
The Order & Complexity Toolbox for Aesthetics (OCTA): A systematic
approach to study the relations between order, complexity,
and aesthetic appreciation

Eline Van Geert1 & Christophe Bossens1 & Johan Wagemans1

Accepted: 2 June 2022
The Psychonomic Society, Inc. 2022

Abstract
Do individuals prefer stimuli that are ordered or disordered, simple or complex, or that strike the right balance of order and
complexity? Earlier research mainly focused on the separate influence of order and complexity on aesthetic appreciation. When
order and complexity were studied in combination, stimulus manipulations were often not parametrically controlled, only rather
specific types of order (i.e., balance or symmetry) were usually studied, and/or the multidimensionality of order and complexity
was largely ignored. Progress has also been limited by the lack of an easy way to create reproducible and expandible stimulus
sets, including both order and complexity manipulations. The Order & Complexity Toolbox for Aesthetics (OCTA), a Python
toolbox that is also available as a point-and-click Shiny application, aims to fill this gap. OCTA provides researchers with a free
and easy way to create multi-element displays varying qualitatively (i.e., different types) and quantitatively (i.e., different levels)
in order and complexity, based on regularity and variety along multiple element features (e.g., shape, size, color, orientation). The
standard vector-based output is ideal for experiments on the web and the creation of dynamic interfaces and stimuli. OCTA will
not only facilitate reproducible stimulus construction and experimental design in research on order, complexity, and aesthetics. In
addition, OCTA can be a very useful tool in any type of research using visual stimuli, or even to create digital art. To illustrate
OCTA’s potential, we propose several possible applications and diverse questions that can be addressed using OCTA.

Keywords Order . Complexity . Aesthetics . Open-source software . Stimuli . Stimulus construction . Perceptual grouping .

Perceptual organization . Reproducible stimuli . Python . Shiny app

Order, complexity, and the balance between order and com-
plexity have long been considered important factors influenc-
ing aesthetic appreciation (for a review, see Van Geert &
Wagemans, 2020). Although most empirical work has con-
firmed the importance of order and complexity, concrete re-
sults on the extent and direction of order and complexity in-
fluences, as well as the relationship between order and com-
plexity, vary widely. Previous research has some limitations
concerning the stimuli and manipulations used, however, and
leaves some important research options uncovered (cf. The
need for OCTA below). The Order & Complexity Toolbox
for Aesthetics (OCTA) fills these gaps by providing

researchers an easy, open, and reproducible way to create
stimuli varying in order and complexity on multiple element
features (see Fig. 1 for some OCTA example stimuli). Being
available as both a Python package and a Shiny application,
OCTA1 is accessible to both researchers with and without
programming experience.

We will first discuss how we define order and complexity,
and explain how we view the relation between order, com-
plexity, and appreciation. Next, we list existing stimulus sets
and stimulus generation tools (to be) used in research on the
perception and appreciation of order and complexity, point out
the limitations to the existing research and tools, and indicate
how OCTA can provide a fulfilling answer to the existing
gaps. Then, we introduce the newly created stimulus genera-
tion toolbox and discuss its steps, concepts, and options in
more detail. Afterwards, we treat more advanced uses of

1 We will use octa in small letters when referring specifically to the Python
package and OCTA in capital letters when referring to the toolbox in general,
regardless of whether it concerns the Python implementation or the Shiny app.

* Eline Van Geert
eline.vangeert@kuleuven.be

1 Laboratory of Experimental Psychology, Department of Brain and
Cognition, KU Leuven, Tiensestraat 102 - box 3711,
3000 Leuven, Belgium

https://doi.org/10.3758/s13428-022-01900-w

/ Published online: 28 September 2022

Behavior Research Methods (2023) 55:2423–2446

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01900-w&domain=pdf
http://orcid.org/0000-0002-7848-5998
mailto:eline.vangeert@kuleuven.be

Behavior Research Methods (2023) 55:2423–2446

OCTA, provide a range of potential applications for OCTA,
list some possible future extensions of OCTA, and give advice
on how to start using OCTA.

Defining order and complexity

In this work, we define (stimulus) order as all aspects related
to the structure and organization of information (in a stimu-
lus) and (stimulus) complexity as all aspects related to the
quantity and variety of information (in a stimulus; Van Geert
& Wagemans, 2020). For example, Fig. 2a and b have the
same number of distinguishable elements and the same dis-
similarity between those elements (i.e., complexity; Berlyne,
1960) but differ in the way the elements are arranged (i.e.,
order). Similarly, also Fig. 2c and d share the same level of
complexity, but differ in the way the elements are organized.
In Fig. 2a and b, the difference in order is a qualitative differ-
ence, a difference in the type of order applied. In Fig. 2c and d,
it concerns a quantitative difference, a difference in the level
of order present. Figure 2a and c have the same overall orga-
nization (i.e., level and type of order), but differ in the quantity
and variety of information present (i.e., different level of
complexity).

In this example, we referred to the multidimensional con-
cepts of element order and element complexity as referring to a
combination of order and complexity on the color, shape, and
size dimensions: we focused on the order and complexity of
the distinguishable elements present in the stimulus on the
different feature dimensions in combination. It is however also

possible to investigate other forms of order and complexity in
the stimulus, for example position order and complexity, spe-
cific feature order and complexity, or the complexity of indi-
vidual feature values used. Qualitatively different position
patterns can be used to place the elements in the stimulus
(i.e., type of position order), and these positions can also show
more or less diversity (e.g., equally spaced positions in rows
and columns versus completely random positions; position
complexity). Feature order and complexity are part of element
order and complexity, but focus on one specific element fea-
ture at a time. For example, Fig. 2a has a higher level of size
complexity than Fig. 2c, but b and d have a higher level of
orientation complexity. Furthermore, the individual feature
values of the elements present in the stimulus, or the features
of the stimulus as a whole, may be more or less complex. For
example, a safety pin may be a more complex shape than a
circle, or placing the elements on a circular outline may form a
less complex overall organization than placing them on a rect-
angular outline. Acknowledging the multidimensionality of
order and complexity may be important in the search for more
consistent relationships between order, complexity, and aes-
thetic appreciation (Nadal, Munar, Marty, & Cela-Conde,
2010; Van Geert & Wagemans, 2020).

Important to understand is that order and complexity are no
direct opposites, and can be concurrently present, either on the
same or on different feature dimensions. We distinguish order
from simplicity (i.e., opposite of complexity) and complexity
from disorder (i.e., opposite of order). Complexity on a feature
dimension allows for a broader range of order levels and a
larger set of order types to be present than is the case for

Fig. 1 Example stimuli created in OCTA. Clicking a stimulus leads to the
octa code used to generate it. To view dynamic and interactive versions of
some of these stimuli, visit this webpage. Figure licensed under CC BY 4.0

by the authors. Retrieved from https://doi.org/10.6084/m9.figshare.
17708702. The bottom left example stimulus contains natural flower
images from Hůla and Flegr (2016)

2424

https://elinevg.github.io/OCTA_dynamicstimuli/
https://doi.org/10.6084/m9.figshare.17708702
https://doi.org/10.6084/m9.figshare.17708702
https://www.figshare.com/s/7306f12659f68f7f3d9d
https://www.figshare.com/s/7306f12659f68f7f3d9d
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0013.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0024.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0025.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0099.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0100.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0102.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0175.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0199.py

Behavior Research Methods (2023) 55:2423–2446

simplicity. For example, the safety pins in Fig. 2a can be
arranged in more qualitatively and quantitatively different
ways on the size dimension than the safety pins in Fig. 2c.
However, simplicity on the size dimension does not prohibit
disorder on other feature dimensions (e.g., orientation of the
elements in Fig. 2d). As explained in Van Geert and
Wagemans (2020), we view order and complexity as partial
complements and partial opposites. On the one hand, com-
plexity allows order to show its potential and order helps to
make highly complex stimuli ‘digestible’ and aesthetically
appreciated. Order and complexity thus need each other’s
presence to optimize appreciation. On the other hand, order
and complexity can also relate negatively: uniformity for ex-
ample indicates a low level of complexity, but also implies a
high level of order on that feature dimension. Similarly, dif-
ferent types of symmetry may be seen as different types of
order, but typically also reduce the range of complexity pres-
ent in the display. Given this complex relationship between
order and complexity, it is important to study their relation to
aesthetic appreciation in combination, not separately (Van
Geert & Wagemans, 2020).

One additional distinction that is relevant here, is the dis-
tinction between objective and subjective definitions and

measures of order and complexity. Whereas objective order
and complexity refer to the level and type of order or com-
plexity that is physically present in the stimulus, subjective
order and complexity entail the individuals’ perception of
the order or complexity present in the stimulus (Van Geert
& Wagemans, 2020). It is important to make this distinction,
as research results may differ depending on how order and
complexity are defined and/or measured: the concepts of ob-
jective order and complexity may for example be more easily
separable from each other than the concepts of subjective or-
der and complexity. Although many objective measures for
complexity exist (for overviews, see Donderi, 2006; Van
Geert & Wagemans, 2020), the set of objective measures
available for order is rather limited (Van Geert &
Wagemans, 2020). Since Arnheim’s (1971) seminal essay
on “Entropy and art” (which was effectively about disorder
and order in art), several scientists have proposed measures of
order (and disorder) derived from information theory and dy-
namical systems theory. For instance, Redies and colleagues
have defined and computed edge-orientation entropy or an-
isotropy in relation to preference for patterns and images of
paintings (e.g., Grebenkina, Brachmann, Bertamini, Kaduhm,
& Redies, 2018; Redies, Brachmann, & Wagemans, 2017).

a b

c d

Fig. 2 Order and complexity on different stimulus dimensions, illustrated
with stimuli created in OCTA. Clicking a stimulus leads to the octa code
used to generate it. Figure licensed under CC BY 4.0 by the authors.

Retrieved from https://doi.org/10.6084/m9.figshare.19634649. Vector
image used to generate the OCTA stimuli: a safety pin created by
Clker-Free-Vector-Images available on Pixabay

2425

https://doi.org/10.6084/m9.figshare.19634649
https://pixabay.com/vectors/safety-pin-pin-diaper-pin-isolated-23808/
https://pixabay.com/users/clker-free-vector-images-3736/
https://pixabay.com/
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0206.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0208.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0207.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0209.py

Behavior Research Methods (2023) 55:2423–2446

However, a discussion of these would be beyond the scope of
the present paper. The relative lack of objective order mea-
sures may be due to the difficulty of quantifying aspects of
order other than perceptual balance or symmetry in an objec-
tive or automatized way. It is our intuition that the degree of
order can be quantified for specific types of order (such as
balance and symmetry) but that further research is needed to
compare the degree of perceived order for different types of
order. Our aim is to facilitate this research by providing a
toolbox to systematically generate different types of order
(e.g., different pattern types, different types of repetitions vs.
changes) to compare their overall degree of perceived order
(and how these interact with the number of elements, their
degree of similarity and variety, etc.). Below we give an over-
view of different stimulus sets used in earlier research on the
perception and appreciation of order and complexity that
attempted to manipulate order or complexity in a parametric
way.

