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Abstract
Intensive longitudinal data (ILD) have become popular for studying within-person dynamics in psychological constructs (or 
between-person differences therein). Before investigating the dynamics, it is crucial to examine whether the measurement 
model (MM) is the same across subjects and time and, thus, whether the measured constructs have the same meaning. If the 
MM differs (e.g., because of changes in item interpretation or response styles), observations cannot be validly compared. 
Exploring differences in the MM for ILD can be done with latent Markov factor analysis (LMFA), which classifies observa-
tions based on the underlying MM (for many subjects and time points simultaneously) and thus shows which observations 
are comparable. However, the complexity of the method or the fact that no open-source software for LMFA existed until 
now may have hindered researchers from applying the method in practice. In this article, we provide a step-by-step tutorial 
for the new user-friendly software package lmfa, which allows researchers to easily perform the analysis LMFA in the freely 
available software R to investigate MM differences in their own ILD.

Keywords  Intensive longitudinal data · ESM · Measurement invariance · Factor analysis · Latent Markov modeling · Three-
step approach · R · Software package

Introduction

In recent years, researchers have shown an increased inter-
est in intensive longitudinal data (ILD) for studying the 
dynamics of one or more latent psychological constructs 
(or “factors”) such as depression or affective well-being for 
many subjects over a longer time (e.g., >30 measurement 
occasions; Asparouhov et al., 2017). The ILD are commonly 
obtained using experience sampling methodology (ESM; 
Scollon et al., 2003), where multiple subjects repeatedly 
complete small questionnaires—containing items intended 

to measure one or more latent factors—at random (or event-
based) time points, several times a day for several days or 
weeks via a smartphone app. State-of-the-art analyses to 
model dynamics in psychological factors for many subjects 
over time range from basic random-effect models (for study-
ing individual differences in the dynamics or average levels 
of the factors; Hamaker et al., 2015; Myin-Germeys et al., 
2018), over multilevel autoregressive models (for studying 
individual differences in lagged relationships between fac-
tors; e.g., Bringmann et al., 2013), to the advanced dynamic 
structural equation modeling framework that allows for the 
estimation of more complex models (e.g., models containing 
multiple outcome variables; McNeish & Hamaker, 2020). 
Furthermore, various (mixture) variants of latent growth 
models (Muthén, 2002) and latent Markov models (Bar-
tolucci et al., 2015; Baum et al., 1970; Vermunt et al., 1999; 
Wiggins, 1973) are used to study individual-level change 
and discrete changes at subsequent time points over time, 
respectively.

While the technology for gathering ILD and approaches 
for analyzing dynamics in the measured constructs are 
readily available, an important point of concern for many 
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researchers before they start their analyses is whether the 
latent factors have the same meaning across subjects and 
time points and, thus, whether observations are comparable. 
For this, the measurement model (MM) needs to be invariant 
across observations; that is, measurement invariance (MI) 
must hold. The MM indicates which factors are measured 
by which indicators and, for continuous item responses, is 
traditionally obtained with factor analysis (FA; Lawley & 
Maxwell, 1962). In the resulting MM (or “FA model”), fac-
tor loadings indicate the extent to which items measure the 
factors, and item intercepts indicate the expected item scores 
when scores on the factors are equal to zero. If the load-
ings, the intercepts, or the number of factors differ within or 
across subjects, MI is violated, and factors cannot be mean-
ingfully compared (Adolf et al., 2014). However, invariance 
within and between subjects is easily violated because of dif-
ferences and changes in response styles (Moors, 2003; Paul-
hus, 1991) or item interpretations (Oort et al., 2005). Thus, 
the MM may differ across subjects and change over time.

To clarify the possible non-invariance of MMs, consider 
the following example. Researchers conduct an ESM study to 
investigate between-subject differences regarding dynamics 
in the affective well-being of adolescents in different con-
texts. On the one hand, the underlying MM may differ across 
adolescents because people generally differ in their ability to 
label emotions in a granular way (Barrett et al., 2001; Erbas 
et al., 2020; Kashdan et al., 2015). The “high differentiators” 
differentiate more between specific emotions such as feeling 
content or happy than the “low differentiators”, who focus 
more on the valence of a feeling and, thus, whether an emo-
tion is positive or negative (Barrett, 1998; Erbas et al., 2015). 
A result could be that several factors underlie the responses 
of the high differentiators (say, four factors pertaining to 
high- and low-arousal positive and negative affect). In con-
trast, only one factor underlies the responses of the low dif-
ferentiators (say, a bipolar “valence of affect” factor).

On the other hand, the MM may change within adoles-
cents over time. For instance, adolescents who are generally 
high differentiators may also switch to a MM with a single 
“valence of affect” factor when being exposed to a stressful 
situation (e.g., right before an exam) because stress triggers 
a valence focus (Erbas et al., 2018). Because the low dif-
ferentiators respond according to a single valence of affect 
factor, regardless of experienced stress, the same MM would 
be underlying their responses during the entire participation.

Undetected measurement non-invariance is a threat to 
valid inferences from ILD analyses. Therefore, detecting non-
invariance is crucial. Until recently, researchers could only test 
whether the MM is invariant across (groups of) subjects and/
or time points (e.g., using traditional MI tests that are available 
in the R package lavaan; Rosseel, 2012). One limitation is that 
it is only possible to investigate non-invariance across subjects 
(assuming invariance over time) or to investigate invariance over 

time (assuming invariance across subjects) and not to investi-
gate both at the same time. Furthermore, if the results indicate 
that invariance is untenable across subjects and/or time points, 
researchers cannot identify for which subjects or time points the 
MMs differ and what the different MMs look like without con-
ducting pairwise comparisons of the subject- or time-point-spe-
cific MM parameters. This quickly becomes infeasible for ILD, 
which usually contain many observations from many subjects.

These above-described problems were solved by Vogels-
meier et al. (2019b), who developed latent Markov factor 
analysis (LMFA). LMFA allows researchers to conveni-
ently explore all kinds of MM differences across subjects 
and time in ILD, in which latent constructs are measured 
with items on a continuous scale1. LMFA is a mixture mod-
eling approach that combines a latent Markov model (LMM; 
Bartolucci et al., 2014; Collins & Lanza, 2010) with mixture 
FA (McLachlan & Peel, 2000; McNicholas, 2016): First, the 
LMM clusters observations according to their underlying 
MM into a few dynamic latent states. The latent states are 
equivalent to latent classes in a latent class analysis or mix-
ture model but are called states in an LMM because subjects 
can transition between latent classes over time. Second, FA 
reveals what the underlying MMs look like for each state.

In summary, LMFA classifies observations into different 
states pertaining to different MMs, and invariance holds for 
observations in the same state but is violated for observa-
tions in different states. Within-person invariance holds for 
subjects that are in the same state throughout their participa-
tion, and between-person invariance holds if the state is also 
the same across subjects. Researchers can then decide how 
to continue with their data analysis (e.g., retaining observa-
tions from one state or removing non-invariant items; see 
“Proceeding based on the results of LMFA” section for a 
more elaborate discussion). Researchers can also learn from 
subjects’ transitions between MMs by including time-var-
ying or time-constant covariates as predictors of the state 
memberships (e.g., “stress” could be included when ana-
lyzing the changes in the MM in our adolescent example).

By applying LMFA to ILD, we can thus answer the fol-
lowing questions: (1) How many MMs are underlying our 
ILD? (2) How do the MMs differ? (3) How do subjects 

1  Note that one may also investigate ordinal data as long as the 
data has more than a few response categories (say at least five; 
Rhemtulla et  al., 2012) and the distribution across the categories is 
approximately normal. However, the influence on the parameter esti-
mation has not yet been investigated for LMFA in particular, and 
results should therefore be interpreted with caution. Highly skewed 
responses with only a few response categories may lead to conver-
gence problems and local optima (for a description of local optima, 
see (“Increasing the chance to find the global maximum and assessing 
convergence” section). For such data, the LMFA extension to cate-
gorical data should be used, that is, latent Markov latent trait analysis 
(Vogelsmeier et al., 2021b).
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transition between the MMs over time, and is this related to 
time- or subject-specific covariates? (4) For which subjects 
does within-person invariance hold over time, and for which 
of these subjects does between-person invariance hold?

More and more researchers are eager to explore MI in their 
ILD (Horstmann & Ziegler, 2020). However, until now, LMFA 
was only available in the commercial software Latent GOLD 
(LG; Vermunt & Magidson, 2016), and, thus, not all research-
ers had access to the novel method. This has now changed with 
the release of the package lmfa (Vogelsmeier & De Roover, 
2021), which allows researchers to perform all necessary 
steps in the open-source software R (R Core Team, 2020) and 
which is available on GitHub (https://​github.​com/​Leoni​eVm/​
lmfa). This paper provides a tutorial for the lmfa package that 
guides users such as applied researchers through the steps of 
performing the analysis and interpreting the results to increase 
researchers’ confidence and ease in using LMFA. The tutorial 
targets an audience with a basic understanding of R but not 
necessarily of the LMFA model. The technical details of the 
lmfa package are presented in the online Supplementary Mate-
rial. However, understanding the technical details is not rel-
evant for understanding the method and following the tutorial.

The remainder of this paper is organized as follows: First, in 
“Illustrative example” section, we introduce an example data-
set. Then, in “Recap latent Markov factor analysis” section, 
we recap the LMFA method and explain how it is estimated in 
lmfa. Then, in “How to conduct LMFA with the lmfa package” 
section, we guide the reader through the different analysis steps 
by means of annotated R code. Next, in “Proceeding based on 
the results of LMFA” section, we describe how to proceed with 
ILD analyses based on the results of LMFA. Finally, in “Dis-
cussion” section, we conclude with a discussion about current 
limitations and possible future extensions of lmfa.

Illustrative example

To clarify the data structure, consider the following example 
dataset that will be used throughout this tutorial. The data 
is a synthetic dataset inspired by a real ESM dataset, which 
was used in Vogelsmeier et al. (2019b) to illustrate how to 
explore MM changes by means of LMFA without covari-
ates. Every evening for about three months, multiple sub-
jects (suffering from anhedonia, one of the core symptoms 
of depression; Van Roekel et al., 2017) reported their affect 
and the unpleasantness of the most unpleasant event they 
experienced since the previous measurement occasion (in 
the following, just “negative event”). Affect was measured 
with ten positive affect items (“interested”, “joyful”, “deter-
mined”, “calm”, “lively”, “enthusiastic”, “relaxed”, “cheer-
ful”, “content”, and “energetic”) and eight negative affect 
items (“upset”, “gloomy”, “sluggish”, “anxious”, “bored”, 
“irritated”, “nervous”, and “listless”), and a single item was 

used to assess the negative event. All items were assessed on 
a visual analogue scale ranging from 0 = “Not at all” to 100 
= “Very much”. Moreover, after the first month, subjects 
were randomly assigned to receive an intervention to reduce 
anhedonia or not.2 The results of LMFA indicated that most 
subjects transitioned between three MMs that differed with 
regard to the number and nature of the factors. Descriptive 
statistics showed a relation between the states and the two 
covariates “had an intervention” and “negative event”.

For the tutorial in this article, we created a dataset with 
MMs similar to the ones found in the real data application 
(but somewhat adjusted and simplified) and with the two 
time-varying covariates “had an intervention” (coded as 1 
= “yes” and 0 = “no”) and “negative event” affecting the 
transitions between the states. The dataset contains data for 
100 subjects with a mean of 47.76 observations and an SD 
of 6.56, resulting in a total number of observations equal 
to 4776. The intervals between measurement occasions dif-
fer within and across subjects, with an average length of 
1.22 days and an SD of 1.02. The negative event scores vary 
within and across subjects, with a mean of 49.65 and an SD 
of 15.11. Of all subjects, 50 receive no intervention, and 50 
receive one intervention after approximately one third of 
their total participation duration. Throughout the tutorial, the 
dataset will be used to show how the different analysis steps 
answer the research questions about MM differences and 
changes (see “Introduction” section for research questions 
1–4). Note that the true number of states and factors and the 
relevant covariates (i.e., as in the data-generating model) are 
not known in empirical practice. The required model selec-
tion and covariate selection procedures are explained as part 
of the tutorial in “BIC and CHull” and “Covariate selection 
procedure using Wald tests” sections, respectively.

