ables. Table 2 shows VI for the variables social support, age, 
depression, and locus of control. The next step was to plot 
these variables using Flexplot. This is an iterative process 
that may require dozens of plots to disentangle the relation-
ships existent in the data. For example, one might choose 
to place social support on the X-axis in one plot and put 
depression/LOC in panels. Subsequently, the user might 
place depression on the X-axis and LOC/age in panels. Each 
visual represents a different “view” or “angle” of the mul-
tivariate relationship that might reveal different features of 
the relationship.

When visualizing these plots, the user is seeking to iden-
tify evidence of nonlinear patterns and/or interaction effects 
since these are most difficult to grasp without visuals. For 
those interested in understanding how to use multivariate 
visualizations to detect nonlinear/interaction effects, we rec-
ommend (Fife & Mendoza, 2021). The end result of this pro-
cess yielded three distinct relationships illustrated in Fig. 5. 
The top plots show the interaction between depression and 
social support. Notice for those reporting lower levels of 
depression, there exists a weak relationship between social 
support and suicidal ideation. However, the relationship is 
stronger for those reporting more severe levels of depression.

The bottom-left plot shows the nonlinear relationship 
between suicidal ideation and age. Notice suicidal ideation 
increases from ages 12 to roughly 18, plateaus until age 22, 
and then trends downward. Finally, the bottom-right plot 

shows there is almost no relationship between locus of con-
trol and suicidal ideation. Since this had the smallest VI 
within the top four predictor variables, there is little reason 
to visualize the remaining variables in the dataset.

The visuals in Fig. 5 suggest the following parametric 
model:

 This parametric model was fit to the data, then visualized 
in Fig. 6. The red lines show the fit of the regression model, 
while the blue lines show the fit of the RF model. The two 
predictions are quite similar, at least near the center of the 
data, which suggests the parametric model seems to capture 
the most important elements of the nonparametric model.

Nonparametric modeling

In order to tie statistical models to distributional proper-
ties, models make several key assumptions: normality, inde-
pendence, constant variance, linearity, and homogeneity of 
regression. The latter two assumptions are particularly prob-
lematic for linear models and RF is well equipped to handle 
these assumptions.10

Detecting nonlinearity

Standard statistical models assume linear relationships 
between the predictors and the outcome. If one encounters 
a nonlinear relationship, linear models can be rigged to fit 
some limited nonlinear relationships (e.g., we can add a 
squared predictor to a linear model to get nonlinear pre-
dictions). However, if the appropriate function is not linear 
(e.g., exponential, logarithmic, logit), linear models will 
fail.11 RF models, on the other hand, can fit patterns from 
any nonlinear relationship: exponential, logarithmic, logis-
tic, polynomial, etc. When researchers begin analyses by 
visualizing RF models, they can then attempt to identify the 
appropriate nonlinear function and, if they wish, formalize 
the mathematical relationship.

Suicide ideation = Age + Age2 + Depression

+Social support + Depression × Social support

Table 2   Variable importance for the top three variables in the simu-
lated suicide ideology dataset

Variable Variable.
Importance

socialsupport 1.80
age 1.27
depression 0.85

10  RF does not assume linearity or homogeneity of regression. Addi-
tionally, RF models don’t assume normality or constant variance per 
se; the residuals can be distributed normally, as a Poisson, as an expo-
nential, as a gamma, etc. However, when modeling continuous out-
comes, a key component of the RF algorithm is the computation of 
sum of squared residuals (SSR). SSRs work quite well for symmet-
ric distributions. However, for non-symmetric distributions (outly-
ing data and/or skewness), RF’s reliance on SSRs may bias estimates 
and there are alternative methods that can reduce this bias (Ghosal & 
Hooker, 2020).
11  Sometimes one can fix some relationships (e.g., exponential or 
logarithmic relationship) with transformations. Others (e.g., logit) 
cannot be fixed with a simple transformation.
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Fife (2020) utilized this exact approach when modeling 
the relationship between mental illness and psychological 
distress. Upon visually inspecting RF predictions, Fife was 
able to identify an appropriate mathematical function, called 
the Michaelis–Menten or MM equation. The data were refit 
with a Bayesian MM model and results were replicated using 
the same MM model on an independent dataset (see video 
explaining this process at https://​youtu.​be/​5Bpmk​tmvgIA). 
Figure 7 shows the model fit with RF (left) and the MM 
equation (right).