Previous parametric stimulus sets in research
on the perception and appreciation of order
and complexity

Studies investigating the perception or appreciation of order
often focused on different types of symmetry or on different
measures of perceptual balance (see Fig. 3). Chipman and
Mendelson (1979) chose black and white square patterns with
different types of order: unstructured, horizontal and/or

vertical symmetry, diagonal symmetry, checkerboard
organization, and rotational organization. Locher, Stappers,
and Overbeeke (1998) asked participants to create designs
consisting of a set of either nine circles, squares, rectangles,
or leaves varying in size (three large, three medium, three
small forms per set). They investigated the changes in the
center of balance as the design was completed. Wilson and
Chatterjee (2005) created stimuli using the proprietary soft-
ware Adobe Photoshop 7.0 and then selected a subset of these
stimuli for their experiments based on a calculated balance
score (i.e., the average score of eight measures of symmetry).
These stimuli were later also used by Hübner and Fillinger
(2016). Gollwitzer, Marshall, Wang, and Bargh (2017) gener-
ated unbroken and broken patterns to study pattern deviancy
aversion in the context of social psychological research on
prejudice. Althoughmany studies in empirical aesthetics com-
pared symmetric and asymmetric stimuli (Bertamini &
Rampone, 2020), only some recent studies investigated sym-
metry perception or appreciation using the different systemat-
ic characterizations of symmetry in mathematics (e.g., Alp,
Kohler, Kogo, Wagemans, & Norcia, 2018; Clarke, Green,
Halley, & Chantler, 2011; Kohler, Clarke, Yakovleva, Liu,
& Norcia, 2016; Martin, Uy, Kvapil, & Friedenberg, 2020).
Four basic symmetrical transformations are defined for two-
dimensional shapes (translation, rotation, reflection, glide re-
flection; Grünbaum & Shephard, 1989). With these transfor-
mations, seven distinct border patterns or frieze groups (i.e.,
two-dimensional designs with translations in only one direc-
tion) and seventeen distinct wallpaper pattern types (i.e., two-

Chipman & Mendelson (1979) Locher et al. (1998) Wilson & Chatterjee (2005) Hübner & Fillinger (2016)

Gollwitzer et al. (2017) Garner & Clement (1963) Jacobsen & Höfel (2002) Martin et al. (2020)

Fig. 3 Example stimuli from previous research on order and complexity recreated in OCTA. Clicking a stimulus leads to the octa code used to generate
it. Figure licensed under CC BY 4.0 by the authors. Retrieved from https://doi.org/10.6084/m9.figshare.17739860

2426

https://doi.org/10.6084/m9.figshare.17739860
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0180.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0181.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0182.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0183.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0205.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0192.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0194.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0241.py

Behavior Research Methods (2023) 55:2423–2446

dimensional designs with translations in two independent di-
rections) can be specified (Grünbaum & Shephard, 1989;
Thomas, 2012). Martin et al. (2020) compared beauty ratings
for each of the seven frieze patterns using a comma, flag, and a
filled texture as elements. Clarke et al. (2011) studied the
perceptual similarity of the seventeen wallpaper pattern types.
They created exemplars starting from a white noise (triangu-
lar, rectangular, or square) fundamental region and combined
them into a rectangular repeating tile to produce the patterns
(Alp et al., 2018).

Studies focusing on the perception or appreciation of
complexity have used a broad range of different stimulus
types. Some studies used ecologically valid images and cal-
culated statistical image properties to indicate complexity
(e.g., Braun, Amirshahi, Denzler, & Redies, 2013). Other
studies used different types of fractal images (e.g., Bies,
Blanc-Goldhammer, Boydston, Taylor, & Sereno, 2016;
Spehar, Walker, & Taylor, 2016). Sun and Firestone (2021)
used a measure of structural surprisal (i.e., the level of surprise
associated with a shape’s skeletal structure) to categorize ab-
stract shapes as simple and complex while controlling for the
number of sides. The Matlab code to generate the shapes for
that study was shared publicly on the Open Science
Framework.

When both order and complexity were manipulated para-
metrically, researchers often used random polygons (e.g.,
Arnoult, 1960; Attneave, 1957), black and white square pat-
terns (e.g., Chipman, 1977; Smets, 1973), or dot patterns (e.g.,
Garner & Clement, 1963; Hamada & Ishihara, 1988).
Attneave (1957) constructed random polygon shapes based
on a varying number of turns (i.e., complexity manipulation)
andmanipulated them to be symmetrical or asymmetrical (i.e.,
order manipulation). Attneave and Arnoult (1956) provided a
series of methods for the construction of random shapes. This
method was later used, for example by Vanderplas and Garvin
(1959), to generate random shapes of six levels of complexity
(i.e., varying number of points). Smets (1973) created patterns
of black and white squares in which both subjective redun-
dancy (i.e., the percentage of correctly selected black and
white elements when reproducing the pattern, related to order)
and maximal information (i.e., the number of independent
elements, related to complexity) were varied. These patterns
were also used in studies by Berlyne (1974) and Cupchik and
Berlyne (1979). Chipman (1977) used similar but smaller
patterns and varied structure and complexity by selecting
different stimulus sets by hand. Garner and Clement (1963)
produced 90 patterns by placing five dots in an imaginary 3-
by-3 square matrix, with the restriction of at least one dot in
each row and column, and investigated the influence of the
number of patterns in the equivalence group for each pattern
(i.e., the number of different patterns that can be created by
rotation or reflection of the pattern) as well as symmetry.
Hamada and Ishihara (1988) created rotation and reflection

invariant dot patterns using imaginary rectangular and hexag-
onal frameworks. The dot patterns varied in the number of
dots they consisted of, the order of the symmetry groups as
well as the symmetry group they belonged to (i.e., cyclic and
dihedral groups). In more recent years, new stimulus sets fo-
cused on symmetry and complexity manipulations. Jacobsen
and Höfel (2002) constructed stimuli consisting of a solid
black circle showing a centered, quadratic, rhombic cut-out
and an arrangement of 86 to 88 small black triangles. Half
of the patterns created were symmetric (four possible symme-
try axes), the other half were not symmetric. Gartus and Leder
(2013) created a new set of abstract black and white patterns
using a simulated annealing stochastic optimization algo-
rithm. They varied the number of objects (i.e., complexity
manipulation) as well as the type of symmetry: no symmetry,
and full and broken symmetry patterns with one, two, and four
symmetry axes.

Existing software to generate aesthetic
stimuli

FlexTiles

Westphal-Fitch and colleagues (2012) created FlexTiles, a
custom-written image manipulation program, in which each
of 36 tiles can be rotated to four possible orientations (0∘, 90∘,
180∘, 270∘). Participants were asked to rotate the tiles as much
or as little as they liked. Patterns that emerged showed rota-
tion, translational symmetry, bilateral symmetry along vertical
axis, rotational symmetry, symmetry along diagonal axis, or
local linear groupings with no overall symmetry. In later ex-
periments, they created flawed and unflawed versions of pat-
terns, with violations determined by color and/or orientation.
Muth, Westphal-Fitch, and Carbon (2019) also made use of
the FlexTiles software and asked participants to produce pat-
terns that would be liked or would be interesting. A separate
group of participants rated the produced stimuli on liking,
interestingness, complexity, and order. Although Muth,
Westphal-Fitch, and Carbon (2019) shared the stimuli used
in their experiments, the FlexTiles software to recreate or
adapt the stimuli has not been made openly available for use
by other researchers. For OCTA stimuli created in the style of
FlexTiles, see Fig. 4.

Statistical geometry sampler

Güçlütürk, Jacobs, and van Lier (2016) generated statistical
geometric patterns using a space filling algorithm that places
non-overlapping geometric shapes that monotonically de-
crease in size in a random fashion on a canvas (Shier, 2011;
Shier & Bourke, 2013). A parameter c determining the size of
the first shape element and the speed with which the size

2427

https://osf.io/aev3j
https://osf.io/aev3j

Behavior Research Methods (2023) 55:2423–2446

decreased was manipulated as well as the geometric shape
used (i.e., circle, hexagon, square, and triangle). Although
the algorithm, documented C code, and a lot of example stim-
uli are openly available on the website of the authors of the
algorithm, and the authors mention to be open to support
people interested to get started on their own images, no easy
interface to create new stimuli is provided.

Aesthetic abstract textures generator

One tool that does generate reproducible stimuli for use in
aesthetics is the random abstract texture generator of
Alvarez, Monzón, and Morel (2021). Jean-Michel Morel,
Luis Alvarez, and colleagues did design a point-and-click
online tool to generate aesthetic stimuli based on
composition principles and random sampling (Alvarez,
Gousseau, Morel, & Salgado, 2015; Alvarez, Monzón, &
Morel, 2021).2 This tool is meant for artists and designers to
explore and test new styles, and does not allow users to
manually specify the location, color, or shape of any
element in the display. The shape elements are placed
automatically based on the chosen composition principles
and random sampling. Although this tool is very useful for
the generation of reproducible aesthetic stimuli in general, it
does not allow for individually controlled parametric order
and complexity manipulations on different element features.

The need for OCTA (see Fig. 5)

As may be clear from the examples given, the existing re-
search on the perception and appreciation of order and com-
plexity leaves important gaps. First, most empirical work in-
vestigated the relation of order and complexity to aesthetic
appreciation separately rather than in combination. Second,
the relation of appreciation with complexity has been studied

much more frequently than the relation with order and studies
usually focused on specific aspects of order (i.e., symmetry
and perceptual balance). However, many other types of orga-
nization exist (e.g., similarity grouping, proximity grouping,
alternation/iteration, systematic alteration/gradient) and their
influence on aesthetic appreciation has not yet been systema-
tically studied (Van Geert & Wagemans, 2020). Furthermore,
the multidimensionality (e.g., order and complexity of ele-
ment colors, shapes, and sizes) of both order and complexity
has often been neglected (Nadal et al., 2010; Van Geert &
Wagemans, 2020). To our knowledge, no single existing stim-
ulus set combines systematic manipulations of order and com-
plexity on different element features (e.g., shape, size, color,
orientation). Findings based on earlier research not distin-
guishing between different element features may be tied to
the specific aspect of order or complexity that was investigat-
ed, and may not generalize to other order or complexity di-
mensions.3 Third, when order and complexity were studied in
combination, researchers often focused on a binary classifica-
tion in high and low order and/or complexity rather than more
fine-grained order or complexity manipulations,4 or more eco-
logically valid stimuli were used but then parametric control
over both order and complexity dimensions was lost (e.g.,
Nadal et al., 2010; Van Geert & Wagemans, 2021). Findings
based on this last type of research, using less controlled stim-
uli, require replication with a more parametrically controlled
stimulus set where both order and complexity of the stimulus
can be manipulated as independently as possible.5 Fourth,
when parametrically varied stimulus sets were used, the focus

2 The same authors also created an abstract shape generator which may be of
interest to the readers.

3 This will always be the case to some extent but experimental control and
generalization are made much easier in OCTA because it provides easy han-
dles to create and test systematically many more variations.
4 Whether a more continuous manipulation of order levels also leads to a
continuous change in perceived order is an empirical question that can be
addressed using the OCTA toolbox.
5 Although it is important to study order and complexity in combination (i.e.,
in a factorial design taking into account both order and complexity), we do
believe it is important to study order and complexity as independently as
possible (i.e., in a non-confounded way, separating both factors as much as
possible within the same experiment).

Fig. 4 Example stimuli in the style of FlexTiles recreated in OCTA.
Clicking a stimulus leads to the octa code used to generate it.
Figure licensed under CC BY 4.0 by the authors. Retrieved from

https://doi.org/10.6084/m9.figshare.17740640. Vector images used to
generate the OCTA stimuli: a tile created by Jorge Carrillo and a tile
created by Lluisa Iborra available on the Noun Project

2428

https://www.ipol.im/aat
https://www.ipol.im/bss
https://doi.org/10.6084/m9.figshare.17740640
https://thenounproject.com/icon/tile-867402/
https://thenounproject.com/imodrnb/
https://thenounproject.com/icon/tile-1424322/
https://thenounproject.com/marialuisa.iborra/
https://thenounproject.com/
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0195.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0196.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0197.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0198.py

Behavior Research Methods (2023) 55:2423–2446

was often on black-and-white stimuli containing geometric
shapes. Fifth, the stimuli used in aesthetics research were often
created using proprietary software, in a non-reproducible and
non-adaptable way, or not openly available to the research
community, or the researchers did not share enough details
concerning how the stimuli were generated. Sixth, in case a
detailed stimulus generation procedure was provided, stimuli
could not be recreated or adapted easily without programming
experience. Therefore, research on order and complexity
would benefit from an easy way to create standardized stimuli
varying qualitatively and quantitatively in many different as-
pects of order and complexity, with options for increased eco-
logical validity but without losing parametric control.