Recap latent Markov factor analysis

The LMFA method was introduced by Vogelsmeier et al. 
(2019b) and was further extended by Vogelsmeier et al. 
(2019a, 2021a). In this section, we summarize the relevant 
information in non-technical terms. A corresponding sum-
mary of the technical details is provided in the Supplemen-
tary Material. LMFA consists of two building blocks. The 
first one pertains to the state-specific MMs and thus to an 
FA model for each state that specifies which constructs are 
measured by which items. The second building block is the 
LMM, which models the transitions between MMs over 
time (Bartolucci et al., 2015; Zucchini et al., 2016). Note 

2  The intervention was either personalized lifestyle advice or the 
advice in combination with a skydive. For simplicity in this tutorial, 
we do not distinguish between different types of interventions.
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that there are two types of LMMs. First, the discrete-time 
(DT)-LMM (Bartolucci et al., 2015; Zucchini et al., 2016) 
assumes equal intervals across subjects and time. In con-
trast, the continuous-time (CT)-LMM (Böckenholt, 2005; 
Jackson & Sharples, 2002) accommodates unequally spaced 
observations, which is usually more realistic in ILD (e.g., 
due to random beeps or skipped measurement occasions). 
However, the CT-LMM also works for equal intervals. In 
fact, estimating a CT-LMM with equal intervals is similar 
to estimating a DT-LMM, but the parameter interpretation 
differs (Vermunt & Magidson, 2016), which will be clarified 
in “The transition model” section. The lmfa package uses 
CT-LMM because it is more generally applicable.

LMFA can be estimated with a full information maximum 
likelihood (FIML) estimation (Vogelsmeier et al., 2019a, 
b) or with a three-step (3S) estimation (Vogelsmeier et al., 
2021a). The latter breaks down the estimation of LMFA into 
three steps. Although the 3S approach works slightly less 
well in assigning observations to the correct state (and thus 
MM) than the FIML estimation, the 3S approach is preferred 
when investigating covariate effects because it ensures that 
misspecifications of covariate effects do not falsify the for-
mation of the MMs. Therefore, lmfa uses the 3S estimation, 
which will be explained below (“Estimation” section).3

The state‑specific measurement models

In LMFA, the MMs are determined by state-specific FA 
models, which consist of three types of parameters. Depend-
ing on which parameters differ across states, different lev-
els of MI are violated. The first type of parameter is the 
factor loadings, which determine the item–factor relations 
and, hence, the degree to which an item measures a factor 
or, stated differently, to what extent an item is predicted by 
the underlying factor. Thus, items with stronger loadings 
are better measures of a factor than items with lower load-
ings. Second, item intercepts are the expected scores for an 
item when the factor scores are equal to zero. Third, the 
items’ unique variances indicate the variance of an item that 
is unique to the item and, hence, that is not explained by 
the factors (for the mathematical notation and the techni-
cal details, see Supplementary Material S.2.2). The three 
types of parameters can take on different values across states 
and inform us about violations of four different levels of 
MI (Widaman & Reise, 1997). These levels are configural 
invariance (invariance of the number of factors and the pat-
tern of non-zero loadings), weak invariance (invariance of 
the non-zero loadings), strong invariance (invariance of the 
intercepts), and strict invariance (invariance of the unique 
variances). Strict invariance is assumed to hold within each 

state, since the states capture differences in loadings, inter-
cepts, and unique variances.

For obtaining the state-specific MMs, LMFA uses explora-
tory FA (EFA) and not confirmatory FA (CFA). CFA is too 
restrictive because it imposes a priori assumptions about the 
presence or absence of item–factor relations by setting cer-
tain loadings equal to zero. Thus, CFA cannot detect MM 
differences pertaining to the configural model, such as the 
number and nature of the underlying factors in our previous 
adolescent example. Note, however, that the EFA model is 
not identified without setting constraints. Firstly, one needs 
to set the scale of the factors. To this end, lmfa sets the factor 
(co)variances equal to an identity matrix (with dimensions 
equal to the state-specific number of factors), which means 
that factors are initially uncorrelated. This initial solution is 
usually not well interpretable because many items may have 
high loadings on more than one factor (i.e., there is no “simple 
structure”; Thurstone, 1947). In order to achieve a more inter-
pretable solution, lmfa applies a rotation of the factors for each 
state. An oblique rotation (i.e., one that allows factors to be 
correlated) results in the best simple structure and is usually 
more valid for psychological constructs (Clarkson & Jennrich, 
1988; De Roover & Vermunt, 2019; Kiers, 1997). Finally, 
the factor means are set equal to zero per state. This implies 
that the state-specific intercepts are state-specific item means.

The transition model

After examining the MMs, the next step is to investigate what 
the transitions between the MMs look like with the CT-LMM. 
As previously stated, the CT-LMM is a latent class model that 
allows subjects to transition between latent states over time. 
Specifically, we will inspect the probability of starting in a 
state at the first time point (i.e., “initial state probabilities”) 
and the probabilities of transitioning to other states from one 
time point to the next (i.e., “transition probabilities”).

Initial state parameters

The initial state probabilities pertain to the probability 
of starting in a particular state at the first time point. The 
probabilities sum to 1 and are stored in a vector with ele-
ments equal to the number of states. For example, the vec-
tor π = (.42  .34  .24) shows that the probability of starting 
in state 1 is .42, the probability of starting in state 2 is .34, 
and the probability of starting in state 3 is .24. In lmfa, logit 
models are used to model the initial state probabilities (simi-
lar to logistic regression; Agresti, 1990). The inherent logit 
values (or “log-odds”) indicate the relative chance of start-
ing in a state compared to a reference state (in lmfa, this is 
state 1). Note that a separate logit model is required for all 
states but the reference state. These logit values do not have 
to be interpreted, because the initial state probabilities can 3  Note that both estimation approaches are available in LG.
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be calculated from these logit models (see Supplementary 
Material S.2.1).4

Finally, the initial state parameters may be related to covari-
ates, such as scores on a baseline questionnaire (e.g., a depres-
sion score or a score for the general ability to differentiate 
between emotions). However, including covariates on the initial 
state parameters only makes sense if the dataset contains data 
of more than a few subjects.5 Otherwise, there is not enough 
information to investigate the covariate effects. The covariates 
are related to the initial state parameters through regression, and 
they affect the logits and not the probabilities directly (see Sup-
plementary Material S.2.1). However, to see the covariate effects 
on the initial state probabilities, one can convert logits into prob-
abilities for different covariate values and compare them. For 
example, for a categorical covariate with two categories, one 
could compare the initial state probabilities for both categories. 
For continuous covariates, one could compare the initial state 
probabilities corresponding to the sample mean plus one stand-
ard deviation of the covariate to the probabilities corresponding 
to the sample mean minus one standard deviation (or compare 
probabilities for different quantiles of the covariate) while setting 
other covariates equal to their (sample) means.

Transition parameters

The transition probabilities are stored in a matrix with 
dimensions equal to the number of states, and the elements 
within a row of the transition probability matrix sum to 1 
(Bartolucci et al., 2015; Zucchini et al., 2016). To clarify 
this, consider the following matrix:

The rows indicate the state memberships at the previous 
time point, and the columns indicate the current ones. Thus, 
the diagonal values specify the probabilities of staying in a 
state, and the off-diagonal elements refer to the probabilities of 
transitioning to another state. For instance, the first row of the 
matrix shows that the probability of staying in state 1 is equal to 
.66, and the probabilities of transitioning from state 1 to state 2 
and from state 1 to state 3 are equal to .18 and .16, respectively.

As described before, the transition probabilities depend 
on the interval between two consecutive measurement occa-
sions. The larger the interval, the larger the probabilities of 

(1)� =

⎛
⎜
⎜
⎝

p
11

= .66 p
12

= .18 p
13

= .16

p
21

= .20 p
22

= .49 p
23

= .31

p
31

= .32 p
32

= .17 p
33

= .51

⎞
⎟
⎟
⎠
.

transitioning to another state.6 To accommodate the inter-
val length, LMFA (using CT-LMM) does not estimate the 
transition probabilities directly. Instead, transition intensi-
ties (or “rates”; i.e., transition probabilities per very small 
time unit)7 are estimated, and the transition probabilities are 
computed based on the transition intensities and the intervals 
(Böckenholt, 2005; Jackson & Sharples, 2002).8 The transi-
tion intensities are also captured in a matrix with dimen-
sions equal to the number of states. However, intensities 
are only estimated for the transitions away from the origin 
state and, hence, for the off-diagonal entries. The diagonal 
entries equal the negative sum of the off-diagonal transition 
intensities, implying that rows sum to zero (Cox & Miller, 
1965). For example, consider the matrix that corresponds to 
the transition probabilities in Eq. (1):

The rate to transition from state 1 to state 2 is q12 = .31, 
and the rate to transition from state 1 to state 3 is q13 = .20. 
Larger rates are related to larger transition probabilities away 
from a state.

The transition intensities are modeled through a log-
linear model such that the parameters are not intensities 
but log intensities (thus, the parameterization differs from 
the logit parameterization of the initial state parameters). 
For example, the estimates for the log intensities cor-
responding to intensities for the first row in Eq. (2) are 
log(q12 = .31) =  − 1.17 and log(q13 = .20) =  − 1.60. Intensi-
ties can be obtained from the log intensities by exponentia-
tion (e.g., e−1.60 = .20).

Finally, like the initial state parameters, the transition 
parameters may be related to covariates, which may be 
time-constant, such as scores from baseline questionnaires, 
or time-varying9, such as the negative event scores and the 

(2)

� =

⎛
⎜
⎜
⎝

−q
12
− q

13
= −.51 q

12
= .31 q

13
= .20

q
21

= .20 −q
21
− q

23
= −.86 q

23
= .66

q
31

= .56 q
32

= .28 −q
31
− q

32
= −.84

⎞
⎟
⎟
⎠
.

4  Note that lmfa users do not have to calculate any probabilities 
themselves, as the package provides them.
5  For an estimate of the required sample size, users may consult 
guidelines for multinomial logistic regression (e.g., de Jong et  al., 
2019).

6  Note that the probabilities of transitioning away from a state 
increase for increasing interval lengths only up to a certain point, 
where the probabilities asymptote (for details including a graphical 
illustration, see Vogelsmeier et al., 2019a).
7  For readers familiar with survival models, note that the intensities 
are actually equivalent to hazard rates (Cox & Miller, 1965; Kalb-
fleisch & Lawless, 1985; Kleinbaum & Klein, 2012).
8  More specifically, the probabilities are equal to the matrix exponen-
tial of the product of the intensities and the interval (see Supplemen-
tary Material S.2.1).
9  Note that, for time-varying covariates, the score at time-point t is used 
to predict the transition probabilities from time-point t − 1 to time-point 
t. This makes most sense for LMFA because MMs are typically trig-
gered by momentary circumstances (e.g., social interactions). Even when 
assuming temporal precedence (e.g., the effect of perceiving a negative 
event prior to time-point t), questionnaires are usually designed in a way 
that they ask subjects about such covariates at the current time point (e.g., 
“Please rate the unpleasantness of the most unpleasant event you have 
experienced since the previous measurement occasion”).
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intervention some subjects receive during their participa-
tion in our example data. The covariates are related to the 
transition parameters through regression (as is the case for 
the initial state parameters; see Supplementary Material 
S.2.1). Because the parameters of the transition model are 
log intensities, the regression effects have to be exponenti-
ated to obtain the effects of the covariates on the transition 
intensities. However, it is more convenient to interpret the 
covariate effects on the transition probabilities. To this end, 
one can convert the intensities into probabilities for a certain 
interval length and different covariate values and compare 
them (as for the initial state probabilities).