To be clear, we reiterate that RF models are rarely an end 
unto themselves. Rather, they could serve an important step 
in helping researchers shift from nonparametric to paramet-
ric modeling. The results of a RF algorithm can help guide 
researchers in how to add theoretical and/or statistical preci-
sion to their models.

Interaction detection

Another important assumption of traditional statistical mod-
els is the assumption of homogeneity of regression slopes. 
This assumption states that if any interactions do exist 
between variables, they have been explicitly modeled, see 
(Fife and Mendoza, 2021; Gelman & Hill, 2006). If interac-
tions exist that have not been modeled, estimates will be 
biased and conclusions gleaned will be misleading. (Gelman 
& Hill, 2006) noted that violating the assumption of homo-
geneity of regression (or, “additivity” in their terminology) 
is one of the most egregious violations.

As an example, suppose a researcher would like to per-
form a multiple regression. They might evaluate the main 
effect while also controlling for a number of different vari-
ables in order to determine the variance attributable to the 
main effect. However, as we mentioned previously, multiple 
regression assumes all “controlled” effects do not interact 
with the variable of interest. This is termed the “homogene-
ity of regression” assumption. When violated, any conclu-
sions gleaned from main effects could be extremely mislead-
ing. For example, consider the image in Fig. 8, which shows 
the simulated results of a factorial ANOVA that contains a 
crossover interaction. If one were to estimate the main effect 
of treatment, one would conclude that there is no effect of 
treatment. This would be a misleading conclusion. Rather, 
the main effect of treatment depends on gender.

The homogeneity of regression assumption applies to all 
linear models (e.g., multiple regression, factorial ANOVA, 
ANCOVA) and these models are not robust to violations 
(Fife & Mendoza, 2021; Gelman & Hill, 2006), yet research-
ers routinely utilize these models without assessing the via-
bility of this assumption (Fife & Mendoza, 2021). This lack 
of attention to this critical assumption is understandable; 
for even simple analyses, modeling interactions requires a 
large number of terms. For example, with only four vari-
ables, one would need to model 16 terms (one intercept, 
four main effects, six two-way interactions, four three-way 
interactions, and one four-way interaction). Few studies will 
have large enough sample sizes to precisely estimate the size 
of these effects. Clearly, it is much easier to assume a main 
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effect model and hope there are no interactions present, but 
the risks are great.

A better alternative is to utilize RF models. RF will 
natively detect interactions without explicitly modeling 
them. This saves effort on the part of the researcher, who 
would otherwise have to, by hand, choose which interactions 
should be estimated.

Additionally, in traditional regression, when all interac-
tion terms are explicitly modeled, the researcher must then 
study large tables to determine whether each interaction is 
worth keeping in the model. The researcher could utilize p 
values to dismiss interaction terms, but because of multiple 
testing, these p values have no probabilistic meaning and are 
thus prone to bias. Researchers could instead utilize effect 
size measures (e.g., semi-partial R2) to make decisions, but 
these are also prone to overfitting and extremely sensitive to 
multicollinearity. No matter the metric one uses, the process 
is time-consuming, difficult, and prone to capitalizing on 
chance. On the other hand, with RF models, the user need 
not decide from lengthy tables which terms to keep as the 
user can inspect VI metrics. If a variable is important, either 
as a main effect or as an interaction, it will be reflected in 
the VI metric.

Finally, estimating interactions in traditional regression is 
very difficult and requires very large sample sizes. Moreover, 
doing so requires degrees of freedom the researcher may 
be unable to spare. On the other hand, RF models do not 
“spend” (Mentch & Zhou, 2019; Rodgers, 2019) degrees of 

freedom to estimate interactions. Instead, modeling interac-
tions is a natural part of the fitting process.

Overall, linear models are not robust to violations of the 
assumption of homogeneity of regression and evaluating 
the viability of this assumption is cumbersome and prone 
to imprecision. Taken together, we think RF should be the 
default method for modeling many multivariate relation-
ships, particularly when more than two or three variables 
are used. Much like residual dependence plots are used for 
assessing homoscedasticity/linearity in regression, perhaps 
RF modeling can be a first step in evaluating the homogene-
ity of regression slopes assumption in multiple regression.