The Order & Complexity Toolbox for Aesthetics (OCTA) is
such a free, openly available tool and creates many opportunities
to investigate order and complexity in a standardized and multi-
dimensional manner, with a focus on multi-element displays.
With OCTA, one can manipulate and measure order and com-
plexity in a systematic way, and study their effects in combina-
tion. OCTA acknowledges the multidimensionality of order and
complexity by allowing separate manipulations of different ele-
ment features (e.g., shape, size, color, orientation). It allows for
parametric control on many different stimulus and element fea-
tures. It also acknowledges the potential of research on the dy-
namics of order and complexity by including animation options
for several element features including color, size, and orientation.
To provide more ecological validity, OCTAmakes it possible to
use of images or path elements6 in a stimulus. OCTA is freely

available, open source, and enables users to create reproducible,
code-based stimulus sets that are easily adaptable or extendible.
The standard vector-based output is ideal for experiments on the
web and the creation of dynamic interfaces and stimuli, while
raster-based output is possible as well. Furthermore, OCTA is
accessible to both researchers with and without programming
experience, as both a Python package and an online user interface
are provided. With OCTA being fast, flexible, and transparent,
we strongly believe that OCTA will facilitate reproducible stim-
ulus construction and experimental design in research on order,
complexity, and aesthetics. In addition, OCTA can be a very
useful tool to investigate visual perceptual organization, to create
visual stimuli for any type of experimental or cognitive task, or
even to create digital art.

The OCTA toolbox as a Python package
and a Shiny application

The octa package is a Python package developed in Python 3.8
(Van Rossum & Drake, 2009) and is available (on the Python
Package Index or on GitHub) as open-source software under the
GNULesser General Public License (Version 3) as published by
the Free Software Foundation.7 We chose to create this toolbox

6 Path SVG elements can be used to draw any type of lines, curves, or custom
shapes based on a combination of straight or curved lines. For more informa-
tion on how to define paths, have a look at these online tutorials byW3Schools
and Mozilla.

7 To make full use of octa, Python 3.6 or higher is required, and the toolbox
depends on the Python packages svgwrite (Moitzi, 2021), svg.path (Regebro,
2021), svgpathtools (Port, 2021), svgutils (Telenczuk, 2021), jsonpickle
(Aguilar, 2021), html2image (vgalin, 2021), svglib (Gherman, 2021),
reportlab (Robinson, Becker, the ReportLab team, & the community, 2021),
colour (Lab, 2021), and IPython (Pérez & Granger, 2007). In addition, Google
Chrome (Windows, MacOS) or Chromium Browser (Linux) needs to be
installed to be able to generate PNG, JPG, or TIFF raster images based on
the stimulus.

Benefits of OCTA

Previous research OCTA
often investigated order and complexity separately allows for studying order and complexity in

combination

often neglected the multidimensionality of order
and complexity and focused on specific aspects of
order and complexity

allows for diverse order and complexity
manipulations on multiple feature dimensions

often lacked parametric control or focused on
binary classification when studying order and
complexity in combination

allows for parametrically controlled order and
complexity manipulations, going beyond binary
classification

when parametrically controlled, often focused on
black-and-white stimuli containing geometric shapes,
providing only raster-based images as output

allows for ecological validity and the study of
dynamics over time by the option to add more
complex path or image elements and animated
feature values, and provides more diverse output
options

often used stimuli created in proprietary software
and/or in a non-reproducible way, and/or did not
share a detailed stimulus generation procedure

provides a free, open source tool that produces
easily reproducible or adaptible stimulus output

usually did not provide an easy, accessible way to
recreate or adapt stimuli to research with or without
programming experience

allows both researchers with and without
programming experience to easily reproduce or
adapt existing stimuli, as both a Python package
and an online user interface are provided

Fig. 5 Benefits of OCTA. Figure licensed under CC BY 4.0 by the authors. Retrieved from https://doi.org/10.6084/m9.figshare.17740904

2429

https://pypi.org/project/octa/
https://pypi.org/project/octa/
https://github.com/gestaltrevision/OCTA_toolbox
https://www.w3schools.com/graphics/svg_path.asp
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://doi.org/10.6084/m9.figshare.17740904

Behavior Research Methods (2023) 55:2423–2446

in Python as Python is a powerful and popular open-source pro-
gramming language for which a large online community is avail-
able. Elaborate documentation on the octa Python package is
available, offering a step-by-step introduction to the full function-
ality of the OCTA toolbox. To get users started, a website with
example stimuli (see dynamic stimuli here) and the
corresponding code is provided. For users who want to dig
further into the toolbox, detailed function documentation is
available. Besides developing the Python package, we also
developed a Graphical User Interface for the OCTA toolbox, in
the form of a Shiny application.8 The procedure described below

will be for using the Python package, butmost aspects are similar
in the Shiny application (we will indicate the most important
differences in text). Additional instructions for the use of the
Shiny application are provided in the app itself.

Figure 6 gives an overview of the terminology used in
OCTA.9 In OCTA, you can create stimuli consisting of multiple
elements. First, the user specifies the type of stimulus they want

8 When using either the octa Python package or the OCTA Shiny app in your
(academic) work, please cite this paper to acknowledge the authors.

Terminology used in OCTA

order aspects related to the structure and organization of elements in a stimulus

complexity aspects related to the quantity and variety of elements in a stimulus

stimulus overall display, total configuration including one or more elements

element object, part of stimulus display which is usually repeated and spatially
separated from other parts

stimulus feature certain feature of the stimulus as a whole (e.g., size, orientation,
background color, background size)

element feature certain feature of the elements in the stimulus (e.g., shape, size, color,
orientation)

(element) position
pattern

overall configuration of the element positions in the stimulus (e.g.,
rectangular grid, sinegrid, circle, shape)

(element) feature
pattern

overall configuration of the element features in the stimulus (combination of
pattern values, pattern type, and pattern direction)

pattern values the values of an element feature that will be used in the stimulus

pattern type type of structure or organization present for a certain feature across the
elements in the stimulus (e.g., pattern repeat, element repeat, mirror
symmetry, gradient)

pattern direction the direction in which the pattern values are applied according to the pattern
type across the stimulus (e.g., across elements, across rows, across
columns)

position deviation deviation from the position pattern, either by the addition of random jitter to
the element positions or by the adaptation or removal of specific element
positions

element deviation deviation from the element feature patterns present in the stimulus, by
removing elements from the stimulus, swapping element positions, or
randomizing element positions

feature deviation deviation from at least one element feature pattern, by removing elements
from the stimulus, swapping one or more features between elements in the
stimulus, randomizing element or feature positions, changing the feature
value of one or more random or specified elements in the stimulus, or by
jittering one or more numeric element features

Fig. 6 Terminology used in OCTA. Figure licensed under CC BY 4.0 by the authors. Retrieved from https://doi.org/10.6084/m9.figshare.18102443

9 We realize that it is quite difficult to understand and remember this termi-
nology. This difficulty follows from the wide range of stimulus variations we
want OCTA to be able to generate. First-time users might be put off by this
difficulty. However, we suggest you try working with the toolbox to familiar-
ize yourself with the options, and then Fig. 6 and the descriptions in the main
text become a handy reference in case you want to develop a more refined
understanding all the available options or gain more experience with them.

2430

https://elinevg.github.io/OCTA_manual/
https://elinevg.github.io/OCTA_stimulusexamples/
https://elinevg.github.io/OCTA_stimulusexamples/
https://elinevg.github.io/OCTA_dynamicstimuli/
https://elinevg.github.io/OCTA_docs/
https://elinevg.shinyapps.io/OCTA_toolbox/
https://doi.org/10.6084/m9.figshare.18102443

Behavior Research Methods (2023) 55:2423–2446

to create (i.e., Grid, Outline, Concentric; see Fig. 8) as well as the
general stimulus features they want to adapt (e.g., stimulus size,
background color or shape, stimulus orientation). Second, they
can replace the default position pattern for the stimulus type by a
custom one (e.g., sine grid, custom shape, custom positions).
Third, the element feature patterns can be specified by defining
pattern type, pattern direction, and pattern values per element
feature. Fourth, position, element, and feature deviations can be
added. Finally, the user can save the resulting stimulus in the
preferred formats: as a vector-based image (SVG), as a raster-
based image (PNG, JPG, PDF, or TIFF), and/or as a computer-
readable file (JSON). The SVG format is recommended for on-
line use, as it has the same quality at all viewing sizes and keeps
the possibility for animated element and stimulus features. The
JSONoutput can be used to recreate the stimulus in Python using
the OCTA toolbox without the original code (using the
LoadFromJSON function).10 In the Shiny app, the user can also

view or download the Python code needed to reproduce the
current stimulus with the octa package in Python.

Step-by-step guide to creating a stimulus using OCTA
(see Fig. 7)

The following section gives a more detailed overview of the
steps of creating a stimulus (set) in OCTA.11 For a visual
summary of the different steps needed to create a first stimulus
in OCTA, consult Fig. 7.

Step 0. Load the octa package in Python

To start using the octa Python package, install octa as well as
its dependencies (svgwrite, svg.path, svgpathtools, svgutils,
jsonpickle, html2image, svglib, reportlab, colour, and
IPython). Once everything is installed, it can be helpful to

10 Keep in mind that to reproduce the exact same stimulus, one needs to set a
seed before running (each line of) the OCTA Python code and also keep this
seed (these seeds) along with the JSON file in case any randomization proce-
dures are used in the stimulus generation. In addition, the safest way to ensure
reproducibility is by keeping track of the code, seed, and OCTA toolbox
version you used to create your stimuli.

How to create a stimulus with OCTA?

0. Import octa

from octa.Stimulus import Grid, Outline, Concentric
from octa.Positions import Positions
from octa.patterns import GridPattern
from octa.shapes import Ellipse, Rectangle, Triangle
from octa.measurements import Order, Complexity

1. Specify stimulus type

stim = Grid(n_rows = 9, n_cols = 9)

[2. Customize positions]

3a. Specify boundingboxes

stim.boundingboxes = GridPattern.RepeatAcrossElements([(45,45), (30,30)])

3b. Specify shapes

stim.shapes = GridPattern.RepeatAcrossLayers([Rectangle, Triangle, Ellipse])

3c. Specify fillcolors

stim.fillcolors = GridPattern.GradientAcrossRightDiagonal(start_value = ’limegreen’, end_value = ’steelblue’)

3d. Specify orientations

stim.orientations = GridPattern.MirrorAcrossLeftDiagonal([-90, -45, 0, 45, 90])

[3e. Add additional features]

[4. Add deviations]

5. Show and save stimulus

stim.Show()
stim.SaveSVG("SVGfilename", folder = "foldername")
stim.SaveJSON("JSONfilename", folder = "foldername")
stim.SavePNG("PNGfilename", scale = 10, folder = "foldername")

Fig. 7 Tutorial on how to create a stimulus in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CC BY 4.0 by
the authors. Retrieved from https://doi.org/10.6084/m9.figshare.17743082

11 In line with footnote 10, the following description of the available options
(especially in steps 2–4) will probably be overwhelming for most first-time
users. The best way to come to grips with this is to first check the figures
(especially Figs. 7-15) for a quick visual impression of the available options
and then to read the accompanying text for more details about specific possi-
bilities. Again, this description will become more understandable and useful
after having gained some initial experience with OCTA.

2431

https://doi.org/10.6084/m9.figshare.17743082
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0001.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0002.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0003.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0004.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0005.py

Behavior Research Methods (2023) 55:2423–2446

import specific functions from the octa package. In the Shiny
app, this step is unnecessary as all required packages are load-
ed automatically. Furthermore, the user can download the
Python code from the Shiny app and copy it to Python to
import the functions from the octa package necessary for a
specific stimulus.