Estimation

In lmfa, the maximum likelihood (ML) parameter estimates 
are obtained with the 3S estimation (Vogelsmeier et al., 
2021a), which builds on Vermunt's (2010) ML method and 
its extension for DT-LMM by Di Mari et al. (2016). The 3S 
estimation separates the estimation of the state-specific MMs 
and the CT-LMM as follows:

1.	 The state-specific MMs are estimated while disregard-
ing the transitions between the latent states at consecu-
tive measurement occasions and the covariate effects on 
these transitions.

2.	 Each observation is assigned to the state with the high-
est state-membership probability; that is, “modal state 
assignment” is applied.10 Furthermore, the inherent clas-
sification uncertainty is calculated. Note that there is 
always uncertainty unless all observations are assigned 
to a state with a probability of 1.

3.	 The MMs (i.e., the factor parameters) are kept fixed, 
and the state assignments from step 2 are used as single 
indicators to estimate the CT-LMM (with covariates) 
while correcting for step 2’s assignment uncertainty. 
This correction is necessary to prevent underestimating 
the relations between the states (i.e., the transition prob-
abilities) and the covariate effects. Also, note that the 
final state assignments will differ slightly from the step 
2 state assignments (see Supplementary Material S.4 
and S.5). Usually, the assignments improve because the 
step 3 estimation benefits from additional information 
from the transition model (with covariates) to classify 
the observations (Vogelsmeier et al., 2021a).

For technical details about the steps, their likelihood 
functions, and the algorithms to maximize them, see Sup-
plementary Material S.3–S.5.

How to conduct LMFA with the lmfa package

In the following, we guide the reader through the different 
steps of conducting LMFA in the package lmfa. These steps 
are based on the three estimation steps described in “Esti-
mation” section: Step 1 is investigating the MMs, step 2 
is obtaining the state assignments and classification errors, 
and step 3 is investigating the transition model. Note that 
we introduce an additional step 0, which pertains to check-
ing the data requirements prior to performing LMFA. Fur-
thermore, as mentioned in “Illustrative example” section, 
the best model complexity in terms of the number of states 
and factors is unknown in advance and has to be evalu-
ated in step 1. Additionally, depending on the subsequent 
analyses to investigate dynamics in psychological construct, 
researchers require factor scores corresponding to the state-
specific MMs. Therefore, step 1 is divided into selecting 
the number of states and factors (step 1a), interpreting the 
MMs (step 1b), and attaching factor scores to the dataset 
(step 1c). Moreover, one must decide which covariates to 
include in the final transition model. Additionally, as men-
tioned in “Estimation” section, the state assignments should 
be updated after estimating the transition model and before 
inspecting subjects’ final state memberships. Therefore, step 
3 is divided into selecting covariates (step 3a), interpreting 
the transition model (step 3b), and updating the final state 
assignments and investigating the state memberships (step 
3c). Figure 1 summarizes the steps with references to the 
required lmfa functions.11

In this section, we describe the steps and functions 
using our example data introduced in “Illustrative exam-
ple” section. In order to follow the steps of this tutorial, 
the lmfa package and the example data have to be loaded 
into R. Before using the package for the first time, it must 
be installed once. This can be done using the following 
command:

11  Note that the package consists of only six functions in total (next 
to the general summary() and plot() functions). An overview of 
these functions is provided in the Appendix.

10  Note that it is theoretically also possible to use a “proportional 
assignment”, which assigns the state memberships according to the 
posterior state-membership probabilities. However, the proportional 
assignment is unfeasible for data that contain a large number of meas-
urement occasions for many subjects (Di Mari et al., 2016) and, thus, 
for ILD.

install.packages("devtools")
library("devtools")
install_github("LeonieVm/lmfa@0.1.3")
library("lmfa")
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Fig. 1   Summary of the three steps to conduct latent Markov factor analysis with lmfa.
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Note that the package devtools is required to install 
packages from the GitHub repository. The dataset used in 
this tutorial can be loaded into the R environment with the 
command:

Step 0: Checking data requirements

The first step is to check the data requirements with regard 
to the format (“Data format” section) and missing values 
(“Missing data” section).

Data format

In line with the assumed data structure, the dataset must be 
in long format, with rows equal to the number of total 
observations. Furthermore, next to the columns with  
the indicators of the latent factors (in our case, 
"Interested", "Joyful", "Determined",...) and 
possibly covariates (in our case, "intervention",
"negativeEvent"), the data must contain a column with the 
subject identification numbers (in our case,"id"). Moreover, 
if observations should not be treated as equidistant, the user 
must specify a column with the time intervals between two 
consecutive observations (in our case,"deltaT"). Note that, 
prior to computing the intervals, rows corresponding to 
measurement occasions skipped by participants must be 
removed from the data (also see “Missing data” section) such 
that the intervals represent the time between observed 
measurement occasions. Additionally, a proper unit should be 
used. For instance, if there is approximately only one observation 
per day, the unit “days” is appropriate (e.g., with an interval of 
1.42 days representing one day and 10 hours). If there are several 
observations per day, say nine, “hours” is an appropriate unit. 
With “minutes” or “seconds” as a unit, the intervals for these 
examples would take large values that likely lead to numerical 
problems when estimating the model.12 Furthermore, 
observations within subjects must be ordered by time (i.e., 
intervals must not be negative). Additionally, intervals for 
consecutive observations within a subject must not be equal to 
zero. Zero and negative intervals may occur from technical 
errors during data collection and should be corrected (otherwise, 
an error message is displayed).

Missing data

The data should include only records for the measure-
ment occasions at which the subjects completed the 

questionnaires, because the CT-LMM automatically 
accounts for differences in the intervals, including skipped 
measurement occasions. More specifically, when exclud-
ing rows with skipped measurement occasions before com-
puting the intervals (see “Data format” section), intervals 
between certain observed measurement occasions simply 
increase. Note that, depending on the data collection soft-
ware or technical errors, it may happen that a subject started 
a questionnaire but did not finish it, such that some indi-
cators or covariates contain missing values. This missing 
data should be dealt with before running lmfa (otherwise, 
an error message is displayed because the package cannot 
handle missing data yet). Cases with missing indicators 
should be removed.13 For cases with only missing covariates, 
imputation may be applied (e.g., using the single stochastic 
regression imputation in the mice package in R; van Buuren 
& Groothuis-Oudshoorn, 2011). Note that removing and 
imputing missing data can impact the validity of the findings 
(Lang & Little, 2018). For instance, single imputed values 
may lead to underestimation of the standard errors and thus 
to inflated type 1 errors when evaluating covariate effects 
in step 3 of LMFA. Therefore, results should be interpreted 
with caution.

Step 1a: Selecting the number of states and factors

When estimating an LMFA model, the number of underly-
ing states and factors per state must be specified. For our 
example data (see “Illustrative example” section), the data-
generating model was one with three states and three factors 
in the first and third states and two factors in the second 
state. However, when analyzing real data with an explora-
tory approach like LMFA, the best model complexity is not 
known in advance. It must be determined by estimating sev-
eral plausible models and comparing their results in terms 
of fit and parsimony. To this end, one can use criteria that 
balance the loglikelihood and number of parameters, such 
as the Bayesian information criterion (BIC; Schwarz, 1978) 
and the convex hull (CHull; Ceulemans & Kiers, 2006) 
method (Bulteel et al., 2013; Vogelsmeier et al., 2019b).14 
In the following, we first describe the two criteria (“BIC and 
CHull” section). Then, we explain how to determine what 
range of states and factors to include in the model selec-
tion procedure (“Range of states and factors” section) and 
how to increase the chance of finding the “global” maximum 
and how to assess convergence of the estimation procedure 

13  Future extensions of lmfa to deal with missing data inside the esti-
mation are discussed in “Discussion” section.
14  It is important to note that the model selection takes a consider-
able amount of time. For instance, the time required to estimate all 
the models for the example data (i.e., 14 model; also see “Model 
selection with lmfa” section) took around three hours on a desktop 
PC with an Intel Xeon Gold 6130 CPU 2.10 GHz, 32 GB memory).

12  The reason is that the value of the transition intensities (for covari-
ate scores being equal to zero) are directly related to the size of the 
unit (note that the model fit is not influenced by the unit, however). 
More specifically, the larger the size of the unit, the smaller the inten-
sities and the more likely numerical problems occur.

data("ESM")
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(“Increasing the chance to find the global maximum and 
assessing convergence” section). Finally, we show how to 
perform the model selection with lmfa (“Model selection 
with lmfa” section).

BIC and CHull

First, the BIC considers model fit and complexity by penaliz-
ing models with a larger number of parameters (see Supple-
mentary Material S.6.2). Second, the CHull is a generalized 
scree test (Bulteel et al., 2013; Ceulemans & Kiers, 2006) 
that automatically identifies models at the higher boundary 
of the “convex hull” (or CHull) in a “loglikelihood vs. num-
ber of parameters” plot (Cattell, 1966) and that chooses the 
best model by finding the point (or “elbow”) in this scree 
plot (or CHull plot) at which improvement in fit levels off 
when adding additional parameters to the model. Detecting 
this elbow is done by comparing “scree ratios” (see Supple-
mentary Material S.6.3) for all models on the upper bound-
ary, and the model with the largest ratio is chosen. In this 
way, the CHull also balances complexity and parsimony.

Both the BIC and the CHull offer valuable information 
about which model should be selected. However, for many 
real datasets, the BIC may keep decreasing when adding 
additional states and/or factors to the model (Bauer, 2007; 
McNeish & Harring, 2017). Then, investigating the relative 
improvement in the loglikelihood value using the CHull is 
especially important. Additionally, the CHull does not make 
distributional assumptions and may therefore perform better 
for many empirical datasets. However, the CHull method 
has two drawbacks that should be accounted for. First, the 
least and the most complex models at the higher boundary 
of the CHull cannot be chosen because no scree ratios can be 
computed (see Bulteel et al., 2013). Therefore, it is always 
advisable to inspect the CHull plot visually (e.g., the most 
complex model might still fit considerably better than the 
preceding model on the hull). The lmfa package will remind 
the user of this by displaying a note. Second, the scree ratio 
may be artificially inflated in some cases, even though the 
more complex model does not add much in terms of the 
fit. Specifically, when adding additional parameters hardly 
increases the fit anymore, both the numerator and denomi-
nator of the scree test ratio (Supplementary Material S.6.3) 
approach zero, which results in a very large scree test ratio, 
whereas the hull is pretty much a straight and horizontal 
line at that point (for a detailed explanation, see Wilder-
jans et al., 2013). The lmfa package displays a message if 
there are signs of artificial inflation. When the message is 
displayed, the user should inspect the CHull plot visually 
and also consider the next-best model(s). Finally, it is best 
practice to look at the results of competing models and take 
the interpretability into account.

Range of states and factors

For the model selection, one must decide on the range of 
states and factors. Regarding the former, one may start with 
a few states (say, 1–3). If models with three states barely 
improve model fit (i.e., according to the BIC and CHull) or 
if the estimation of three states already causes estimation 
problems, there is no point in adding more states. Moreover, 
the maximum number of states is restricted by the number 
of observations (i.e., one should have at least 1000 observa-
tions for each state; Vogelsmeier et al., 2019b). For instance, 
we should not include more than four states for our example 
dataset (with 4776 observations). To decide on the number 
of factors, one should think about theoretically plausible fac-
tor structures and consider that each factor should ideally be 
measured by at least three items. Otherwise, the factors may 
not be well measured or “determined”, which may cause 
convergence problems, Heywood cases (Van Driel, 1978), 
or less reliable parameter estimates. For example, suppose 
the data consist of six indicators, of which three are intended 
to measure positive affect, and three are intended to meas-
ure negative affect. In that case, no more than two factors 
should be included. Additionally, similarly to the number 
of states, one should begin with a few factors and examine 
the increase in fit and convergence problems for the most 
complex factor structure.