Unfortunately, using RF models for the purpose of inter-
action detection is neither well known nor common. How-
ever, (Kitsantas et al., 2007) utilized classification trees to 
identify whether a small set of predictors, including social 
risks, health risks, and peer smoking, interacted with one 
another in predicting intentions to smoke. They discovered 
that social and health risks were highly dependent on peer 
smoking behavior.

Example analysis

We will briefly illustrate this strategy with another simu-
lated dataset. Suppose one were interested in modeling the 
efficacy of a smoking prevention program on adolescents’ 
intentions to smoke while controlling for peer and parent 
smoking. Further suppose one simply fit the model without 
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If one wished to estimate the effect of treatment on depression, after 
controlling for gender, the model would suggest there is no treatment 

effect. Clearly there is a treatment effect; it simply depends on gender. 
Standard statistical models assume no interactions (except for those 
that are explicitly modeled). RF models do not make this assumption
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assessing the homogeneity of regression assumption. Table 3 
shows an ANOVA summary table of this model, which 
shows the treatment effect was ineffective at reducing inten-
tions to smoke. However, suppose we modeled the data 
using a RF algorithm.

Figure 9 outputs predictions from this model. The RF 
model suggests that, without treatment, adolescents increase 
their intentions to smoke the more their peers smoke. For 
the treatment group, on the other hand, peer influence seems 
to have no effect on intentions to reduce smoking. In other 
words, the model that (incorrectly) assumed linearity and 
heterogeneity of regression committed a serious type II 
error.

As we mentioned previously, RF models best serve as 
a guide for determining what sort of parametric model is 
best. For this particular dataset, the RF model suggests we 
might add a quadratic term to the peer effect as well as an 

interaction. If we did this, we might plot the fits of the modi-
fied regression model, as in Fig. 10.

Assessing parameters of a Monte Carlo

This final strategy is more on the technical side and will 
likely only be of interest to statisticians. This application 
uses RF models to identify important parameters in a Monte 
Carlo simulation. Monte Carlo simulations are powerful 
techniques often used by statisticians to identify how various 
statistical procedures perform under different conditions. For 
example, one might wish to identify how nonlinear param-
eters bias R2 values. To do so, a researcher might perform 
a Monte Carlo simulation, where the researcher simulates 
different numeric conditions, such as degree of nonlinearity 
(e.g., by modifying the beta weight of the quadratic term), 
size of the linear component (e.g., by modifying the beta 
weight for the linear term), the sample size, and the number 
of covariates.

When varying these parameters, it is common to pick a 
few values that span a reasonable range; for example, speci-
fying the degree of nonlinearity as standardized regression 
weights of either -0.6, -0.3, 0, + 0.3, or + 0.6. Subsequently, 
researchers might report results via a large table that shows 
average bias under every possible condition. Alternatively, 
some might build an ANOVA that estimates the mean type 
I error rate from each of the levels of the parameter values, 

Table 3   ANOVA summary table of a simulated dataset investigating 
the effect of treatment on intentions to smoke, after controlling for 
peer and parent Smoking

DF SS MS F p

Peer 1 52.87 52.87 195.06 < .001
Parent 1 1.00 1.00 3.68 .055
Treatment 1 0.00 0.00 0 .956
Residuals 896 242.87 0.27 NA
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Fig. 9   This plot shows the fits from a RF model that predicts smoking 
intentions from peer smoking (X-axis), parent smoking (panels), and 
treatment condition (colors). The RF model picks up on the nonlinear 

effect of peer on intentions, as well as the interaction between treat-
ment and peer
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such as nonlinear component, linear component, sample 
size, and number of covariates.

A better alternative to this approach is to sample param-
eters from a liberal range of values. For example, rather than 
selecting regression weights of -0.6, -0.4, etc., one could 
instead sample from a uniform distribution that ranges from 
-0.6 to + 0.6. In other words, every iteration of the Monte 
Carlo will yield unique parameter values. One can then use 
RF in the same way the ANOVA is commonly used. The 
advantage of this is RF will identify important parameters 
and whether their importance derives from nonlinear rela-
tionships and/or interaction effects.

As of this writing, we know of no published articles that 
utilize this strategy. However, the strategy seems promising 
and may be of use to future researchers.