Step 1. Specify a stimulus type

The first step when creating a stimulus is to define the type of
stimulus one wants to create: a Grid stimulus, an Outline stim-
ulus, or a Concentric stimulus (see Fig. 8).12 These stimulus
types correspond to frequently used stimulus types in the lit-
erature. For instance, Grid stimuli have been used by Garner
and Clement (1963) and Chipman andMendelson (1979), and
have formed the basis for FlexTiles and many stimuli in visual
search tasks. Outline stimuli could form the basis for hierar-
chical stimuli like those used by Navon (1977), Poirel, Pineau,
and Mellet (2006), and Krakowski et al. (2016). For
Concentric stimuli, see for instance Gollwitzer et al. (2017).
Whereas a Grid stimulus requires a specified number of rows
and columns, Outline or Concentric stimuli require a specified
number of elements.13 If desired, the user can specify addi-
tional arguments to customize the stimulus. The following
features of the stimulus as a whole can be specified: spacing
between rows and columns (in case of a Grid stimulus), shape

and shape bounding box (in case of an Outline stimulus),
horizontal and vertical margin (when automatic sizing method
is used), stimulus size (when fixed size is needed), back-
ground color, background shape, stimulus orientation, mirror
value for the stimulus as a whole, mask to apply for the stim-
ulus as a whole, and link, class label, and id label for the
stimulus. By default, stimuli will be autocentered with a hor-
izontal and vertical margin of 20 units in the current user
coordinate system (i.e., user units), have a white background
color, and an orientation of 0∘. The Grid category has a default
row and column spacing of 50 user units, and the Outline
category by default has a circular shape with a bounding box
of 150 by 150 user units. For more information on all stimulus
features, please consult the online documentation. In the
Shiny app, additional stimulus features can be specified
under the tab ‘0. Add stimulus features.’ The general
stimulus type has been merged with the other position
pattern options however, and can be changed under the tab
‘1. Add position pattern.’

Step 2. Specify element positions

Having created the stimulus, the resulting x and y coordinates
for the e lement pos i t ions can be reques ted via
stimulus.positions.GetPositions(). The posi-
tion of an element is determined by the center of the element’s
bounding box (i.e., the rectangle ‘bounding’ the size of the
element shape). The default position patterns used for Grid,
Outline, and Concentric stimuli are a rectangular grid with a
row and column spacing of 50 user units, a circle outline with
radius 150, and identical (0,0) positions, respectively. The
user can replace the default position pattern for the stimulus
type by a custom one (e.g., a sinewave-shaped grid, a custom
shape outline, random positions within a specified rectangle,
manually specified positions). Figure 9 gives an overview of

Stimulus types

Grid Outline Concentric

Fig. 8 Stimulus types available in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CC BY 4.0 by the authors.
Retrieved from https://doi.org/10.6084/m9.figshare.17748872

12 These options were chosen to allow the user to create a broad range of
stimuli with only a limited number of specified stimulus types. The set of
specified stimulus types is partially arbitrary and necessarily incomplete, and
can be expanded in later generations of the toolbox based on user feedback or
requests.
13 The stimulus types Outline and Concentric are defined as Grid stimuli with
the number of rows equal to one and the number of columns equal to the
number of elements.

2432

https://elinevg.github.io/OCTA_manual/get-started.html#stimulus-characteristics
https://doi.org/10.6084/m9.figshare.17748872
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0006.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0007.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0008.py

Behavior Research Methods (2023) 55:2423–2446

all currently available position pattern functions.14 Important
to note is that any custom set of positions can be defined using
the CreateCustomPositions function. For more information on
all position pattern definitions, please consult the online
documentation. In the Shiny app, the element positions can
be specified under the tab ‘1. Add position pattern.’

Step 3. Specify patterns and pattern values for different
element features

Once the stimulus features and element positions are specified,
the pattern types, pattern directions, and pattern values for the
different element features can be adjusted. The patterns can be
applied to the following element features: shapes,
boundingboxes, fillcolors, orientations, borderwidths,
bordercolors, opacities, mirrorvalues, links, classlabels, and
idlabels (see Element features and Fig. 12). In Grid and Outline
stimuli, one value per element feature is repeated across all ele-
ments in the stimulus by default. In Concentric stimuli, a pattern
with two fillcolors is repeated across all elements in the stimulus

by default, and the boundingbox sizes follows a decreasing gra-
dient across elements. Available pattern types (see Fig. 10)15

include pattern repetition (Repeat), element repetition
(ElementRepeat), mirror symmetry (Mirror), and a gradient from
a start value to an end value (Gradient). In Grid stimuli, these
patterns can be applied according to the following pattern
directions: across elements, across rows, across columns, across
the left diagonal, across the right diagonal, and across layers (see
Fig. 11). In addition, more complex patterns can be constructed
using the TiledGrid and TiledElementGrid options. Whereas a
TiledGrid copies the feature values in a source grid a specified
number of times in the row and column directions, a
TiledElementGrid copies each element in the source grid a spec-
ified number of times in the row and column directions. Finally, a
random application of the values for the element feature across
the elements is possible too (RandomPattern). By default, the
pattern values in the RandomPattern are repeated until the length
is equal to the number of elements in the stimulus. Optionally, a
list of frequencies can be provided to determine howmany times
each pattern value has to be present. In Outline and Concentric

14 These options were chosen to allow the user to create a broad range of
stimuli with only a limited number of specified position definitions. The set
of specified position definition functions is partially arbitrary and necessarily
incomplete, but can be expanded in later generations of the toolbox based on
user feedback or requests.

Position definitions

Create2DGrid CreateSineGrid CreateRandomPositions

CreateCircle CreateShape CreateCustomPositions

Fig. 9 Position definition options available in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CCBY 4.0 by
the authors. Retrieved from https://doi.org/10.6084/m9.figshare.17749139

15 These options were chosen based on the currently available literature using
different pattern types, e.g., Chipman and Mendelson (1979), and to allow the
user to create a broad range of stimuli with only a limited number of specified
pattern types. The set of specified pattern types is necessarily incomplete, but
can be expanded in later generations of the toolbox based on user feedback or
requests.

2433

https://elinevg.github.io/OCTA_manual/get-started.html#element-position-patterns
https://elinevg.github.io/OCTA_manual/get-started.html#element-position-patterns
https://doi.org/10.6084/m9.figshare.17749139
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0009.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0010.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0011.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0012.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0013.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0014.py

Behavior Research Methods (2023) 55:2423–2446

stimuli, it is strongly advised to apply patterns across elements
(as other pattern directions will not be distinguishable in Outline
andConcentric stimuli). In the Shiny app, the feature patterns can
be specified using the tabs under ‘2. Add feature patterns.’ Some
predefined pattern values are provided for each element feature,
but custom pattern values can be specified too.

Element features (see Fig. 12)

ShapesAvailable element shape types are geometric shapes, i.e.,
El l ipse , Rectangle , Tr iangle , Polygon(n_sides) ,
RegularPolygon(n_sides); more complex path elements16 based
on a provided path string or an existing SVG file, i.e., Path(path,
xsize, ysize), PathSvg(source); images based on a provided
filename or source url, i.e., Image(source), FitImage(source);
and text elements,17 i.e., Text(text). Keep in mind that for the
order and complexity measurements, the shapes argument only
takes the shape type into account and does not distinguish

between different polygons, different paths, different images, or
different texts.18 Currently no built-in animation options are
available for the shape feature, but it is possible to include dy-
namic image files (e.g., dynamic SVG or gif file) as shape values
in the stimulus. Also in the Shiny app, it is possible to specify
custom shapes to use in the stimulus, including Image and
PathSvg shapes that are publicly accessible online. It is however
not possible to use local files when working with the online
Shiny app.

Boundingboxes Boundingboxes are always rectangular but do
not have to be squared. Boundingbox values are defined in user
units and can be provided as follows: (xsize, ysize). Although
currently no built-in animation options are available for the
boundingbox feature, it is possible to either generate separate
stimuli and combine them in time afterwards, or to include dy-
namic image files (e.g., dynamic SVG or GIF file with shape
changing in size) as shape values in the stimulus. Shapes will
take their maximal size possible within the specified
boundingbox, taking into account shape definitions (e.g., the

Pattern types

Repeat ElementRepeat Mirror Gradient

TiledGrid TiledElementGrid RandomPattern

Fig. 10 Pattern types available in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CCBY 4.0 by the authors.
Retrieved from https://doi.org/10.6084/m9.figshare.17749340

16 When providing a path definition or SVG file, keep in mind that the path or
file may contain margins, making the visible result smaller than the defined
boundingbox size. Correctly fetching a path from an existing SVG file may fail
in case the SVG file contains multiple paths, no paths, or paths are specified
differently than expected (e.g., including margins).
17 Text elements are an experimental feature of the OCTA toolbox. The sizing
of the text elements is optimized for a single capital letter to fit in the
boundingbox provided.

18 For example, in an OCTA stimulus containing two different images as
image elements, the number of shape types used will be one. To take into
account the number of different images, polygons, paths, or texts used, one
can add the ‘data’ argument to the element features used in the order and
complexity measurements.

2434

https://doi.org/10.6084/m9.figshare.17749340
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0026.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0027.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0028.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0029.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0030.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0031.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0032.py

Behavior Research Methods (2023) 55:2423–2446

Image shape type will retain original aspect ratio of the image,
whereas the FitImage shape type will fit the image to the
boundingbox without taking original aspect ratio into account).19

Fillcolors Besides static uniform colors defined based on their
hexadecimal color code or color name, the user can specify a
radial or linear color gradient with multiple color values (i.e.,
radial, horizontal, vertical, diagonal) or dynamic fillcolors by
setting a new color (i.e., ‘set’) when a certain action occurs
(e.g., when the element is clicked) or by animating the color
value (i.e., ‘animate’). Fillcolors are not visible for image
elements.

Orientations Orientations are defined in degrees. Besides
static orientation values, dynamic definition of orientations
is possible (i.e., ‘set’ or ‘animate’).

Borderwidths Borderwidths are defined in user units. Besides
static borderwidth values, dynamic definition of borderwidths is

possible (i.e., ‘set’ or ‘animate’). Borderwidths are not taken into
account when a shape is fit to a particular boundingbox value,
which means that half of the borderwidth will fall outside of the
specified shape and thus potentially outside of the specified
boundingbox (as the borderwidth is centered around the shape
border). Keep in mind that the default bordercolor is transparent,
so bordercolor needs to be set for the borderwidth value to have a
visible effect. In addition, borderwidths are not visible for image
elements and may behave unexpectedly for path elements.20

Bordercolors Besides static uniform bordercolors defined based
on their hexadecimal color code or color name, the user can
specify a radial or linear color gradient with multiple bordercolor
values (i.e., radial, horizontal, vertical, diagonal) or dynamic
bordercolors by setting a new color (i.e., ‘set’) when a certain
action occurs (e.g., when the element is clicked) or by animating
the color value (i.e., ‘animate’). Bordercolors are not visible for
image elements. Keep in mind that the default borderwidth is

19 As specified in footnote 12, when providing a path definition or SVG file,
keep in mind that the path or file may contain margins, making the visible
result smaller than the defined boundingbox size. Furthermore, the sizing of
the text elements is optimized for a single capital letter to fit in the
boundingbox provided.

20 Related to footnote 12, when providing a path definition or an SVG file
containing a path definition, the path definition may contain margins, making
the visible result smaller than the defined boundingbox size. In addition, the
path may be defined on another size than it is scaled to, and the borderwidth
will be applied to the original size, making the visible borderwidth often
smaller than intended. A correct path definition and a borderwidth value cus-
tom to the original path boundingbox is thus key to get a correct borderwidth
for path elements.