Increasing the chance of finding the global maximum 
and assessing convergence

For estimating the state-specific FA models, the algorithm 
searches for the maximum of the loglikelihood function 
(Supplementary Material S.3), that is, the solution with 
the largest loglikelihood value. However, it is possible that 
the solution is not a “global” maximum but a “local” one. 
To clarify this, consider the loglikelihood function as a 
landscape with multiple hills. Each hill has its own local 
maximum (i.e., the top), but only one hill is the highest and 
thus has the global maximum. In order to start searching for 
a global or local maximum, the algorithm requires initial 
parameter values. Different start values may lead to find-
ing different (local) maxima (comparable to searching for 
the highest hill starting from different locations in the land-
scape). Therefore, the algorithm needs to use multiple start 
sets with different initial values and, in the end, provide the 
solution with the best loglikelihood value (Supplementary 
Material S.3.5). Users should choose at least 25 start sets, 
but the larger the number of start sets, the more likely it is 
to obtain the solution pertaining to the global maximum.

Moreover, it is possible that the model estimation does 
not converge at all. This means that the algorithm did not 
find a (local or global) maximum in a prespecified num-
ber of maximum iterations (Supplementary Material S.3). 
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Especially for more complex models, the algorithm may 
require more iterations to achieve convergence. However, 
it could also signify that the model is not suited for the data 
(e.g., too many factors). The user may decide to re-estimate 
corresponding models once (and allow for more iterations) 
before continuing with the model selection procedure. The 
lmfa package displays this advice as a reminder.

Model selection with lmfa

To select the “best” model among the models with differ-
ent numbers of states and factors, we have to use lmfa’s 
step1() function. To refer to the models, we use square-
bracket labels. For example, the model from which example 
data have been generated (see “Illustrative example” section) 
is [3 2 3]. The number of elements inside the brackets is 
equal to the number of states. The first value in the brackets 

refers to the number of factors in the first state, the second 
value refers to the number of factors in the second state, and 
so on. Thus, model [3 2 3] refers to a model with three states 
and three factors in state 1, two factors in state 2, and three 
factors in state 3. In the following, we compare models with 
one to four states and one to three factors per state (i.e., 14 
models in total; the models are displayed in LMFA output 
box 1). It is important to note that the state labels can switch 
in any mixture model when repeating the analysis. Thus, the 
labels are random across analyses. For example [3 2 3], [3 3 
2], and [2 3 3] are different permutations of the same model 
(i.e., model [3 2 3] is the same as model [3 3 2] and [2 3 3]). 
Therefore, only one permutation of this model is estimated 
(and shown in the output). The function step1() can be 
used as follows (because the estimations start from random 
state-membership assignments (see Supplementary Material 
S.3.5), we set a seed for reproducibility):

15  Note that the function contains additional arguments related to the 
estimation procedure for which default values are provided. These 
values may be changed by the user if desired. For an explanation of 
the additional arguments, see “step1() function” section and the 
function documentation, which can be called with ?step1.

                        indicators = c(
                          "Interested","Joyful","Determined","Calm",
                          "Lively","Enthusiastic","Relaxed","Cheerful",
                          "Content","Energetic","Upset","Gloomy",
                          "Sluggish","Anxious","Bored","Irritated",
                          "Nervous","Listless"),
                       modelselection = TRUE,
                       n_state_range = 1:4, 
                       n_fact_range = 2:3,
                       n_starts = 25,
                       max_iterations = 1000)

set.seed(1000)
modelselection <- step1(data = ESM,

There are five mandatory arguments that we have to spec-
ify. First, we have to provide the data via the data argument 
(in our case, ESM). Second, via the indicators argument, 
we specify the variable names of the indicators in the same 
order as they appear in the data. These are 

. 
Third, we indicate that we want to perform  
m o d e l  s e l e c t i o n  v i a  t h e  a r g u m e n t 

. 
Fourth and fifth, we determine the range of states and factors 
that should be included in the model selection with 
n_state_range = 1:4 and n_fact_range = 2:3. 
Additionally, we could change the default values for the number 
of start sets and the number of maximum iterations after which 
the estimation terminates regardless of whether convergence has 

c("Interested", "Joyful", "Determined",...)

modelselection (i.e., modelselection = TRUE)

been reached, but we simply use the default values 
n_starts = 25  and max_iterations = 1000 .15

When the estimation is terminated, we obtain the model-
selection results as follows:
summary(modelselection)

Note that the model selection for our example data took 
about three hours. To follow the next tutorial steps in R, 
readers can simply load the model selection object with the 
command: data("modelselection"). The output is 
displayed in LMFA output box 1.
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The first column (i.e., “LL”) pertains to the loglikelihood 
value. The second column (i.e., “BIC”) shows the value of 
the BIC. The third column (i.e., “convergence”) indicates 
whether the model estimation converged (with 1 = “conver-
gence” and 0 = “non-convergence”). The fourth column 
(i.e., “n_par”) shows the total number of parameters.16 The 
models are ordered by the value of the BIC, starting with the 
lowest value and thus the model with the best fit according 
to this criterion. As described above, the state labels are ran-
dom across analyses. However, lmfa provides consistency by 
reordering the states based on the size of the states, starting 

with the largest (i.e., the one with the most observations). 
For example, the order of model [3 2 3] in the first row of the 
LMFA output box 1 reveals that the largest state of this model 
has three factors, the second-largest one has two factors, and 
the smallest state has three factors.

Before continuing with the model selection, we check 
whether models have to be re-estimated due to non-con-
vergence. Indeed, the estimation of model [3 3 3 3] did 
not converge. For estimating single models, we use the 
step1() function but without model selection (i.e., with 
modelselection = FALSE). The code to estimate 
model [3 3 3 3] is:

When modelselection = FALSE, it is mandatory to 
provide a single number of states via the argument  
n_state  (i.e., n_state = 4) and a vector with 

16  Note that the number of parameters is equal to the sum of the 
state-specific intercepts, unique variances, and loadings and the state 
proportions minus 1 (minus 1 because one state is treated as a refer-
ence state; see Supplementary Material S.6.1).

set.seed(1000)
model3333 <- step1(data = ESM,
                        indicators = c(

"Interested","Joyful","Determined","Calm",
                          "Lively","Enthusiastic","Relaxed","Cheerful",
                          "Content","Energetic","Upset","Gloomy",

"Sluggish","Anxious","Bored","Irritated",
"Nervous","Listless"),

                        modelselection = FALSE,
                        n_state = 4,
                        n_fact = c(3,3,3,3), 
                        n_starts = 25,
                        max_iterations = 2000)
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state-specific numbers of factors via the argument n_fact 
(i.e., n_fact = c(3,3,3,3)). As previously described, 
when re-estimating models that initially did not converge, it 
is wise to increase the number of maximum iterations. There-
fore, we set max_iterations = 2000. We replace the 
old models by the new models with:

modelselection$`[3333]` <- model3333

However, the model did not converge (it might simply not 
be suitable for the data), and therefore we continue with the 
original model selection object.

From the summary in LMFA output box 1, we can see 
that the best model according to the BIC is model [3 2 3] 
and, thus, the data-generating model. For an easier inspec-
tion of the results, we also plot the BIC of the converged 
models against the number of free parameters:
plot(modelselection)

The output is shown in LMFA output box 2.

17  For details about the function, see “chull_lmfa() function” 
section or call the documentation file with ?chull_lmfa.

A red dot indicates the model corresponding to the low-
est BIC value. Note that, for our example, the BIC does 
not keep increasing for more complex models. Therefore, 
we would consider it relatively safe to choose the model 
with the lowest BIC value. However, to support our choice, 
we also investigate the results of the CHull method for the 
converged models, which can be obtained with the chull_
lmfa() function as follows:

We only have to specify argument x, which pertains to the 
model-selection object (in our case, modelselection).17 
The output is shown in LMFA output box 3.

chull_lmfa(x = modelselection)
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## Models on the upper boundary of the CHull: 
## 
##        n_par        LL        st
## [2]       72 -363744.0        NA
## [3]       90 -361759.6  1.126582
## [22]     145 -356377.4  1.288490
## [32]     163 -355010.3  2.319779
## [33]     181 -354421.0  1.905623
## [323]    254 -353166.8 13.191076
## [3322]   327 -353071.7  3.812062
## [3233]   345 -353065.6        NA
## 
## Selected model(s): 
## 
##       n_par        LL
## [323]   254 -353166.8
## 
## Note 1: The least and most complex models cannot be selected. 
## Therefore, it is advisable to also visually inspect the CHull plot. 
## 
## Note 2: The st value(s) of the best model(s) might be artificially 
## inflated. Therefore, it is advisable to also consider the next best model(s).
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The output consists of three parts, the CHull plot, the 
summary of the models on the upper boundary of the CHull 
(including their scree-test values “st”), and the selected 
model(s). We see that the model [3 2 3] was selected. 
However, we received the note that the scree value might 
be artificially inflated. Therefore, one should also consider 
the results of the next-best model(s). Because we know the 
data-generating model, we continue with model [3 2 3].18 
To inspect the model, we have to extract it from the model-
selection object modelselection and store it as follows:

measurementmodel323 <- modelselection$`[323]`

The parameters can be displayed with the command:19, 20

summary(measurementmodel323)

Step 1b: Interpreting the measurement models

After selecting the model, we can interpret the MMs shown 
in LMFA output box 4.21

Intercepts

We first look at the intercepts for this data example because 
it allows us to give labels to the states that we use through-
out the interpretation of the other parameters. Specifically, 
we see that the intercepts for the positive emotions (i.e., 
“interested”, “joyful”, “determined”, etc.) are larger than the 
intercepts for the negative emotions (i.e., “upset”, “gloomy”, 
“sluggish”, etc.) in each of the three states (i.e., “S1”, “S2”, 
and “S3” in the output). However, intercepts differ across 
states such that the intercepts for the positive emotions are 
largest in state 2, followed by state 3 and then state 1, and 
the intercepts for the negative emotions are largest in state 1, 
followed by state 3 and then state 2. Therefore, in the follow-
ing, we label the first state the “displeasure” state, the second 
one the “pleasure” state, and the third one the “neutral” state.

18  The second-best model according to the scree value is model [3 
3 2 2]. However, visual inspection of the CHull shows that adding 
a fourth state does not improve the fit considerably. The next-best 
model is model [3 2]. If we inspected model [3 2], we would see that 
the smallest state (i.e., the neutral state) would be divided into the 
pleasure and the displeasure state.
19  Note that, in the summary() function, the user can specify an 
additional argument to change the number of decimals to which the 
parameters should be rounded. The default for the summary of the 
MM parameters is .
20  Note that the model object (i.e., measurementmodel323) con-
tains additional information that is not directly relevant for the inter-
pretation, but that may be interesting for some users (e.g., unrotated 
and unstandardized loadings). For an overview of all available output, 
see “step1() function” Section.

21  Note that, for clarity, loadings with absolute values larger than .3 
are printed in boldface in this tutorial. However, the normal output in 
R does not include any boldface loadings.
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24  Note that rules of thumb are only rough guidelines, and making 
decisions about considerable loadings with the aid of standard errors 
is considered more justifiable (Zhang, 2014). However, standard 
errors are not yet available in lmfa.