Discussion

The research landscape is rapidly changing. As a result, 
analysts are becoming more inclined to expand their sta-
tistical toolbox. It is our hope this expansion will include 
greater use of exploratory data analysis, including the use 
of RF models. RF models include several advantages that 
are particularly relevant to psychologists, including the 
ability to detect interactions and nonlinear effects as well 

as an impressive ability to avoid overfitting. While RF 
models are underutilized, we hope this paper has been 
a step toward more widespread adoption of RF models. 
In this paper, we have attempted to provide a simple 
explanation of RF models, addressed common miscon-
ceptions, and highlighted the limitations of RF models, 
including their “black box” nature and their nonparametric 
assumptions.

We have also provided several applied examples to show 
how to leverage RF’s strengths and overcome its limitations. 
The key to this endeavor is to visualize the predictions of 
RF models. Visuals can reveal insights into the statistical 
information RF models are able to capture as well as suggest 
parametric alternatives one might pursue. We have provided 
an appendix (Appendix A) that demonstrates how to perform 
simple RF analyses and visualizations.

To be clear, we do not suggest RF models replace exist-
ing methods. Rather, we suggest the appropriate procedure 
to use depends on the analyst’s intentions. RF models are 
best suited when researchers have exploratory intentions, in 
which RF models serve as a pit stop toward more sophisti-
cated confirmatory methods. Alternatively, RF models can 
be used for more confirmatory research to check the viability 
of standard parametric models (e.g., linearity and homoge-
neity of regression). In either case, we hope to see greater 
use of this powerful tool.
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Fig. 10   This plot shows the predictions from a parametric model where a quadratic term was added to the peer/intention to smoke relationship, 
as well as an interaction term
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Appendix : Getting started with random 
forests

To begin, we must install two packages: the party package, 
which contains functions to perform random forest, as well 

as flexplot, which will enable us to visualize the results 
from an RF analysis. The party package is available on 
CRAN and so can be installed with a simple command:

The flexplot package is not currently available on 
CRAN. To install it, we must first install another 
package called devtools, which allows us to install 

a package contained on GitHub. Subsequently, we 
can use the install_github command to install 
flexplot:

Once both packages are installed, we can load each into 
the working environment:

The flexplot package comes pre-loaded with several 
datasets. For this example, we will use the avengers 
dataset, which contains a sample of 812 simulated observa-
tions about various characteristics related to the final Aveng-
ers battle in the movie Endgame. The variables include a 

strength score, number of injuries, minutes spent fighting, 
etc.

Suppose we wish to determine which variables are the 
best predictors of PTSD (labeled ptsd in the dataset). To 
do so, we could build a random forest model as follows:

The first line of code (set.seed(2335)) simply sets 
the random number generator seed to a fixed value. This will 
ensure that those who reproduce our code will get the same 
results. The second line creates an object called rf_model_
results that stores the results of a random forest model. 

The code ptsd~. simply tells the function to predict distress 
from every other variable in the dataset. Please note: this will 
probably take quite a while to run the analysis.

Subsequently, we could use the estimates function 
in the flexplot package to compute variable importance:
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Which will generate the following results:

The estimates function automatically sorts the 
variables in terms of VI. In this case, minutes.fighting, 
injuries, and damage.resistance are the top predictors of 
ptsd.

At this point, we suggest fitting a smaller model that only 
includes the top predictors. The reason for this is because 
flexplot struggles to visualize very large models. So, for 
this dataset, we might fit another smaller model that only 
includes the top three predictors:
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for each predictor variable. The important component is 
the prediction = predictions argument; that 
will pass the flexplot function the predictions from the 
RF model we computed earlier. These plots are shown in 
Fig. 11.

Now, let’s compute predicted values for the RF model. To 
do so, we can use the compare.fits function in flexplot. 
This computation is fairly computationally intensive. For 

Now, we’ll take turns visualizing each of the top three 
variables on the x-axis. (Visualizing each variable on the 
x-axis makes the patterns more visually apparent). We’ll 
place the other variables in panels to allow us to detect 
interactions. The following code produces three plots, one 

that reason, we’re going to save these predictions in an object 
called prediction. This will allow us to visualize it mul-
tiple ways without having to recompute the predictions.
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These plots could, of course, be used to identify an appro-
priate parametric model (e.g., perhaps a model where there’s 
a nonlinear effect for damage.resistance and minutes.fight-
ing, and possibly interactions between damage.resistance 
and injuries). For more information on identifying appro-
priate linear models from graphics, see (Fife & Mendoza, 
2021).
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