Pattern directions

AcrossElements AcrossRows AcrossColumns

AcrossLeftDiagonal AcrossRightDiagonal AcrossLayers

Fig. 11 Pattern directions available in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CC BY 4.0 by the
authors. Retrieved from https://doi.org/10.6084/m9.figshare.17749634

2435

https://doi.org/10.6084/m9.figshare.17749634
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0033.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0034.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0035.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0036.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0037.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0038.py

Behavior Research Methods (2023) 55:2423–2446

zero, so borderwidth needs to be set for the bordercolor values to
have a visible effect.

Opacities Opacities are defined between 0 (no opacity) and 1
(full opacity). Besides static values, dynamic definition of opac-
ities is possible (i.e., ‘set’ or ‘animate’).

Mirrorvalues As element shapes can be mirrored along the hor-
izontal and/or vertical axis, or not be mirrored, this element fea-
ture can take any of four different values: ‘none’, ‘horizontal’,
‘vertical’, or ‘horizontalvertical’. Currently no built-in animation
options are available for the mirrorvalue feature, but it is possible
to either generate separate stimuli and combine them in time
afterwards, or to include dynamic image files (e.g., dynamic
SVG or GIF file with shape changing in mirrorvalue) as shape
values in the stimulus.

Links A custom hyperlink can be added to every element in
the stimulus. This entails a hand cursor shown when the

viewer hovers over that specific element, and the opening of
a hyperlink when the element is clicked.

Classlabels and idlabels Although classlabels and idlabels do
not have a directly visible effect on the resulting element, they
can be used to add additional JavaScript actions or CSS style
changes to individual elements (using the idlabel) or to a group of
elements (i.e., all elements with the same classlabel). This meth-
od can, for example, be used to add sounds when hovering over
an element or when an element is clicked.

DataData is a hidden element feature not meant for direct user
interaction. It stores the additional arguments given to any of
the shapes (e.g., the number of sides for Polygon objects, the
source argument for Image objects). This element feature may
become important when calculating order and complexity
measures within the OCTA toolbox, to distinguish between
polygons with a different number of sides, different path def-
initions, different text elements, or images with different
sources.

Element features

shapes boundingboxes fillcolors orientations

borderwidths bordercolors opacities mirrorvalues

additional non-visual features: links, classlabels, idlabels

Fig. 12 Element features available in OCTA. Clicking a stimulus leads to
the octa code used to generate it. To view dynamic and interactive
versions of some of these stimuli, visit this webpage. Figure licensed
under CC BY 4.0 by the authors. Retrieved from https://doi.org/10.

6084/m9.figshare.17749229. The shapes example stimulus contains a
butterfly image from the Auckland Optotypes (Hamm, Yeoman,
Anstice, and Dakin, 2018) and a flower image from Hůla and Flegr
(2016)

2436

https://elinevg.github.io/OCTA_dynamicstimuli/
https://doi.org/10.6084/m9.figshare.17749229
https://doi.org/10.6084/m9.figshare.17749229
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0103.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0110.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0109.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0111.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0112.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0113.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0114.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0115.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0116.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0117.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0117.py

Behavior Research Methods (2023) 55:2423–2446

Step 4. Add deviations and calculate measures

Once all element feature patterns are specified as desired, the
user can add position, element, or feature deviations to de-
crease the order and/or increase the complexity of the

stimulus. Figure 13 gives examples of the position, element,
and feature deviations that can be added. Although most of
these deviation types affect both objective order and objective
complexity, some manipulations specifically target either or-
der or complexity. Position, element, and feature deviations

Position deviations

Add position jitter Add position deviations

Element deviations

Remove elements Swap elements

Randomize elements

Feature deviations

Change feature values Swap feature values

Randomize feature values Jitter numeric feature values

Fig. 13 Position, element, and feature deviation options in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under
CC BY 4.0 by the authors. Retrieved from https://doi.org/10.6084/m9.figshare.17749763

2437

https://doi.org/10.6084/m9.figshare.17749763
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0039.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0040.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0041.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0039.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0042.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0043.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0039.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0044.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0045.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0047.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0048.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0049.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0050.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0051.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0052.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0053.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0054.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0055.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0056.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0057.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0058.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0059.py

Behavior Research Methods (2023) 55:2423–2446

are saved separately from the original patterns used to create
the stimulus. If multiple deviations are added, later deviations
could overwrite earlier deviations if they concern the same
position, element, or element feature. In the Shiny app, devi-
ations can be added under the tab ‘3. Add deviations.’Within
this tab, position and element deviations are bundled under
‘Position deviations’ and element feature deviations are
displayed under ‘Feature deviations.’

Position deviations Random jitter or specified deviations can
be added to the element positions. Although the impact of
position deviations is dependent on the specific deviations
added as well as the position pattern used as starting point,
they generally increase objective complexity in the positions
used in the stimulus (i.e., they increase the variety of positions
present in the stimulus). Element or feature complexity stays
unchanged when deviating position only. Whether the posi-
tion deviations influence objective order in positions, ele-
ments, or features depends on the specific deviation.21

For normally distributed or uniformly distributed position
jitter, one can specify whether the jitter needs to be applied to
the x coordinates, y coordinates, both axes equally, or both axes
independently using the axis argument. In the case of uniformly
distributed jitter, the user specifies a minimum and a maximum
value (min_val and max_val). In the case of normally distributed
jitter, the user specifies mean (mu) and standard deviation (std).
Default values for axis, distribution, min_val, max_val, mu, and
std are ‘xy’, ‘normal’, -1, 1, 0, and 1, respectively. To add spe-
cific position deviations, the user specifies the element ids
(starting from 0 until n_elements - 1), x offsets and/or y offsets
for each of the elements to which a deviation relative to the
predetermined position needs to be added. Element id needs to
be given an integer value or a list of integer values. X and y
offsets can be numeric values or a list of numeric values.

Element deviations To add element deviations, it is possible to
remove a set of randomor specified elements from the display, to
swap the positions of distinct elements, or to randomize the order
of all elements in a particular direction. Bringing an additional
element into the pattern is possible as well, but requires the user
to add an additional element in the stimulus definition and in the
definition of the stimulus positions. Swapping or randomizing
the position of distinct elements in the display decreases objective
element order, but leaves objective position, element, or feature
complexity unchanged. If also non-distinct elements would be
swapped or randomized, the objective element order may stay
unchanged. Removing elements does complicate the position

pattern and potentially reduces element or feature complexity,
but more generally also decreases element and feature order.

Feature deviations To add feature deviations in the stimulus, it
is possible to change a feature value for a number of random or
specified elements, to swap the feature values for a number of
random pairs of (distinct) elements in the display, to randomize
the order of all feature values in a particular direction, or to jitter
any of the numeric feature values across all elements. Swapping
or randomizing the position of distinct feature values in the dis-
play decreases objective order for the feature dimensions in-
volved, but also increases objective element complexity.
Changing a feature value to a value that is not yet in the pattern
values for that feature or jittering numeric feature values will
additionally increase objective feature complexity. An advantage
of adding feature deviations is that order can be distorted on one
feature dimension specifically but preserved for other feature
dimensions (contrary to what is the case with element
deviations).

Order and complexity measures and manipulations Although
deviations are one way to increase or decrease different types of
order and complexity in the stimulus, other approaches are pos-
sible too. Figures 14 and 15 give an overview of some order and
complexity manipulations that are possible in OCTA. Figure 16
lists the order and complexity measures available in OCTA.

Manipulating order Position order can be changed qualitatively
by changing the type of position pattern. Element (and feature)
order can be changed qualitatively by changing the different
element feature pattern types and directions.22 To induce quanti-
tative changes in order, the user can swap the positions of distinct
elements or randomize the elements in the stimulus (which keep
element complexity level constant), or add any other element or
feature deviations (but these other deviations may influence
element or feature complexity as well; cf. Step 4. Add
deviations and calculate measures). The user can also make stim-
ulus features and element features (in)congruent to impact the
order level of the stimulus. In addition, the congruency of pat-
terns, pattern types, or pattern directions across feature dimen-
sions can be adapted.23

Manipulating complexity Qualitative changes in complexity
can be achieved by changing the feature dimension on which

21 One may argue that position deviations decrease the objective order in the
positions, but this may not always be the case. For example, when adding
symmetric position deviations, these positions deviations may only alter—or
in some cases even increase—the structure and organization of the positions
present in the stimulus.

22 Be aware that some feature pattern changes may also impact element com-
plexity because of emerging (non-)congruency between different feature
patterns.
23 Keep in mind that changes in pattern congruency may simultaneously in-
fluence element complexity.

2438

https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/svg/example_0204.svg
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/svg/example_0204.svg

Behavior Research Methods (2023) 55:2423–2446

the complexity is present (e.g., shape, color, or size complexity).
Quantitative element complexity changes can include (a) chang-
ing the number of visible elements present in the stimulus (i.e.,
by removing elements or by changing the position pattern of the
stimulus), (b) manipulating the variety of elements (i.e., by in-
cluding more pattern values on a feature dimension, by choosing
more diverse pattern values, by adding feature deviations, or by
changing the congruency of patterns across feature dimensions),
(c) changing the complexity (familiarity, unintelligibility, etc.) of
individual feature pattern values (e.g., use complex path shape
instead of rectangles), or (d) changing the complexity of individ-
ual stimulus features. Position complexity can be changed quan-
titatively by adding random position jitter or structured position
deviations (cf. Position deviations).

Measuring order and complexity OCTA provides some basic
functionality to measure aspects of order and complexity in the
created stimulus. When it comes to complexity measures, it is
possible to calculate (a) the number of elements present in the
display (Number or N), (b) how many different types of

elements are present in the display based on the feature dimen-
sions specified (Level of Complexity based on Elements or
LOCE), (c) how many different features are present across
all feature dimensions (Level of Complexity or LOC), and (d)
how many different feature dimensions have more than one
feature value (i.e., have non-identical values; Level of
Complexity based on Identity or LOCI). For order, the user
can request the applied patterns, pattern types, and pattern
directions across all feature dimensions; check whether all
specified feature dimensions have congruent patterns, pattern
types, or pattern directions; calculate how many specified fea-
ture dimensions have congruent patterns, pattern types, or pat-
tern directions; calculate the number of deviant elements that
are present given the specified feature dimensions (e.g., by
added element or feature deviations); and calculate the number
of deviant positions that are present in the stimulus (i.e., by
added position jitter or specified position deviations). In the
Shiny app, order and complexity measures can be calculated
under the tab ‘4. Calculate measures.’Also in the Shiny app the
user has the option to specify which element features to take
into account when calculating the measures.

Order type manipulations

Position patterns Feature patterns

Order level manipulations

Swap or randomize elements Other element or feature deviations

Congruence of patterns across feature
dimensions (type, direction, or both)

Congruence of stimulus features and
element features

Fig. 14 Order manipulations in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CC BY 4.0 by the authors.
Retrieved from https://doi.org/10.6084/m9.figshare.17749853

2439

https://doi.org/10.6084/m9.figshare.17749853
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0060.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0061.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0062.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0063.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0064.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0065.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0047.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0049.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0054.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0056.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0066.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0067.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0068.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0069.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0070.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0071.py

Behavior Research Methods (2023) 55:2423–2446

Step 5. Generate the stimulus, show it on screen, and save
to the desired output format

Finally, the user can save the resulting stimulus in the preferred
format: as a vector-based image (SVG), as a raster-based image
(PNG, JPG, PDF, or TIFF), or as a computer-readable file
(JSON). The SVG format is recommended for online use, as it
has the same quality at all viewing sizes and keeps the possibility
for animated element and stimulus features. For raster-based im-
age output, a scale value can be added to increase the quality
when starting from a very small stimulus that would otherwise
have pixel artefacts.24 The JSON output can be used to recreate
the stimulus in Python using the octa package without the orig-
inal code (using the LoadFromJSON function). In the Shiny
app, the user can download the stimulus as a vector-based SVG
image or as a raster-based PNG or PDF image, the JSON output,
or the Python code needed to reproduce the current stimulus with
the octa package in Python. Besides, the Shiny app user can view

the Python code (without the octa import statements), the raw
SVG code, and the JSON code in the app itself.