Loadings

Next, we inspect the loadings. Note that the default output 
displays standardized22 obliquely rotated factor loadings.23 
The reason is that unstandardized values can be difficult to 
interpret, as they often exceed an absolute value of 1 (espe-
cially when a large rating scale is used like in our example 
dataset; “Illustrative example” section), and hence, rules of 
thumb to evaluate which items have strong loadings on a fac-
tor cannot be applied. In contrast, for standardized loadings, 
rules of thumb are available (e.g., loadings with an absolute 
value larger than or equal to 0.3 can be seen as considerable, 
which is also the threshold used in our example).24

Looking at the loadings, we see that, in all states, the first 
factors (i.e., “S1F1”, “S2F1”, and “S3F1” in the output) 
correspond to a “positive affect” (PA) factor containing load-
ings (≥ 0.3) of most or all positive emotion items. However, 
for the first factor in the displeasure state (“S1F1”), the 
loadings of the items “determined” and “calm”—both equal 
to 0.37—are somewhat lower than the loadings of the other 
positive emotions on this factor. Furthermore, for the first 
factor in the neutral state (“S3F1”), the loadings “calm” 
and “relaxed”—equal to 0.18 and 0.16—are even lower 
than the chosen threshold of 0.3. Furthermore, the second 
factors (i.e., “S1F2”, “S2F2”, and “S3F2”) mainly have 
large loadings for negative emotions but with differences 
across states. Specifically, while the pleasure state has an 
apparent "negative affect” (NA) factor (“S2F2”) with high 
loadings of all negative emotions, the displeasure state has a 
bipolar “distress” factor (“S1F2”) with loadings of mainly 
high-arousal negative emotions (i.e., “upset”, “gloomy”, 
“anxious”, “irritated”, and “nervous”) and a reversed load-
ing of the item “calm”. The second factor in the neutral 
state (“S3F2”) has characteristics of the second factors of 
both the pleasure state (“S2F2”) and the displeasure state 
(“S1F2”) in that it has considerable loadings of all the items 
but relatively low loadings of the low-arousal emotions (i.e., 
“sluggish”, “bored”, and “listless”). The most striking dif-
ference is that the displeasure state contains a third bipolar 
“drive” factor (“S1F3”), whereas the neutral state contains a 

third “serenity” factor (“S3F3”). More specifically, the drive 
factor (or rather lack-of-drive factor; “S1F3”) has high load-
ings of the low-arousal negative emotions “gloomy”, “slug-
gish”, “bored”, and “listless” and a reversed loading of the 
item “determined”. The serenity factor (“S3F3”) has high 
loadings of the low-arousal emotions “calm”, “relaxed”, and 
“sluggish”. In conclusion, subjects in the displeasure or neu-
tral state have a more differentiated representation of their 
emotions than in the pleasure state. The drive factor in the 
displeasure state aligns with research showing that drive dif-
fers from general positive affect when persons are anhedonic 
(Berridge et al., 2009; Treadway & Zald, 2011).

It is also interesting to inspect the factor correlations that 
result from the oblique rotations—which are not part of the 
MM. First, in the displeasure state (“S1”), we see a small 
negative correlation between PA (“F1”) and the lack-of-
drive factor (“F3”). In the neutral state (“S3”), we see a 
small positive correlation between PA (“F1”) and the seren-
ity factor (“F3”). In the pleasure state (“S3”), PA (“F1”) 
and NA (“F2”) are moderately negatively correlated. All 
other correlations are close to zero, indicating that the other 
factors are relatively independent of one another.

Unique variances

Finally, looking at the unique variances, we see that they 
are largest in the displeasure state (“S1”), followed by the 
neutral state (“S3”) and the pleasure state (“S3”). The large 
emotion-specific variability in the displeasure state is in line 
with findings that depression and emotional complexity are 
related (Grühn et al., 2013).

Step 1c: Attach factor scores to the dataset

Before proceeding with step 2, we can attach state-specific 
factor scores to our dataset for each observation in the data-
set.25 The factor scores are estimates of the latent constructs 
and can be used for subsequent analyses to investigate 
dynamics in psychological constructs (for suggestions on 
how to proceed in the presence of non-invariance, see “Pro-
ceeding based on the results of LMFA” section). A copy of 

25  In lmfa, the factor scores are calculated by means of the regression 
method (Thomson, 1934; Thurstone, 1935), which is one of the most 
commonly used approaches. For the exact computation, see Supple-
mentary Material S.6.9. Note that the calculation of factor score esti-
mates is generally considered controversial because different methods 
can result in (very) different scores (which is referred to as the prob-
lem of factor score indeterminacy; for discussions on this and pos-
sible solutions to account for biases in subsequent analyses, see, e.g., 
Devlieger et al., 2016; Green, 1976; Grice, 2001).

22  More specifically, they are standardized by means of the standard 
deviations of the item scores across all states.
23  If desired, however, the user can also request unstandardized and 
unrotated loadings.
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the dataset with the factor scores attached can be obtained 
with:26

In this function, two arguments are required. First, via the 
argument data, we have to provide the data used for the 
step1() estimation (in our case, ESM). Second, via the 
argument model, we have to specify the step1() object 
with the state-specific MMs (in our case, measurement-
model323). In the resulting dataset (i.e., ESM_fs), the 
columns are called “S1F1”, “S1F2”, etc., where “S” refers 
to the state and “F” to the factor.

Step 2: Obtaining state assignments 
and classification errors

The next step is to obtain information about the classification and 
the (modal) state assignments. In this section, we first describe 
how to obtain the results for our example data with lmfa, and then, 
based on the output, we explain the different classification statistics.

In order to obtain the classification information, we use 
the step2() function as follows:

The function contains two arguments that we have 
to specify. First, we must provide the data used for the 
step1() estimation via the argument data. It is most 
convenient to use the version including the factor scores 
estimates (in our case, ESM_fs), because we will add addi-
tional columns later on and because this allows us to obtain 
a complete dataset for further analyses. Second, we need to 
specify the step1() object with the state-specific MMs 
via the argument model (in our case, measurement-
model323).27 The following code prints the results:28

summary(classification)
The output is shown in LMFA output box 5.

ESM_fs <- factorscores_lmfa(data = ESM,

model = measurementmodel323)

classification <- step2(data = ESM_fs, 
 model = measurementmodel323)

26  In the factorscores_lmfa() function, the user can specify two 
additional arguments. The first indicates whether the factor score esti-
mates should be obtained for the obliquely rotated loadings. The default 
is . Otherwise, the factor score estimates corre-
sponding to the unrotated factor loadings are obtained. The second argu-
ment pertains to the number of decimals to which the factor score esti-
mates should be rounded. The default is . For details 
about the function, see “factorscores_lmfa() function” section 
or call the documentation file with ?factorscores_lmfa.

27  For an additional explanation of the function arguments, see 
“step2() function” section or call the documentation file with 
?step2.
28  Again, the user can adjust the number of decimals to which the 
parameters should be rounded. The default for the summary of the 
classification outputs is .
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29  The reason is that the R2

entropy
 tends to be overestimated for bad 

state separations (e.g., if we find a value of .4, the real state separa-
tion is probably even lower). In turn, the classification errors are 
underestimated, leading to an incorrect correction in the final step of 
the analysis (Vermunt, 2010).

First, the R-squared measure R2

entropy
 (called “R2_

entropy” in the output) indicates how well the states are 
separated (and thus how much the MMs differ), with val-
ues ranging from 0 (bad separation) to 1 (good separation; 
Lukočienė et al., 2010). Note that a larger state separation 
implies less classification error. It is important to inspect 
the R2

entropy
 value because a bad state separation (with 

R2

entropy
< .5 ) can lead to an incorrect classification error 

correction29 and, in turn, to an underestimation of transition 
probabilities and the covariate effects (Vermunt, 2010). When 
observing a bad state separation, which is rather unlikely in 
practice, it is advisable to use the FIML estimation, which 
is currently only available in LG. The R2

entropy
 value for our 

example data indicates that the states are well separated, 
which explains the small total classification error (called 
“Total classification error” in the output).

Second, information about the classification errors can be 
obtained from the classification error matrix (called “Clas-
sification errors” in the output), which cross-classifies 
the modal state assignments by the “true” state assignments 
and which is used to correct for the error in step 3 of the analy-
sis (see Supplementary Material S.4). Higher values on the 
diagonal and lower values on the off-diagonal indicate minor 
classification error. For an easier interpretation, the counts can 
be translated into proportions (called “Classification-
error probabilities” in the output). Inspecting the 
classification error matrices, we see that the error is lowest in 
the displeasure state (“S1”), followed by the pleasure state 
(“S2”) and the neutral state (“S3”). Thus, the classification 
into the neutral state was accompanied by the greatest uncer-
tainty, which is not surprising as the neutral state is somewhat 
in between the displeasure and pleasure state.

Third, the state proportions (also called like that in the output) 
pertain to the state sizes. The displeasure state (“S1”) is largest, 
followed by the pleasure state (“S2”) and the neutral state (“S3”).

Finally, the state assignments are not displayed in the 
output because R cannot display all assignments simultane-
ously. However, we can simply obtain a copy of our dataset 
with additional columns corresponding to the state assign-
ments with the following command:

ESM_fs_cl <- classification$data

Specifically, the columns with the posterior state prob-
abilities (in the dataset called “State1”, “State2”, 
etc.) indicate the probabilities for an observation to belong 

to a particular state and, thus, that the state-specific MM 
underlies the responses for this observation. As explained 
in “Estimation” section, the modal state assignments (called 
“Modal” in the dataset) correspond to the state with the 
largest probability and, hence, to the most likely state 
membership.

Step 3a: Selecting the covariates for the transition 
model

When the state-specific MMs are obtained and the observa-
tions are assigned to the states, we can continue by investi-
gating the transitions between the states and what may cause 
them by estimating an LMFA with covariates on the initial 
state and/or transition parameters. To test whether a covari-
ate is significantly related to the transition model parameters 
(and, thus, whether it should be included in the model) Wald 
tests can be used (Agresti, 1990). In the following, we first 
explain the covariate selection with the Wald tests (“Covari-
ate selection procedure using Wald tests” section) and then 
show how to perform the covariate selection for our example 
data with lmfa (“Covariate selection with lmfa” section).

Covariate selection procedure using Wald tests

Every covariate in the model is accompanied by separate 
covariate effects on the initial state or transition parameters 
(e.g., the covariate “had an intervention” has six effects, one 
on each of the transition parameters). The Wald tests in lmfa 
are chi-squared omnibus tests that show whether including 
a covariate is significant overall (i.e., across the initial and 
transition parameters). Thus, for every covariate, there is one 
Wald test statistic. To select which covariates to include, one 
can start with an LMFA with all covariate candidates. Then, 
the least significant covariate is removed, and the model is 
re-estimated. This backward selection continues until only 
significant covariates are left (say, according to an alpha 
level of .05). When only significant covariates are left in 
the model, one can continue to interpret covariate effects on 
the transition probabilities. Note that backward selection is 
only one possibility. Other covariate selection procedures 
may lead to selecting a different set of covariates (e.g., the 
forward selection; Heinze et al., 2018). Instead of using such 
a data-driven approach, a more theory-driven approach is 
also possible (e.g., investigating covariates that were signifi-
cantly related to the transition model parameters in previous 
studies). In addition, model selection using Wald tests may 
be validated by comparing the BIC values of models that 
include different (sub)sets of covariates. However, a larger 
number of models must be estimated for this model com-
parison than when using the Wald tests (e.g., a model with 
all covariates included and excluded).
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Covariate selection with lmfa

In the following, we estimate a transition model with covari-
ate effects of “had an intervention” and “negative event” on 
the transition parameters. To estimate the transition model, 
we use the step3() function as follows (because the esti-
mation starts from random values for the transition param-
eters (see Supplementary Material S.5.4), we set a seed for 
reproducibility):

There are four mandatory arguments that we have to 
specify. First, we provide the data via the data argument. 
We use the dataset ESM_fs and, thus, the data including the 
factor scores but without the state assignments from step 2 
because they are updated in step 3. Second, we specify the 
name of the column with the subject identification numbers 
via the argument identifier (in our case, "id"). Third, 
we define the number of states with n_state = 3. Fourth, 
we specify the posterior state probabilities using the 

set.seed(1000)

transitionmodel <- step3(data = ESM_fs,
                         identifier = "id",
                         n_state = 3,
                         postprobs = 
                           classification$classification_posteriors[,-1],
                         timeintervals  = "deltaT",
                         initialCovariates = NULL,
                         transitionCovariates = 
                           c("intervention", "negativeEvent"),
                         n_starts = 25,
                         max_iterations = 1000)

argument postprobs. The probabilities can be extracted 
from the step2() classification output with the command, 

where[,-1] indicates that we leave out the column with the 
modal state assignments.