Discussion and conclusion

With the OCTA toolbox, it is possible to study order and com-
plexity in combination. It acknowledges the multidimensionality
of order and complexity and provides the tools tomanipulate and
measure order and complexity in several ways and on different
feature dimensions.25 The possibility to add more complex

24 It is also possible to add this scale value to the SaveSVG function, to scale
the vector-based image to the preferred size.

25 It is a conscious choice to not provide a full set of commonly used order and
complexity measures within OCTA and only keep it to order and complexity
measures directly deriving from the stimulus construction procedure.
Calculating additional complexity measures can be useful, for which other
tools already exist, e.g., imagefluency, Mayer (2021), described in Mayer
and Landwehr (2018b) and Mayer and Landwehr (2018a); image spectral
slope, fractal dimension and Shannon entropy as described in Mather (2018)
and Mather (2020); PHOG measures described in Braun et al. (2013); and
edge-orientation entropy as described in Redies, Brachmann, and Wagemans
(2017). The user can use the vector- or raster-based image output to calculate
these additional measures.

Complexity type manipulations

Complexity on which feature dimension

Complexity level manipulations

Number of elements Variety of elements

Complexity of individual
element feature values

Complexity of individual
stimulus features

Fig. 15 Complexity manipulations in OCTA. Clicking a stimulus leads to the octa code used to generate it. Figure licensed under CC BY 4.0 by the
authors. Retrieved from https://doi.org/10.6084/m9.figshare.17749958

2440

https://doi.org/10.6084/m9.figshare.17749958
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0072.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0073.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0074.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0075.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0076.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0077.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0079.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0080.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0081.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0082.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0083.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0084.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0085.py

Behavior Research Methods (2023) 55:2423–2446

Order measures

Pattern congruency Pattern type congruency

1 2 3 1 2 3

Pattern direction congruency Number of deviant positions

1 2 3 0 1 36

Number of deviant elements

0 3 36

Complexity measures

Number of elements (N) Number of distinct elements (LOCE)

25 36 49 1 3 6

Number of distinct feature
values (LOC)

Number of non-identical feature
dimensions (LOCI)

3 5 7 0 1 2

Fig. 16 Order and complexity measures in OCTA. Examples include
boundingboxes, fillcolors, and shapes as (distinction) features.
Clicking a stimulus leads to the octa code used to generate it.

Figure licensed under CC BY 4.0 by the authors. Retrieved from
https://doi.org/10.6084/m9.figshare.17750069

2441

https://doi.org/10.6084/m9.figshare.17750069
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0089.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0090.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0091.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0086.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0087.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0088.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0066.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0067.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0068.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0039.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0042.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0040.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0046.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0052.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0058.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0075.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0077.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0072.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0092.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0072.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0093.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0078.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0072.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0052.py

Behavior Research Methods (2023) 55:2423–2446

shapes and images in the stimulus enables the user to find their
own balance between ecological validity and experimental
control. As online testing becomes ever more common,
vector-based OCTA stimuli are ideal for online use and
allow room for dynamical features. The OCTA toolbox
however is not constrained to vector-based output as it still
allows for saving the stimuli as raster-based image formats.
Importantly, OCTA provides a reproducible way of creat-
ing stimuli, as all OCTA code is open source, and tools are
made available to reproduce the stimuli, either based on the
original seed used and the original code or with the original
seed used and a JSON file. Furthermore, as both a Python
package and an online app are provided and a multitude of
documentation and example stimuli are provided, using
OCTA is possible for both researchers with and without
programming experience, making it a widely accessible
tool. Below we discuss some more advanced uses of
OCTA, potential applications, and give advice on how to
start using OCTA.

Using animated stimulus and element feature values

One of the big advantages of the OCTA toolbox being vec-
tor-based, is the option to animate a diverse set of stimulus
and element features either directly within the OCTA tool-
box (i.e., using SVG animation to animate stimulus orien-
tation and element fillcolors, orientations, borderwidths,
bordercolors, and opacities) or after the OCTA stimulus
has been created (i.e., using some additional CSS or
JavaScript code, making use of the class and id labels that
can be added to specific elements within OCTA stimuli and
to OCTA stimuli as a whole).

Within the OCTA toolbox, a wide range of animation options
is available: for example, animations initiated by clicking or by a
specified starting time, animations including discrete steps or
continuous change in feature values, one-time or indefinitely
repeating animations. For use of animated feature values in
OCTA, have a look at some dynamic stimulus examples or try
out some of the animated example feature values in the OCTA
Shiny app. For a more detailed reference on animation options in
the SVG language, consult the SVG documentation on
animation by The World Wide Web Consortium or Mozilla, or
the documentation of the svgwrite Python package that is used
within the octa Python package.

For more information on how to add CSS or JavaScript ani-
mations to SVG images based on class or id labels once the
OCTA stimulus has been generated, consult the general docu-
mentation on CSS or JavaScript animations by W3Schools or
search the internet for more specific tutorials on SVG animation
using CSS or JavaScript. For a very simple demo using OCTA
stimuli, consult the part on adding stimulus class and id labels in
the OCTA documentation (or go directly to the example).

Creating sets of stimuli

Depending on the research question at hand, one can create dif-
ferently controlled stimulus sets using OCTA. For example, a
researcher interested in investigating the influence of the level of
order on perception and appreciation of an image under different
levels of complexity may create stimuli varying in order level but
keeping order type, complexity level and complexity type con-
stant at a smaller number of values. A researcher interested in
investigating the generalizability of particular findings concern-
ing order, complexity, and aesthetic appreciation may create
stimuli keeping order and complexity levels and types constant
but varying the pattern values used in each of the feature dimen-
sions (e.g., fillcolors, boundingboxes, shapes). Furthermore, a
researcher interested in studying to what extent and in which
way order and complexity on different feature dimensions influ-
ence the perception and appreciation of an image, may create
stimuli varying the type of complexity present (e.g., number
and variety of fillcolors, boundingboxes, or shapes) and keeping
order type, order level, and complexity level constant.26

Researchers investigating perceptual grouping principles includ-
ing proximity and different types of similarity may use the
OCTA toolbox to create congruent and incongruent stimuli, vary
row and column spacing in Grid stimuli, or vary the absolute
feature values used to investigate the generalizability of the
grouping strengths beyond typically used feature values (e.g.,
black-colored circular elements in the commonly used dot lat-
tices). Moreover, researchers concerned with ecological validity
of earlier findings may create equivalent stimulus sets with more
abstract and more concrete shapes relevant to daily life (e.g.,
comparing a standard circle and a circle looking like a button,
or comparing a standard triangle and a triangle looking like a
tent). These are only examples of stimulus sets that could be
created, as the OCTA toolbox gives researchers a very elaborate
range of options that can be combined in any way preferred.

When creating sets of stimuli, it may be advisable to use the
octa Python package rather than the app, as using Python
directly will give you more opportunities to use loops and
create multiple stimuli at once. This does not hold users back
to first create one of the stimuli in the Shiny app, and then
copy the code to Python for creating the complete set of stim-
uli. For researchers more familiar with R thanwith Python, the
reticulate package (Allaire, Ushey, Tang, & Eddelbuettel,
2017) can be very useful to interact with the octa Python
code when creating and saving the combinations of
parameter values for the stimuli in R rather than in Python
directly.

26 One prerequisite for studying the multidimensionality of order and com-
plexity may be finding equivalent levels of change on different feature
dimensions.

2442

https://elinevg.github.io/OCTA_dynamicstimuli/
https://www.w3.org/TR/SVG11/animate.html
https://developer.mozilla.org/en-US/docs/Web/SVG/SVG_animation_with_SMIL
https://svgwrite.readthedocs.io/en/latest/classes/animate.html
https://www.w3schools.com/css/css3_animations.asp
https://www.w3schools.com/js/js_htmldom_animate.asp
https://elinevg.github.io/OCTA_manual/get-started.html#stimulus-types-characteristics
https://elinevg.github.io/OCTA_manual/img/testclassesids_example.html
https://rstudio.github.io/reticulate/

Behavior Research Methods (2023) 55:2423–2446

Applications

Although OCTA has originally been created to study order and
complexity in the context of empirical aesthetics, the toolbox can
be used for generation of static or dynamic stimuli in a much
broader field of research using visual stimuli as well as in non-
academic use contexts. Examples of some research fields that
could benefit from the use of OCTA are perceptual organization
(e.g., grouping principles), symmetry detection, local-global pro-
cessing and part-whole relationships, texture perception, vi-
sual search, visual illusions, perceptual averaging, ensemble
perception, other types of visual perception research (for a
review of many of these topics, see Wagemans, 2018), crea-
tivity, joy of ordering, aesthetic appreciation in general, and
manymore (seeFig. 17). For example, althoughOCTA is not
builtwith a focusondifferent typesof symmetry specifically,
all four basic two-dimensional symmetry operations (rota-
tion, translation, reflection, and glide reflection) are at least

in some form automatically available in OCTA,27 and the
seven frieze patterns as well as the 17 wallpaper patterns
can be created usingOCTA.28 In sum,OCTA can be a useful
tool in any type of research using visual stimuli, and even to
generate digital art (for some more examples, see Fig. 1). In
addition, OCTA stimuli can be used in many different kinds
of tasks (rating, pairwise comparison, ranking, sorting,

Applications

aesthetic order and grouping symmetry
appreciation complexity principles detection

local-global texture visual visual
processing perception search illusions

Fig. 17 Applications of OCTA. Clicking a stimulus leads to the octa code
used to generate it. Figure licensed under CC BY 4.0 by the authors.
Retrieved from https://doi.org/10.6084/m9.figshare.17750123. The
OCTA stimuli related to local-global processing are based on stimuli

used in Kimchi and Palmer (1982, Exp. 1). The OCTA stimuli related
to texture perception are inspired by Julesz (1981). The OCTA stimuli
related to visual illusions represent a Kanizsa triangle and the Ebbinghaus
illusion

27 Rotation can be achieved using the orientation feature dimension, transla-
tion in horizontal and vertical directions is possible using the col_spacing and
row_spacing parameters in the Grid stimulus type and translation in any di-
rection is possible using custom position definitions; reflection can be
achieved using the mirrorvalue feature dimension; and glide reflection can
be achieved using a combination of translation and reflection manipulations.
28 As OCTA currently builds mostly from rectangular grids, generating wall-
paper patterns starting from these requires less customization (e.g., custom
position definitions) than creating wallpaper patterns starting from other grid
types. One potential avenue for further development of the OCTA toolbox is
adding additional grids and related pattern types, to make the creation of some
of these wallpaper patterns more straightforward in OCTA.

2443

https://doi.org/10.6084/m9.figshare.17750123
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0168.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0169.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0170.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0171.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0172.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0176.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0178.py
https://github.com/ElineVG/OCTA_stimulusexamples/blob/main/example_0177.py

Behavior Research Methods (2023) 55:2423–2446

detection, construction, adjustment, etc., for a review of
many of these tasks, see Palmer, Schloss, and Sammartino,
2013). For some experiment demos in jsPsych (de Leeuw,
2015), consult the linked webpages (demos, code). Preliminary
versions of OCTA are currently already being used both in
research on the perception and appreciation of order and
complexity (including order and complexity variations in
shapes, boundingboxes, fillcolors, and number of
elements, Van Geert, Hofmann, & Wagemans, in preparation;
VanGeert,Warny, &Wagemans, in preparation) and in research
on the proximity principle in perceptual organization (including
manipulations of row spacing and column spacing, Van der
Hulst, Van Geert, & Wagemans, in preparation).

Advice on starting to use OCTA

Although learning to work with a new tool can lead to some cold
feet, the online application as well as all the additional resources
(e.g., manual, example stimuli, detailed function documentation;
for an overview, visit elinevg.github.io/OCTA/) help users along
the way. As OCTA is a new tool, feedback is welcomed and
there are many opportunities for further development (e.g.,
additional position patterns and deviation options, additional
animation options, option to create multiple stimuli at once).
We do believe however that the current functionality already
provides an immense array of options unexplored in aesthetics
and visual perception research so far, and invite readers to
explore the options29 in the app (for starting users) or the
Python package (for researchers with some prior Python
programming experience; on the Python Package Index or on
GitHub).30

Open practices statement

The octa Python package is available (on the Python Package
Index or on GitHub) as open-source software under the GNU
Lesser General Public License (Version 3) as published by the
Free Software Foundation. The following webpage collects all
additional resources concerning the OCTA toolbox: https://
elinevg.github.io/OCTA/, including the Shiny app, the
OCTA manual, the octa function documentation, example
stimuli created in OCTA, demo experiments using OCTA
stimuli, and more. When using either the octa Python
package or the OCTA Shiny app in your (academic) work,
please cite this paper to acknowledge the authors.

Funding This work has been supported by a PhD fellowship from the
Research Foundation – Flanders (FWO) awarded to Eline Van Geert
(Grant 11D3619N) and by long-term structural funding from the
Flemish Government awarded to Johan Wagemans (METH/14/02 and
METH/21/02).

References

Aguilar, D. (2021). Jsonpickle (Version 2.0.0). Retrieved from https://
github.com/jsonpickle/jsonpickle

Allaire, J., Ushey, K., Tang, Y., & Eddelbuettel, D. (2017). Reticulate: R
interface to Python. Retrieved from https://github.com/rstudio/
reticulate

Alp, N., Kohler, P.J., Kogo, N., Wagemans, J., & Norcia, A.M. (2018).
Measuring integration processes in visual symmetrywith frequency-
tagged EEG. Scientific Reports, 8(1), 6969. https://doi.org/10.1038/
s41598-018-24513-w

Alvarez, L., Gousseau, Y.,Morel, J.-M., & Salgado, A. (2015). Exploring
the space of abstract textures by principles and random sampling.
Journal of Mathematical Imaging and Vision, 53(3), 332–345.
https://doi.org/10.1007/s10851-015-0582-z

Alvarez, L., Monzón, N., & Morel, J.-M. (2021). Interactive design of
random aesthetic abstract textures by composition principles.
Leonardo, 54(2), 179–184. https://doi.org/10.1162/leon_a_01768

Arnheim, R. (1971). Entropy and art: An essay on disorder and order.
University of California Press.

Arnoult, M.D. (1960). Prediction of perceptual responses from structural
characteristics of the stimulus. Perceptual and Motor Skills, 11(3),
261–268. https://doi.org/10.2466/pms.1960.11.3.261

Attneave, F. (1957). Physical determinants of the judged complexity of
shapes. Journal of Experimental Psychology, 53(4), 221–227.
https://doi.org/10.1037/h0043921

Attneave, F., & Arnoult, M.D. (1956). The quantitative study of shape
and pattern perception. Psychological Bulletin, 53(6), 452–471.
https://doi.org/10.1037/h0044049

Berlyne, D.E. (Ed.) (1960). Conflict, arousal and curiosity. New York,
NY: McGraw-Hill. https://doi.org/10.1037/11164-000

Berlyne, D.E. (Ed.) (1974). Studies in the new experimental aesthetics:
Steps toward an objective psychology of aesthetic appreciation.
Oxford, England: Hemisphere.

Bertamini, M., & Rampone, G. (2020). The study of symmetry in empir-
ical aesthetics. InM. Nadal, & OVartanian (Eds.) The Oxford hand-
book of empirical aesthetics. Oxford University Press. https://doi.
org/10.1093/oxfordhb/9780198824350.013.23

Bies, A.J., Blanc-Goldhammer, D.R., Boydston, C.R., Taylor, R.P., &
Sereno, M.E. (2016). Aesthetic responses to exact fractals driven by
physical complexity. Frontiers in Human Neuroscience, 10. https://
doi.org/10.3389/fnhum.2016.00210

Braun, J., Amirshahi, S.A., Denzler, J., & Redies, C. (2013). Statistical
image properties of print advertisements, visual artworks and images
of architecture. Frontiers in Psychology, 4. https://doi.org/10.3389/
fpsyg.2013.00808

Chipman, S.F. (1977). Complexity and structure in visual patterns.
Journal of Experimental Psychology: General, 106(3), 296–301.

Chipman, S.F., & Mendelson, M.J. (1979). Influence of six types of
visual structure on complexity judgments in children and adults.
Journal of Experimental Psychology: Human Perception and
Performance, 5(2), 365–378.

Clarke, A.D.F., Green, P.R., Halley, F., & Chantler, M.J. (2011). Similar
symmetries: The role of wallpaper groups in perceptual texture sim-
ilarity. Symmetry, 3(2), 246–264. https://doi.org/10.3390/
sym3020246

29 With some additional JavaScript, it is even possible to add sounds to spe-
cific elements or stimuli as a whole and thus to create multimodal stimuli (cf.
class labels and id labels in the online documentation).
30 To start working with the octa Python package, it can be helpful to copy
Python code from the Shiny app, the manual or the example stimuli in Python
and start from there.

2444

https://elinevg.github.io/OCTA_expdemos/jspsych-combo.html
https://github.com/ElineVG/OCTA_expdemos
https://elinevg.github.io/OCTA_manual/
https://elinevg.github.io/OCTA_stimulusexamples/
https://elinevg.github.io/OCTA_docs/
https://elinevg.github.io/OCTA/
https://elinevg.shinyapps.io/OCTA_toolbox/
https://pypi.org/project/octa/
https://github.com/gestaltrevision/OCTA_toolbox
https://github.com/gestaltrevision/OCTA_toolbox
https://pypi.org/project/octa/
https://pypi.org/project/octa/
https://github.com/gestaltrevision/OCTA_toolbox
https://elinevg.github.io/OCTA/
https://elinevg.github.io/OCTA/
https://elinevg.shinyapps.io/OCTA_toolbox/
https://elinevg.github.io/OCTA_manual/
https://elinevg.github.io/OCTA_docs/
https://elinevg.github.io/OCTA_stimulusexamples/
https://elinevg.github.io/OCTA_stimulusexamples/
https://elinevg.github.io/OCTA_expdemos/jspsych-combo.html
https://elinevg.github.io/OCTA_expdemos/jspsych-combo.html
https://github.com/jsonpickle/jsonpickle
https://github.com/jsonpickle/jsonpickle
https://github.com/rstudio/reticulate
https://github.com/rstudio/reticulate
https://doi.org/10.1038/s41598-018-24513-w
https://doi.org/10.1038/s41598-018-24513-w
https://doi.org/10.1007/s10851-015-0582-z
https://doi.org/10.1162/leon_a_01768
https://doi.org/10.2466/pms.1960.11.3.261
https://doi.org/10.1037/h0043921
https://doi.org/10.1037/h0044049
https://doi.org/10.1037/11164-000
https://doi.org/10.1093/oxfordhb/9780198824350.013.23
https://doi.org/10.1093/oxfordhb/9780198824350.013.23
https://doi.org/10.3389/fnhum.2016.00210
https://doi.org/10.3389/fnhum.2016.00210
https://doi.org/10.3389/fpsyg.2013.00808
https://doi.org/10.3389/fpsyg.2013.00808
https://doi.org/10.3390/sym3020246
https://doi.org/10.3390/sym3020246
https://elinevg.github.io/OCTA_manual/get-started.html#feature-values
https://elinevg.shinyapps.io/OCTA_toolbox/
https://elinevg.github.io/OCTA_manual/
https://elinevg.github.io/OCTA_stimulusexamples/

Behavior Research Methods (2023) 55:2423–2446

Cupchik, G.C., & Berlyne, D.E. (1979). The perception of collative prop-
erties in visual stimuli. Scandinavian Journal of Psychology, 20(1),
93–104. https://doi.org/10.1111/j.1467-9450.1979.tb00688.x

de Leeuw, J.R. (2015). jsPsych: A JavaScript library for creating behav-
ioral experiments in a web browser. Behavior Research Methods,
47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y

Donderi, D.C. (2006). Visual complexity: A review. Psychological
Bulletin, 132(1), 73–97. https://doi.org/10.1037/0033-2909.132.1.
73

Garner, W.R., & Clement, D.E. (1963). Goodness of pattern and pattern
uncertainty. Journal of Verbal Learning and Verbal Behavior, 2(5-
6), 446–452. https://doi.org/10.1016/S0022-5371(63)80046-8

Gartus, A., & Leder, H. (2013). The small step toward asymmetry:
Aesthetic judgment of broken symmetries. I-Perception, 4(5),
361–364. https://doi.org/10.1068/i0588sas

Gherman, D. (2021). Svglib (Version 1.1.0). Retrieved from https://
github.com/deeplook/svglib

Gollwitzer, A., Marshall, J., Wang, Y., & Bargh, J.A. (2017). Relating
pattern deviancy aversion to stigma and prejudice. Nature Human
Behaviour, 1(12), 920–927. https://doi.org/10.1038/s41562-017-
0243-x

Grebenkina, M., Brachmann, A., Bertamini, M., Kaduhm, A., & Redies,
C. (2018). Edge-orientation entropy predicts preference for diverse
types of man-made images. Frontiers in Neuroscience, 12. https://
doi.org/10.3389/fnins.2018.00678

Grünbaum, B., & Shephard, G.C. (1989) Tilings and patterns. New
York: W. H. Freeman and Company.

Güçlütürk, Y., Jacobs, R. H. A. H., & van Lier, R. (2016). Liking versus
complexity: Decomposing the inverted U-curve. Frontiers in
Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.
00112

Hamada, J., & Ishihara, T. (1988). Complexity and goodness of dot
patterns varying in symmetry. Psychological Research, 50(3),
155–161. https://doi.org/10.1007/BF00310176

Hamm, L.M., Yeoman, J.P., Anstice, N., & Dakin, S.C. (2018). The
Auckland Optotypes: An open-access pictogram set for measuring
recognition acuity. Journal of Vision, 18(3), 13–13. https://doi.org/
10.1167/18.3.13

Hübner, R., & Fillinger, M.G. (2016). Comparison of objective measures
for predicting perceptual balance and visual aesthetic preference.
Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.
00335

Hůla, M., & Flegr, J. (2016). What flowers do we like? The influence of
shape and color on the rating of flower beauty. PeerJ, 4, e2106.
https://doi.org/10.7717/peerj.2106

Jacobsen, T., & Höfel, L. (2002). Aesthetic judgments of novel graphic
patterns: Analyses of individual judgments. Perceptual and Motor
Skills, 95(3), 755–766. https://doi.org/10.2466/pms.2002.95.3.755

Julesz, B. (1981). Textons, the elements of texture perception, and their
interactions. Nature, 290(5802), 91–97. https://doi.org/10.1038/
290091a0

Kimchi, R., & Palmer, S.E. (1982). Form and texture in hierarchically
constructed patterns. Journal of Experimental Psychology: Human
Perception and Performance, 8(4), 521–535. https://doi.org/10.
1037/0096-1523.8.4.521

Kohler, P.J., Clarke, A., Yakovleva, A., Liu, Y., & Norcia, A.M. (2016).
Representation of maximally regular textures in human visual cor-
tex. The Journal of Neuroscience, 36(3), 714–729. https://doi.org/
10.1523/JNEUROSCI.2962-15.2016

Krakowski, C.-S., Poirel, N., Vidal, J., Roëll, M., Pineau, A., Borst, G., &
Houdé, O. (2016). The forest, the trees, and the leaves: Differences
of processing across development. Developmental Psychology,
52(8), 1262–1272. https://doi.org/10.1037/dev0000138

Lab, V. (2021). Colour (Version 0.1.5). Retrieved from http://github.com/
vaab/colour

Locher, P.J., Stappers, P.J., & Overbeeke, K. (1998). The role of balance
as an organizing design principle underlying adults’ compositional
strategies for creating visual displays. Acta Psychologica, 99(2),
141–161. https://doi.org/10.1016/S0001-6918(98)00008-0