The following three arguments are not required but must be 
specified if the model should account for differences in inter-
vals and if covariate effects on the transition model param-
eters should be included. Both apply to our example. Thus, 
first, via the argument timeintervals, we provide the 
function with the column's name in the dataset that contains 
the time intervals. In our case, this is "deltaT" (if no such 
column name is provided, observations would be assumed to 
be equidistant). Next, via the arguments transitionCo-
variates and initialCovariates, we can provide 
(a vector of) column names that contain the covariate scores 
(the default for both arguments is NULL, i.e., no covari-
ates are used). Thus, for our analysis, we provide the vector 
c("intervention", "negativeEvent") as input 
for transitionCovariates.

Finally, similarly to the step1() function, the users may 
decide to change the default values for the number of start sets30 
via the argument n_starts and the number of maximum 

iterations via the argument max_iterations31. However, we 
use the default values for our analysis, that is, n_starts = 25 
and max_iterations = 1000.32 After termination of 
the estimation, the results are obtained as follows: 

33

summary(transitionmodel)
The estimation for our example data took about 20 

minutes. Again, readers who want to follow the rest of 
the tutorial can also load the results with the command: 
data("transitionmodel"). The results are presented 
in LMFA output box 6.

The results are shown in the “Wald tests” part in LMFA 
output box 6. For each covariate, we obtain a significance test 
with the corresponding Wald test statistic (i.e., “Wald”), 

30  Note that the results of the step3() function are sensitive to 
start values for the transition intensities (see Supplementary Material 
S.5.4). Therefore, one should use at least 25 start sets.

31  If the maximum number of iterations is reached without conver-
gence, lmfa displays a note with advice to repeat the estimation with 
an increased number of max_iterations.
32  Note that the user may change the defaults of additional arguments 
pertaining to the estimation procedure. For an explanation of these 
arguments, see “step3() function” section and the function docu-
mentation that can be called with ?step3.
33  Again, the user can change the number of decimals to which the 
parameters should be rounded. The default for the summary of the 
transition model is rounding = 4. Thus, by default, there are two 
more decimals than for the other representations. This is because 
some parameters can become very small such that differences would 
vanish too quickly when using fewer decimal points.

classification$classification_posteriors[,-1]
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##
## -------------------------------------------------------------
##
## Wald tests:
##
##                   Wald df p-value
## intervention  213.3821  6       0
## negativeEvent  55.7629  6       0
##
## -------------------------------------------------------------
##
## Parameter estimates: 
##
##                               coef   s.e. z-value p-value
## initial state parameters 2 -0.1864 0.2408 -0.7741  0.4389
## initial state parameters 3 -0.5479 0.2949 -1.8577  0.0632
## transition parameters 1|2  -1.1725 0.3207 -3.6555  0.0003
## transition parameters 1|3  -1.5951 0.4235 -3.7661  0.0002
## transition parameters 2|1  -1.6011 0.4260 -3.7588  0.0002
## transition parameters 2|3  -0.4188 0.4183 -1.0013  0.3167
## transition parameters 3|1  -0.5761 0.2975 -1.9368  0.0528
## transition parameters 3|2  -1.3186 0.7413 -1.7788  0.0753
## intervention 1|2            0.6000 0.1786  3.3604  0.0008
## intervention 1|3            0.3228 0.2565  1.2582  0.2083
## intervention 2|1           -0.9528 0.2624 -3.6308  0.0003
## intervention 2|3           -0.4081 0.2474 -1.6497  0.0990
## intervention 3|1           -1.0119 0.1809 -5.5946  0.0000
## intervention 3|2            0.4767 0.4931  0.9668  0.3336
## negativeEvent 1|2          -0.0194 0.0057 -3.3903  0.0007
## negativeEvent 1|3          -0.0096 0.0081 -1.1931  0.2328
## negativeEvent 2|1           0.0153 0.0091  1.6812  0.0927
## negativeEvent 2|3          -0.0071 0.0079 -0.9001  0.3681
## negativeEvent 3|1           0.0104 0.0060  1.7364  0.0825
## negativeEvent 3|2          -0.0142 0.0132 -1.0753  0.2823
##
## Note: For the initial state parameters, state 1 is the
## reference category. The transition intensity parameters 
## are sorted by rows of the transition matrix and the 
## staying rates serve as references. 
##
## -------------------------------------------------------------
##
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## Probabilities: 
## 
## 1. Initial state probabilities: 
## 
## (no covariates defined) 
## 
##     S1     S2     S3 
## 0.4153 0.3446 0.2401 
## 
## 2. Transition probabilities: 
## 
## interval length: 1 
## intervention score: 0.4139 
## negativeEvent score: 49.6505 
## 
##        S1     S2     S3
## S1 0.7923 0.1032 0.1046
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the degrees of freedom34 (i.e., “df”), and the p-value (i.e., 
“p-value”). We see that both covariates have significant 
effects on the transition parameters. Thus, we keep both covari-
ates in the model. The output also provides users with the BIC 
(also called like that in the output), including the number of 
parameters in the model (i.e., “n_par”). As described above, 
the BIC can be used to compare transition models with different 
(sub)sets of covariates. For our example data, the comparison of 
BIC values for transition models without covariates, with only 
one of the two covariates, and with both covariates resulted in 
the selection of the same model as when using the Wald tests 
alone and, therefore, will not be discussed further.

Step 3b: Interpreting the transition model

After selecting the covariates for the transition model, we 
can interpret the effects on the probabilities and investigate 
changes in the state proportions. In the following, we first 
explain how to interpret (covariate effects on) the initial state 
and transition probabilities, then describe how to obtain addi-
tional insights by retrieving the initial and transition probabili-
ties for any covariate values and time intervals of interest, and 
finally interpret changes in the state proportions.

Initial state probabilities

We first focus only on the parts “Parameter estimates” 
and “Initial state probabilities” in LMFA out-
put box 6, starting with the former. The “coef” and “s.e.” 
columns indicate the point estimates and standard errors. The 
“z-value” and “p-value” columns show the correspond-
ing z-statistics and two-tailed p-values. Since no covariates 
were included for the initial state parameters, there are only 
two “initial state parameters”. These parameters 
always correspond to the logit values for covariate scores equal 
to zero. In the case of covariate effects, they would be shown 
below the initial state parameters. As previously described, it 
is more convenient to interpret the corresponding initial state 
probabilities. More specifically, to obtain a good impression of 
what the probabilities look like for the average person, it makes 
the most sense to inspect the initial state probabilities for covari-
ates being equal to the sample means. These probabilities can 
be found in the “Initial state probabilities” part 
further below in LMFA output box 6. Of course, if no covariates 
are defined (as in our model), the probabilities do not depend on 
the values of a covariate. The probabilities indicate that starting 
in the displeasure state (“S1”) was most likely, followed by the 
pleasure state (“S2”) and the neutral state (“S3”).

Transition probabilities

Next, we focus on the parts “Parameter estimates” and 
“Transition probabilities” in LMFA output box 6. 
The “transition parameters” in the “Parameter 
estimates” part correspond to the log intensities for covari-
ate scores equal to zero. However, for better interpretability, we 
inspect the corresponding transition probabilities for a unit time 
interval for the average person in the sample, and thus, for covari-
ate scores being equal to their sample means. These probabilities 
are displayed in the “Transition probabilities” part 
in LMFA output box 6. We can see that the sample mean for “had 
an intervention” is equal to .41, and the sample mean for “nega-
tive event” is equal to 49.65. The probabilities indicate that the 
probabilities of transitioning to another state are generally lower 
than staying in a state, especially when staying in the displeasure 
state (“S1”). The transition probabilities from the displeasure state 
(“S1”) to the pleasure state (“S2”) and the neutral state (“S3”) 
are approximately equal. The transition probability from the pleas-
ure state (“S2”) to the neutral state (“S3”) is smaller than from 
the pleasure to the displeasure state (“S1”). Finally, the transition 
probabilities from the neutral state (“S3”) to the displeasure state 
(“S1”) are larger than the transitions to the pleasure state (“S2”).

Covariate‑ and interval‑specific probabilities

To obtain the initial state and transition probabilities for any covariate 
score and interval of interest, we can use the probabilities() 
function. For example, to obtain the probabilities for a zero score on 
“had an intervention”, a “negative event” score equal to the sample 
mean of 49.65, and a unit interval, we use the following command:

Only the first argument is mandatory; that is, we have to 
provide the output of the step3() function (in our case, 
transitionmodel) via the model argument. By 
default, the function prints the probabilities for a unit interval 
and covariate scores equal to the sample means (i.e.,  

and  transitionCovariateScores = NULL). To 
print the probabilities for specific covariate scores, we have 
to provide a vector with these scores in the same order as we 
included the covariates when estimating the transition model 
with the step3() function. In our case, we include 

c(0,49.65)transitionCovariateScores = .35, 36

35  An additional explanation of the arguments can be found in 
“probabilities() function” section and in the function docu-
mentation, which can be called with ?probabilities.

deltaT = 1, initialCovariateScores = NULL

probabilities(model = transitionmodel, 
              deltaT = 1,
              initialCovariateScores = NULL,
              transitionCovariateScores = c(0, 49.65))

34  Note that the number of degrees of freedom equals the number 
of regression coefficients when including the covariate (e.g., df = 6 
when testing the overall significance of a covariate with effects on six 
transition intensities; see Supplementary Material S.6.7.)

36  The user can determine an additional argument in the proba-
bilities() function to change the number of decimals to which 
the parameters should be rounded. The default for the probabilities is 

.
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For our example data, we make two comparisons. First, 
we set the “negative event” score equal to the sample mean 
and compare the probabilities for both categories of “had 

an intervention”. The probabilities for the “no intervention 
observations” are shown in LMFA output box 7.

The probabilities for the “intervention observations” are displayed in LMFA output box 8.
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Comparing the transition probabilities, we see that hav-
ing had an intervention is related to relatively smaller prob-
abilities of transitioning to and staying in the displeasure 
state (“S1”).

Second, we compare the transition probabilities for 
the sample mean of “negative event” minus the standard 

deviation (i.e., 34.54) to the transition probabilities for the 
sample mean of the covariate plus the standard deviation 
(i.e., 64.76), thereby keeping the “had an intervention” score 
equal to the sample mean. The probabilities for a “negative 
event” score of 34.54 are displayed in LMFA output box 9.

The probabilities for a “negative event” score of 64.76 are shown in LMFA output box 10.
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We see that higher scores on “negative event” are related 
to larger probabilities of transitioning to and staying in the 
displeasure state (“S1”).

State proportions

The final state proportions are shown under “State pro-
portions” at the end of LMFA output box 6. We see no 
change when comparing the results to the state proportions 
in LMFA output box 5 (and thus to the state proportions 
resulting from the modal state assignment in step 2). This 
is not surprising considering the small classification errors 
from step 2.

Step 3c: Updating state assignments & investigating 
state memberships

Next, we can again obtain a copy of our dataset with the final 
state assignments to see which observations are in which 
state and, thus, which observations are comparable:

ESM_fs_cl <- transitionmodel$data

invariance(model = transitionmodel, identifier = "id")

These state assignments should be considered for subse-
quent data analyses because, as described in “Estimation” 
section, they may be more accurate than the step 2 assign-
ments. Therefore, we simply overwrite the previous dataset 
with the step 2 assignments ESM_fs_cl.

In addition to investigating which observations are invari-
ant, it can be interesting to investigate which subjects have 
within-person invariance across their entire time of partici-
pation and for which subjects between-person invariance 
also holds in that they share the same permanent state. This 
information can be requested with the following command:

Subjects for whom within-person invariance holds are 
listed under the state that they are permanently in (i.e., either 
“S1”, “S2”, or “S3”). For subjects in the same permanent 
state, between-person invariance holds as well. However, in 
LMFA output box 11, we see “NA” (which stands for “Not 
Available”) for all three states, which means that within-
person invariance does not hold for any of the subjects in 
the example data. Consequently, between-person invariance 
also does not hold for any of the subjects.