Martin, P., Uy, N., Kvapil, M, & Friedenberg, J. (2020). The aesthetics of
frieze of patterns: A preference for emergent features [Poster re-
trieved from https://doi.org/10.13140/RG.2.2.34413.74721]

Mather, G. (2018). Visual image statistics in the history of Western art.
Art and Perception, 6 (2-3), 97–115. https://doi.org/10.1163/
22134913-20181092

Mather, G. (2020). Aesthetic image statistics vary with artistic genre.
Vision, 4(1), 10. https://doi.org/10.3390/vision4010010

Mayer, S. (2021). Imagefluency: Image statistics based on processing
fluency. Zenodo. https://doi.org/10.5281/zenodo.5614666

Mayer, S., & Landwehr, J.R. (2018a). Objective measures of design
typicality. Design Studies, 54, 146–161. https://doi.org/10.1016/j.
destud.2017.09.004

Mayer, S., & Landwehr, J.R. (2018b). Quantifying visual aesthetics based
on processing fluency theory: Four algorithmic measures for ante-
cedents of aesthetic preferences. Psychology of Aesthetics,
Creativity, and the Arts, 12(4), 399–431. https://doi.org/10.1037/
aca0000187

Moitzi, M. (2021). Svgwrite (Version 1.4.1). Retrieved from http://
github.com/mozman/svgwrite.git

Muth, C., Westphal-Fitch, G., & Carbon, C.-C. (2019). Seeking (dis)or-
der: Ordering appeals but slight disorder and complex order trigger
interest. Psychology of Aesthetics, Creativity, and the Arts. https://
doi.org/10.1037/aca0000284

Nadal, M., Munar, E., Marty, G., & Cela-Conde, C.J. (2010). Visual
complexity and beauty appreciation: Explaining the divergence of
results. Empirical Studies of the Arts, 28(2), 173–191. https://doi.
org/10.2190/EM.28.2.d

Navon, D. (1977). Forest before trees: The precedence of global features
in visual perception. Cognitive Psychology, 9(3), 353–383. https://
doi.org/10.1016/0010-0285(77)90012-3

Palmer, S.E., Schloss, K.B., & Sammartino, J. (2013). Visual aesthetics
and human preference. Annual Review of Psychology, 64(1), 77–
107. https://doi.org/10.1146/annurev-psych-120710-100504

Pérez, F., & Granger, B.E. (2007). IPython: A system for interactive
scientific computing. Computing in Science & Engineering, 9(3).
https://doi.org/10.1109/MCSE.2007.53

Poirel, N., Pineau, A., & Mellet, E. (2006). Implicit identification of
irrelevant local objects interacts with global/local processing of hi-
erarchical stimuli. Acta Psychologica, 122(3), 321–336. https://doi.
org/10.1016/j.actpsy.2005.12.010

Port, A. (2021). Svgpathtools (Version 1.4.1). Retrieved from https://
github.com/mathandy/svgpathtools

Redies, C., Brachmann, A., & Wagemans, J. (2017). High entropy of
edge orientations characterizes visual artworks from diverse cultural
backgrounds. Vision Research, 133, 130–144. https://doi.org/10.
1016/j.visres.2017.02.004

Regebro, L. (2021). Svg.path (Version 4.1). Retrieved from https://
github.com/regebro/svg.path

Robinson, A., Becker, R., the ReportLab team, & the community (2021).
Reportlab: The Reportlab Toolkit (Version 3.6.1). Retrieved from
http://www.reportlab.com/

Shier, J. (2011). Filling space with random fractal non-overlapping sim-
ple shapes. Hyperseeing, summer 2011 issue, 131–140, published
by ISAMA (International Society of the Arts, Mathematics, and
Architecture). Retrieved from http://www.isama.org/hyperseeing/
11/11b.pdf

Shier, J., & Bourke, P. (2013). An algorithm for random fractal filling of
space: An algorithm for random fractal filling of space. Computer
Graphics Forum, 32(8), 89–97. https://doi.org/10.1111/cgf.12163

2445

https://doi.org/10.1111/j.1467-9450.1979.tb00688.x
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1016/S0022-5371(63)80046-8
https://doi.org/10.1068/i0588sas
https://github.com/deeplook/svglib
https://github.com/deeplook/svglib
https://doi.org/10.1038/s41562-017-0243-x
https://doi.org/10.1038/s41562-017-0243-x
https://doi.org/10.3389/fnins.2018.00678
https://doi.org/10.3389/fnins.2018.00678
https://doi.org/10.3389/fnhum.2016.00112
https://doi.org/10.3389/fnhum.2016.00112
https://doi.org/10.1007/BF00310176
https://doi.org/10.1167/18.3.13
https://doi.org/10.1167/18.3.13
https://doi.org/10.3389/fpsyg.2016.00335
https://doi.org/10.3389/fpsyg.2016.00335
https://doi.org/10.7717/peerj.2106
https://doi.org/10.2466/pms.2002.95.3.755
https://doi.org/10.1038/290091a0
https://doi.org/10.1038/290091a0
https://doi.org/10.1037/0096-1523.8.4.521
https://doi.org/10.1037/0096-1523.8.4.521
https://doi.org/10.1523/JNEUROSCI.2962-15.2016
https://doi.org/10.1523/JNEUROSCI.2962-15.2016
https://doi.org/10.1037/dev0000138
http://github.com/vaab/colour
http://github.com/vaab/colour
https://doi.org/10.1016/S0001-6918(98)00008-0
https://doi.org/10.13140/RG.2.2.34413.74721
https://doi.org/10.1163/22134913-20181092
https://doi.org/10.1163/22134913-20181092
https://doi.org/10.3390/vision4010010
https://doi.org/10.5281/zenodo.5614666
https://doi.org/10.1016/j.destud.2017.09.004
https://doi.org/10.1016/j.destud.2017.09.004
https://doi.org/10.1037/aca0000187
https://doi.org/10.1037/aca0000187
http://github.com/mozman/svgwrite.git
http://github.com/mozman/svgwrite.git
https://doi.org/10.1037/aca0000284
https://doi.org/10.1037/aca0000284
https://doi.org/10.2190/EM.28.2.d
https://doi.org/10.2190/EM.28.2.d
https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1146/annurev-psych-120710-100504
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1016/j.actpsy.2005.12.010
https://doi.org/10.1016/j.actpsy.2005.12.010
https://github.com/mathandy/svgpathtools
https://github.com/mathandy/svgpathtools
https://doi.org/10.1016/j.visres.2017.02.004
https://doi.org/10.1016/j.visres.2017.02.004
https://github.com/regebro/svg.path
https://github.com/regebro/svg.path
http://www.reportlab.com/
http://www.isama.org/hyperseeing/11/11b.pdf
http://www.isama.org/hyperseeing/11/11b.pdf
https://doi.org/10.1111/cgf.12163

Behavior Research Methods (2023) 55:2423–2446

Smets, G. (1973) Aesthetic judgment and arousal: An experimental con-
tribution to psycho-aesthetics. Leuven, Belgium: Leuven University
Press.

Spehar, B., Walker, N., & Taylor, R.P. (2016). Taxonomy of individual
variations in aesthetic responses to fractal patterns. Frontiers in
Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.
00350

Sun, Z., & Firestone, C. (2021). Curious objects: How visual complexity
guides attention and engagement. Cognitive Science, 45(4). https://
doi.org/10.1111/cogs.12933

Telenczuk, B. (2021). Svgutils (Version 0.3.4). Retrieved from https://
svgutils.readthedocs.io

Thomas, B.G. (2012). 15 - Colour symmetry: The systematic coloration
of patterns and tilings. In J. Best (Ed.)Colour design. https://doi.org/
10.1533/9780857095534.3.381 (pp. 381–432): Woodhead
Publishing.

Van der Hulst, E., Van Geert, E., &Wagemans, J. (in preparation). Shape
variation in proximity grouping: An individual differences
approach.

Van Geert, E., Hofmann, D., & Wagemans, J. (in preparation). The per-
ception and appreciation of order and complexity.

Van Geert, E., & Wagemans, J. (2020). Order, complexity, and aesthetic
appreciation. Psychology of Aesthetics, Creativity, and the Arts,
14(2), 135–154. https://doi.org/10.1037/aca0000224

Van Geert, E., & Wagemans, J. (2021). Order, complexity, and aesthetic
preferences for neatly organized compositions. Psychology of
Aesthetics, Creativity, and the Arts, 15 (3), 484–504. https://doi.
org/10.1037/aca0000276

Van Geert, E., Warny, A., &Wagemans, J. (in preparation). A systematic
approach to study preferences for complexity.

Van Rossum, G., & Drake, F.L. (2009) Python 3 reference manual.
CreateSpace: Scotts Valley, CA.

Vanderplas, J.M., & Garvin, E.A. (1959). Complexity, association value,
and practice as factors in shape recognition following paired-
associates training. Journal of Experimental Psychology, 57(3),
155–163. https://doi.org/10.1037/h0042010

vgalin (2021). html2image (Version 1.1.2). Retrieved from https://github.
com/vgalin/html2image

Wagemans, J. (2018). Perceptual organization. In J. T. Wixted, & J.
Serences (Eds.), The Stevens’ Handbook of Experimental
Psychology and Cognitive Neuroscience: Vol. 2. Sensation,
Perception & Attention. (pp. 803–872). Hoboken, NJ: John Wiley
& Sons, Inc. https://doi.org/10.1002/9781119170174.epcn218

Westphal-Fitch, G., Huber, L., Gómez, J.C., & Fitch, W. T. (2012).
Production and perception rules underlying visual patterns: Effects
of symmetry and hierarchy.Philosophical Transactions of the Royal
Society B: Biological Sciences, 367(1598), 2007–2022. https://doi.
org/10.1098/rstb.2012.0098

Wilson, A., & Chatterjee, A. (2005). The assessment of preference for
balance: Introducing a new test. Empirical Studies of the Arts, 23(2),
165–180. https://doi.org/10.2190/B1LR-MVF3-F36X-XR64

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2446

https://doi.org/10.3389/fnhum.2016.00350
https://doi.org/10.3389/fnhum.2016.00350
https://doi.org/10.1111/cogs.12933
https://doi.org/10.1111/cogs.12933
https://svgutils.readthedocs.io
https://svgutils.readthedocs.io
https://doi.org/10.1533/9780857095534.3.381
https://doi.org/10.1533/9780857095534.3.381
https://doi.org/10.1037/aca0000224
https://doi.org/10.1037/aca0000276
https://doi.org/10.1037/aca0000276
https://doi.org/10.1037/h0042010
https://github.com/vgalin/html2image
https://github.com/vgalin/html2image
https://doi.org/10.1002/9781119170174.epcn218
https://doi.org/10.1098/rstb.2012.0098
https://doi.org/10.1098/rstb.2012.0098
https://doi.org/10.2190/B1LR-MVF3-F36X-XR64

	The...
	Abstract
	Defining order and complexity
	Previous parametric stimulus sets in research on the perception and appreciation of order and complexity
	Existing software to generate aesthetic stimuli
	FlexTiles
	Statistical geometry sampler
	Aesthetic abstract textures generator

	The need for OCTA (see Fig. 5)
	The OCTA toolbox as a Python package and a Shiny application
	Step-by-step guide to creating a stimulus using OCTA (see Fig. 7)
	Step 0. Load the octa package in Python
	Step 1. Specify a stimulus type
	Step 2. Specify element positions
	Step 3. Specify patterns and pattern values for different element features
	Element features (see Fig. 12)
	Step 4. Add deviations and calculate measures
	Step 5. Generate the stimulus, show it on screen, and save to the desired output format

	Discussion and conclusion
	Using animated stimulus and element feature values
	Creating sets of stimuli
	Applications
	Advice on starting to use OCTA

	Open practices statement
	References