If one further wants to explore transitions of (some of) the 
subjects for whom within-person invariance is violated, one 
can request transition plots with the following command:

plot(transitionmodel, identifier = "id", id = 1)

The function contains three arguments. Again, we have to 
provide the step3() estimation output via the argument 
model (in our case, transitionmodel) and the name 
of the column with the subject identification numbers via 
the argument identifier (in our case,"id"). Moreover, 
we must specify the subject identification number for which 
we want to plot the transitions via the argument id (in our 
case,1). LMFA output box 12 shows the transition plots for 
the first four subjects in the example data. As can be seen 
at the beginning of the output, the plots were obtained by 
looping over the id values1–4.

The function contains two arguments. First, we must 
provide the step3() estimation output via the argument 
model (in our case, transitionmodel). Second, we 
need to specify the name of the column with the subject 
identification numbers via the argument identifier (in 
our case, "id"). The output is displayed in LMFA output 
box 11.
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The x-axis shows the measurement occasions, and the 
y-axis shows the state membership corresponding to a par-
ticular measurement occasion. We see, for example, that all 
four subjects are in state 1 most of the time and that subjects 
2 and 3 transition less often at the beginning of the study 
than at the end.

Summary of the LMFA findings for our example data

In the following, we summarize the LMFA findings by 
answering the research questions posed in “Introduction” 
section.37

(1)	 How many MMs are underlying our ILD? ➔Three 
MMs are underlying the example data.

(2)	 How do the MMs differ? ➔The number and nature of 
the factors differ, implying that configural invariance 

is violated for our example data. More specifically, 
we found three states (a displeasure, a neutral, and a 
pleasure state) that all contained a positive affect and a 
negative affect (or distress) factor, but the displeasure 
state was additionally characterized by a drive factor 
and the neutral state by a serenity factor.

(3)	 How do subjects transition between the MMs over time, 
and is this related to time- or subject-specific covari-
ates? ➔Most subjects started in the displeasure state. 
The probabilities of staying in a state were generally 
higher than transitioning to another state (especially 
for subjects in the displeasure state). Transitions to 
the displeasure state were most likely, especially when 
experiencing negative events. After receiving an inter-
vention, the probabilities of transitioning to and staying 
in the neutral or pleasure state increased.

(4)	 For which subjects does within-person invariance 
hold over time, and for which of these subjects does 
between-person invariance hold? ➔Within-person 

37  All results were in line with the data-generating model.
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invariance does not hold for any of the subjects and, 
therefore, neither does between-person invariance.

Proceeding based on the results of LMFA

Once the MM differences and possible explanations are 
known, the question becomes how to proceed, based on the 
LMFA results, with (originally planned) analyses to inves-
tigate the dynamics in psychological constructs. The answer 
to this question largely depends on the findings. It is impor-
tant to note that a comparison of the state-specific MMs 
may indicate violations of different levels of invariance and 
that the required level of invariance depends on the type of 
comparisons one wants to make. When comparing state-
specific loadings, one may find that the MMs differ consider-
ably across states—specifically, in the number and/or nature 
(the zero-loading pattern) of measured constructs—which 
indicates a violation of configural invariance. It may also be 
that the pattern of (near-)zero loadings appears to be equal 
across states but that the non-zero loadings differ in size. 
This suggests that configural invariance holds, but weak 
invariance fails. When configural or weak non-invariance is 
indicated, continuing with analyses that assume invariance 
is not possible for the entire dataset because factor scores 
are not validly comparable. Differences in the means of the 
constructs or relations between constructs could be due to 
underlying differences in the MMs. However, finding such 
differences in MMs is interesting in its own right (e.g., the 
additional drive factor for anhedonic subjects in our data 
example). In any case, it is possible to proceed with factor 
scores from one specific state (e.g., the largest state or the 
state that best corresponds to an a priori assumed MM) and, 
thus, with observations for which strict invariance holds.38

If weak invariance holds across the states—that is, if the 
(near-)zero and non-zero loadings are highly similar across 
states—users may examine whether covariances (e.g., 
regression coefficients or autocorrelations) between latent 
constructs (e.g., positive affect and negative affect) differ 
across subjects and/or change across time, because factor 
covariances are not affected by intercept differences (Ober-
ski, 2017; Steenkamp & Baumgartner, 1998). However, 
examining whether mean construct scores differ across sub-
jects and time points calls for strong invariance to avoid mix-
ing up differences in latent means and intercept differences 

(Meredith & Teresi, 2006). This implies that strict invari-
ance is not necessary for meaningfully comparing latent 
covariances or means (Putnick & Bornstein, 2016; Van-
denberg & Lance, 2000). Thus, finding states that differ in 
the unique variances only does not preclude latent variable 
comparisons. Note that it is best to allow for non-invariances 
of intercepts or unique variances (as indicated by LMFA) 
as much as possible in your follow-up analysis, ideally by 
including states.39 Otherwise, the latent means and/or covar-
iances may be estimated incorrectly, especially in the case 
of large non-invariances (Chen, 2008; Guenole & Brown, 
2014). Alternatively, one could perform one analysis per 
state (using the state-specific factor scores) and weight the 
observations according to the posterior state-membership 
probabilities such that observations with larger probabilities 
receive more weight than observations with lower probabili-
ties. Another option could be to conduct a weighted multi-
level analysis, in which the states would be considered as 
observed groups. Furthermore, if “partial” metric or strong 
invariance holds (i.e., if only a few loadings or intercepts 
differ; Byrne et al., 1989), one may exclude non-invariant 
items or, again, capture the differences by letting parameters 
differ across states in subsequent analyses or dealing with it 
by conducting separate analyses with weighted data. More-
over, to avoid non-invariance in future studies, one could 
consider rephrasing or removing the problematic items from 
the questionnaire. To conclude, LMFA can be viewed as a 
primary analysis step that indicates which observations are 
comparable and what the MMs look like, and that in turn 
facilitates decisions about how to further analyze the ILD.

Discussion

When studying dynamics in psychological constructs in 
intensive longitudinal data (ILD), it is crucial to investigate 
whether the measurement models (MMs) underlying the 
responses are invariant across subjects and time, which is 
easily violated due to between-person differences and/or sit-
uation-specific changes in item interpretation and response 
styles. Undetected measurement non-invariance poses a 
threat to valid inference from state-of-the-art ILD analy-
ses. In this tutorial, we showed how to explore which MMs 
underlie the data, what transitions between these MMs look 
like, and how to investigate whether covariates are related to 
such transitions with latent Markov factor analysis (LMFA). 
LMFA identifies which observations are comparable by 

39  Note that this is possible with more advanced analyses like 
dynamic latent class analysis (DLCA; Asparouhov et  al., 2016). 
Moreover, in some analyses, it is at least possible to allow for MM 
differences across subjects, for example in dynamic structural equa-
tion modeling (McNeish & Hamaker, 2020; McNeish et al., 2021).

38  When proceeding with factor scores from one state, it is impor-
tant to investigate the certainty of the final state assignments. For 
instance, the largest posterior state probabilities for some observa-
tions might be rather low (say, below .6 or .7), indicating that it is less 
clear which of the state-specific MMs best fits the scores of the obser-
vation. Therefore, it is advisable to remove these observations before 
conducting further analyses.
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classifying them into the same MM state, which helps to 
safeguard valid inferences. Moreover, researchers gain sub-
stantive insights into the dynamics of the underlying MM 
in their ILD.

The package lmfa was implemented in the open-source 
software R to provide researchers with a freely available 
software option for performing LMFA. Even though this is 
a huge advantage, it is important to stress that some features 
are currently not (yet) available. In the following, we will 
elaborate on the current limitations of the package and ideas 
for future extensions.40 Firstly, the state-specific MMs in 
step 1 are currently obtained using exploratory factor analy-
sis (EFA). As previously explained, EFA is less restrictive 
than confirmatory factor analysis (CFA), which implies that 
it allows the detection of all types of non-invariance in the 
loadings. However, for some datasets, it is certainly interest-
ing to use a CFA model—thus, with fixed patterns of zero 
factor loadings. For instance, researchers may want to rely 
on results from previous research showing that the configural 
factor structure is relatively stable across subjects and time.

Relatedly, a CFA variant that additionally allows for equality 
restrictions across the states would enable users to test whether 
higher levels of (partial) invariance, such as weak invariance, 
hold across (part of) the states by comparing the BIC (or alter-
native information criteria) of models with increasingly more 
restrictions (for a similar procedure for non-dynamic latent 
classes, see Lubke & Muthén, 2005). However, before including 
it in the lmfa package, the CFA variant of LMFA with equality 
restrictions still needs to be evaluated in future research.

Secondly, the factor analysis models in step 1 assume con-
tinuous item responses. If items are measured with only a 
few categories or if the item responses are heavily skewed, 
state-specific “latent trait” (or “item response theory”) models 
should be employed in step 1 of the analysis to adequately 
deal with categorical data, as is done in the extension called 
latent Markov latent trait analysis (LMLTA; Vogelsmeier 
et al., 2021b). Performing LMLTA is currently only possible 
in LG, but advanced R users could specify their own state-
specific models for step 1 (for instance, by using mixture 
models for categorical data from other packages) and use the 
posterior state-membership probabilities as input41 for the step 
3 analysis with lmfa. However, to the best of our knowledge, 
suitable packages are currently not available in R. If a package 
becomes available, the possibilities to include it in the lmfa 
package (to perform LMLTA) will be examined.

Thirdly, before performing step 1 in lmfa, users have to 
remove records that contain missing values on some of the 

indicators, that is, for measurement occasions that were not 
completely skipped (note that completely omitted measurement 
occasions are dealt with by the continuous-time approach). 
As previously stated, removing observations may affect the 
results and conclusions. Generally, technological advances in 
many experience sampling methodology apps prevent subjects 
from submitting incomplete responses. However, sometimes 
researchers would rather have incomplete data than lose the 
measurement occasion entirely. Furthermore, missing data may 
be a result of the increasingly employed “planned missing-data 
designs”, in which researchers deliberately assess only selected 
items at each measurement occasion while omitting others to 
reduce the burden on the subjects, which, in turn, tends to 
increase the quality of the responses (Silvia et al., 2014; van 
Roekel et al., 2019). In the future, lmfa will be extended to be 
applicable for ILD collected with such innovative missing-data 
designs and missing data in general.

Fourthly, the inclusion of covariates in step 3 of the analy-
sis helps researchers understand why certain subjects transi-
tion between MMs over time, but some researchers might 
be more (or also) interested in individual transition patterns, 
especially in the case of only a few subjects. Estimating sub-
ject-specific transition parameters is currently not possible 
in lmfa. However, one can estimate one transition model per 
subject. More specifically, steps 1 and 2 (i.e., evaluating the 
MMs and obtaining the state assignments and classification 
errors) would still be conducted for all subjects42, but step 3 
would be performed for each subject individually. Addition-
ally, instead of inspecting subject-specific transition param-
eters, it might be interesting to investigate whether unob-
served subgroups of subjects have similar transition patterns, 
especially in the case of many subjects. Theoretically, it is 
possible to cluster subjects based on their transition behavior 
by adding a latent grouping variable to the LMFA in step 
3 (e.g., see Crayen et al., 2017; Vogelsmeier et al., 2021b). 
This is not possible with lmfa, but advanced R users may 
consider using the depmix package in step 3 of LMFA by 
passing the modal state assignments and classification error 
probabilities as fixed parameters to the depmix() func-
tion. This package allows for a latent grouping variable in 
the transition model but uses a discrete-time latent Markov 
model and, hence, does not account for differences in inter-
vals, which may impair the estimation of the transition 
model parameters when intervals are unequal (for details 
about the syntax and about how to fix parameters, see the 
package documentation; Visser, 2007).

Lastly, lmfa users currently must draw conclusions about 
(non-)invariance by visually comparing the state-specific 
MMs. If the number and nature of the factors appear to be 

41  As described in “Covariate selection procedure using Wald tests” 
section, this would be done by providing a data frame with posterior 
state-membership probabilities per state via the argument post-
probs.

42  One may also perform the entire LMFA for data of a single subject 
if the number of observations is large enough. For guidelines about 
the required number of observations, see Vogelsmeier et al. (2019b).

40  Note that the commercial software LG offers most of the features 
discussed below.
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the same across states, determining which parameters differ 
substantially becomes a daunting task, especially when com-
paring parameters for models with many states and factors. 
Furthermore, small parameter differences across states will 
always be found due to sampling fluctuations and error fit-
ting. Deciding which differences are practically or statistically 
significant is not a trivial problem. On top of that, the states 
also capture differences in the factor variances (in the load-
ings) and factor means (in the intercepts) due to the model 
identification constraints (see “The state-specific measure-
ment models” section). In order to obtain loadings that are 
optimally comparable across states and to enable hypothesis 
testing for these loadings (using Wald tests), multigroup fac-
tor rotation (MGFR; De Roover & Vermunt, 2019) should be 
applied. MGFR solves rotational freedom by rotating the load-
ings towards a simple structure within the states and towards 
agreement across states while unraveling differences in the 
loadings from differences in the factor variances. MGFR is 
currently only available in LG, but the possibility of including 
it in lmfa will be investigated in the future.

Similarly, a solution for optimally comparing intercepts 
(with hypothesis tests) could be to employ multiple group 
factor alignment (MGFA; Asparouhov & Muthén, 2014), in 
which the factors are rescaled and shifted (or “aligned”) with 
respect to their means, thereby disentangling differences in 
the intercepts from differences in the factor means. However, 
currently, MGFA is only applicable to CFA models without 
cross-loadings. If an MGFA extension for EFA becomes 
available, possibilities to include the method in lmfa will 
be examined. Until MGFR and MGFA are implemented, 
users can inspect whether there appears to be a difference 
in the scaling of all loadings of a factor and/or a “shift” in 
all intercepts of items that correspond to the same factor (as 
indicated by loadings that are not close to zero). If separate 
loadings or intercepts differ across states, it is unlikely that 
these differences are caused by differences in the underlying 
factor variances or factor means, respectively.

Appendix

In the following, we summarize the arguments and the out-
put for each function. Note that additional documentation 
files are available for all functions. These can be called by 
typing a questionnaire mark followed by the function name 
(e.g., ?step1).

step1() function

Arguments 

data The dataset with the indicators.
indicators The variable names of the indicators.
n_state The number of states that should be 

estimated when modelselection = 
FALSE

n_fact The number of factors that should be 
estimated when modelselection = 
FALSE

modelselection The indication whether model selection 
should be performed or not. The default 
is FALSE.

n_state_range The range of states that should be estimated 
when modelselection = TRUE.

n_fact_range The range of factors that should be esti-
mated when modelselection = 
TRUE.

n_starts The number of start sets. Multiple start 
sets are required in order to increase the 
chances of finding the global maximum 
(for details, see Supplementary Material 
S.3.5). The default is 25.

n_initial_ite The number of initial iterations, that is, the 
number of iterations that is performed 
for each start set (for an explanation, 
see Supplementary Material S.3.5). The 
default is 15.

n_m_step The number of maximization-step itera-
tions inside the implemented expectation 
maximization algorithm (for details, see 
Supplementary Material S.3). The default 
is 10.

em_tolerance The estimation convergence criterion (for 
details, see Supplementary Material 
S.3.4). The default is 1e-8.

m_step_tolerance The criterion for stopping the maximiza-
tion-step iterations. The default is 1e-3. 
Thus, the maximization-step iterations 
stop when either m_step_tolerance 
or n_m_step has been reached.

max_iterations The maximum number of iterations 
after which the estimation terminates 
regardless of whether convergence has 
been reached or not. The default is 1000 
iterations.

n_mclust The number of mclust start sets (for details, 
see Supplementary Material S.3.5). The 
default is 5.
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Output 

n_it The number of iterations.
seconds The time in seconds that was 

required to reach convergence.
convergence Indicates whether the model 

estimation converged prior to 
reaching the maximum number 
of iterations. A convergence 
of 1 indicates that the model 
converged.

LL The value of the loglikelihood 
(for details, see Supplementary 
Material S.3.1).

BIC The value of the BIC (for details, 
see Supplementary Material 
S.6.2).

intercepts The state-specific intercepts.
loadings_stand_obli The state-specific standardized 

obliquely rotated loadings. If 
the number of factors is equal to 
one, the loadings are equal to the 
ones in loadings_stand_
list.

unique_variances The state-specific unique vari-
ances.

state_proportions The state proportions.
n_obs The total number of observations 

across all subjects and time-
points.

n_par The total number of free param-
eters (for details, see Supple-
mentary Material S.6.1).

explained_variance The amount of explained variance 
weighted by the state sizes (for 
details, see Supplementary 
Material S.6.4).

n_state The number of states.
n_fact The state-specific number of 

factors.
intercepts_list List of state-specific intercepts.
loadings_list List of state-specific loadings.
loadings_stand_list List of state-specific standardized 

loadings.
loadings_obli_list List of state-specific obliquely 

rotated loadings. If the number 
of factors is equal to one, the 
loadings are equal to the ones in 
loadings_list.

loadings_stand_obli_
list

List of state-specific standardized 
obliquely rotated loadings. If 
the number of factors is equal to 
one, the loadings are equal to the 
ones in loadings_stand_
list.

unique_variances_list List of state-specific unique vari-
ances.

factor_correlations_
stand_obli_list

List of state-specific factor cor-
relations resulting from the 
rotations of the standardized 
loadings.

factor_correlations_
obli_list

List of state-specific factor cor-
relations resulting from the 
rotations of the loadings.

activated_contraints The number of activated con-
straints (for details, see Supple-
mentary Material S.3.4).

classification_poste-
riors

The posterior state-membership 
probabilities and the modal state 
assignments.

classification_errors The classification errors when 
using the modal state assign-
ment (for details, see Supple-
mentary Material S.4).

classification_errors_
prob

The classification-error prob-
abilities when using the modal 
state assignment (for details, see 
Supplementary Material S.4).

R2_entropy The entropy-based R-squared 
measure (for details, see Sup-
plementary Material S.6.6)

warning_loadings A message indicating whether 
convergence for rotating the 
loadings was reached or not.

warning_loadings_stand A message indicating whether 
convergence for rotating the 
standardized loadings was 
reached or not.

raw_data The data corresponding to the 
indicator items that were used in 
the analysis.

step2() function

Arguments 

data The dataset used in step1().
model The model estimated with step1().

Output 

classification_poste-
riors

The posterior state-membership 
probabilities and the modal state 
assignments.

classification_errors The classification errors when 
using the modal state assignment 
(for details, see Supplementary 
Material S.4).

classification_errors_
prob

The classification-error probabili-
ties when using the modal state 
assignment (for details, see Sup-
plementary Material S.4).
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R2_entropy The entropy-based R-squared 
measure (for details, see Sup-
plementary Material S.6.6).

totoal_classification_
error

The total classification error.

state_proportions The state proportions.
data The data with the posterior state-

membership probabilities and 
the modal state assignments 
attached.

step3() function

Arguments 

data The dataset (including the covariate 
values).

timeintervals The name of the column con-
taining the intervals between 
measurement occasions. The 
default is NULL, which means 
that the measurement occasions 
are assumed to be equidistant.

identifier The name of the column contain-
ing the subject identifiers.

n_state The number of states that was used 
for the estimation with step1().

postprobs The posterior state-membership 
probabilities of step2().

transitionCovariates The covariate(s) for the transition 
intensities. The default is NULL, 
which means that no covariate 
effects are estimated.

initialCovariates The covariate(s) for the initial 
state probabilities. The default 
is NULL, which means that no 
covariate effects are estimated.

n_starts The number of random start sets 
(for details, see Supplementary 
Material S.5.4). The default is 25.

n_initial_ite The number of initial iterations 
that should be performed for 
each start set. The default is 10.

method The estimation method. The 
default is "BFGS", which is 
usually faster and more stable 
when including covariates. The 
alternative is "CG".

max_iterations The maximum number of itera-
tions after which the estimation 
stops regardless of whether 
convergence has been reached or 
not. The default is 1000.

tolerance The convergence tolerance (for 
details, see Supplementary 
Material S.5.3). The default 
is 1e-10.  When the message 
occurs that the model has likely 
not converged because the Hes-
sian is not positive definite, it 
is advisable to set the argument 
to a lower value and repeat the 
analysis (e.g., 1e-16; Jackson, 
2011).

scaling A scaling parameter for the 
loglikelihood that can prevent 
numerical problems from occur-
ring, which is internally passed 
to the optimization function 
optim(). An appropriate scale 
value is close to -2 times the 
loglikelihood, but the loglikeli-
hood is of course unknown 
prior to estimating the model. 
Therefore, by default, lmfa 
uses an approximation, which 
is based on the loglikelihood 
value of a CT-LMM without 
transitions. Next to this default 
(i.e., scaling = "proxi"), 
it is also possible to specify own 
scale values.

Output 

seconds The time in seconds that was 
required to reach convergence.

convergence Indicates whether the model 
estimation converged prior to 
reaching the maximum number 
of iterations. A convergence 
of 1 indicates that the model 
converged. Note that it is not 
possible to obtain the number of 
iterations because this infor-
mation is not returned by the 
optim() function.

LL The value of the loglikelihood (for 
details, see Supplementary Mate-
rial S.5.1).

BIC The value of the BIC (for details, 
see Supplementary Material 
S.6.9).

WaldTests The Wald test output.
estimates The parameter estimates of the 

transition model.
classification_poste-
riors

The posterior state-membership 
probabilities and the modal state 
assignments.

state_proportions The state proportions.
n_initialCovariates The number of covariates for the 

initial state probabilities.
n_transitionCovariates The number of covariates for the 

transition intensities.
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n_initial_covariates The number of covariates speci-
fied for the initial state param-
eters.

transition_covari-
ate_means

The number of covariates speci-
fied for the transition parameters.

n_obs The total number of observations 
across all subjects and time-
points.

n_par The total number of free param-
eters (for details, see Supple-
mentary Material S.6.8).

n_state The number of states.
data The data with the posterior state-

membership probabilities and 
the modal state assignments 
attached.

chull_lmfa() function

Arguments 

x The model-selection output of the 
function step1().

Output
Prints the models on the upper boundary of the CHull, the 

corresponding scree-test values, and the selected model(s).

factorscores_lmfa() function

Arguments 

data The dataset used in step1().
model The model estimated with 

step1().
oblique The indication whether the factor 

scores should be obtained for 
the obliquely rotated loadings or 
unrotated loadings. The default 
is TRUE, indicating that the 
obliquely rotated loadings are 
considered.

rounding The number of decimals to which 
the results should be rounded. 
The default is 4.

Output
Attached the state-specific factor scores to the dataset.

probabilities() function

Arguments 

model The transition-model output of the 
function step3().

deltaT The interval for which the transi-
tion probabilities should be 
calculated.

initialCovariateScores The covariate scores for which 
the probabilities should be 
calculated. The default is NULL, 
which implies that any scores are 
set equal to the sample means.

transitionCovariateS-
cores

The covariate scores for which 
the probabilities should be 
calculated. The default is NULL, 
which implies that any scores are 
set equal to the sample means.

rounding The number of decimals to which 
the results should be rounded. 
The default is 2.

Output
Prints the initial state and transition probabilities for 

specified covariate values (and intervals).

invariance() function

Arguments 

model The transition-model output of the function 
step3().

identifier The name of the column containing the subject identi-
fiers.

Output
Prints, for each state, the identification number of subjects 

who are in that state during the entire participation period.
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